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Abstract: This paper addresses a vehicle scheduling problem encountered in home health 

care logistics. It concerns the delivery of drugs and medical devices from the home care 

company's pharmacy to patients' homes, delivery of special drugs from a hospital to patients, 

pickup of bio samples and unused drugs and medical devices from patients. The problem can 

be considered as a special vehicle routing problem with simultaneous delivery and pickup and 

time windows, with four types of demands: delivery from depot to patient, delivery from a 

hospital to patient, pickup from a patient to depot and pickup from a patient to a medical lab. 

Each patient is visited by one vehicle and each vehicle visits each node at most once. Patients 

are associated with time windows and vehicles with capacity. Two mixed-integer 

programming models are proposed. We then propose a Genetic Algorithm (GA) and a Tabu 

Search (TS) method. The GA is based on a permutation chromosome, a split procedure and 

local search. The TS is based on route assignment attributes of patients, an augmented cost 

function, route re-optimization, and attribute-based aspiration levels. These approaches are 

tested on test instances derived from existing VRPTW benchmarks. 

Keywords: Home health care logistics, vehicle routing, pickup and delivery, time windows, 

metaheuristics,  
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1 Introduction 

This paper considers a special vehicle routing problem with simultaneous delivery and 

pickup and time windows in home health care. Home hospitalization organizations have been 

created for patients requiring long and regular health cares in order to provide quality health 

service at their home while reducing the bed requirements at hospitals. Home hospitalization 

initially focused on nursing cares and has been extended to complex and technical cares such 

as chronic cares, rehabilitation, end-of-life palliative cares, and home chemotherapy. Home 

health care services are provided in France by Home Health Care (HHC) companies. Each day, 

a HHC company has various logistic activities including delivering drugs and medical devices 

from its pharmacy (also called depot in this paper) to patients at their home. It also takes some 

special drugs, such as chemotherapy drugs and blood products, from hospitals to patients. On 

the other hand, the HHC also needs to pick up materials from patients and deliver to different 

locations. Blood samples of the patients are collected and delivered to a medical lab. Medical 

wastes, unused drugs and medical devices are collected and brought back to the HHC or the 

depot. As HHC companies are usually small but serve rather large number of patients with 

dispersed locations, it is crucial to carefully design the routes of the HHC vehicles in order to 

reduce its operating cost while improving the service quality to patients.  

Since an HHC patient may be a delivery and a pickup client simultaneously and have both 

pickup and delivery demands, the design of HHC vehicle routes is related to the vehicle 

routing problem with simultaneous pickup and delivery and time windows (VRPSDPTW) 

introduced by (Hokey, 1989). The VRPSDPTW is a hard and challenging problem in the field 

of vehicle routing problem (VRP). It considers clients that require simultaneous pickup and 

delivery service. Some common constraints must be satisfied in both HHC’s vehicle 

scheduling problem and the VRPSDPTW. For example, each client must be visited and served 

in a given time window; the load on a vehicle must always be below the vehicle capacity. 

However, the problem faced by the HHC company is more complex than the classical 

VRPSDPTW. The first reason is the complexity of its logistic operations with different types 

of pickup and delivery demands of patients. According to the origins and destinations, both 

pickup and delivery demands can be divided into two subclasses. The pickup demands 

include: (i) picking up the material from patients’ homes and deliver to a lab, e.g., biological 

samples; (ii) picking up some materials from the patients’ homes and bring back to the depot, 

e.g., medical waste. Similarly, there are two subclasses of delivery demands required by the 

patients: (i) delivering the products from the company’s depot to patients; (ii) delivering some 

materials from a hospital to patients’ homes, e.g., special drugs for cancer treatment. In the 

classical VRPSDPTW all delivery goods are loaded at depot and all pickup goods have to be 

transported to depot. In our HHC vehicle scheduling problem besides the depot, goods can be 

transported from a hospital to patients and from the patients to a lab. Clearly, the composition 

of vehicles’ loads in our case is more complex than VRPSDPTW. Furthermore, different from 

the classical VRPSDPTW, each route of our problem must satisfy some precedence 
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constraints, e.g., for a patient who needs drugs provided by the hospital, the vehicle visiting 

the patient has to visit the hospital first. Such special constraints are similar to the pairing and 

precedence constraints in classical pickup and delivery problem (PDP), in which each 

customer request is defined by an origin location and a destination, the origin must visited 

before the destination by the same vehicle. However, the PDP is less complicated than our 

problem, since the origins as well as the destinations of transportation requests in the PDP are 

locations other than the depot, and a customer in the PDP only has either pickup or delivery 

request. Thus, in this paper the HHC vehicle scheduling problem is rather a special 

VRPSDPTW variant which has never been studied before. Since both the VRPSDPTW and 

PDP are NP-hard problems, our problem is more complex than these problems and is also 

NP-hard. To the best of our knowledge, we have not found any existing work dealing this 

special simultaneous pickup and delivery problem in HHC industry.  

In this paper, we first perform a literature review, propose two mathematical formulations 

of our problem, and then develop two heuristic algorithms for this special vehicle scheduling 

problem. The rest of this paper is organized as follows. Section 2 introduces the relevant 

literature. Our problem is formally defined and two mathematical models are given in Section 

3. Section 4 proposes a Genetic algorithm (GA) for our problem. Section 5 proposes a Tabu 

Search (TS) algorithm for solving the problem. Computational experiments are described in 

Section 6. Section 7 concludes the paper. 

2 Literature review 

As stated before, two main bodies of vehicle routing literature are relevant to our problem. 

The first is the vehicle routing problem with simultaneous pickup and delivery and time 

windows, in which goods are transported by a fleet of vehicles between the depot and 

customers within their time windows. The second one is the pickup and delivery problem with 

time windows (PDPTW) problem, in which goods are transported between n pickup and n 

delivery locations, and the vehicle visiting each location must be within an associated time 

window. We survey the literature in two parts. 

The VRPSDPTW is an extension of the VRPSDP, and has been much less studied than the 

VRPSDP. The VRPSDP can be seen an extension of the vehicle routing problems with 

backhauls (VRPB). In the VRPB, the set of customers are divided in two subsets consisting of 

linehaul and backhaul costumers, where a linehaul customer requires a given quantity of 

product to be delivered from the depot, and a backhaul customer requires a given quantity of 

product to be picked up to the depot. In the VRPB, it is assumed that the vehicles only pick 

goods up (serve backhaul customers) after they have finished delivering their entire load 

(serve linehaul customers) (P. Toth and Vigo, 1997a) (Goetschalckx and Jacobs-Blecha, 1989). 

