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Abstract

Let Tn be the cover time of two-dimensional discrete torus Z2
n =

Z2/nZ2. We prove that P[Tn ≤ 4
πγn

2 ln2 n] = exp(−n2(1−√γ)+o(1)) for
γ ∈ (0, 1). One of the main methods used in the proofs is the decou-
pling of the walker’s trace into independent excursions by means of
soft local times.
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1 Introduction and results

Let (Xt, t = 1, 2, 3, . . .) be a discrete-time simple random walk on the two-
dimensional discrete torus Z2

n = Z2/nZ2. Define the entrance time to the
site x ∈ Z2

n by
Tn(x) = min{t ≥ 0 : Xt = x}, (1.1)

and the cover time of the torus by

Tn = max
x∈Z2

n

Tn(x), (1.2)
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that is, Tn is the first instant of time when all the sites of the torus were
already visited by the walk.

The analysis of cover time by the planar random walk was suggested
in [16] under the picturesque name of “white screen problem”, and was soon
after popularized in the probabilistic community [1, Chapter 7]. We refer
to [4] for a substantial survey on cover times and to [15] for a short account.
Besides being an appealing fundamental question, the study of cover time
is of primer interest for performance evaluation of broadcast procedures in
random networks, see e.g. [10].

Not only natural, the two-dimensional model is also more difficult than its
higher-dimensional counterparts. This is because dimension two is critical for
the walk, resulting in strong correlations. To illustrate the dimension-based
comparison, observe that very fine results are available for d ≥ 3, see e.g. [2]
and references therein, and also [9] where a closely related continuous problem
was studied. In contrast, in two dimensions the first-order asymptotics of the
cover time was completed only recently, after a series of intermediate steps
over a decade of efforts. In [5] it was proved that

Tn
n2 ln2 n

→ 4

π
in probability, as n→∞. (1.3)

More rough results, without the precise constant, can be obtained using the
Matthews’ method [13]. The result (1.3) was then refined in [7]; in the same
paper it was suggested that

√
Tn/2n2 should be around

√
2/π lnn− c ln lnn

for a positive constant c (observe that (1.3) means that
√
Tn/2n2 =

(√
2/π+

o(1)
)

lnn). This can be seen as a step towards the conjecture of [3] that√
Tn/n2 should be tight around its median and nondegenerate. Such fine

properties should be related to the fine structure of late points of the walk,
i.e., the sites that get covered only “shortly” before Tn. In spite of a very
significant progress on this question achieved in [6], much remains to be
discovered.

Now, we formulate our result on the deviations from below for the cover
time:

Theorem 1.1. Assume that γ ∈ (0, 1). Then, for all ε > 0 we have

exp
(
− n2(1−√γ)+ε

)
≤ P

[
Tn ≤

4

π
γn2 ln2 n

]
≤ exp

(
− n2(1−√γ)−ε) (1.4)

for all large enough n.

Remark 1.2. In fact, in Section 3.1 we prove a bit more than the upper
bound in (1.4). Namely, assume that γ ∈ (0, 1), fix an arbitrary α ∈ (

√
γ, 1)
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and tile the torus Z2
n with boxes of size nα. Then there exist c = c(α, γ) >

0, c′ = c′(α, γ) > 0, such that, at the moment 4
π
γn2 ln2 n, there are at

least cn2(1−α) boxes which are not completely covered, with probability at
least 1− exp(−c′n2(1−α)).

For completeness, we also include the result on the deviations from the
other side:

Theorem 1.3. Assume that γ > 1. Then, for all ε > 0 we have

n−2(γ−1)−ε ≤ P
[
Tn ≥

4

π
γn2 ln2 n

]
≤ n−2(γ−1)+ε (1.5)

for all large enough n.

However, it should be noted that the proof of Theorem 1.3 is not difficult
once one has (1.3), although, to the best of our knowledge, it did not appear
in the literature explicitly in this form.

To see how the proof of Theorem 1.3 can be obtained, observe first that
we have for all β > 0, ε > 0, all large enough n and all x ∈ Z2

n,

max
y∈Z2

n

Py
[
Tn(x) ≥ 2

π
βn2 ln2 n

]
≤ n−β+ε, (1.6)

min
y∈Z2

n

Py
[
Tn(x) ≥ 2

π
βn2 ln2 n

]
≥ n−β−ε. (1.7)

The estimate (1.6) is Lemma 3.3 of [6]; in fact, it is straightforward to modify
the proof of the same lemma to obtain (1.7).

Now, the second inequality in (1.5) immediately follows from (1.6) and the
union bound. As for the first inequality, the strategy for achieving this lower
bound can be described in the following way: let the random walk evolve
freely almost up to the expected cover time (so that, with good probability
there are still uncovered sites), and then choose any particular uncovered
site and make the walk avoid it till the end. More precisely, observe that,
by (1.3), for any fixed δ > 0 it holds that

P
[
Tn ≥

4

π
(1− δ)n2 ln2 n

]
≥ 1

2

for all n large enough; that is, at time 4
π
(1 − δ)n2 ln2 n there is at least

one uncovered site with probability at least 1
2
. An application of (1.7) with

β = 2(γ − 1 + δ) concludes the proof of Theorem 1.3.
One can informally interpret (1.6)–(1.7) in the following way: hitting

time of a fixed state has approximately exponential distribution with mean
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2
π
n2 lnn. First, the convergence in (1.3) agrees with the intuitive understand-

ing that “hitting times of different sites should be roughly independent”, since
the maximum of n2 i.i.d. exponential random variables with mean 2

π
n2 lnn is

concentrated around 4
π
n2 ln2 n. Moreover, the probability for the maximum

of such r.v.’s to be larger by a factor γ > 1 than this value is n−2(γ−1)+o(1). It
is interesting to observe that, while Theorem 1.3 still agrees with this intu-
ition, Theorem 1.1 does not. Indeed, the probability that the maximum of n2

i.i.d. exponential random variables with mean 2
π
n2 lnn is at most 4

π
γn2 ln2 n

(where γ ∈ (0, 1)) is of order (1 − n2γ)n
2 ' exp(−n2(1−γ)), which is not the

actual order of magnitude obtained in Theorem 1.1. Thus, the behavior of
the lower tails of the cover time reveals the fine dependence between hitting
times of the different points on the torus.

