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Both direct numerical simulation and theoretical stability analysis are performed together in order to

study the transition process to turbulence in a flow between a rotating and a stationary disk. This

linear stability analysis considers the complete rotor-stator flow and then extends the results of

Lingwood @J. Fluid Mech. 299, 17 ~1995!; 314, 373 ~1996!# obtained in a single disk case. The

present linear analysis also extends the former two-disk computations of Itoh @ASME FED 114, 83

~1991!#, only limited to a hydrodynamic spatial instability analysis. Moreover, in the present work,

this approach is completed by discussing the effects of buoyancy-driven convection on the flow

stability and by absolute/convective analysis of the flow. Coupled with accurate numerical

computations based on an efficient pseudo-spectral Chebyshev–Fourier method, this study brings

new insight on the spatio-temporal characteristics of this flow during the first stages of transition.

For instance, an exchange of stability from a steady to a periodic flow with spiral structures is

observed for the first time numerically in such cavity of large aspect ratio. The nature of the first

bifurcation is discussed as well as the influence on it of disturbances coming from the end-wall

boundary layer. Annular and spiral patterns are observed in the unstable stationary disk layer with

characteristic parameters agreeing very well with the present theoretical results. Then, these

structures are interpreted in terms of type I and type II generic instabilities. Moreover, the absolute

instability regions which are supposed to be strongly connected with the turbulent breakdown

process are also identified and the critical Reynolds numbers of the convective/absolute transition in

both Ekman and Bödewadt layers are given. © 2004 American Institute of Physics.

@DOI: 10.1063/1.1644144#

I. INTRODUCTION

Flows in rotating disks system are not only a subject of

fundamental interest as prototype flows with three-

dimensional boundary layers but are also a topic of practical

importance in the performances improvement of many indus-

trial devices. Typical configurations are cavities between ro-

tating compressors and turbines disks.1 Numerous works

have been recently devoted to the investigation of the insta-

bilities associated to a single disk flow2–5 and to a differen-

tially rotating disks flow.6–10 Identification and characteriza-

tion of mechanisms related to this process should improve

the prediction methods and lead to new, more efficient con-

trol strategies, of considerable importance in practical flows.

Despite intensive work and recent advances, no full under-

standing of the transition and the turbulent breakdown pro-

cess has yet been achieved in these flows.

In the limit of high rotation rate, the flow between a

rotating and a stationary infinite disk is of Batchelor type and

presents two separated layers by an inviscid rotating core: of

Ekman type on the rotating disk and of Bödewadt type on the

stationary disk. The transition process in both these layers is

related to type I and type II generic linear instabilities which

have been extensively experimentally and theoretically docu-

mented ~see a review in Ref. 11!. The type I instability, also

referred as ‘‘cross-flow’’ instability, is due to the presence of

an unstable inflection point in the boundary layer velocity

profile. The mechanism for type II instability is related to the

combined effects of Coriolis and viscous forces ~see details

in Ref. 12!. The spatial structure of both instabilities consists

of traveling vortices in the boundary layers expanding in

rings or spirals in the azimuthal direction. Faller13 and Cald-

well and Van Atta14 have investigated experimentally the

type I and type II instabilities in the Ekman flow and found

reasonably good agreement with linear stability theory.

Savas15 studied experimentally unsteady uniformly rotating

flow over a stationary disk and found both rings and spiral

structures recognized as the type II and type I instability,

respectively. In both rotor/stator cavity flow and Ekman anda!Electronic mail: serre1@l3m.univ-mrs.fr
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Bödewadt flows around a single disk, the experimental re-

sults exhibit the similar instability structure; however, the

confinement of the geometry ~rotor/stator geometry! has ef-

fect on the critical Reynolds number.9

A more recent insight on the transition process in these

boundary layers has been carried out by considering the re-

sponse to a brief and localized perturbation introduced into

the unstable boundary layer region. When an impulse re-

sponse grows with time at every location in space, the flow is

defined as absolutely unstable.16,17 By contrast, when the re-

sponse decays at every location in a sufficiently long time,

the flow is defined as convectively unstable. The convective/

absolute nature of the transition in the Ekman family flows

on the single rotating disk has been evidenced in both theo-

retical and experimental studies.3,4,18 In a very recent work,

Pier5 has carried out a secondary stability analysis of a single

rotating disk boundary layer which has revealed that as soon

as the primary nonlinear waves come into existence they are

already absolutely unstable with respect to secondary pertur-

bations. This theoretical result shows that the secondary dis-

turbances continuously perturb the primary vortices, thus in-

volving the direct route to turbulence. A convective/absolute

transition has been also experimentally revealed by Gauthier

et al.6 in a flow between a stationary and a rotating disk in a

rotor/stator cavity.

The flow between two disks rotating in the rotor/stator

configuration has been analyzed with the assumption that the

radius of the disks is either infinite7,19 or finite.9,10 In the case

of the finite radius of the disks, additional parameters are

needed to describe the geometrical configuration, namely, the

ratio of the radial extension to the distance between the disks

and also to described imposed boundary conditions. The

modification brought by the presence of an external shroud,

the influence of the attachment of the shroud to the rotor or

to the stator, and the influence of the approximation of the

azimuthal outer radius velocity profile have been discussed

in different papers.20–23 Great influence of the end-wall

boundary layer on the flow structure has been reported.

In our former studies, rotor-stator flows were investi-

gated in time-dependent regimes above the threshold9 or

even in transitional turbulent regimes.24 In the present paper,

the first stages of the transition process have been more ac-

curately investigated, using coupled theoretical and numeri-

cal investigations. In cylindrical cavities of small aspect

ratio9,22 (L52) or in a tank with a rotating lid,25 the transi-

tion process to unsteadiness is clear. Increasing rotation step

by step, a critical Reynolds number is found beyond which

the flow becomes nicely periodic and then successive bifur-

cations ultimately lead to chaos. Surprisingly, in cylindrical

cavities of larger aspect ratio (5<L<10) such bifurcations

scenario has never been reported numerically until now, ex-

cepted in 2D calculations by Hadid,26 and the transition to

unsteadiness was only obtained as a direct transition from a

steady to a chaotic state.

The three-dimensional direct numerical calculations

~DNS!, based on high-order spectral methods, are carried out

in a cylindrical rotor-stator cavity of aspect ratio L(R1/2h)

55. The high accuracy of the numerical method, involving a

full control of the flow in this simple geometry, allows an

accurate description and characterization of the different

flow structures related to boundary layer instabilities. In con-

trast to former studies quoted above, the slow increase of the

rotating disk velocity and a careful analysis of the results has

allowed us to emphasize a nice supercritical Hopf bifurcation

associated with the occurrence of vortices in the stationary

disk layer ~Bödewadt type!.
A linear local stability analysis ~LSA! is also performed

in order to enlighten the DNS results with respect to type I

and type II instability. The characteristic parameters of the

vortex structures obtained by the DNS method compare fa-

vorably with LSA results. Moreover, the absolute instability

regions are theoretically identified, extending the approach

of Lingwood3,4 for a single disk to the two disks rotor/stator

flow. The absolute/convective character of the flow is also

discussed in the light of our DNS calculations. Then,

buoyancy-driven convection effects on the flow stability are

analyzed by extending LSA calculations to the case of non-

isothermal flows.

This article is organized as follows. In Sec. II, the geo-

metrical configuration considered in DNS and the governing

parameters are described. Then, in two next sections the gov-

erning equations with the boundary conditions are given and

the main features of the LSA and DNS methods are outlined.

In Sec. V, isothermal LSA results are presented together with

non-isothermal LSA results where the buoyancy-driven con-

vection is enhanced by the density variation via a Boussinesq

approximation in the centrifugal acceleration field. More-

over, the absolute/convective character of the flow is dis-

cussed in both isothermal and non-isothermal cases. In Sec.

VI, the DNS results are analyzed in the case of rotation-

driven isothermal flows. Finally, discussion and concluding

remarks are made in Sec. VII.

II. GEOMETRICAL MODEL AND PHYSICAL
PARAMETERS

The geometrical model is a rotor-stator cylinder of ra-

dius R1 , bounded by a stationary cylinder of height 2h ~Fig.

1!. In this study, the aspect ratio of the cavity L5(R1/2h)

FIG. 1. Schematic picture of the rotating cavity of radius R1 and height 2h

with marked monitoring points in radial direction. In the non-isothermal

configurations, T1 and T2 are the temperatures of the rotating and of the

stationary disk, respectively.
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55 is a compromise between actual rotor/stator devices and

computational cost required by time-dependent three-

dimensional calculations. The rotor rotates at uniform angu-

lar velocity V5Vez , ez being the unit vector. The origin of

the z-axis is located at the mid-height between the disks.