One reason for this assumption is the difficulty to re-arrange delivery and pickup goods on the 

vehicles. The objective of the VRPB is to design a set of minimum cost routes so that on each 

route neither the total load of linehaul customers nor that of backhaul customers exceed the 

vehicle capacity. The VRPB is a NP-hard problem in strong sense and a number of algorithms 
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are proposed for this problem. Exact methods for the VRPB are proposed by (Yano, et al., 

1987) (P. Toth and Vigo, 1997a) (Mingozzi, et al., 1999). Heuristics have been developed by 

(Goetschalckx and Jacobs-Blecha, 1989) (Paolo Toth and Vigo, 1999) (Osman and Wassan, 

2002) (Tavakkoli-Moghaddam, et al., 2006) (Y Gajpal and PL Abad, 2009). If the linehaul 

and backhaul customers can be freely mixed within a route, the VRPB is transformed to the 

vehicle routing problem with mixed backhauls (VRPMB). Clearly, the vehicle capacity check 

in the VRPMB is more complicated than the VRPB. Exact solution methods for the VRPMB 

have only been developed for the single vehicle case (Eilam Tzoreff, et al., 2002) (Süral and 

Bookbinder, 2003) (Baldacci, et al., 2003). Heuristics for the VRPMB are given by (Nagy and 

Salhi, 2005) (Salhi and Nagy, 1999) (Wade and Salhi, 2004) (Reimann and Ulrich, 2006). 

Based on the VRPMB, if we allow customers to have both pickup quantity and delivery 

quantity, then, there exist two special problems: the vehicle routing problem with divisible 

delivery and pickup (VRPDDP), and the vehicle routing problem with simultaneous delivery 

and pickup (VRPSDP). The difference between the VRPDDP and VRPSDP is the number of 

times a customer is visited. In the VRPDDP customers do not have to be visited exactly once, 

i.e., a customer can be visited twice, once for pickup and once for delivery service. The 

VRPSDP requires that each customer is visited only once by a vehicle. The VRPDDP 

instances can be transformed to VRPMB by modeling every customer’s pickup and delivery 

service as two separate customers. One exact method for the VRPSDP was designed by 

(Dell’Amico, et al., 2006). (Dethloff, 2002) proposes an extension of the cheapest insertion 

heuristic to the VRPSDP. Several tabu search algorithms for VRPSDP were proposed in 

(Alfredo Tang Montané and Galvão, 2006) (Chen and Wu, 2005) (Bianchessi and Righini, 

2007) (Crispim and Brandão, 2005). Recently, (Ai and Kachitvichyanukul, 2009) (Y. Gajpal 

and P. Abad, 2009) (Subramanian, et al., 2010) have proposed several metaheuristics to solve 

VRPSDP. 

Contrary to the VRPB, VRPMB, and VRPSDP, only a fewer researchers consider the time 

window constraints in these problems, especially for the VRPSDP. For example, an exact 

algorithm was designed for the VRPB with time windows in (Gélinas, et al., 1995). (Duhamel, 

et al., 1997) (REIMANN, et al., 2002) (Thangiah, et al., 1996) (Zhong and Cole, 2005) 

proposed heuristics for this problem. For the VRPMB with time windows, (Hasama, et al., 

1998) (Kontoravdis and Bard, 1995) (Zhong and Cole, 2005) designed heuristics, with the 

primary objective of minimizing the number of the vehicles and the second objective of 

minimizing traveling distances. For the most complex one, VRPSDPTW, only (Angelelli and 

Mansini, 2002) proposed an exact method and (Mingyong and Erbao, 2010) and (Wang and 

Chen, 2012) proposed genetic algorithms.  

Compared with VRPSDPTW, there is an abundant body of research on the second related 

problem PDPTW. The PDPTW originates from the basic PDP (M. W. P. Savelsbergh and Sol, 

1995). In the PDP, a customer order consists of two parts: a pickup at one location and a 

delivery at another location. The PDP has been intensively studied in the past three decades. 

For survey on the PDP, the reader is referred to (M. W. P. Savelsbergh and Sol, 1995), 
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(Berbeglia, et al., 2007), and (S. Parragh, et al., 2008). For the PDPTW, several exact 

approaches have been designed. (Dumas, et al., 1991) (M. Savelsbergh and Sol, 1998) (Xu, et 

al., 2003) (Sigurd and Pisinger, 2004) used branch and price schemes for the PDPTW. (J.-F. 

Cordeau, 2006) (Ropke, et al., 2007) developed branch and cut approach for the PDPTW. 

(Ropke and Cordeau, 2009) introduced a new branch and cut and price algorithm for the 

PDPTW. Meanwhile, many heuristics have proposed for the PDPTW. (Jaw, et al., 1986), 

(Madsen, et al., 1995), (Diana and Dessouky, 2004), (Lu and Dessouky, 2006) presented 

various insertion-based heuristics for solving the PDPTW. (P. Toth and Vigo, 1997b) (Nanry 

and Wesley Barnes, 2000) (J.-F. Cordeau and Laporte, 2003) solved the PDPTW by means of 

tabu search heuristics. (Li and Lim, 2001), (Pankratz, 2005), (Ropke and Pisinger, 2006) and 

(S. N. Parragh, et al., 2010) designed simulated annealing, genetic algorithm, adaptive large 

neighborhood search heuristic, and variable neighborhood search heuristic for solving the 

PDPTW. Extensive review of the PDPTW literature is out of the scope of in this paper and 

interested readers are referred to the surveys of (Berbeglia, et al., 2007) and (S. Parragh, et al., 

2008). 

Although a large number of literatures have studied the VRPSDPTW and PDPTW, to our 

best knowledge, no existing literature consider the problem, which contains following two 

vehicle service strategies simultaneously: (i) the transportation of goods from the depot to 

linehaul customers and from backhaul customers back to the depot; (ii) goods are transported 

between pickup and delivery locations. Our HHC vehicle scheduling problem includes both 

of these two service strategies and can be seen as a special VRPSDPTW variant. 

3 Mathematical Formulation 

This paper addresses the daily scheduling problem of vehicles of a home health care 

company for delivery of drugs and medical devices and for pickup of biological samples and 

medical wastes or unused drugs. This section provides a formal description of the problem 

and then presents two equivalent mixed integer programming formulations of the problem 

that will serve to assess the efficiency of the heuristic methods of this paper. 

The problem can be defined as follows. Let G = (V, A) be a directed graph with a set V= 

{0, 1, ..., n, n+1} ∪ { h, l} of nodes and a set A={( i, j): i, j∈ V, i≠j} of arcs. Nodes 0 and n+1 

represent the origin and destination depots which are in practice the pharmacy of the home 

health care company. Each vehicle starts at node 0 and ends at node n+1. Nodes N = {1,..., n} 

correspond to patients’ homes. Node h and l represent the locations of a hospital and a 

medical lab.  

Each patient i ∈  N has four types of delivery and pickup requirements: di1, di2, pi1 and pi2, 

where di1 represents the amount of materials (drugs/medical devices) to deliver from the depot 

0 to patient i, di2 the amount of materials (special drugs) to deliver from the hospital to patient 

i, pi1 the amount of materials to pick up from patient i and bring back to the depot n+1, and pi2 

the amount of materials (biological samples) to pick up from patient i and bring to the medical 
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lab h. Each type of requirements is called a demand. Different materials are assumed to be 

compatible and can be loaded in the same vehicle. D1 ⊆  N denotes the set of patients needing 

type 1 delivery service, i.e. patients i with di1 > 0. Similarly, D2, P1, P2 denote sets of patients 

needing type 2 delivery, type 1 and type 2 pickup services. A patient may require different 

types of demands. For example, for a patient i∈D2∩P2, the company has to pick up the 

quantity pi2 from node i and deliver to the lab and deliver the quantity di2 from the hospital to 

this node. For notation convenience, we set zero-demands for nodes 0, n+1, h, l. 