To prove the upper bound in (1.4), we use the method of soft local times
initially developed in [14], where it was used to obtain strong decoupling
inequalities for the traces left by random interlacements on disjoint sets.
This approach allows to simulate an adapted process on a general space Σ
using a realization of a Poisson point process on Σ×R+. Naturally, one can
use the same realization of the Poisson process to simulate several different
processes on Σ, thus giving rise to a coupling of these processes. We do this
to compare the excursions of the random walk at different regions with the
independent excursions, that is, in some sense, we decouple the traces of the
random walk in different places, which of course makes things simpler.

Let us comment also on the large deviations for the cover time of the
torus in dimension d ≥ 3. This question was studied in [9] in the continu-
ous setting, i.e., for the Brownian motion. Among other results, in [9] the
many-dimensional counterparts of Theorems 1.1 (only the upper bound, by
exp−nd(1−γ)+o(1)) and 1.3 were obtained. We expect no substantial diffi-
culties in obtaining the same results for the random walk using the same
methods as in the present paper, except for the lower bound for the devia-
tion probability from below, since the approach of Section 3.2 fails in higher
dimensions.

Notational convention: in the case when the starting point of the random
walk is fixed, we indicate that in the subscript; otherwise, the initial distribu-
tion of the random walk is considered to be uniform. The positive constants
(not depending on n but possibly depending on the quantities, such as γ in
Theorem 1.1, which are considered to be fixed) are denoted by c, c′, c1, c3, c4

etc. Also, it is convenient to view the random walks on the torus, simulta-
neously for all torus sizes n, as the random walk on the full lattice observed
modulo nZ2.
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2 Soft local times

In this section we describe the method of soft local times [14], which is the
key to the upper bound in (1.5).

First, we define the entrance time to a set A ⊂ Z2
n by

Tn(A) = min
x∈A

Tn(x).

We write x ∼ y if x and y are neighbors in the graph Z2
n. For A ⊂ Z2

n

let us define the (inner) boundary of A by ∂A = {x ∈ A : there exists y /∈
A such that x ∼ y}.

Next, for A ⊂ Z2
n we define the entrance law to A: for x /∈ A and y ∈ ∂A

let
HA(x, y) = Px[XTn(A) = y]. (2.1)

Let us now describe the method of soft local times, which allows us to
compare excursions of the random walk with independent excursions. Let
A1, . . . , Ak0 , A

′
1, . . . , A

′
k0
⊂ Z2

n be such that Aj ⊂ A′j, Aj ∩ ∂A′j = ∅ for

j = 1, . . . , k0, and A′i∩A′j = ∅ for i 6= j. Let A =
⋃k0
j=1Aj and A′ =

⋃k0
j=1A

′
j;

and assume that ∂A′ =
⋃k0
j=1 ∂A

′
j, which implies also that ∂A =

⋃k0
j=1 ∂Aj.

Now, suppose that we are only interested in the trace left by the random
walk on the set A. Then, (apart from the initial piece of the trajectory until
hitting ∂A′ for the first time) it is enough to know what are the excursions
of the random walk between the boundaries of A and A′. To define these
excursions, consider the following sequence of stopping times:

D0 = Tn(∂A′),

S1 = min{t > D0 : Xt ∈ ∂A},
D1 = min{t > S1 : Xt ∈ ∂A′},

and

Sk = min{t > Dk−1 : Xt ∈ ∂A},
Dk = min{t > Sk : Xt ∈ ∂A′},

for k ≥ 2.
We denote by Σj the space of excursions between ∂Aj and ∂A′j; i.e., an

element Z of this space is a finite nearest-neighbor trajectory beginning at a
site of ∂Aj and ending on its first visit to ∂A′j. Denote also Σ =

⋃k0
j=1 Σj. The

method of soft local times, as presented in [14], provides a way of constructing
the excursions between ∂A and ∂A′ of the walk X using a Poisson point
process on Σ × R+. To keep the presentation more clear and visual, we use
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A1

A′
1

A′
2

A2

R+

∂A1 ∂A2

ξ1HA(x0, ·)

XS1

Z2
n

XS1

x1 = XD1

XS2

XS2

x2 = XD2

XS3

XD3

XS3

XD0
= x0

ξ1HA(x0, ·) + ξ2HA(x1, ·)

ξ1HA(x0, ·) + ξ2HA(x1, ·) + ξ3HA(x2, ·)

X0

Figure 1: The construction of the excursions, the points are represented with
crosses, the marks are pictured above them. Observe that we take the initial
excursion (up to time D0) out of consideration (even if X0 ∈ A).
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another (in this case, equivalent) way of describing this approach, through a
marked Poisson process on ∂A× R+.

Denote by Zi = (XSi , . . . , XDi) the ith excursion of X between ∂A
and ∂A′. According to Section 4 of [14], one can simulate the sequence
of excursions (Zi, i = 1, 2, 3, . . .) in the following way, see Figure 1:

• Consider a marked Poisson point process of rate 1 (with respect to
(counting measure on ∂A)×(Lebesgue measure on R+)) on ∂A × R+,
with independent marks.