The flow is controlled by two physical parameters which

are the Reynolds number, Re, and the aspect ratio, L. The

closed geometry is characterized by two independent length

scales, R1 and h, each of which is used in the literature in the

definition of Re. In this article, the Reynolds number based

on the external radius of the disks, ReR5R1
2V/n, has been

chosen ~used among others by Owen and Rogers1 and Lopez

and Weidman!.23 For sufficiently large rotation rate, both lay-

ers can be studied independently as a first approach as the

flow over a single disk. In the rest of the article, both layers

will be referred to as stationary disk and rotating disk layer

in the two disks configuration, in contrast to Bödewadt and

Ekman layer, respectively, in a single disk flow case. In this

case, the relevant parameter is the local Reynolds number,

Red5r*/d5(r*2V/n)1/2, based on the local distance to the

axis and the viscous scale d5(n/V)1/2. We notice that ReR is

an upper bound to the square of Red . This local Reynolds

number is relevant to discuss the instability thresholds and

characteristic parameter of the instability waves.

For non-isothermal flows, considered in LSA, we have

additional governing parameters, i.e., the thermal Rossby

number B5b̄(T22T1), where b̄521/rr(]r/]T)P is the

thermal-expansion coefficient and T1 , T2 are the tempera-

tures of the rotating and stationary disks, respectively.

III. MATHEMATICAL MODEL AND NUMERICAL
METHOD „DNS…

The governing equations are the 3D Navier–Stokes

equations, written in velocity-pressure formulation together

with the continuity equation. The equations are written be-

low in a cylindrical polar coordinate system (r ,z ,w), with

respect to a stationary frame of reference:

]V

]t
5

1

Re
DV2~V•¹ !V2¹p ,

¹•V50,

where t is the time, V is the velocity vector, (u ,w ,v) are the

velocity components in r, z, and w directions, respectively,

and p is pressure.

The scales for the dimensionless variables of time,

space, and velocity are V21, h and VR1 , respectively. The

dimensionless axial coordinates are z5z*/h; zP@21,1# ~as-

terisks denote the dimensional values!. The radius coordinate

is normalized to obtain the domain @21, 1# requested by the

spectral method, based on the Chebyshev polynomials: r

5(2r*2R1)/R1 . No slip boundary conditions apply at all

rigid walls; then u5w50. For the azimuthal velocity com-

ponent, the boundary conditions are v50 on the stator and

v5(11r)/2 on the top rotating disk. The end-wall cylinder

is also supposed at rest, then v50. However, in order to

eliminate the singularity of the azimuthal velocity at the

junction between the stationary end-wall and the rotating

disk, this boundary condition is smoothed using an exponen-

tial azimuthal velocity profile v5exp((z21)/0.006) which

approximates well the thin gap between the edge of the ro-

tating disk and the stationary end-wall. The initial condition

is as follows: u50, v5(11r)(z11)/4, w50.

The numerical solution is based on a pseudospectral col-

location Chebyshev–Fourier Galerkin approximation.27 The

use of the Gauss–Lobatto collocation points, corresponding

FIG. 2. Similarity solutions of Batchelor type at Re51000 (Re5V(2h)2/n)

and for three different Rossby numbers: B50.1 ~cooling of the rotating

disk!, 0 ~isothermal! and 20.1 ~cooling of the stationary disk!. Profiles of

the radial (F5u*/Vr*) ~a!, axial H5w*/AnV ~b!, and azimuthal (G

5v*/Vr*) ~c! velocity components.
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to the extrema of the Chebyshev polynomials Tn and Tm of

high degree, N and M in the radial and axial directions, re-

spectively, directly ensures high accuracy of the solution in-

side the very narrow wall layers. The differential equations

are exactly satisfied at the Gauss–Lobatto collocation points

(r i ,z j)P@21,1#3@21,1# , with r i5cos(ip/N) and z j

5cos(jp/M) for i50,...,N and j50,...,M .

The approximation of the flow variables c5(u ,w ,v ,p)

is given by a development in truncated series:

CNMK~r ,z ,w ,t !5 (
p52K/2

K/221

(
n50

N

(
m50

M

Cnmp~ t !Tn~r !Tm~z !e ipw

for
21<r ,z<1,

0<w<2p .

The derivatives are obtained from

]qCNMK

]rq ~r i ,z j ,wk ,t !5(
h

N

dr ih
~q !CNMK~rh ,z j ,wk ,t !,

]qCNMK

]zq ~r i ,z j ,wk ,t !5(
j

M

dz jj
~q !CNMK~r i ,zj ,wk ,t !,

where dr i j
(q) , dz i j

(q) correspond to the coefficients of the ma-

trix of the first and second derivatives (q51,2) and where

wk52p/K , k50,...,K21 are points in azimuthal direction.

The singularity introduced by the axis at r50 has re-

quired a dependent variable transformation Ṽ5rV , p̃5rp as

proposed by Serre and Pulicani.28

The time scheme is semi-implicit and second-order ac-

curate. It corresponds to a combination of the second-order

backward differentiation formula for the viscous diffusion

term and the Adams–Bashforth scheme for the nonlinear

terms. The method uses a projection scheme to maintain the

incompressibility constraint.27–29

IV. LINEAR STABILITY ANALYSIS „LSA…

The disturbance equations are obtained by expressing

the velocity, temperature, and pressure fields as the superpo-

sition of the basic state and of a perturbation field. Once the

non-isothermal flow condition is considered, the thermal ef-

fects and the rotational-induced buoyancy become important

and influential in stability characteristics and the critical con-

ditions. In order to take into account the buoyancy effects the

Boussinesq approximation is invoked, i.e., the density asso-

TABLE I. Characteristic parameters of the type II instability of the Bödewadt flow and of the stationary disk boundary layer. Present DNS and LSA results

and literature results.

Authors Red « lr Vf*/Vr* RedcII s

Feria ~Ref. 33!, PST 19.8a 0.0° 12.3 20.22 19.8 2.1

Itoh ~Ref. 7!, LSA @38.6; 55# @229.8°; 225.6°# @34; 34.8# @20.23; 20.21# 38.6 @1.9; 2.3#

Savas ~Ref. 15!, Exp. 35 0.0° 19 20.1 35 1.15

Serre ~Ref. 9! DNS, L52 @21; 126.5# 0.0° @10; 21# @20.08; 20.02# 21 0.9

Serre ~Ref. 9! DNS, L55 @27; 173# 0.0° @8; 17# @20.13, 20.21# 27 4

Present results

LSA

stationary disk layer

@34.7; 62# @234.6°, 231.3°# @35.1; 35.7# @20.25, 20.23# 34.7 @1.9; 2.8#

LSA Bödewadt 18.9a
227.38 16.11 20.67 18.9 5.59

DNS, L55, h50.0 @25.8; 62# 0.0° @7.3; 16.2# @20.01; 0.022#b 25.8 1.1

DNS, L55, h53.5 @23.4274.6# 215.0° @9.3; 14.25# @20.0032; 20.002#b 23.4 1.55

aIn these cases the local Reynolds number is based on the viscous length calculated with the velocity of the fluid at infinity and not with the disk velocity.
bThese values correspond to the radial phase speed.

TABLE II. Characteristic parameters of the type I instability of the Bödewadt flow and of the stationary disk

boundary layer. Present DNS and LSA results and literature results.

Authors Red « lr Vf*/Vr* RedcI s

Itoh ~Ref. 7!, LSA @48.1; 200# @21.6°; 14°# @23.7; 24.16# @20.077; 20.02# 48.1 0.98

Lingwood ~Ref. 4! 27.4a 13.3° 13 0 27.4 0.0

Serre ~Ref. 9! DNS, L52 @63.2; 126.5# @7°; 25.7°# @28.5; 16.1# @20.062; 20.68# 63.5 @0.9; 2.8#

Serre ~Ref. 9! DNS, L55 @86.5; 173# @7°; 28°# @8.8; 17# @20.02; 20.27# 86.5 1

Present results

LSA stationary disk

layer

@47.5; 200# @0.8°, 10°# @21.2; 24.35# @20.062, 20.018# 47.5 0.9

DNS, L55 52.5 12.1° @4.4; 14.7# @20.020; 20.006#b 52.5 1

aIn these cases the local Reynolds number is based on the viscous length calculated with the velocity of the fluid

at the infinity and not with the disk velocity.
bThese values correspond to the radial phase speed.
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ciated with the gravity terms, the centrifugal and the Coriolis

forces due to the disk rotation, and the curvilinear motion of

the fluids are all considered as variable.