A time window [ai, bi] is associated with each node i∈V, where ai and bi  represent the 

earliest and latest time. A vehicle is allowed to arrive before ai and wait until the patient 

becomes available, but arrivals after bi are prohibited. The depot node also has a time window, 

representing the earliest and latest times when the vehicles may leave from and return to the 

depot. Each arc (i, j)∈A is associated with a routing cost cij and a travel time tij. The service 

time for a patient i is assumed to be included in the travel time tij.  

A fleet K of identical vehicles, initially located at the depot, is available to serve the 

patients. Each vehicle has a capacity of Q.  

The problem consists in determining a set of at most K routes of minimal overall cost in 

order to serve all delivery and pickup demands of all patients under the obvious time window 

and vehicle capacity constraints and the following assumptions. 

Assumption A. Each route starts and ends the depot and visits each location at most once; 

Assumption B. Each patient is visited by exactly one vehicle for all its demands; 

Assumption C. Each route makes a hospital visit before visits to its D2-patients; 

Assumption D. Each route makes a lab visit after all visits to its P2-patients. 

A typical route is as follows. The vehicle starts the depot with all materials for its 

D1-patients, visits some patients for D1-delivery and any pickup, visits the hospital to load all 

materials for its D2-patients, visits other patients, then goes to the lab to deliver materials of 

all P2-patients, visits other patients before returning to the depot with all materials of its 

P1-patients. 

In the following, we propose two three-index MIP formulations. The first mathematical 

formulation termed MIP1 is derived from the model of (Dell’Amico, et al., 2006) and (Ropke 

and Cordeau, 2009). Four types of decision variables are used.  
k
ijx  binary variable equal to 1 if vehicle k travels directly from node i to node j; 

k
iB  time at which vehicle k begins to serve at node i;  
k
ijy  quantity of P1- and P2-pickup carried along arc (i, j) by vehicle k; 

k
ijw
 
quantity of D1- and D2-delivery carried along arc (i, j) by vehicle k. 

MIP1:
 

k
ij ij

i V j V k K

Min c x
∈ ∈ ∈
∑∑∑    (1) 
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Subject to: 

1k
ji

k K j V

x i N
∈ ∈

= ∀ ∈∑∑    (2) 

. . 2,
k k
i j j l

j V j V

x x i P k K
∈ ∈

≤ ∀ ∈ ∈∑ ∑   (3) 

. . 2,k k
j i h j

j V j V

x x i D k K
∈ ∈

≤ ∀ ∈ ∈∑ ∑   (4) 

0 1k
i

i V

x k K
∈

≤ ∀ ∈∑    (5) 

, 1 1k
i n

i V

x k K+
∈

≤ ∀ ∈∑   (6) 

. .
{ , },k k

j i i j
j V j V

x x i N l h k K
∈ ∈

= ∀ ∈ ∪ ∈∑ ∑   (7) 

.
1 { , },k

j i
j V

x i l h k K
∈

≤ ∀ ∈ ∈∑   (8) 

.
( ) , , ,k k k

j i ij i jB B t x i V j V i j k K≥ + ∀ ∈ ∈ ≠ ∈   (9) 

1 2 { }k k
ji ij j j

i V k K i V k K

y y p p j N h
∈ ∈ ∈ ∈

− = + ∀ ∈ ∪∑∑ ∑∑   (10) 

1 2 { }k k
ij ji j j

i V k K i V k K

w w d d j N l
∈ ∈ ∈ ∈

− = + ∀ ∈ ∪∑∑ ∑∑   (11) 

2

2
k k k
hi ih ij i

i V i V i V j D

w w x d k K
∈ ∈ ∈ ∈

− = ∀ ∈∑ ∑ ∑ ∑   (12) 

2

2
k k k
il li ij i

i V i V i V j P

y y x p k K
∈ ∈ ∈ ∈

− = ∀ ∈∑ ∑ ∑∑   (13) 

2( ) ,k k k
l i il ij

j V

B B t x i P k K
∈

≥ + ∀ ∈ ∈∑   (14) 

2( ) ,k k k
i h hi ij

j V

B B t x i D k K
∈

≥ + ∀ ∈ ∈∑   (15) 

,k
i i ia B b i V k K≤ ≤ ∀ ∈ ∈    (16) 

. .
, ,k k k

i j i j ijy w Qx i V j V k K+ ≤ ∀ ∈ ∈ ∈    (17) 

{ }0,1 , , ,k
ijx i j V i j k K∈ ∀ ∈ ≠ ∈    (18) 

The objective function (1) minimizes the total routing cost. Constraints (2) ensure that all 

the demands are satisfied. Constraints (3) guarantee that a vehicle visiting a P2-patient also 

visits the lab. Constraints (4) are similar but for hospital visit. Constraints (5) and (6) force the 

route of each vehicle to start and end at the depot. Constraints (7) ensure the flow balance of 

the vehicles, i.e., if a vehicle visits a node it must leave this node. Constraints (8) indicate that 

each vehicle can only visit the hospital and the lab once. Constraints (9) impose the 

consistency of the visiting times. Constraints (10) and (11) are flow equations for pickup and 

delivery demands. Constraints (12) impose that all delivery demands of D2 patients are loaded 

at the hospital. Constraints (13) impose the unloading of all pickup demands of P2 patients at 

the lab. Constraints (14) ensure that each P2 patient is visited before a lab visit; constraints (15) 



 

 
8

ensure the hospital visit before any visit to a D2 patient. Finally, constraints (16) and (17) 

impose the time window and vehicle capacity constraints. This MIP1 model is nonlinear 

because of constraints(9), (14) and (15) that can be linearized as follows: 

(1 ) , \ 0,k k k
j i ij ijB B t M x i V j V k K≥ + − − ∀ ∈ ∈ ∈   (19) 

2(1 ) ,k k k
l i il ij

j V

B B t M x i P k K
∈

≥ + − − ∀ ∈ ∈∑  (20) 

2(1 ) ,k k k
i h hi ij

j V

B B t M x i D k K
∈

≥ + − − ∀ ∈ ∈∑          (21) 

The second mathematical formulation termed MIP2 uses decision variables k
ijx  and k

iB  

as in MIP1 plus the following new decision variables: 

 k
ijz : quantity of Pj-pickup with j∈ {1,2} carried by vehicle k when leaving node i; 

 k
ijv : quantity of Dj-delivery with j∈ {1,2} carried by vehicle k when leaving node i. 