• These marks are the excursions of the simple random walk starting at
the corresponding site of ∂A and stopped at the first visit to ∂A′.

• At time D0 take ξ0 > 0 such that there is exactly one point of the
Poisson process on the graph of ξ0HA(x0, ·) and nothing below this
graph, where x0 = XD0 .

• The mark of this point is our first excursion Z1.

• Then, repeat the procedure, taking the graph of ξ0HA(x0, ·) as “0-level”.

Formally, on each ray {y} × R+ (where y ∈ ∂A) take an independent
Poisson point process of rate 1. Together, these one-dimensional processes
can be seen as a random Radon measure

η =
∑
θ∈Θ

δ(zθ,uθ)

on the space ∂A×R+, where Θ is a countable index set. The marks (Ψθ, θ ∈
Θ) are independent excursions of the simple random walk, starting at zθ and
stopped at the first visit to ∂A′.

Then (cf. Propositions 4.1 and 4.3 of [14]) define

ξ1 = inf
{
s ≥ 0 : there exists θ ∈ Θ such that sHA(XD0 , zθ) ≥ uθ

}
,

and
G1(z) = ξ1HA(XD0 , z), for z ∈ ∂A.

Denote by (z1, u1) the a.s. unique pair in {(zθ, uθ)}θ∈Θ with ξ1G1(z1) =
u1, and let Ψ1 be the corresponding excursion. Then, it holds that Ψ1 is
distributed as Z1 and the point process

∑
(zθ,uθ)6=(z1,u1) δ(zθ,uθ−G1(zθ)) is dis-

tributed as η.
We can proceed iteratively to define ξn, Gn and (zn, un) as follows

ξm = inf
{
s ≥ 0 : there exists (zθ, uθ) /∈ {(zk, uk)}m−1

k=1
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such that Gm−1(zθ) + sHA(XDm−1 , zθ) ≥ uθ
}
,

and
Gm(z) = Gm−1(z) + ξmHA(XDm−1 , zθ);

then define (zm, um) as the unique pair (zθ, uθ) /∈ {(zk, uk)}m−1
k=1 withGm(zθ) =

uθ, and let Ψm be the corresponding excursion. Then, one can show that
ξ1, ξ2, ξ3, . . . are i.i.d. random variables, exponentially distributed with pa-
rameter 1. Also, it holds that the sequence of excursions (Ψ1, . . . ,Ψm) equals
in law to (Z1, . . . , Zm), and these are independent from ξ1, . . . , ξm. Also,∑

(zθ,uθ)/∈{(zk,uk)}mk=1

δ(zθ,uθ−Gm(zλ))

is distributed as η and independent of the above. The function Gm is called
the soft local time of the (excursion) process, the reason for this name is
explained in Section 1.3 of [14]. According to the above definitions, the soft
local time in y up to mth excursion is expressed as

Gm(y) =
m∑
i=1

ξiHA(XDi , y). (2.2)

We need to introduce some further notations. Let us write x ∈ Z when the
excursion Z passes through x ∈ A. Consider any probability measure H̃j(·)
on ∂Aj. Let Z̃

(j)
1 , Z̃

(j)
2 , Z̃

(j)
3 , . . . ∈ Σj be a sequence of independent elements

of the excursion space, chosen according to the following procedure: take
a starting point x ∈ ∂Aj with probability H̃j(x), and then run the simple
random walk until it hits ∂A′j. Similarly to the previous construction of the

excursions of the random walk X, we can simulate the sequence Z̃
(j)
1 , Z̃

(j)
2 , . . .

of independent excursions in the same way, and its soft local time in y up to
time m equals

G̃(j)
m (y) = H̃j(y)

m∑
i=1

ξ
(j)
i , (2.3)

where
(
ξ

(j)
1 , ξ

(j)
2 , ξ

(j)
3 , . . .

)
is another sequence of Exp(1) i.i.d. random vari-

ables. For the construction of this sequence of independent excursions, we
use the same realization of the marked Poisson point process, thus creat-
ing a coupling of the sequence of the excursions of X with k0 collections
of i.i.d. excursions (see Figure 2). At this point we have to observe that
the sequence (ξi, i ≥ 1) is not independent from the collection of sequences

(ξ
(j)
i , i ≥ 1, j = 1, . . . , k0), although this fact does not result in any major

complications.
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A1

A′
1

R+

∂A1

Z2
n

Z̃1

Z̃2

Z̃3

ξ
(1)
1 H̃1 (ξ

(1)
1 + ξ

(1)
2 )H̃1

(ξ
(1)
1 + ξ

(1)
2 + ξ

(1)
3 )H̃1

Figure 2: The construction of the i.i.d. excursions between ∂Aj and ∂A′j.
It is important to observe that the points of the Poisson process appear
in different order in this construction when compared to the corresponding
excursions on Figure 1 (note that we use the same realization of the Poisson
process).

Let us denote
σ

(j)
1 = min{i ≥ 1 : Zi ∈ Σj},

and, for m ≥ 1,
σ

(j)
m+1 = min{i > σ(j)

m : Zi ∈ Σj}.
Then, we denote by Z

(j)
i := Z

σ
(j)
i

the ith excursion between ∂Aj and ∂A′j. We

also set ψj,t = max{i : S
σ
(j)
i
≤ t}, and then denote by ζj(t) = σ

(j)
ψj,t

the number

of excursions between ∂Aj and ∂A′j up to time t (possibly including the last

incomplete one), and by ζ(t) =
∑k0

j=1 ζj(t) the total number of excursions up
to time t.