A similarity model of the thermal flow is used for gen-

erating axially symmetric solutions of the basic state.30 Di-

mensionless radial profiles (F5u*/Vr*), axial (H

5w*/AnV) and azimuthal (G5v*/Vr*), are presented in

Fig. 2 (Re5V(2h)2/n51000) for three different thermal

Rossby numbers. Thermal effects on this base flow will be

discussed in Sec. V. As in Ref. 7, the flow is of Batchelor

type and the solid-body angular velocity is constant and

equal to v*/Vr*520.687 @Fig. 2~c!# in the rotating frame

of reference. This speed ratio can define a Rossby number,

Ro, between convective and Coriolis effects.

We assume that the perturbation quantities have the fol-

lowing normal-mode form:

@u8,v8,w8,p8,t8#T
5@ û , v̂ ,ŵ , p̂ , t̂#T exp~a*r*1mw

2v*t*!1cc,

where û , ŵ , v̂ , p̂ , t̂ are the dimensional amplitudes of the

three components of velocity ~in r*, z*, w directions!, pres-

sure, and temperature, respectively, a* and b*5m/r* are

the components of wave number k* in the radial and azi-

muthal directions, respectively, v* is the frequency, and t*

is time. The coordinate system is located on the disk under

consideration. The linear local stability analysis equations

plus the homogeneous boundary conditions û(z*)5 v̂(z*)

5ŵ(z*)5 t̂(z*)50 at z*52h and z*5h constitute an ei-

genvalue problem which is solved in a global manner.30 As

in the DNS computations, a spectral collocation method

based on Chebyshev polynomials is used for discretization of

the LSA equations.

LSA is also used to determine the absolute/convective

character of the boundary layers using the Briggs16 criterion.

Following the review paper of Huerre,17 the flow is defined

as absolutely unstable if its impulse response grows with

time at every location in space. The response of a linear

system to the forcing input can be determined by the Green

function G(x ,t):

G~x ,t !5

1

~2p !2 E
F
E

L

e i~kx2vt !

D~k ,v;Red!
dv dk .

Path F in the complex plane of wave number k is initially

taken to be the real axis. The contour L in the complex

frequency plane v is chosen so that the causality is satisfied:

G(x ,t)50 everywhere when t,0. From the asymptotic so-

lution of the Fourier–Laplace integral, a general mathemati-

cal criterion has been derived to determine the nature of

instability.16,17,31,32 According to this criterion, the absolute

instability can be identified by singularities in the dispersion

relation, called pinch-points. The pinch-points are found in a

process of consecutive contour deformations in which L is

deformed toward the lower half of the v plane.32 We have

the following criteria for absolute instability: the flow is ab-

solutely unstable if the so-called absolute amplification rate

voi is positive (voi.0). Additionally, for L contour located

high enough in the v-plane the spatial branches k1(v) and

k2(v) must lie in different halves of the k-plane.

For all flows, except the Ekman single disk boundary

layer which is parallel in the strict sense, the parallel flow

assumption is used in the LSA. It is expected that the parallel

flow assumption have no large influence on numerical results

and that general instability characteristics reveal the general

features of the flow. For example, in the Karman flow,

TABLE III. Characteristic parameters of the type II instability of the Ekman flow and of the rotating disk

boundary layer. Present LSA results and literature results.

Authors Red « lr Vf*/Vr* RedcII s

Melander ~Ref. 38!, Ekman LSA 54.15 223.3° 21.64 0.616 54.15 10.54

Itoh ~Ref. 7!, Ekman LSA 54.2 223.3° 21.65 0.616 54.2 10.55

Itoh ~Ref. 7!, LSA rotating disk

layer

85.3 224.7° 26.91 0.373 85.3 8.17

Present results

LSA rotating disk layer 90.23 226.3° 28.56 0.39 90.23 8.73

LSA Ekman flow 54.18 223.4° 21.66 0.617 54.18 10.56

TABLE IV. Characteristic parameters of the type I instability of the Ekman flow and of the rotating disk

boundary layer. Present LSA results and literature results.

Authors Red « lr Vf*/Vr* RedcI s

Melander ~Ref. 38! 112.76 7.2° 11.49 0.094 112.76 5.84

Lingwood ~Ref. 4!, Ekman 116 14.5° 11.89 0.0 116 0.0

Itoh ~Ref. 7!, LSA Ekman 113 7.2° 11.49 0.094 113 5.85

Itoh ~Ref. 7!, LSA rotating disk layer 281 10.9° 15.307 0.0185 281 2.17

Present results

LSA rotating disk boundary

layer

278.6 10.9° 15.056 0.0185 278.6 2.19

LSA Ekman flow 112.78 7.2° 11.49 0.094 112.78 5.84
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Lingwood3,4 demonstrated that both theoretical and experi-

mental critical Reynolds numbers of absolutely unstable flow

coincide. Moreover, using linear parabolized stability theory

including nonparallel effects, Feria33 obtained a critical Rey-

nolds number of the Bödewadt layer type II instability

~single disk!, Red519.8, very close to the one obtained in the

present study, Red518.9 ~see Table I!. We can also expect

that for two-disk model the error caused by nonparallel ef-

fects is not significant. Even if nonparallel effects due to

radial confinement could explain the slight disagreements

observed with our DNS results, the parallel flow studies pro-

vide qualitatively correct descriptions of the investigated

class of flows and are very helpful in interpretation of DNS

results in terms of type I and type II instability and in deter-

mining the absolute/convective character of the boundary

layer flow.

V. LINEAR STABILITY ANALYSIS RESULTS

Our linear stability analysis considers the complete

rotor-stator flow ~disks of infinite radius! for both isothermal

and non-isothermal configurations. We focus here on the

characteristics of the instabilities which were shown to be the

most unstable. All these LSA results are summarized in

Tables I–VIII together with present DNS and available lit-

erature results.

A. Type I and type II boundary layer instabilities

Characteristic parameters of the type I and type II insta-

bility are given for isothermal flows in Tables I–IV, for the

both stationary ~I, II! and rotating boundary layer flows ~III,
IV!. The thermal effects on the instabilities characteristics

are summarized in Tables V and VI. The main spectral pa-

rameters are normalized as follow: the wave-number k’s

components in radial and azimuthal directions are a5a*d ,

b5b*d , the phase speed Vf5Vf*/Vr*(5vr /k) and the

frequency s5v Re.

1. Isothermal flow

a. Stationary disk boundary layer. In the stationary disk

layer, the onset of the type II instability has been found at

RedcII534.7 and with a negative phase speed Vf

520.2526 showing that the disturbances propagate in the

stationary disk flow direction. The present research shows

that type II instability only exists in a narrow range of Red ,

disappearing at Red562. Type I instability occurs at a

slightly larger Reynolds number, RedcI547.5. The exemplary

iso-lines of the temporal amplification rate obtained at differ-

ent Red565, 80, and 130 are shown in the plane of the wave-

angle and wave-number in Figs. 3~a!–3~c! in order to show

the area of dominant type I and type II instability with re-

spect to the Red . On the stationary disk at Red565, two

separate regions of instability exist @Fig. 3~a!#. The first peak

obtained for higher wave-number with the maximum at k

;0.28 and «;5° is identified as the type I instability. The

second peak with the maximum at k;0.2 and «;230° cor-

responds to the type II instability. As expected only the type

I instability exists at Red580 and 130 @Figs. 3~b! and 3~c!#.
Our type I and type II isothermal linear stability results

of the stationary disk boundary layer are in very good accor-

dance with the experimental results of Savas,15 who obtained

RedcII535.0 and with the theoretical results of Itoh7 ~Tables I

and II!. The small deviation from Itoh’s results, in the critical

Reynolds numbers, can be attributed to the use of two dif-

ferent numerical procedures and computational facilities.

b. Rotating disk boundary layer. Our results show that

the rotating disk layer is much more stable than the station-

ary disk boundary layer discussed above. Indeed, the onset of

type II instability has been found at RedcII590.23 and of type

I at RedcI5278.6.

Our critical parameters are in very good agreement with

Itoh’s7 results ~see Tables III and IV!. The critical parameters

of the type I instability are also in good agreement with the

critical parameters obtained by Lingwood18 for the Ekman

layer ~stationary waves, Vf50.0) on a single disk. However,

TABLE V. Characteristic parameters of type I and type II instabilities of the

rotating disk layer in non-isothermal flow.