MIP2:
 

k
ij ij

i V j V k K

Min c x
∈ ∈ ∈
∑∑∑  

subject to constraints (2)-(9), (14)-(16), (18) and  

1 1 1( ) , { , }, ,k k k
j i j ijz z p x i V j N l h i j k K≥ + ∀ ∈ ∈ ∪ ≠ ∈          (22) 

2 2 2( ) \{ }, { , }, ,k k k
j i j ijz z p x i V l j N l h i j k K≥ + ∀ ∈ ∈ ∪ ≠ ∈   (23) 

1 1 1( ) , { , }, ,k k k
i j j ijv v d x i V j N l h i j k K≥ + ∀ ∈ ∈ ∪ ≠ ∈   (24) 

2 2 2( ) \{ }, { , }, ,k k k
i j j ijv v d x j V h i N l h i j k K≥ + ∀ ∈ ∈ ∪ ≠ ∈   (25) 

1 2 1 2 ,k k k k
i i i iz z v v Q i V k K+ + + ≤ ∀ ∈ ∈    (26) 

Constraints (22) determine the vehicle loading for P1-pickup. Constraints (23) track the 

vehicle loading for P2-pickup and ensure that it becomes null after the lab visit at the optimum. 

Constraints (24) and (25) determine the vehicle loading for D1 and D2 delivery. Constraints 

(26) are vehicle capacity constraints. Again nonlinear constraints (22)-(25) can easily be 

linearized by standard reformulation techniques. 

As explained in Sections 1 and 2, our problem is related to highly complex vehicle routing 

problems including VRPSDPTW and PDPTW problems. It can be easily proved that our 

problem is strongly NP-hard as it covers classical VRP problems as special case. It is 

expected that the above MIP formulation can only be used to solve small-size problems. This 

is evidence by numerical results of Section 6 in which we try to solve different test instances 

with the Cplex 12.3 solver. Even for instances of very small size with 30 patients and 40 

demands, Cplex is not able solve the problem optimally. For some of the small size instances, 

it even cannot get a feasible solution in reasonable time (about 48 hours). For these reasons, 

we propose in the following a genetic algorithm and a tabu search method to address 

problems of large size. 
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4 A genetic algorithm 

The genetic algorithm proposed in this paper combines the following features: a 

permutation chromosome, exact fitness computation by splitting, improvement by local 

search, diversity of the population and mutli-start with partially replaced population. These 

ingredients were shown powerful in (Prins, 2004) in designing efficient GA for 

vehicle-routing like problems. 

In this paper, the chromosome is a permutation of all patients that give order of visits in 

different routes. An exact split algorithm will be presented to split the permutation into 

sub-strings of patients to be visited by a vehicle and to insert hospitals and labs. 

Algorithm 1: Outline of the GA 

1: Generate an initial population Π of chromosomes 

Main GA exploration phase 

2: Select two parents P1 and P2 by binary tournament; 

3: Crossover (P1, P2) by OX operator; 

4: Evaluate the two resulting children by Splitting; 

5: Repeat 2-4 if no child is feasible. Otherwise, select randomly a feasible child C; 

6: Improve C by Local Search, with probability pm; 

7: Insert C in Π to replace a randomly selected individual among the half worst of Π, if 

C is not the current worst and C has a distinct fitness value than those in Π ; 
8: Repeat 2-7 for N1 iterations or till N2 iterations without improving the current best; 

End of the main GA phase 

9: Restart the main GA phase 2-8 with a partially replaced population, for N3 phases or 

till N4 phases without improving the best solution. 

The overall structure of the GA is illustrated in Algorithm 1. It starts with the 

generation of an initial population with insertion of good heuristic solutions to be 

presented. The central part of our GA is an incremental GA exploration phase in which 

only one chromosome is replaced at each iteration. It starts with the selection of two 

parents by binary tournament. The OX operator that was proved appropriate for VRP 

problems in (Prins, 2004) is then applied to generate two child chromosomes. These child 

chromosomes are evaluated by the exact split algorithm. The selection and crossover 

operations are repeated till obtaining a feasible child chromosome, i.e. a chromosome for 

which a feasible split solution exists. With some probability, this feasible child 

chromosome is further improved by Local Search to be presented. The new child 

chromosome is inserted in the current population under two conditions: (i) it is better than 

the current worst and (ii) it does not have identical fitness as an existing chromosome. 

In our GA implementation, the main GA phase is performed for N1=3000 iterations or till 

N2=1500 iterations without improving the current best. The main GA phase is repeated for 
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N3=10 phases or till N4=5 phases without improving the current best. To restart the GA phase, 

we keep the ψ best chromosomes with ψ =3 and replace the others with randomly generated 

chromosomes. Through some preliminary experiments, the proposed GA gives better solution 

when increasing the local search probability pm and the size of the population |Π|, especially 

when pm is smaller than 0.8 and |Π| is less than 35. The negative side is the increasing running 

time of GA. To balance the accuracy and the speed of GA, the local search is applied with a 

probability pm = 0.8, and the size of the population is kept fixed at |Π| = 30 chromosomes. 

It has been proven that perverting the diversity of GA population can diminish the risk of 

premature convergence (Sörensen and Sevaux, 2006). A simple and stricter rule is imposed in 

this paper to keep the diversity of the population, i.e., the fitness of any two feasible 

chromosomes must be different. For this reason, a child chromosome C is inserted during 

each main GA phase only if it has a different fitness than existing individuals. Diversity is 

also checked in the generation of the initial population and the partially replaced population 

for restart. 

The remaining of this Section is devoted the detailed presentation of the fitness evaluation, 

generation of initial solutions, and local search. 

4.1 The chromosome and fitness evaluation 
In our GA, a chromosome C is a permutation (s1, s2…sn) of all patients (1, 2, …, n) and 

the fitness is the optimal criterion value of our problem such that each route visits a sub-string 

of patients of C and in the order of C with of course necessary visits to the hospital and lab. 

For example, the solution of a chromosome (3, 5, 1, 2, 4) could be (0, 3, 5, h, 1, n+1) and (0, 2, 

4, l, n+1).  

Hereafter we propose a split procedure for fitness evaluation of our problem. It is a 

shortest path approach. It first builds an auxiliary graph H which contains nodes (s0, s1, s2…, 

sn) with s0 = 0 and in which each arc corresponds to a feasible route. There is an arc (si, sj) 

from node si to sj with i < j if there exists a feasible route visiting all patients (si+1, …, sj) in 

the given order. The length of the arc is the minimal total routing cost of such a route. The 

fitness of the chromosome is the shortest path from s0 to sn with at most K arcs. 

In this approach, when considering an arc (si, sj), all possible and necessary insertions of 

the hospital h and the lab l in the route (0, si+1,…, sj, n+1) are considered. For each insertion 

of (h, l), the earliest visiting time of each node is determined, the corresponding time window 

constraint checked and the insertion is abandoned if the time window constraint is violated. 

The length l ij of the arc (si, sj) is the smallest earliest visiting time of node n+1 among all 

feasible routes. 