For j = 1, . . . , k0 and b > a > 0 define the random variables

Nj(a, b) = #{θ ∈ Θ : zθ ∈ ∂Aj, aH̃(zθ) < uθ ≤ bH̃(zθ)}. (2.4)

It should be observed that the analysis of the soft local times is consider-
ably simpler in this paper than in [14]. This is because here the (conditional)
entrance measures to Aj are typically very close to each other (as in (2.5)
below). That permits us to make sure statements about the comparison of
the soft local times for different processes in case when the realization of
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the Poisson process in ∂Aj × R+ is sufficiently well behaved, as e.g. in (2.6)
below.

Lemma 2.1. Assume that the probability measures (H̃j, j = 1, . . . , k0) are
such that for all y ∈ ∂A′, x ∈ ∂Aj, j = 1, . . . , k0, and some v ∈ (0, 1), we
have

1− v

3
≤ Py[XTn(A) = x | XTn(A) ∈ Aj]

H̃j(x)
≤ 1 +

v

3
. (2.5)

Futhermore, define the events

Um0
j =

{
Nj(m, (1 + v)m) < 2vm,

(1− v)m < Nj(0,m) < (1 + v)m, for all m ≥ m0

}
. (2.6)

Then, for all j = 1, . . . , k0 it holds that

(i) P[Um0
j ] ≥ 1− c1 exp(−c2vm0), and

(ii) on the event Um0
j we have for all m ≥ m0

{Z̃(j)
1 , . . . , Z̃

(j)
(1−v)m} ⊂ {Z

(j)
1 , . . . , Z

(j)
(1+3v)m},

{Z(j)
1 , . . . , Z

(j)
(1−v)m} ⊂ {Z̃

(j)
1 , . . . , Z̃

(j)
(1+3v)m}.

Proof. Fix any j0 ∈ {1, . . . , k0} and observe that Nj0(a, b) has Poisson dis-
tribution with parameter b− a. It is then straightforward to obtain (i) using
the usual large deviation bounds.

To prove (ii), fix k ≥ 1 and let

y
(k)
j0

= arg min
y∈∂Aj0

Gk(y)

H̃j0(y)

(with the convention 0/0 = +∞). We then argue that for all k ≥ 1 we always
have

Gk(y)

H̃j0(y)
≤ (1 + v)

Gk(y
(k)
j0

)

H̃j0(y
(k)
j0

)
for all y ∈ ∂Aj0 . (2.7)

Indeed, by (2.5) we have

Gk(y)

H̃j0(y)
=

1

H̃j0(y)

k∑
`=1

ξ`HA(XD`−1
, y)

10



∂Aj0

R+

mh

(1 + v)mh

(1− v)mh ≤ Nj0(0,m) ≤ (1 + v)mh

Nj0(m, (1 + v)m) < 2vm

y
(k)
0

Gk

Figure 3: On the proof of Lemma 2.1. For simplicity, here we assumed that
H̃j0 ≡ h for a positive constant h.

=
k∑
`=1

ξ`
PXD`−1

[XTn(A) = y | XTn(A) ∈ Aj0 ]
H̃j0(y)

PXD`−1
[XTn(A) ∈ Aj0 ]

≤ 1 + v
3

1− v
3

·
k∑
`=1

ξ`
PXD`−1

[XTn(A) = y
(k)
0 | XD`−1

∈ Aj0 ]
H̃j0(y

(k)
j0

)
PXD`−1

[XTn(A) ∈ Aj0 ]

≤ (1 + v)
Gk(y

(k)
j0

)

H̃j0(y
(k)
j0

)
,

since (1 + v
3
)/(1− v

3
) ≤ 1 + v for v ∈ (0, 1).

Now, letm ≥ m0, and abbreviate k = σ
(j0)
(1−v)m. We then have

Gk(y
(k)
j0

)

H̃j0 (y
(k)
j0

)
≤ m

(because otherwise, recall (2.6), we would have more than (1− v)m points of

the Poisson process below the graph of Gk), and so, by (2.7), Gk(y)

H̃j0 (y)
≤ (1+v)m

for all y ∈ ∂Aj0 (see Figure 3), which implies that

{Z(j)
1 , . . . , Z

(j)
(1−v)m} ⊂ {Z̃

(j)
1 , . . . , Z̃

(j)
(1+3v)m}.

Analogously, for k′ = σ
(j0)
(1+3v)m we must have

Gk′ (y
(k′)
0 )

H̃j0 (y
(k′)
0 )
≥ m (because otherwise

11



Gk′ (·)
H̃j0 (·) would lie strictly below (1+v)m, and we would have Nj(0, (1+v)m) <

(1 + 3v)m), so

{Z̃(j)
1 , . . . , Z̃

(j)
(1−v)m} ⊂ {Z

(j)
1 , . . . , Z

(j)
(1+3v)m},

which concludes the proof of Lemma 2.1.

3 Proof of Theorem 1.1

The proof is divided into two parts. First, in Section 3.1 we use the method
of soft local times to prove the second inequality in (1.4). Then, in order to
prove the first inequality in (1.4) we present a particular strategy for the walk,
that assures that the torus will be covered with a not-too-small probability
by time 4

π
γn2 ln2 n.

3.1 Upper bound

Note that for any fixed x ∈ Z2
n there is a natural bijection of Z2

n and [1, n]2 ⊂
Z2 in such a way that x is mapped to

(
dn

2
e, dn

2
e
)
∈ Z2. Then, for y ∈ Z2

n

define ‖y−x‖ to be the Euclidean distance between
(
dn

2
e, dn

2
e
)

and the image
of y, and we define also ‖y−x‖1 and ‖y−x‖∞ to be the `1 and the `∞ distances
correspondingly. For r < n

2
we then define the discrete ball B(x, r) ∈ Z2

n as
the set of sites which are mapped by this bijection to the Euclidean ball of
radius r centered in

(
dn

2
e, dn

2
e
)
.