B l r

Present

results

« Vf*/Vr* Redc

Type II

20.1 26.69 224.895 0.36 94.8

20.06 27.14 225.26 0.370 93.42

20.02 27.8 226.048 0.382 91.46

0 28.26 226.3 0.39 90.23

0.02 28.95 225.95 0.385 67.2

0.06 30.77 225.873 0.3826 110.19

0.1 32.73 226.1 0.3846 121.9

Type I

20.1 14.58 10.5 0.022 281.3

20.06 14.73 10.65 0.0189 280

20.02 14.98 10.8 0.0188 279.15

0 15.055 10.9 0.0184 278.6

0.02 14.937 10.5 0.0247 271.655

0.06 14.544 9.5 0.0382 257.02

0.1 14.41 8.1 0.05395 243.04

TABLE VI. Characteristic parameters of type I and type II instabilities of

the stationary disk layer in non-isothermal flow.

B l r

Present

results

« Vf*/Vr* Redc

Type II

20.1 30.22 223.68 20.2226 46.46

20.06 31.84 226.77 20.2302 42.84

20.02 34.14 232.00 20.2460 38.15

0 35.32 235.32 20.2526 34.69

0.02 36.01 237.02 20.2705 35.41

0.06 37.20 239.88 20.2972 35.64

0.1 37.52 241.91 20.3216 35.93

Type I

20.1 20.68 2.3 20.0560 61.0

20.06 20.46 0.2 20.0646 55.95

20.02 20.88 21.2 20.0767 50.38

0 21.20 20.8 20.0787 47.5

0.02 20.20 0.85 20.0849 46.80

0.06 18.99 4.77 20.0975 45.79

0.1 18.32 7.73 20.1200 45.27

693Phys. Fluids, Vol. 16, No. 3, March 2004 Coupled numerical and theoretical study of the flow



there is a large difference between our critical Reynolds

number of the type I instability, RedcI5278.6 ~also Itoh’s

result,7 RedcI5281) and that obtained by Lingwood,18 RedcI

5116.3, for the Ekman boundary layer on a single disk. This

discrepancy is attributed to the influence of the stationary

disk in the two-disk configuration as opposed to the open

domain in Lingwood’s Ekman flow. Indeed, as underlined in

Sec. IV of the present work the Rossby number Ro is not

equal to zero as in the Ekman layer studied by Lingwood.18

Then, a more relevant comparison would be certainly given

by interpolating the Lingwood result for Rossby equal to

20.751 which is closer to Ro521 ~Karman layer! than

Ro50 ~Ekman layer!. Unfortunately, data required for pre-

cise interpolation are missing in Lingwood’s work.

2. Non-isothermal flow

In order to analyze the effect of thermal conditions on

the instability characteristics, we have extended our investi-

gations to the non-isothermal class of flow. Calculations have

been performed for different thermal Rossby numbers B

5b̃(T22T1); however, for validity of the Boussinesq ap-

proximation, the values of B have been limited in this study

to a small range, e.g., 20.1<B<0.1. From the definition of

the thermal Rossby number, the positive and negative values

of B stand for T2.T1 ~cooling of the rotor wall! and T2

,T1 ~cooling of the stator wall!, respectively. When the sta-

tor is cooled (B,0), buoyancy enhances in the rotor-stator

cavity, a secondary flow which develops in opposite direc-

tion to the basic recirculation. In contrast, when the rotor

wall is cooled (B.0), the buoyancy driven secondary flow

enforces the basic rotation driven flow.

Tables V and VI give the instability characteristic param-

eters of the rotating and stationary disk boundary layer, re-

spectively, for the varying thermal Rossby number. In the

frame of the variations of B within the 610% range of em-

pirical validity of the Boussinesq approximation, interesting

details on the unstable flow are presented. For both type I

and type II instabilities, the changes in the characteristics

parameters are larger in the stationary than in rotating bound-

ary layer for B varying from 20.1 to 0.1, showing that ther-

mal buoyancy effects are stronger in the stator boundary

layer. This behavior is certainly related to the relative influ-

ence of the thermal buoyancy with respect to the rotation

buoyancy driven which is larger in the stationary disk layer

than in the rotating disk layer.

a. Stationary disk boundary layer. The type I and II criti-

cal Reynolds numbers are shown in Fig. 4~a! versus B for the

stationary disk boundary layer. As we can see from Fig. 2,

the influence of the thermal Rossby number on the radial

velocity profiles in the stationary disk boundary layer is

stronger than on the rotating disk boundary layer.

The influence of heating (B.0) is small. The boundary

layer of the stationary disk turned out to be more unstable

than that of the rotating disk for all considered values of B.

All the type II characteristic parameters (lr ,« ,Vf) increase

comparatively to the isothermal case while for the type I, the

wavelength slightly decreases, and the inclination and the

phase velocity strongly increases. An important feature is the

change in the spiral inclination from a negative angle in the

isothermal case ~20.8°! to a positive one as soon the rotor

starts to be cooled («50.85,B50.02).

The cooling of the stationary disk (B,0) stabilizes the

flow with respect to both type I and type II instabilities @Fig.

4~a!# by increasing the critical Reynolds numbers when B is

TABLE VII. Critical parameters of the absolutely unstable area in the Bödewadt flow and in the stationary disk

boundary layer.

Authors Redca ar a i b vr

Lingwood ~Ref. 4!, LSA Bödewadt 21.6a 0.34 0.0776 20.1174 20.218

Present results

LSA Bödewadt 21.7a 0.34 0.0806 20.1124 20.2132

LSA stationary disk layer 48.5 0.19 0.0569 20.0316 20.0277

aIn these cases the local Reynolds number is based on the viscous length calculated with the velocity of the fluid

at the infinity and not with the disk velocity.

TABLE VIII. Critical parameters of the absolutely unstable area in the Ekman, von Karman, rotating disk layer

flows and in flows for two Rossby numbers520.8 and 20.6.

Authors Redca ar a i b vr

Lingwood ~Ref. 4! LSA, Ekman 198 0.379 60.195 0.184 60.0397

Lingwood ~Ref. 4! LSA, 507.3 0.217 20.122 0.135 20.0349

von Karman

Lingwood ~Ref. 4! LSA, Ro520.8 434.8 20.252 20.142 0.155 0.0393

Lingwood ~Ref. 4! LSA, Ro520.6 345.4 20.294 20.164 0.169 0.0418

Present results

LSA Ekman flow 198 0.379 60.195 0.184 60.0397

LSA rotating disk layer. 562 0.26 20.1429 0.152 20.0258

Ro520.687
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decreasing. The influence of cooling on the neutral curves is

shown in Fig. 5. In contrast, when cooling the stator wall

(B,0), all the type II characteristics parameters (lr ,« ,Vf)

decrease. A strong decrease of the inclination is noticed from

235.3° (B50) to 223.7° (B520.1). As for B.0, the sign

of the spiral arm’s inclination for the type I changes for B

520.02 but remains nevertheless in a smaller range of val-

ues than in the cooling of the rotor. The wavelength and the

phase velocity remain almost constant when cooling the sta-

tor.

b. Rotating disk boundary layer. The type I and II criti-

cal Reynolds numbers versus B are shown in Fig. 4~b! for the

rotating disk boundary layer.

We see that cooling of the rotating disk (B.0) stabilizes

the flow with respect to type II instability. The critical Rey-

nolds number, RedcII , increases from 90.23 to about 128

when B is increased from 0 to 0.1. In contrast, the flow is

destabilized at slightly lower Reynolds numbers with respect

to type I instability for the same thermal boundary conditions

(B.0): RedcI decreases from 278.6 to about 240 with in-

creasing B from 0 to 0.1. This behavior is different from the

usual results observed for the type I inflectional instability,

where cooling stabilizes the boundary layers by lowering the

inflectional point. However we can see from Fig. 2 that cool-

ing of the rotating disk has negligible influence on the posi-

tion of the inflectional point (z51 corresponding to the ro-

tating disk in Fig. 2!. That is probably due to the complexity

of this class of rotating non-isothermal flows. The influence

FIG. 3. Iso-lines of v i5const in the stationary disk boundary layer and at

different local Reynolds numbers.

FIG. 4. Critical local Reynolds numbers versus the thermal Rossby number

B obtained at Re51000 in the stationary disk boundary layer ~a! and in the

rotating disk boundary layer ~b!.
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of cooling is also visible in Fig. 6, where the neutral curves

obtained for B50.0, 0.04, and 0.1 are presented.