Once the auxiliary graph H is built, the fitness is determined by dynamic programming by 

determining iteratively the shortest path SPik from s0 to si with at most k arcs. Clearly, the 

fitness is SPnK determined by the following recursion: 
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Figure 1 is an illustrative example. The first part of Figure 1 shows a small instance with a 

depot(D), a hospital(h), a lab(l), three patients (a, b, c) and 2 identical vehicles with capacity 

Q=10. The chromosome is (a, b, c). The distances between any two nodes are given beside 

the arc, and the demand of each patient is shown in brackets. There are no time window 

constraints. In the second part of Figure 1, each arc in the auxiliary graph represents a 

possible vehicle route and its traveling distance. The route visiting patients a and b, i.e., arc 

(D, b), has two possible positions for visiting the hospital and the one leading to shortest 

distance is chosen to represent this arc. Based on the second part, is the shortest path with no 

more than 2 arcs is (D-a-c) and has a cost of 52. The corresponding solution consisting of 

two vehicle routes is given in the third part of Figure 1. 

 
Figure1. Split procedure for the chromosome (a, b, c) 
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4.2 Constructing the initial population 
The initial population is a combination of heuristic solutions and randomly generated 

chromosomes. It uses four simple constructive heuristics including three saving-based 

heuristics and a Nearest Neighbor (NN) heuristic. The heuristics make use of randomly set 

parameters but details will be given later. 

The initial population is generated in two phases. Phase 1 starts with a population of the 

four heuristic solutions with randomly set parameters and randomly generated chromosomes. 

Phase 1 repeats till a feasible chromosome is obtained. Phase 2 tries to ensure the diversity of 

the population. It replaces two types of individuals with new random chromosomes: feasible 

chromosomes having the same fitness as another one and infeasible chromosomes. Phase 2 is 

repeated for N5 = 100 times or till the diversity is ensured. 

When restarting the GA exploration phase, the current population is partially replaced by 

keeping the ψ best chromosomes, replacing the remaining ones with random chromosomes, 

and applying phase 2 to ensure the diversity. 

We now give details of the four construction heuristics. The first simplest saving method, 

called saving1, is as follows.  

Step1 assigns each patient to a separate route. Each patient of P1 and D1 is connected with 

the depot, forming a route beginning and ending at depot. Each P2 patient j is connected with 

the lab and the depot, forming a route (depot-j-l-depot). Similarly, each patient of D2 is 

connected with the hospital and the depot;  

Step2 merges two routes associated with the maximal saving value, which is calculated as 

in the classical saving method by checking the time windows and vehicle capacity constraints. 

In the classical saving, when two routes (depot-…-i-depot) and (depot-j-…-depot) can be 

feasibly merged into a single route (depot-…-i-j-…depot), the saving value is 

ci0+c0j 1 ijcλ− where 1λ is a parameter randomly sampled in [0.8, 1]. In our problem, the saving 

value is equal to the total distance of arcs to delete in the merged route minus the distances of 

arcs to add in the new giant route. If both two routes contain the hospital (lab), only the first 

hospital (the second lab) is kept in the new giant route. For example, the left part of Figure2 

show two routes (depot-h-…-i-depot) and (depot-h-j-…-depot) where i and j are D2 

patients and the others are D1 or P1 patients. When merging two routes into one giant route 

(shown in the right part), three arcs are deleted (represented by dotted line), and one arc (i, j) 

is inserted into the new route. Thus, the saving value is ∆1=ci0+chj+c0h 1 ijcλ− . 
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Figure2. The example of saving methods 

Step3: repeat merging routes until no improvement is possible. The final chromosome is 

obtained by concatenation of the resulting routes in the linguistic order of the first patient in 

each route. 

Two other saving heuristic saving2 and saving3 are also implemented with different 

one-step look-ahead criterion to improve saving1. Saving2 combines the immediate saving 

value ∆1 of merging two routes and the maximum positive saving value ∆1-max of this giant 

route with other remaining routes in the next step. Saving2 merges two routes with the largest 

∆2=∆1+ 2 1 maxλ −∆   among all merging with positive ∆1 where 2λ  is the parameter, randomly 

sampled in [0.1, 0.3]. Saving3 is similar with ∆2 replacing by ∆3=∆1+ 3 1-sumλ ∆ where 3λ  is a 

third parameter, randomly sampled in [0.01, 0.03] 1-sum∆  is the sum of top-10 positive 

savings of merging the giant route and remaining routes in the next step. 

In the last heuristic NN, we only consider the depot and patients and neglect the lab and 

hospital. First, NN links the depot to its closest patient, i.e. the patient i with the smallest 

routing cost from 0 to i. Then, the NN adds a directed path connecting the last added node to 

the closest unvisited patient. The procedure repeats until all the patients are included in the 

path. The resulting sequence of patients is the chromosome of the NN heuristic. 

4.3 Improving a feasible chromosome by local search (LS) 
This subsection starts with the split solution of a feasible chromosome and then improves 

it by several local moves including 1-1exchange, 1-0 relocation, 2-Opt exchange, and 2-Opt* 

exchange. The first-accept strategy is used, i.e., once a new better neighboring solution is 

identified, it replaces the current solution. For each solution, it first tries 1-1exchange and 

accept the first improving 1-1exchange. If no improvement is possible with 1-1exchange, it 

then tries the other local moves. The process repeats until no improvement is possible at all. 

For 1-1exchange and 1-0 relocation, both intra-route and inter-route movements are tried. 

The 1-1exchange tries to exchange positions of any two patients. The 1-0 relocation is the 

operator for one patient and transfers a patient from its position in one route to another 

position either the same or a different route. The 2-Opt exchange is only executed on a single 

route and it tries to improve the route by replacing two of its edges by two other edges. The 

2-Opt*  exchange is an inter-route method: two edges are selected from two different routes, 
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respectively, and the end portions of two edges are exchanged, so as to generate two new 

routes.  

Note that the inter-route 1-0 relocation and 2-Opt* may combine two routes into one and 

reduce the usage of the vehicles in the solution. In such case, the empty route is removed from 

the solution. Compared with classical VRPTW, in our work additional precedence constraints 

also must be checked during the LS procedure. During the search procedure, once a 

neighboring solution is identified, we checked whether it can satisfy the vehicle capacity, time 

windows, and precedence constraints. If not, it is aborted directly. 

When the LS procedure stops, the resulting routes are concatenated in linguistic order to 

give the improved chromosome. The split procedure is applied to this new chromosome for 

evaluation of its fitness.  

5 A tabu search algorithm 

Tabu search (TS) is also one of the most powerful and competitive heuristics in the fields 

of VRP, VRPTW and other VRP variants (Gendreau, et al., 1994) (J. Cordeau, et al., 1997) 

(Hertz, et al., 2000) (Côté and Potvin, 2009) (Zachariadis, et al., 2009). Essentially, TS 

iteratively explores the solution space by moving from the current solution to another solution 

in its neighborhood. Since the current solution may deteriorate during the search, some 

anti-cycling strategies are used to help the search process explore a broad portion of the 

solution space. 