Define excursions between the balls B(0, r) and B(0, R) as in Section 2
(with A1 = B(0, r), A′1 = B(0, R), k0 = 1).

Now, we need to control the time it takes to complete the jth excursion
(see Lemma 3.2 of [6]):

Lemma 3.1. There exist δ0 > 0, c > 0 such that if r < R ≤ n
2

and δ ≤ δ0

with δ ≥ 6c1(1
r

+ r
R

), we have for all x0 ∈ Z2
n

Px0
[
Dj ≤ (1 + δ)

2n2 ln R
r

π
j
]
≥ 1− exp

(
− cδ2 ln R

r

ln n
r

j
)
. (3.1)

Next, let us obtain the following consequence of Lemma 2.1:

Lemma 3.2. Let 0 < rn < Rn < n/3 be such that rn ≥ n
lnh n

for some h > 0.

Then for any ϕ ∈ (0, 1), there exists δ > 0 such that if H̃ is a probability
measure on ∂B(0, rn) with

sup
z∈∂B(0,Rn)
y∈∂B(0,rn)

∣∣∣HB(0,rn)(z, y)

H̃(y)
− 1
∣∣∣ < δ (3.2)

12



then, as n→∞,

P
[
there exists y ∈ B(0, rn) such that y /∈ Z̃j for all j ≤ k0(n)

]
→ 1, (3.3)

where Z̃1, Z̃2, Z̃3, . . . are i.i.d. excursions between ∂B(0, rn) and ∂B(0, Rn)

with entrance measure H̃, and k0(n) = 2ϕ ln2Rn
lnRn/rn

.

Proof. Lemma 2.1 implies that one can choose a small enough δ > 0 in such
a way that one may couple the independent excursions with the excursion
process Z1, Z2, Z3, . . . of the random walk X on Z2

n so that

{Z̃1, . . . , Z̃k0(n)} ⊂ {Z1, . . . , Z(1+δ′)k0(n)}

with probability converging to 1 with n, where δ′ > 0 is such that (1+δ′)ϕ <
1. Now, choose b such that (1 + δ′)ϕ < b < 1 and observe that Theorem 1.2
of [6] implies that a fixed ball with radius at least n

lnh n
will not be completely

covered up to time 4
π
bn2 ln2 n with probability converging to 1. Together

with Lemma 3.1 this implies that

P[B(0, rn) is not completely covered by {Z1, . . . , Z(1+δ′)k0(n)}]→ 1

as n→∞, and this completes the proof of (3.3).

We continue the proof of the upper bound in Theorem 1.1. Fix an arbi-
trary α ∈ (

√
γ, 1), and let us denote nα = n/bn1−αc, kα = bn1−αc2. Let us

tile the (continuous) torus R2
n := R2/nZ2 with kα squares with side nα. Let

us enumerate the squares in some way, and let x′1, . . . , x
′
kα

be the sites at the
centers of these squares. We then consider some isometric immersion of the
torus Z2

n into R2
n, and denote by x1, . . . , xkα ∈ Z2

n the (discrete) sites closest
to x′1, . . . , x

′
kα
∈ R2

n.
Fix a small enough b ∈ (0, 1/3) (to be specified later), and define Aj =

B(xj, bnα), A′j = B(xj, nα/3); also, as before, set A =
⋃kα
j=1Aj and A′ =⋃kα

j=1A
′
j. We construct the excursions of the random walk X between ∂Aj

and ∂A′j, j = 1, . . . , kα, as in Section 2. Then, fix any site z0 /∈ A′ and define

H̃j(x) = Pz0 [XTn(Aj) = x].
We need to show that the entrance measures to Aj, j = 1, . . . , kα, are

“almost equal to H̃j” on the boundary of each ball, if the parameter b are
suitably chosen:

Lemma 3.3. For any ε > 0 we can choose b in such a way that for all
y ∈ ∂A′, x ∈ ∂Aj, j = 1, . . . , kα, we have

1− ε ≤ Py[XTn(A) = x | XTn(A) ∈ Aj]
H̃j(x)

≤ 1 + ε. (3.4)
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Proof. This fact easily follows e.g. from Lemma 2.2 of [6]: one can use con-
ditioning on the position of the walk upon hitting B(xj, R) for a suitably
chosen R, and then use (2.11) of [6].

As in Section 2, we denote by ζj be the number of excursions of X be-
tween ∂Aj and ∂A′j up to time 4

π
γn2 ln2 n, and let ζ = ζ1 + · · · + ζkα be the

total number of excursions.
Let γ′ be such that γ < γ′ < α2. Define the event

Λ1 =
{
ζ ≤ 2γ′kα ln2 n

| ln(3b)|
}
.

Lemma 3.4. There is c > 0 such that

P[Λ1] ≥ 1− exp
(
− ckα ln2 n

)
. (3.5)

Proof. It is tempting to write that the total number of excursions should have
the same law as the number of excursions between B(0, bnα) and B(0, nα/3)
in Z2

nα (if so, an application of Lemma 3.1 would do the job). In the contin-
uous setting this would work well, but, unfortunately, nα is not necessarily
integer which makes the above-mentioned equality in law formally false.

So, we proceed in the following way. First, by CLT one can obtain that
there exists c1 = c1(b) > 0 such that Px[Xn2

α
∈ A] ≥ c1 for all x ∈ Z2

n. This
implies that

Ex exp
(Tn(A)

n2
α

)
≤ c2. (3.6)

Then, to find an upper bound on maxx ExTn(A), we can first approximate the
random walk with the Brownian motion by means of the multidimensional
version (Theorem 1 of [8]) of the KMT strong approximation theorem [11],
and then use Lemma 2.1 from [5] together with (3.6) to obtain the following
fact: for any δ ∈ (0, γ′−γ) one can choose small enough b in such a way that

max
x

ExTn(A) ≤ 2

π
(γ + δ)n2

α| ln(3b)|. (3.7)

The rest of the proof goes exactly in the same way as the proof of Lemma 3.2
(the relation (3.19) there) in [6].