The wavelength of the type II instability is slightly in-

creased from 28.3 (B50) to 32.7 (B50.1), with a nearly

constant inclination angle and phase velocity. In contrast for

type I, the phase velocity is multiplied by a factor of 3 com-

paratively with the isothermal case but remains globally very

slow, while the wavelength remains almost constant and the

inclination angle of the spiral arms reduced by about 20%.

For B,0, the thermal effect is small and does not in-

volve any change in the critical Reynolds numbers @Fig.

4~b!#. This can be attributed to the small change in radial

velocity ~F! of the rotating disk boundary layer with B in the

range between 0 and 20.1 ~see Fig. 2!. All the type II char-

acteristics parameters (lr ,« ,Vf) slightly decrease compara-

tively to the isothermal case while they remain almost con-

stant for the type I.

B. ConvectiveÕabsolute instability

We use the Briggs16 criterion with a fixed wave number

in the azimuthal direction b to determine the region of abso-

lute instability. All the critical parameters of the absolutely

unstable area are presented in Tables VII and VIII for the

stationary and rotating layer flows, respectively, together

with literature results.

1. Stationary disk boundary layer

In the Bödewadt layer flow on a single disk, the agree-

ment with Lingwood’s results18 is very good for all the criti-

cal parameters ~Table VII!. Lingwood obtained for the

Bödewadt layer Redca521.6 whereas our critical Reynolds

number of the absolutely unstable area obtained for the same

geometry is Redca521.7. The comparison of the neutral

curves of the convectively and absolutely unstable areas ob-

tained for the Bödewadt flow ~single disk model! is pre-

sented in Fig. 7~a!. From Fig. 7~a! we can see that the almost

the whole convectively unstable area in the Bödewadt flow is

absolutely unstable. Next, the Lingwood model has been ex-

tended by considering the whole rotor-stator isothermal flow

(B50.0). As in the case of the single disk, almost the entire

convectively unstable flow on the stationary disk turned out

to be absolutely unstable @see the neutral curve in Fig. 7~b!#.
However, the critical Reynolds number of the absolutely un-

stable flow on the stationary disk has been found to be about

two times larger than in a single disk case at Redca548.5.

2. Rotating disk boundary layer

In the Ekman boundary layer flow on a single disk, we

obtained exactly the same results as those published by Ling-

wood, i.e., Redca5198 ~others critical parameters are pre-

sented in Table VIII!. The comparison of the neutral curves

of the convectively and absolutely unstable areas obtained

for the Ekman flow ~single disk model! is presented in Figs.

7~c!. However, on the rotating disk ~two-disks model!, the

critical Reynolds number of the absolutely unstable flow has

been determined much larger at Redca5562 which is more

than 2.5 times larger than the value obtained in the Ling-

wood model of the Ekman flow, Redca5198. That shows the

strong influence of the stationary disk boundary layer flow

on the critical Reynolds number of the rotating disk layer. As

for type I and type II instabilities characteristics, we could

expect that a more relevant comparison would be obtained

by interpolating Lingwood’s results at Ro520.751 from her

data obtained at Ro520.6 and Ro520.8. However, even if

FIG. 5. Comparison of the neutral curves vr5 f (Red) in the stationary disk

boundary layer obtained at different B: ~a! convectively unstable areas, ~b!
absolutely unstable areas ~dashed lines indicate second family!.

FIG. 6. Comparison of the neutral curves vr5 f (Red) of the absolutely and

convectively unstable flow obtained for B50.1 ~crosses!, 0.04 ~dots!, and

0.0 ~squares!. The rotating disk boundary layer.

696 Phys. Fluids, Vol. 16, No. 3, March 2004 Serre, Tuliszka-Sznitko, and Bontoux



the comparison is better than in the Ekman layer case, the

interpolation gives Redca;400, the difference between Ling-

wood’s model and the two-disk model remains quite large.

Because we have found a very good agreement with the re-

sults of Lingwood in the single disk case, we can only con-

clude that the effect of the stationary disk on the stability of

the rotating disk boundary layer is not completely taken into

account through this Rossby number. The neutral curves of

absolutely and convectively unstable flow obtained for the

rotating disk boundary layer are presented in Fig. 7~d!. From

the comparison in Figs. 7~c! and 7~d! we can see that for

both models ~the Ekman flow and the rotating disk boundary

layer! the absolutely unstable flow exists only in a very nar-

row range of the spectral parameters not far from the upper

branch of the type I neutral curve where inviscid type I in-

stability is fully dominant. Type II appearing at lower Rey-

nolds number than type I remains totally convectively un-

stable. ~In Fig. 7 we marked the critical points of type I and

type II by the white and black dots, respectively.!

3. Non-isothermal flow

In the next step, we extend our absolute/convective cal-

culations to the non-isothermal class of flow. In Fig. 6 the

neutral curves of convectively and absolutely unstable areas

obtained for the rotating disk boundary layer and for the

different thermal Rossby number are presented. From Fig. 6

we can see that cooling stabilizes the absolutely unstable

areas of the rotating disk boundary layers, but this influence

is not significant. Figure 5~b! shows the neutral curves of

absolutely unstable flow obtained for the stationary disk

boundary layer and for the different thermal Rossby numbers

~solid line!. Figure 5~b! presents also the second families of

branch points with v i50.0 ~dashed line!. The nature of the

second family of branch points was discussed in

Lingwood.18 As it was shown in Lingwood’s paper, for larger

value of Reynolds number, the branch points of the second

family are not pinch point types. Only solid lines in Fig. 5~b!
depict absolutely unstable areas. These areas decrease with

cooling.

VI. NUMERICAL RESULTS „DNS…

Numerical investigations have been performed in a ro-

tating cylindrical cavity of aspect ratio L55. As we investi-

gate the first stages of the transition to unsteadiness, the Rey-

nolds numbers under consideration are not too large (ReR

,14 000), and then spatial resolution N3M3K565349

348 in the r, z, and w directions, respectively, constitutes a

good compromise between required accuracy and computa-

tional cost as emphasized by Serre and Pulicani.28 Moreover,

the solution has shown to be mesh independent for all the

Reynolds numbers considered. The time step incorporated is

dt5531023.

The velocity fluctuations, used to display the structures

related to boundary layer instabilities, are computed with re-

spect to the average flow solution.

Numerical results will focus more on the stability of the

stationary disk boundary layer which governs the transition

in the rotor-stator flow ~see LSA results above!. Indeed, the

rotating disk layer becomes absolutely unstable at a high

local Reynolds number (Redca5562), hardly reachable using

DNS.

FIG. 7. Comparison of the neutral curves b5 f (Red) of the absolutely

~black squares! and convectively ~solid line! unstable flow obtained for @~a!
and ~b!# the Bödewadt flow and the stationary disk boundary layer, respec-

tively; @~c! and ~d!# the Ekman flow and the rotating disk boundary layer,

respectively. The critical points of type I and type II are marked by the white

and black dots, respectively.

697Phys. Fluids, Vol. 16, No. 3, March 2004 Coupled numerical and theoretical study of the flow



A. Base flow

At ReR53000, the flow solution is steady, axisymmetric,

and composed of boundary layers on each disk and of a

central core flow in near solid body rotation. Batchelor34

showed that the rotating disk drives the fluid below the disk

into uniform rigid rotation by viscous effects. This uniformly

rotating core then gives rise to a shear layer on the stationary

disk: see in Fig. 8 the velocity field in the meridian plane ~r,
z, 0! at ReR53000.

B. Transition to unsteadiness

The first bifurcation from the base flow to an unsteady

state has been carefully analyzed using DNS results. That

way, the rotation has been increased step by step from ReR

53000 by considering a small increment equal to 300. In

contrast to most former studies in similar geometries, a su-

percritical Hopf bifurcation has been emphasized for a criti-

cal Reynolds number estimated in a range 11 500<ReR

<12 300.

We also repeat this procedure for the flow additionally

disturbed by superimposing on the initial condition, at every

consecutive ReR , a three-dimensional perturbation function

of general form h sin(pw), where p is an arbitrary number

corresponding to an azimuthal wavelength and h is the am-

plitude growth rate.9,10 Calculations are performed for differ-

ent values of h (0.0<h<3.5) and for only one value of p

52p/4. In a former study,9 we found no influence of p on

instability structures.