In this section, we design a TS algorithm for our problem. It is based on the general TS 

framework of (J. F. Cordeau, et al., 2001) with similar attribute set and augmented criterion 

function for constraint violations. The general framework of our TS is given in Algorithm 2. It 

starts with the best feasible solution of the GA initial population given in Section 4 and 

searches on the set of solutions in which each patient belongs to a route. The neighborhood is 

defined by relocation of a patient from one route to another route or location exchange of 

patients in different routes. Our tabu search also includes the re-optimization of all modified 

routes after each local move. The TS stops after L1=5000 iterations or after L2=2500 iterations 

without improvement of the best solution. Our TS restarts from the second best and empty 

tabu list if there is no improvement after L3=1000 iterations. Restarts bring TS to new search 

regions (Dell'amico, et al., 1999). 

In the following, we give detailed presentation of the augmented criterion function, the 

neighborhood structure, the route re-optimization, the attribute set, tabu duration and 

aspiration criterion. 

Algorithm 2: Outline of the TS 

1: Determine an initial solution Sol;  

2: Determine the best neighbor solution Sol' that is not tabu or satisfies an aspiration 

criterion; 



 

 
15

3: Re-optimize each modified route of Sol' and set Sol := Sol'; 

4: Update tabu list and aspiration levels; 

5: Stop the TS if the stopping criterion is met; 

6: Restart the TS from the second best if a restart criterion is met; 

7: Go to 2. 

5.1 Augmented criterion function 
In our TS, both feasible and infeasible solutions are allowed. Each solution Sol partitions 

the set of patients into different routes and is completely represented by its set of routes k with 

each route represented by the sequence of nodes visited including the depot, the hospital and 

the lab. 

For each route, the visiting times at different nodes can be easily determined by taking 

into account the visiting sequence and the earliest available time of each node. The vehicle 

load can be determined as follows. The vehicle starts at the depot with all demands of D1 

patients, drops all delivery demands di1 and di2 and loads all pickup demands pi1 and pi2 at 

each patient visit, loads all demands of D2 patients of the route at the hospital, and drops all 

demands of P2 patients of the route at the lab visit.  

For each route k of a solution Sol, let wk(Sol) be the total traveling distance (original 

objective value), dk(Sol) be the total violation of vehicle capacity, ek(Sol) be the total violation 

of time window, gk(Sol) be the total violation of precedence constraints. The evaluation of 

wk(Sol) is straightforward and the evaluation of the others is as follows: 

( )( )
k

k ik
i R

d Sol Load Q
+

∈

= −∑                 (27)

( )( )
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k tk i
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e Sol m b
+

∈
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( )k hk lkg Sol N N= +                     (29) 

where (x)+ =max(0, x), Rk is the set of nodes visited by vehicle k, Loadik is the vehicle load 

when leaving node i, mik is the visiting time of node i in route k and bi its latest visiting time, 

Nhk (Nlk) is the number of D2 (P2) patients visited before a hospital visit (after a lab visit) in 

route k.  

The following augmented criterion function f (Sol) is used in our TS: 

( )( ) ( ) ( ) ( ) ( )k k k k
k K

f Sol w Sol d Sol e Sol g Solα β γ
∈

= + ⋅ + ⋅ + ⋅∑         (30) 

where α, β, and γ are positive parameters to adjust the penalty of constraint violation. If Sol is 

a feasible solution, f(Sol) coincides with w(Sol). According to this definition, the TS search 

process will contain a mix of feasible and infeasible solutions, reducing the probability of 

becoming trapped in a local solution. 

Our TS algorithm adjusts α, β, γ dynamically to facilitate the exploration of the search 
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space. The TS algorithm starts or restarts from three initial parameters 0α , 0β and 0γ , set at 

respectively 1, 1, 100. We set three intervals [ ,min maxα α ], [ ,min maxβ β ] and [ ,min maxγ γ ] to limit 

these parameters during search process in the following respective ranges [0.01, 1000], [0.01, 

1000] and [0.01, 5000]. At each TS iteration, penalty parameter for the vehicle capacity 

constraint α is modified as follows. If the solution generated after route re-optimization is 

feasible, α is divided by a factor 1+1ϕ . If the solution is infeasible and the vehicle capacity is 

violated, α  is multiplied by a factor 1+1ϕ . If the solution is infeasible but the vehicle 

capacity is satisfied, parameter α  is divided by a factor 1+ϕ2 ( 2 10 ϕ ϕ< ≤ ). And, parameters 

β  and γ  are adjusted in the same rules. The following parameters ϕ1 = 0.2 and ϕ2 = 0.05 

are used. Note these parameters, e.g., α, β, γ, ϕ1 and ϕ2, are tuned by the preliminary 

experiments, as well as some guidelines in previous studies on unified tabu search (J. Cordeau, 

et al., 1997). The sensitivity analyses on the parameters were performed sequentially, leaving 

the remaining parameters unchanged.  

5.2 Neighborhood structure 
Recall that each solution Sol in our TS partitions the set of patients into different routes 

and is completely represented by its set of routes with each route represented by the sequence 

of nodes visited including the depot, the hospital and the lab.  

The neighborhood of a solution Sol is defined by two local moves. The first local move 

for a solution Sol removes a patient from one route k and inserts it into another nonempty 

route k′. The second local move consists in exchanging the route assignment of two patients i 

and j in different routes k and k'. The relocation move can be denoted as (i, k') and route 

exchange move denoted as (i, j, k, k') 

More specifically, relocation move (i, k') of a patient on route k consists in (i) removing 

patient i from route k; (ii) inserting it in route k′ at a position that minimize the cost of route k′, 

i.e. 

' ' ' '( ) ( ) ( ) ( )k k k kw Sol d Sol e Sol g Solα β γ+ ⋅ + ⋅ + ⋅ , 

and (iii) removing the hospital (lab) in route k if there is no more D2 (P2) patient in route k 

after the local move. Route exchange move (i, j, k, k') of two patients on different routes k and 

k' consists in (i) removing patients i and j from their routes, (ii) inserting patient i (j) in route 

k' (k) at a position that minimize the cost of route k' (k'), and (iii) removing any unnecessary 

hospital and lab visit in routes k and k'. The cost of the neighbor solution is the augmented 

cost function of the solution obtained after the local move. 

Note that when inserting a patient in route k, we do not relocate or insert the hospital visit 

and the lab visit in the route even if it is necessary to satisfy the new patient. This is due to the 

relative long computation time needed to find the best position for inserting hospital or lab. 

Nevertheless, the relocation or insertion of hospital and lab visits are considered in the 

re-optimization of modified route once the next local move has been selected. 
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Other local moves such as intra-route crossover method and 2-opt* (Alfredo Tang 

Montané and Galvão, 2006) were also used in the literature for solving the VRPs and 

VRPSDP. We tested such local moves in our TS and did not observe significant improvement. 

Since most of our TS running time is spent by the neighborhood search, implement more local 

moves has a clear disadvantage of increasing very substantially the size of the neighborhood 

and the computation time. For this reason, we limit our TS to two local moves. 