Next, fix γ′′ in such a way that γ′ < γ′′ < α2. If we had at least γ′

γ′′
kα

balls among (A1, . . . , Akα) with the corresponding number of excursions more

than 2γ′′ ln2 n
| ln(3b)| in each of them, then the total number of excursions ζ would

be strictly greater than 2γ′kα ln2 n
| ln(3b)| , so the event Λ1 would not occur. Thus,

on Λ1 we have that
kα∑
j=1

1{ζj ≤ 2γ′′ ln2 n
| ln(3b)| } ≥

(
1− γ′

γ′′

)
kα, (3.8)
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i.e., on the event Λ1 the number of places where we have not too many
excursions is of order kα.

Now, choose v > 0 in such a way that (1 + 2v)γ′α−2 < 1, and assume
that b is sufficiently small so that the hypothesis of Lemma 2.1 holds on Z2

nα

for r = bnα, R = nα/3 (Lemma 3.3 assures that we can choose such b).
Denote

`1 :=
γ′′α−2 ln2 nα
| ln(3b)| , `2 :=

(1 + 3v)γ′′α−2 ln2 nα
| ln(3b)| ,

and let Z̃
(j)
1 , Z̃

(j)
2 , Z̃

(j)
3 , . . . be the independent excursions between Aj and A′j

obtained using the coupling of Section 2. Define the events Λ
(j)
2 = U `1

j ,

where U `1
j is the event in (2.6), and

Λ
(j)
3 =

{
there exists y ∈ Aj such that y /∈ Z̃(j)

m for all m ≤ `2

}
.

Observe that, by Lemmas 2.1 and 3.2, we have

P[Λ
(j)
2 ∩ Λ

(j)
3 ]→ 1 as n→∞, (3.9)

for any j = 1, . . . , kα.
Next, choose γ̃ ∈

(
γ′

γ′′
, 1
)
, and define the event

Λ4 =
{ kα∑

j=1

1{Λ(j)
2 ∩ Λ

(j)
3 } ≥ γ̃kα + 1

}
; (3.10)

observe that the indicators in the above sum are i.i.d. random variables.
By (3.9), for all large enough n it holds that (recall that kα = n2(1−α)(1 +
o(1)))

P[Λ4] ≥ 1− exp(−cn2(1−α)) (3.11)

But, taking (3.8) into account, we see that on Λ1 ∩Λ4 at time 4
π
γn2 ln2 n we

have at least
(
γ̃ − γ′

γ′′

)
kα balls among A1, . . . , Akα which are not completely

covered (observe that we have to exclude at most one ball that may have
been crossed by the initial excursion (X0, . . . , XD0); this is why we put “+1”
in (3.10)). This means that Tn > 4

π
γn2 ln2 n on Λ1 ∩ Λ4, so the second

inequality in (1.4) follows from (3.11) and Lemma 3.4.

3.2 Lower bound

In this section, we prove the lower bound of (1.4). For this, we propose a
simple strategy for the random walk to cover Z2

n before time 4
π
γn2 ln2 n. We

start with an informal discussion to outline the main ideas. We first divide
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the torus Z2
n into n2(1−α) boxes B1, . . . , Bn2(1−α) of size nα with α <

√
γ. Since

we want the random walk to cover the torus Z2
n before time t0 = 4

π
γn2 ln2 n,

the natural strategy is to attempt to cover each box in time at most

tα :=
t0

n2(1−α)
=

4γ

πα2
n2α(lnnα)2.

For this, we divide the time interval [0, t0] into time intervals [(j− 1)tα, jtα),
for j ∈ {1, . . . , n2(1−α)}, and during each of them we force the random walk to
spend most of the time in the box Bj. In order to do this, we control the size
of excursions of the random walk outside Bj and show that with probability
greater than exp(−c ln10 n) the time spent by the random walk in Bj is
almost tα. Then, we show that the trace left by the random walk on Bj is
not very different from the trace left on Bj by a random walk in a torus a bit
larger than Bj, with a not-too-small probability (we invite the reader to look
at Figure 5 to get an idea about how this is done). Since α <

√
γ, this allows

us to apply (1.3) to conclude that, conditionally on the events mentioned
above, with probability greater than a constant c′ > 0 the random walk covers
the box Bj during the time interval [(j− 1)tα, jtα). Finally, choosing α close
enough to

√
γ and applying the Markov property, we obtain the total cost

for this strategy that is at least (c′ exp(−c ln10 n))n
2(1−α) ≥ exp(−n2(1−√γ)+ε)

for ε > 0.

Now, let us start the proof. Let α ∈ (0,
√
γ) and N =

⌈
n
bnαc

⌉
. We divide

the torus Z2
n into N2 boxes of size bnαc (i.e., each box contains bnαc2 sites).

The “lower left” box is called B1 (in this section the torus Z2
n is identified with

[0, n)2 ⊂ Z2) and the other boxes are positioned and enumerated following
the arrows showed in Figure 4 up to the box BN2 . Observe that if n is not
divisible by bnαc, then the boxes BjN , B(j−1)N+1 on Figure 4 have some area
in common for j ∈ {1, . . . , N}. The same is true for the boxes Bj, BN2−(j−1)

for j ∈ {1, . . . , N}.
Let η ∈

(
0,min{1, 1

2
(
√
γ

α
− 1)}

)
and for all i ∈ {1, . . . , N2}, introduce the

following sets

B′i = {x ∈ Z2
n : there exists y ∈ Bi such that ‖y − x‖∞ ≤ bηnαc}.