The behavior of the dependent variables is monitored in

15 points, in five different positions in the radial direction N

~ 1
6,

1
3,

1
2,

2
3,

5
6! and in three positions in the axial direction M

~ 9
10,

1
2,

1
10! corresponding to the stationary disk layer, the geo-

strophic core and the rotating disk layer, respectively. N and

M are numbers of collocation points in the radial and axial

directions, respectively. The monitoring points in the radial

direction are marked by letters A, B, M, C, and D ~Fig. 1!.

1. Case without superimposed disturbance (hÄ0)

Let us consider first the case where the flow is only

disturbed by the change of the disk rotation ~change of ReR).

In this case, the flow becomes oscillatory at ReR512 900 and

the oscillations over the stages of time considered remain

slightly irregular.

The instability is much more intense in the stationary

disk layer by an order of magnitude of 103 with respect to

the corresponding rotating disk layer disturbances. As no dis-

turbance can be transported from the stationary disk layer,

due to the presence of a stable flow region around the axis

where all the disturbances are damped (Red535.5), the ro-

tating disk layer remains stable at this rotation and only very

small oscillations can be emphasized.

The oscillatory behavior is accurately investigated at

slightly larger ReR513 200: Figs. 9 and 10 present time his-

tories of the axial velocity component obtained at the moni-

toring points A, B, and M, in the stationary and rotating disk

boundary layers, respectively. As expected by our LSA re-

FIG. 8. Base flow. Velocity field in the meridional plane ~r, z, 0! at ReR

53000. Batchelor-type flow composed of two boundary layers on the rotat-

ing and stationary disks separated by a solid body rotating core.

FIG. 9. Time histories of the axial component of the velocity in the station-

ary disk boundary layer at ReR513 200, h50 and at different monitoring

points A, B, M.
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sults, the minimum of the oscillations amplitudes in both

layers is reached in the near axis region, at the sampling

points C and D, where the time histories show microscopic

oscillations of amplitude less than 1027.

a. Stationary disk boundary layer. In the stationary disk

boundary layer, the rotation change brings about a distur-

bance characterized by a wave packet which is rapidly

damped (t520), and then the flow looks reaching a steady

state. Nevertheless, microscopic oscillations present during

this steady state start exponentially growing at the same time

(t5150) and at the all monitoring locations ~Fig. 9!. Finally,

these oscillations reach an asymptotic finite-amplitude peri-

odic state with a constant angular frequency s;1.1 (s
52p/Dt), very close to the rotation frequency ~Hopf bifur-

cation!.
b. Rotating disk boundary layer. Exactly the same be-

havior is observed in the rotating disk boundary layer, i.e.,

the disturbance is first damped and finally an oscillatory so-

lution appears. The angular frequency s;0.82 is slightly

lower than in the stationary disk layer. Nevertheless, in con-

trast to the stator layer in which the perturbations oscillate

around the steady state, the oscillations in the rotor layer are

shifted in relation to the steady initial state solution. Conse-

quently, this asymptotic periodic state breaks the centro-

symmetry property in the rotating disk layer.

2. Case with superimposed disturbance (hÌ0)

Oscillatory solutions have been also observed for h
.0, that is, when a 3D disturbance is superimposed to the

flow. In this case, the flow becomes oscillatory at a slightly

lower Reynolds number (ReR512 300) than with h50

(ReR512 900). Moreover, the oscillations are very regular

and the damping or the amplification processes of the insta-

bility are well established and purely periodic.

The time histories are presented in Fig. 11 at the moni-

toring point A in the stationary disk boundary layer, and for

different Reynolds numbers ReR510 200, 11 100, 12 300

(h53.5). At ReR510 200 and ReR511 100, oscillations of

frequency s;1.51 are decaying exponentially, exhibiting

stable solutions at these rotation rates during the considered

computational time. At slightly larger Reynolds number,

ReR512 300, the disturbances grow exponentially almost

from the beginning of the time history. The frequency at the

asymptotic finite amplitude oscillatory state is equal to

1.523, slightly larger than the one measured during the tran-

sient time at smaller ReR . At all monitoring points in the

stationary disk layer, the oscillatory solution is observed

without any chaotic behavior and it is shown to be indepen-

dent of the radial location ~the differences between frequen-

cies calculated at all monitoring points being less than 1%!
except in the near axis region ~points C and D! where the

flow remains almost stable.

Disturbances of different growth rate h are shown to

give exactly the same final amplitude state flows ~Fig. 12!.
Comparison of the time histories obtained for various h at

ReR513 200 and at the location A in the stationary disk layer

shows that the frequency of the oscillatory final state is in-

dependent of the amplitude growth rate h (h50, 2.0, and

3.5!. However, the results show that the transient time to

reach the stable state noticeably depends on h: t5400 for

h50.5, t5150 for h52, t5110 for h53.5. Then, this tran-

sitory time depends on the amplitude growth rate which be-

haves very roughly as h21. A similar behavior has been

already observed for instabilities of rotating disk layers

within a rotating cavity with radial throughflow10 where the

FIG. 10. Time histories of the axial component of the velocity in the rotat-

ing disk boundary layer at ReR513 200, h50 and at different monitoring

points A, B, M.
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dependency of the transitory time with the growth rate was

in this case as h21/3.

3. Critical Reynolds number

The exponential growth of the microscopic oscillations

has been evaluated when increasing the rotation rate, starting

from the base state previously described at ReR53000 and

h50. The calculations show that duration of this exponential

growth strongly depends on the Reynolds number and de-

crease when increasing the rotation rate; in the stator bound-

ary layer, it needs t5230 for ReR512 900, t5140 for ReR

513 200, t540 for ReR513 300 and regular oscillations of

constant frequency s;1.08 occur directly at the beginning

of the time history for ReR513 500. Due to large CPU time,

it turned out impossible to reach a growing oscillatory solu-

tion for Reynolds numbers lower than 12 900 and conse-

quently to determine precisely the critical Reynolds number

for the unsteadiness. The difficulty in obtaining reliable data

concerning the transition to unsteadiness, due to prohibitive

integration time, was already reported in 2D calculations.22

Nevertheless, by interpolating the different values of Rey-

nolds numbers obtained in the present study ~for h50), this

critical Reynolds number can be estimated to be in a range

between 11 500 and 12 300.

4. Stepping back effect

Calculations have been also performed in order to check

the ‘‘stepping back’’ effect. Calculations have been carried

out at ReR512 600, 12 900, and 13 200 (h50) using as ini-

FIG. 11. Time histories of the axial component of the velocity in the sta-

tionary disk boundary layer at the monitoring point A and for different

Reynolds numbers.

FIG. 12. Time histories of the axial component of the velocity at ReR

513 200 at the monitoring point A in the stationary disk boundary layer and

for different values of h.
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tial conditions the instantaneous oscillatory state solutions

obtained at ReR512 900, 13 200, and 13 300, respectively.

No stepping back has been detected that supposes a super-

critical bifurcation as reported in experiments.6,8

5. End-wall confinement and oscillatory solutions

Present computations show that the end-wall boundary

layer strongly influences the transition to unsteadiness. In-

deed, by changing the end-wall condition, the spatio-

temporal characteristics of the stationary disk inflow are no-

ticeably modified and, consequently, the stability of the

boundary layer also.

The present results show that an end-wall attached to the

rotor stabilizes the flow by switching from an oscillatory

state ~observed with an end-wall at rest! to a steady state at

the same rotation rate. Indeed, calculations have been per-

formed in two cases at the same rotation, ReR513 200, start-

ing from the configuration with an end-wall at rest and using

two other different end-wall boundary conditions:

~i! Without superimposed disturbance (h50) and

a rotating end-wall attached to the rotor. An ex-

ponential distribution of the azimuthal velocity

(v5(12exp(2z21)/0.06)) has then been consid-

ered. As an initial condition, we used the finite ampli-

tude results presented above at ReR513 200

(h50.0).

~ii! With a superimposed disturbance (h53.5) and using

a linear azimuthal velocity profile v5(z11)/2 as the

end-wall boundary condition. As initial condition, we

used the finite amplitude results presented above at

ReR513 200 (h53.5).

Time histories at the monitoring point A obtained for

cases ~i! and ~ii! are presented in Fig. 13 together with frag-

ments of the time histories of initial conditions. These results

clearly show the strong influence of the end-wall boundary

condition on the stability of the stationary disk boundary

layer. In both cases, the disturbances previously observed are

quickly damped.