5.3 Re-optimization of a modified route 
Each local move in our TS can modify two routes. A modified route might miss necessary 

hospital or lab visit, violate vehicle capacity, time window and precedence constraints. This 

subsection presents a method to rebuild and improve each modified route. The remaining part 

of this subsection concerns the re-optimization of a given modified route. 

The re-optimization starts with a constructive method and then improves the route by 

local search. More specifically, it starts with a simple and effective constructive heuristic, the 

nearest insertion (NI) (Bentley, 1992). Our NI heuristic is a three-step method.   

Step1: Delete all the existing trips in this route. Then create a partial route beginning and 

ending at the depot and visiting the farthest patient.  

Step2: Insert the patient whose insertion generates the smallest increment on the cost 

( ) ( ) ( )w Sol d Sol e Solα β+ ⋅ + ⋅ , i.e., travel cost plus penalty of the vehicle capacity and time 

window violation. This step is repeated until all patients are inserted.  

Step3: Insert the lab and hospital into the route at feasible positions with the smallest 

increment on the cost ( ) ( ) ( )w Sol d Sol e Solα β+ ⋅ + ⋅ . Precedence constraints are satisfied and 

g(Sol)=0 at this step, i.e. the hospital is visited before all D2 patients and the lab is visited after 

all P2 patients.  

The NI route is not necessarily good enough or even feasible for our problem. It is further 

improved by local search combing the first-accept strategy and three moves: 1-1exchange, 1-0 

relocation, 2-Opt exchange. Before the local search, we check the feasibility of the NI route. If 

the NI route is feasible, infeasible solutions are not allowed in local search. If the NI route is 

not feasible, infeasible neighbor solutions are allowed in local search and the augmented 

criterion function f(Sol) is used. 

5.4 Attribute set, Tabu list, Tabu duration and Aspiration criterion 

In our TS, we associate with each solution Sol an attribute set At(Sol)={( i, k)|i∈N, k∈K} 

indicating for each patient i the vehicle k serving it. Of course, the attribution set is only a 

partial characterization of the solution used to define the tabu list. The relocation move (i, k') 

of a patient i in route k to a different route k' is equivalent to replace an attribute (i, k) from 

At(Sol) by a new attribute (i, k′) with k ≠ k'. The route exchange of two patients in different 

routes can be seen as replacing two attributes in At(Sol). 

TS utilizes adaptive memory, called tabu list and tabu duration, to implement a 
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diversification strategy. In our TS, when a patient i is removed from a route k, we assign a 

tabu status to the attribute (i, k), and set a tabu duration θ  to this attribute. That is to say, in 

the next θ  iterations, inserting patient i back into route k is forbidden when we perform the 

neighborhood search. The size of the tabu list θ  takes its values in [minθ , maxθ ] and starts 

from 0θ . Tabu list θ  is also a self-adjusting parameter, and dynamically modifies during the 

TS search. After each improvement of the current best solution Sbest, we set parameter θ  

equal to θmin. After φθ  consecutive times unimproved iteration, parameter θ  is updated to be 

min(θ +1, maxθ ). In the preliminary experiments, we find 0θ  = 7, φθ  = 30 suit most test 

instances. It is not necessary to increase the value of 0θ  with the instance size (customer 

number). And, we set [minθ , maxθ ] = [5, 15] in our TS implementation. 

The tabu status of a local move can be overridden by an aspiration criterion in our TS. We 

define an aspiration value for each attribute, which is equal to the cost of the best feasible 

solution found with that attribute. For each feasible solution found after the re-optimization of 

modified routes, we update the aspiration value of each attribute of this feasible solution. A 

relocation move (i, k') is considered at an iteration if (i, k') is not in the tabu list, or the 

neighbor solution is feasible and its cost is smaller than the aspiration value of (i, k'). A route 

exchange move (i, j, k, k') is considered if (i, k') and (j, k) are not in the tabu list, or the 

neighbor solution is feasible and its cost is smaller than the smallest aspiration value of (i, k') 

and (j, k). 

6 Computational experiments 

This section reports the results of a series of computational experiments for comparison of 

the genetic algorithm, the tabu search, and application of the commercial solver Cplex 12.3 

for the two mathematical formulations MIP1 and MIP2 of Section 3, and other methods of the 

literature for some special cases of our problem. 

To the best of our knowledge, this paper is the first study of this special vehicle scheduling 

problem in the home health care industry. There are no benchmark instances to evaluate the 

performances of our heuristic approaches. Therefore, we construct some test instances based 

on existing VRPTW benchmarks. Further, as our problem with only P1 or D1 patients reduces 

to the classic VRPMBTW, our approaches are also compared with existing VRPMBTW 

approaches on existing benchmark instances for the VRPMBTW. 

As our problem is highly combinatorial, the performance of Cplex solver strongly 

depends on its parameterization. We tried different Cplex parameters including default 

settings, strong branching, depth-first search, MIP emphasis feasibility or optimality. No 

parameter setting led to satisfactory performance. For most of the small-size test instances of 

this Section, Cplex cannot find a feasible solution after 48 hours. It does not make sense to 

compare our heuristic solutions with direct implementation of MIP models in Cplex. Instead, 

we use in this section MIPstart strategy by letting Cplex to start with the initial solution of our 

TS, i.e. the best initial solution of our GA. Cplex installs it as the incumbent and initial 
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solution of its branch and cut procedure, which allows Cplex to eliminate portions of the 

search space and results in smaller branch and cut trees. Cplex starts from this initial solution 

and goes on solving the problem based on this solution, until exhausting the memory or 

predetermined maximum computation time. In our preliminary experiments, we also find that 

Cplex with MIP2 formulation always outperforms Cplex with MIP1. For this reason, this 

section limits to Cplex with MIP2 formulation. Further, the Cplex lower bounds are very poor 

and are not given in this paper. 

All the algorithms of this paper are implemented in C. All heuristic algorithms (GA, TS,…) 

are carried out on a 3.2 GHz Dual Core computer with a 2 GB memory under Linux. We set a 

time limit of 72 hours and a memory limit of 20 GB for Cplex for each instance. After some 

preliminary experiments, the parameters of the proposed GA and TS have been set to the 

values reported earlier in this paper. For fair comparison with GA, our tabu search algorithm 

is implemented with two stopping criteria: (i) maximum number of iterations and maximum 

number of iterations without improvement, and (ii) same computation time as GA. The first 

tabu search is denoted TS1 and the second one TS2. GA, TS1 and TS2 run 10 times for each 

instance. The best results, the average results and average running time are used to assess the 

efficiency of these algorithms. 