Now, consider the torus Z2
`n

where `n = 2bηnαc + bnαc and fix a box B
of size bnαc “centered” in it. Let

B̃ = {x ∈ Z2
`n : for all y ∈ B, ‖y − x‖∞ ≥ bηnαc}

be the “boundary” of the torus Z2
`n

. For all i ∈ N, we consider the sequence
Y (i) (independent of X) of i.i.d. random elements, where for each i ≥ 1,

Y (i) =
{
Y

(i)
j,x , x ∈ B̃, j ≥ 1

}
,
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Z2
nbnαc

bnαc B1 B2 BN

BN+1B2N

B2N+1

BN2

Figure 4: Enumeration of the boxes Bi, i ∈ {1, . . . , N2}.

and the Y
(i)
j,x are independent random variables such that

P[Y
(i)
j,x = y] = HB(x, y),

where HB(x, ·) is the entrance law in B for the simple random walk on the
torus Z2

`n
starting from x, similarly to (2.1). Using the natural identification

of the boxes B′i with Z2
`n

and the boxes Bi with B, each random element Y (i)

will be viewed as a set of random variables indexed by ∂B′i and j ≥ 1 and
taking values in Bi.

Set V0 = 0. For i ∈ {1, . . . , N2}, we define inductively (see Figure 5):

σ
(i)
0 = Vi−1,

τ
(i)
0 = inf

{
t ≥ σ

(i)
0 : Xt ∈ ∂B′i

}
(observe that for i = 1 the value of Vi−1 = V0 is set to be equal to 0, and, for
the next steps, see (3.12) below) and for all j ≥ 1, define

σ
(i)
j = inf

{
t ≥ τ

(i)
j−1 : Xt = Y

(i)
j,X

τ
(i)
j−1

}
,

τ
(i)
j = inf

{
t ≥ σ

(i)
j : Xt ∈ ∂B′i

}
.

Let δ > 0 and tα = 4
π
γn2α ln2 n. We also define

Ji = inf
{
j ≥ 0 :

j∑
k=0

(τ
(i)
j − σ(i)

j ) ≥ b(1− δ)tαc
}
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Bi

B′i
wi−1 = XVi−1

X
τ
(i)
0

X
σ
(i)
1

X
τ
(i)
1

X
σ
(i)
2

X
τ
(i)
2

Figure 5: The strategy for covering the box Bi. We let the walk evolve freely
until it hits the boundary of B′i. Then, we force the walk to go rapidly to
a random site of ∂Bi (this corresponds to the gray parts of the trajectory).
This random site is chosen according to the entrance law to Bi as if we had
the torus Z2

`n
instead of the box B′i. This allows us to dominate the trace of

the random walk X̂ on B ⊂ Z2
`n

by the trace of the random walk X on Bi.

and

βi = σ
(i)
Ji

+ b(1− δ)tαc −
Ji−1∑
k=0

(τ
(i)
j − σ(i)

j ).

Finally, we define
Vi = inf

{
t ≥ βi : Xt = wi

}
(3.12)

where wi is the lower left corner point of the box Bi+1.
By transitivity of the simple random walk on the torus Z2

n we have that

P
[
Tn ≤

4

π
γn2 ln2 n

]
= Px

[
Tn ≤

4

π
γn2 ln2 n

]
(3.13)

for all x ∈ Z2
n. So, in the rest of the proof we assume that x = 0.

Define S(i) as the trace left by the excursions of the random walk X during
the time intervals [σ

(i)
j , τ

(i)
j ], 0 ≤ j < Ji and [σ

(i)
Ji
, βi]. Define the events Mi,
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for i ∈ {1, . . . , N2} as

Mi =
{
Ji ≤ ln6 n,Bi ⊂ S(i)

}
∩
{
σ

(i)
j+1 − τ (i)

j ≤ δ
4

π
γ
n2α

ln4 n
, 0 ≤ j < Ji

}
∩
{
Vi − βi ≤ δ

4

π
γ
n2α

ln4 n

}
.

Observe that
⋂N2

i=1Mi is a desired strategy:

{ N2⋂
i=1

Mi

}
⊂
{
Tn ≤

4

π
γn2 ln2 n

}
. (3.14)

For i ∈ {1, . . . , N2} we introduce the σ-fields GVi = FVi ∨ σ(Y (j), j ≤
i), where FVi is the σ-field generated the random walk X until time Vi.
Conditioning iteratively by GVi for i ∈ {1, . . . , N2} and using the strong
Markov property of X (observe that X still has the strong Markov property
when conditioning by GVi since the random elements Y (i) are independent
of X), we obtain that

P0

[ N2⋂
i=1

Mi

]
=
(
P0[M1]

)N2

.

We will now estimate P0[M1]. For this, we introduce the σ-field H gen-
erated by the random element Y (1) and by X within the time intervals
([σ

(1)
j , τ

(1)
j ], 0 ≤ j < J1) and [σ

(1)
J1
, β1]. Define also the events

Φ
(1)
j =

{
σ

(1)
j+1 − τ (1)

j ≤ δ
4

π
γ
n2α

ln4 n

}
for 0 ≤ j < J1 and

Φ
(1)
J1

=
{
V1 − β1 ≤ δ

4

π
γ
n2α

ln4 n

}
.