By changing an endwall at rest to a rotating one notice-

ably modifies the stationary disk layer on about a half from

the end-wall. The flow becomes nonparallel and the bound-

ary layer thickness increases when the radius decreases along

about a half of the stationary disk, which obviously strongly

influences the stability of the boundary layer. Two reasons

FIG. 13. ~a! and ~b! Time histories of the axial component of the velocity obtained at ReR513 200, h50.0: ~a! outer cylinder attached to the stator, ~b! outer

cylinder attached to the rotor and using ~a! as initial condition. ~c! and ~d! Time histories obtained at ReR513 200, h53.5: ~c! outer cylinder attached to the

stator; ~d! linear azimuthal velocity profile as boundary condition and using ~c! as initial condition.
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explain such modification in the structure of the stationary

disk boundary layer. The first one is related to an increase of

the vertical boundary layer thickness which develops along

the end-wall when the end-wall rotates. Then, the impact

region of the impinging axial jet on the stationary disk is

larger in this configuration. The second reason is related to

an increase of the azimuthal velocity in the core flow region

located in the vicinity of the end-wall. Indeed, the azimuthal

velocity noticeably increases with the radius, from the mid-

cavity (v*/VR150.25) to the end-wall (v*/VR151). As

the stationary disk boundary layer thickness is scaled on this

core flow velocity, it decreases when the velocity increases.

The boundary layer flow in this part of the cavity is then

profoundly modified and does not correspond to an actual

Bödewadt layer ~single disk flow! anymore. Consequently,

its stability also changes and as it was the only part of the

boundary layer which was unstable at the considered moder-

ate rotation speed ~because corresponding at the largest ra-

dii!, the disturbances are damped.

C. Vortex structures related to stationary disk
boundary layer instabilities

As in Ref. 9, the present DNS results show the existence

of two types of instability structures: axisymmetric and

three-dimensional structures which are related to type II and

type I instabilities, respectively, by analogy to the linear sta-

bility results presented above. For all considered Reynolds

numbers in this study, the rotating disk boundary has re-

mained globally undisturbed ~amplitudes of disturbances less

than 1026) and consequently the stationary disk layer stabil-

ity only is then discussed below. Solution without and with

superimposed disturbance have been successively considered

at two rotation rates, ReR511 100 and ReR513 200. Two-

dimensional annular disturbances and 3D spiral vortices rec-

ognized as type II and type I instability have been observed.

Very close to the previously estimated critical Reynolds

number of unsteadiness ~Sec. VI!, at ReR511 100 (h50),

the flow remains steady over the considered computational

time and it would be much too expensive in terms of com-

putational costs to reach an oscillatory state as we know that

close to the threshold this time can be infinite. Nevertheless,

a solution of very small amplitude already exists ~about

1024) and microscopic oscillations can be emphasized in the

time history. In spite of the low level of these disturbances,

the solution yields two pairs of circular vortices near the

stationary disk which show characteristic parameters in good

agreement with those found for the type II instability by our

LSA analysis ~Table II!. These two pairs of rolls are observed

at local Reynolds numbers in a range 26.8<Red<58.5, and

their radial wavelength is in a range 5.3<lr<10 ~with lr

5Dr/nr , where Dr is the radial length occupied by nr rolls!,

corresponding to the critical parameters of type II.

In order to accelerate the occurrence of an oscillatory

state, the solution has been disturbed at the same rotation rate

ReR511 100, using no zero values of h (1.5<h<3.5). As

previously observed ~Sec. VI!, the solutions have been

shown independent of the disturbance intensity h. Only spi-

ral vortices are now observed in the stationary disk layer

with characteristic parameters agreeing well with those

found by LSA and related to type II instability ~Table I!. The

train of vortices travels in the main flow direction with a

radial phase velocity in the range 20.0032<Vfr<20.002

with Vfr5lrs/2p Red , and expands in the azimuthal direc-

tion under the form of 12 spiral arms with an average nega-

tive angle equal to «5215°. These traveling structures only

occur in the inflow at the radius r*53R1/4 and vanished at

about r*5R1/4. Then, the stationary disk layer is only un-

stable in a flow region located between two radii correspond-

ing to local Reynolds numbers Red523.4– 74.6. This result

agrees well with linear stability analysis for type II ~Sec. V!
as this instability only exists in a narrow range of Red .

Starting from the solution at ReR511 100 (h50), the

rotation has been suddenly increased to ReR513 200. At this

larger rotation rate, only spiral vortices related to type I in-

stability are observed at the final oscillatory state in the sta-

tionary disk layer.

A relatively short time is required to reach the growing

oscillatory solution ~the time history is presented in Figs. 9

and 10!. Except for the initial disturbance induced by the

rotation speed increase which is quickly damped ~at about t

530), the flow looks stable until t5140 where exponentially

growing oscillations appear. At t5200, the asymptotic finite

amplitude state is finally obtained. However, enlargement of

the time history between 30<t<100 shows that microscopic

oscillations already exist in this time range. In Figs. 14~a!
and 14~b!, vortex structures related to stationary disk layer

instabilities are shown both during the transient (t560) and

the final state (t5320).

At t560, the solution is characterized by two pairs of

circular vortices very similar to the ones observed at ReR

511 100 with radial wavelength 5.9<lr<14.7, while at

large radii 12 pairs of 3D spiral vortices expand in the azi-

muthal direction. These axisymmetric vortices, observed for

radii corresponding to local Reynolds numbers in a range

25.8<Red<62, travel inward along the stationary disk layer

with a radial phase speed 20.02<Vfr<20.008. As previ-

ously at ReR511 100, these characteristic parameters agree

well with our linear theory results related to type II instabil-

ity of the stationary disk layer ~Table I!. At larger radius

corresponding to a local Reynolds number Red564, 3D spi-

ral waves appear with an average angle of the spiral front

equal to «513.2°. Their radial wavelength and phase speed

increase with the radius, in a range 7.3<lr<16.2 and

20.01<Vfr<20.022, respectively.

At t5320, annular structures have disappeared and only

spiral vortices definitively remain @Fig. 14~b!#. The critical

Reynolds number of these spiral vortices has slightly de-

creased, compared to the transient state previously described,

to a local radius corresponding to Red552.5 and the average

angle of the spiral front is now «512.1°. The radial wave-

length and the radial phase speeds of the stationary disk vor-

tices are 4.4<lr<14.7, 20.0204<Vfr<20.006. All these

characteristics parameters are in good agreement with the

type I instability of the stationary disk layer found in our

linear stability analysis ~Table II!.
A thin Taylor–Görtler-type vortex, related to the cen-

trifugal instability of the vertical end-wall layer, can be also
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emphasized at the junction between the end-wall and the

stator disk. This thin vortex is connected to spiral arms with

a large angle «526.5° which quickly decreases down to «
512.1° out the near end-wall region in order to join the

spiral arms related to type I instability of the stationary disk

layer. This structure is clearly visible in Fig. 15, where both

spiral structures in the azimuthal direction and vortices in the

meridian plane ~r, z, p! have been displayed in a Cartesian

frame. In Fig. 16, an iso-surface of the axial component of

the velocity displayed on the whole cavity height at t560

shows that these spirals occur at the top of the end-wall

layer, just where the flow turns from the centrifugal rotating

disk layer, and expand to the geostrophic core flow region

located close to the end-wall. This figure shows the quite

large spatial extension of the flow region where this instabil-

ity is located. These large spiral arms interact with the spiral

arms related to the type I stationary disk layer instability

previously described and not visible on this figure because it

was located below.

Finally, the final state obtained at h50 and described

above has been disturbed at ReR513 200, using no zero val-

ues of h (1.5<h<3.5). In contrast to the solution at lower

rotation rate ReR511 100, the solution is stable relative to

superimposed disturbances and there is no influence on the

flow characteristics. About half of the stationary disk layer

from the end-wall is unstable and vortices expand in the

cavity under the form of 12 spiral vortices.

VII. DISCUSSION AND CONCLUDING REMARKS

This study is the first to provide linear stability analysis

results ~LSA! for a two-disk flow together with results from

direct numerical simulations ~DNS! obtained in a rotor-stator

cavity of aspect ratio L55 in order to accurately investigate

the transition to unsteadiness. The study of the first stages of

the transition process to turbulence is valuable because the-

oretical analysis is applicable and, coupled with high accu-

rate DNS as here, allows an accurate description of the in-

stability mechanisms which are known to play an important

role in the breakdown process to turbulence.

FIG. 16. Iso-surface of the fluctuations of the axial velocity component at

ReR513 200, h50, t560, showing large spiral arms expanding from the

vertical boundary layer to the geostrophic core and related to a centrifugal

instability.

FIG. 14. Iso-surface of the fluctuations of the axial component of the ve-

locity at ReR513 200, h50. ~a! Coexistence of annular and spiral structures

related to stationary disk layer instability during the transient time t560. ~b!
Final state showing only 12 spiral arms expanding in the azimuthal direc-

tion.

FIG. 15. Iso-surface of the fluctuations of the axial component of the ve-

locity at ReR513 200, h50, displayed in a Cartesian frame of reference

showing the coexistence of two types of spiral related to the end-wall layer

instability close to the vertical wall and to the stationary disk layer instabil-

ity farther. Black arrows show the base flow direction.
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~i! Surprisingly, no transition from a steady Batchelor

state to an unstable oscillatory flow has been numeri-

cally emphasized until now,9,35,36 except in cavities of

small aspect ratio L52.9,22 In contrast, although it is

technically difficult to emphasize such transition ex-

perimentally, the flow being very sensitive to external

noises, recent experiments8,9 have reported spiral

structures and Hopf bifurcation from a steady state to

a periodic flow. Then, we have decided to focus on the

first bifurcation of the flow to a time-dependent re-

gime and accurately characterize instability structures

observed close to the threshold. Starting from a base

state at ReR53000 and increasing very slowly the

disk rotation ~steps of 300!, this study has emphasized

a Hopf bifurcation to an oscillatory solution of fre-

quency s;1.55, and at a critical Reynolds number

estimated between 11 500 and 12 300. This value of

the frequency is in good agreement as well with the

values obtained by LSA for the type II instability of

the stationary disk layer as with the values measured

experimentally8 in a flow region not too far from the

axis (1<s<2), corresponding to a radial extension

close to the one considered in the present study with

L55. Note, also, that in the case of a fluid rotating at

V over a single stationary and infinite disk,

Lingwood18 found theoretically s51.3 at the

convective/absolute transition in the Bödewadt layer.

Moreover, the absence of a stepping back effect seems

to show that this bifurcation would be of supercritical

type. As expected, the unsteadiness first develops in

the stator boundary layer while the rotor boundary has

remained stable for the rotation rates considered in

this work.

~ii! In order to understand why no oscillatory state has

been obtained in former numerical studies for such

value of the aspect ratio, we have reported on the

same graphics in Fig. 17 different numerical and ex-

perimental studies of the literature in terms of aspect

ratio L and Reynolds number ReH5V(2h)2/n . This

Reynolds number is relevant for such comparison be-

cause it characterizes the base state just before the

transition by scaling the thickness scale of the rotating

disk layer on the cavity height. Then large values are

typical of separated layers while small values are

characteristic of the merged boundary layers regime.

Numerical computations performed till now were

mainly axisymmetric35,36 and the results reported in

Fig. 17 show that the critical value of unsteadiness is

noticeably much larger than the one observed in the

present study or in experiments. We even notice that

the critical values obtained in the cases of 2D

computations35,36 are close to the ones given for tran-

sitional turbulent flow in experiments by Daily and

Nece37 or in recent 3D computations by Serre et al.24

Axisymmetric assumption and the use of a rotating

end-wall in these studies ~stabilizing the flow coming

from the rotating disk layer! can only explain such

differences in the occurrence of unsteadiness. A line

has been drawn for an aspect ratio L in a range 1 to

100 in order to show the good agreement obtained on

FIG. 17. Diagram of various numerical and experimental results in the plane (ReH ,L). The dashed line gives a lower limit to transition to unsteadiness.
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the critical value of ReH between experiments and the

present study, relative to the aspect ratio. For L,1,

some values are reported for information only because

the base flow is not of Batchelor type anymore, its

stability being mainly governed by centrifugally un-

stable end-wall vertical layer. Concerning our former

3D computations9 in the same geometrical configura-

tion, the critical Reynolds number is also far enough

above the threshold line. Indeed, in this work we fo-

cused on the characteristics of the structures related to

boundary layer instabilities in highly unstable flows

and not on an accurate evaluation of the threshold as

in the present study.

~iii! The present computations have shown that a quite

large part of the stationary disk boundary layer is in-

fluenced by the end-wall flow. Using rotating end-

wall condition, the vertical end-wall layer impinges

on the stationary disk and introduces nonparallel ef-

fects. As the end-wall effects go to mid-radius, where

the local Re criterion was verified, it is then required

to increase the rotation in order to get the transition

and to attain a critical Re corresponding to a lower

radius value—that is in the un-affected area. Never-

theless, in that case where the transition is obtained at

smaller radius than mid-radius, the entire stator flow

is destabilized, that is even in the end-wall driven re-

gion. The interaction between these phenomena is in-

terpreted as being at the origin of the chaotic behavior

in the entire stator layer.

~iv! Three-dimensional structures related to the stationary

disk boundary layer instabilities have been accurately

emphasized by DNS and studied using LSA results.

Spiral arms with positive and negative angles have

been observed in the stationary disk layer flow in

good agreement with the LSA results. Annular struc-

ture already observed in experiments6,8,15 and in

computations9 have been shown unstable in this con-

figuration and only observed during the transient time

before reaching the asymptotic oscillatory state.

Taylor–Görtler-type vortices have also been observed

at the junction between the stationary shroud and the

stator expanding in near end-wall flow region under

the form of large spiral arms.

DNS and LSA results agree very well and are sum-

marized with selected results already published in the

literature in Tables I–VIII.38 Comparison between

these results has shown that all the structures ob-

served in the stationary disk layer by DNS are related

to the generic type I and type II instabilities theoreti-

cally found by LSA.

~v! The absolute and convective nature of both rotating

and stationary disk layers has been investigated by

LSA ~Sec. V!. A study based on DNS of the global

behavior corresponding to the absolute instability of

the rotor-stator flow requires intensive and careful

analysis ~see the recent work of Davis and Carpenter39

in the linear case of the Ekman layer! and is beyond

the scope of the present work. Nevertheless, the

present DNS results at Re513 200, h50 provide in

comparison with our LSA absolute/convective results

~Sec. V! some additional interesting insights concern-

ing the spatio-temporal behavior of instability distur-

bance. Indeed, the calculations have shown that the

amplitude of the disturbances grows with the radius in

both rotating and stationary disk boundary layers ~as

shown in Figs. 9 and 10! while the two base flow

directions develop oppositely ~see also Fig. 15!. The

amplitude of fluctuations reaches maximum in the

near end-wall flow region corresponding to the moni-

toring point A ~about 631022 in the stator and about

1025 in the rotor! while its minimum is reached at

mid-radius at the monitoring point M ~about 1023 on

the stator and about 1026 on the rotor!. Amplitude

considered as equal to zero is monitored in the near

axis region ~point D!. According to the amplitude

level measured in the rotor layer (103 smaller than in

the stator layer!, the disturbances are only related to a

noise which is amplified when it is convected by the

base flow towards the end-wall. In the stationary disk

layer, the structures disappeared at a radius corre-

sponding to local Reynolds number equal to Redca

552.5 ~Fig. 15!, which is very close to the critical

Reynolds number of the absolutely unstable area,

Redca548.5, obtained using LSA.

Moreover, in the rotating boundary layer, our linear

two-disk results have shown that the critical Reynolds

number of the absolutely unstable is Redca5562. The

large difference observed between present LSA and

Lingwood’s results, especially in the case of the rotat-

ing disk boundary layer, justifies the two disks model

here developed. Computations carried out by Serre

et al.24 in transitional turbulent regimes in an annular

rotor-stator flow have shown coherent spiral vortices

at a local Reynolds number Red equal to about 500:

this result brings some assessments to the critical

value Redca5562 obtained in the present LSA. More

additional investigations are then required using DNS,

in order to explore the absolutely unstable area of the

rotating disk boundary layer and to detail especially

the connections between absolute instability and

breakdown process to turbulence. Besides, intensive

computations are already in progress in an open rotat-

ing cavity with radial through flow as the one de-

scribed in Ref. 10.

~vi! LSA calculations have been already extended to non-

isothermal flow (20.1<B<0.1) in Sec. V. The re-

sults show that thermal conditions do alter the critical

Reynolds numbers of the convectively and absolutely

unstable area and in different ways the type I and type

II instability characteristics. The instabilities look

more affected in the stationary disk layer flow by ther-

mal buoyancy than in the rotating disk layer flow

where the rotating driven buoyancy is certainly larger

and dominates the thermal effects for this range of B

considered in the study. An important feature in the

stationary disk layer flow is the change in the spiral
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inclination from a negative angle in the isothermal

case to a positive one as soon the rotor starts to be

cooled. Further investigations are in progress for

larger DT/T range where former natural convection

results have empirically shown the extension of the

Boussinesq approximation to be further valid.
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