By definition of M1 we have

P0[M1] = P0

[
J1 ≤ ln6 n,B1 ⊂ S(1),

J1⋂
j=0

Φ
(1)
j

]
= E0

[
1{J1 ≤ ln6 n,B1 ⊂ S(1)}P0

[ J1⋂
j=0

Φ
(1)
j | H

]]
. (3.15)
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Now observe that, conditioned on H, the events Φ
(1)
j , 0 ≤ j ≤ J1, are inde-

pendent. Further, in the time interval [τ
(1)
j , σ

(1)
j+1], for 0 ≤ j < J1, we have an

excursion of X starting at point X
τ
(1)
j

on ∂B′1 and ending at point Y
(1)
j,X

τ
(1)
j

on

∂B1. The last excursion in the time interval [β1, V1] is conditioned to start
from some point in B′1 and to end at the lower left corner of B2. Considering
the process S = (St)t≥0 which under the measure Px is a random walk on Z2

starting at x, we deduce that

P0

[ J1⋂
j=0

Φ
(1)
j | H

]
≥
(

inf
x∈B′1,
y∈∂B1

Px[Xv = y]
)J1

≥
(

inf
x∈B′1,
y∈∂B1

Px[Sv = y]
)J1

with v =
⌊
δ 4
π
γ n2α

ln4 n

⌋
if
⌊
δ 4
π
γ n2α

ln4 n

⌋
and ‖x− y‖1 have the same parity (where

‖ · ‖1 is the 1-norm on Z2
n) and v = bδ 4

π
γ n2α

ln4 n
c − 1 otherwise. Using the

local central limit theorem (see e.g. Theorem 2.1.3 in [12]) and the fact that
‖x− y‖1 ≤ 4nα (recall that η < 1), we obtain(

inf
x∈B′1,
y∈∂B1

Px

[
Sv = y

])J1
≥ exp

(
− c0J1 ln4 n

δγ

)
.

for some constant c0 > 0 and n large enough. From (3.15), we deduce

P0[M1] ≥ exp
(
− c0 ln10 n

δγ

)
× P0[J1 ≤ ln6 n,B1 ⊂ S(1)] (3.16)

for n large enough. Let us now bound from below the probability in the
right-hand side of (3.16). We start by writing

P0[J1 ≤ ln6 n,B1 ⊂ S(1)] ≥ P0[J1 ≤ ln6 n]− P0[B1 6⊂ S(1)]. (3.17)

Now, let Qx be the law of a simple random walk X̂ on Z2
`n

starting at x

and define the random variables σ̂j, τ̂j, β̂, Ĵ and Ŝ for X̂ analogously to

σ
(1)
j , τ

(1)
j , β1 J1 and S(1) for X (B and B̃ play the role of B1 and ∂B′1,

correspondingly). Observe that by construction, the excursions of X during

the time intervals [σ
(1)
j , τ

(1)
j ] until time β1 have the same law under P0 as

the excursions of X̂ during the time intervals [σ̂j, τ̂j] until time β̂ under Qx0

where x0 := (bηnαc, bηnαc). Therefore, we have

P0[J1 ≤ ln6 n,B1 ⊂ S(1)] ≥ Qx0 [Ĵ ≤ ln6 n]−Qx0 [B 6⊂ Ŝ]

20



≥ Qx0 [Ĵ ≤ ln6 n]−Qx0 [T`n > (1− δ)tα]. (3.18)

Using the fact that η < 1
2
(
√
γ

α
− 1) we can choose δ > 0 such that δ <

1− α2(1+2η)2

γ
, then by (1.3) we obtain

Qx0 [T`n > (1− δ)tα] ≤ 1

4
(3.19)

for all n large enough.
Now let us show that Qx0 [Ĵ ≤ ln6 n] ≥ 1

2
for all large enough n. We first

introduce the following event

Λ =
{

there exists j ∈ {0, . . . , Ĵ − 1} such that τ̂j − σ̂j ≤
tα

ln6 n

}
.

Since Ĵ ≤ tα
bηnαc (indeed, as any excursion starts from ∂B and ends at B̃, we

need at least bηnαc steps to complete it), we obtain by the Markov property

Qx0 [Ĵ > ln6 n] ≤ Qx0 [Λ]

≤
btαbηnαc−1c−1∑

j=0

Qx0

[
τ̂j − σ̂j ≤

tα

ln6 n

]
≤ tα
bηnαc sup

x∈∂B
Qx

[
max

t≤tα ln−6 n
‖X̂t‖1 ≥ ηnα

]
=

tα
bηnαc sup

x∈∂B
Px

[
max

t≤tα ln−6 n
‖St‖1 ≥ ηnα

]
. (3.20)

Using item b) of Proposition 2.1.2 in [12], we obtain that there exist
positive constants c1 and c2 such that

sup
x∈∂B

Px

[
max

t≤tα ln−6 n
‖S(t)‖1 ≥ ηnα

]
≤ c1 exp(−c2ηγ

− 1
2 ln2 n).

Together with (3.20) this implies that Qx0 [Ĵ > ln6 n] → 0 as n → ∞
and therefore Qx0 [Ĵ ≤ ln6 n] ≥ 1

2
for n large enough. Combining this fact

with (3.17), (3.18), and (3.19) we obtain that

P0[J1 ≤ ln6 n,B1 ⊂ S(1)] ≥ 1

4
(3.21)

for all n large enough. Finally, using (3.16), (3.14) and (3.13) we deduce that

P
[
Tn ≤

4

π
γn2 ln2 n

]
≥
(1

4
exp

(
− c0 ln10 n

δγ

))N2

≥ exp
(
− 2n2(1−α)

( c0

δγ
ln10 n+ 2 ln 2

))
for n large enough. Since α ∈ (0,

√
γ) can be chosen arbitrarily close to

√
γ

we obtain the lower bound in Theorem 1.1.
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