6.1 Test Instances from VRPTW benchmarks 
We first derive test instances from existing VRPTW benchmarks of (Solomon, 1987) and 

(Gehring and Homberger, 1999). Eighteen Solomon VRPTW instances are selected to 

generate our test instances. Each Solomon instance contains 100 customers over a service 

region defined on a 100×100 grid. These VRPTW instances are divided into three classes that 

differ by the geographical distribution of the customers: they are clustered in the C type 

instances, randomly located in the R type instances, and partly clustered, partly randomly 

located in the RC type instances. Meanwhile, each class is divided into two series: in the 

100-series instances time windows are tighter, and in the 200-series instances time windows 

are wider. To test different characteristics of instances, we select 6 C type instances, 6 R type 

instances and 6 RC type instances. Among 6 instances of each type, both the 100-series 

instances and 200-series ones exist.  

For each Solomon instance, we derive 6 new instances for our problem with 4Z demands 

as follows. First, we randomly choose Z customers from the Solomon instance as the P1 

patients in our new instance, each of which has a demand equal to 50% of the customer’s 

demand given in the Solomon instance. Then, Z P2, Z D1 and Z D2 patients are randomly 

selected from the Solomon instance. Clearly, one patient may be selected more than once and 

the number of patients is less than then number of requirements (4Z). If the basic Solomon 

instance is C101 and 37 patients and 40 demands exist in our new instance, it is denoted as 

C101-37-40. The coordinates of the depot is inherited in our instances, and the locations of 

lab and hospital are (10, 15) and (40, 50). For each patient, the time window in the Solomon 

instance is used directly. Time windows for the depot, lab and hospital are selected as follows 
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to avoidance infeasible solutions. The depot’s time window of the Solomon instance is 

multiplied by 1.2 and assigned to the depot, lab and hospital in our instance. If ‘violative’ 

patients still exist in our instance, the new time window is repeatedly multiplied again by 1.2 

until all ‘violative’ patients are eliminated. In the preliminary experiment, we find that all 

‘violative’ patients disappear after two tries.  

For each Solomon instance, this constructing procedure are repeated 6 times, generating 2 

small (40 demands), 2 moderate (80 demands), and 2 large (120 demands) instances. 

Concerning the vehicle capacity and vehicle number, their values have been reduced 

compared to the ones considered for the VRPTW, because they are loose for our problem. The 

detailed information about these two characteristics is illustrated in Tables 4-7. 

Besides the Solomon instances, we also create the largest instances from VRPTW 

instances of (Gehring and Homberger, 1999). These instances are similar but larger than 

Solomon instances and have hundreds of customers. We choose 12 instances from this 

benchmark, each of which has 400 customers, and undergoes the procedure described above 

to generate 24 new instances for our study. Each of these instances contains 200 demands, and 

also named as the VRPTW instance’s label with patients number, and demands number.  

6.2 Computational Results on VRPTW-based instances 
In this subsection, Tables 1 and 2 summarize the results obtained from the GA and TS on 

all VRPTW-based instances. The detailed computational results obtained on the small 

instances (containing 40 demands), moderate instances (80 demands), large instances (120 

demands), and the largest instances (200 demands) are presented in four Tables 4-7 in the 

Appendix, respectively. 

Table 1. Average routing costs of 10 independent GA and TS runs on VRPTW-based instances 

Demand 
# Type Cplex 

GA TS1 TS2 

Best AVG Worst STD CPU Best AVG Worst STD CPU Best AVG Worst STD 

50 

C 1065.7 881.9 890.5 895.6 5.6 88.6 882.0 893.3 900.7 7.0 63.6 881.6 890.1 899.1 6.1 

R 1051.0 875.3 889.0 901.2 10.1 74.2 873.5 884.2 894.1 6.8 52.6 874.1 882.5 889.5 6.6 

RC 1158.3 954.4 966.4 977.2 7.1 78.0 955.3 970.6 983.3 8.5 67.3 955.4 965.3 972.8 6.0 

80 

C 1776.8 1424.3 1457.4 1480.7 18.4 356.0 1423.0 1463.2 1481.1 18.9 335.6 1419.7 1466.2 1491.5 20.3 

R 1680.7 1409.1 1441.1 1463.9 24.4 343.4 1410.2 1446.6 1467.4 22.0 243.3 1402.1 1436.4 1455.5 17.5 

RC 1867.8 1577.6 1617.5 1648.9 20.6 298.6 1572.1 1610.7 1634.2 19.3 218.6 1570.9 1612.8 1641.2 20.4 

120 

C 1965.6 1503.9 1542.1 1565.1 27.7 615.3 1514.9 1565.0 1599.1 26.9 597.2 1502.0 1550.4 1584.0 26.3 

R 2012.8 1505.4 1553.5 1575.9 27.1 617.3 1514.4 1566.8 1601.1 28.1 558.2 1513.9 1558.4 1584.8 25.2 

RC 2181.7 1691.3 1736.4 1764.8 25.7 541.9 1692.6 1728.2 1764.5 25.6 471.1 1682.3 1726.8 1753.8 24.3 

200 

C 9744.1 8267.5 8387.2 8485.5 54.7 3274.4 8166.7 8283.9 8349.6 53.6 4301.6 8198.7 8295.2 8369.3 53.8 

R 10759.9 9219.3 9380.8 9499.1 54.0 3111.0 9107.4 9239.7 9305.1 56.9 3707.8 9091.4 9164.7 9234.7 58.7 

RC 9773.1 8580.1 8706.5 8808.7 62.7 3342.7 8456.1 8548.9 8622.3 54.0 3784.9 8473.1 8555.2 8624.7 55.6 

AVG 3176.8 2654.6 2704.0 2739.6 25.5 863.5 2635.6 2682.7 2713.0 24.8 951.8 2634.3 2675.7 2705.3 24.1 
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Table 2. Percentage of best solutions found of GA and TS on VRPTW-based instances 

Demand# Type Cplex GA TS1 TS2 

40 

C 0% 83% 92% 92% 

R 0% 58% 67% 58% 

RC 0% 75% 75% 67% 

80 

C 0% 42% 42% 58% 

R 0% 42% 17% 58% 

RC 0% 50% 25% 42% 

120 

C 0% 50% 42% 67% 

R 0% 58% 17% 25% 

RC 0% 42% 25% 42% 

200 

C 0% 13% 63% 38% 

R 0% 25% 38% 50% 

RC 0% 13% 63% 25% 

AVG   0% 48% 46% 53% 

Table 1 shows the average routing costs by grouping problem instances according to the 

number of demands and the type of the instance. The results are obtained from 10 

independent runs for each problem instance of the three approaches (GA, TS1, and TS2) plus 

the one obtained with CPLEX. Column ‘Best’ is the average over all relevant problem 

instances of the best solutions among 10 independent runs of an approach for each instance. 

Column ‘AVG’  is the average travel cost over all problem instances and over all runs of the 

approach. Similarly, column ‘Worst’ represents the average value of the worst solution costs 

among relevant test instances. We calculate the standard deviation of 10 runs of each test 

instance, and Column ‘STD’ gives the average standard deviation among all relevant test 

instances. Column ‘CPU’ is the average CPU time in seconds of one run among relevant test 

instances. The last line in Table 1 provides the average values for all the test instances. Table 2 

shows the percentage of the best solutions obtained by GA, TS1 and TS2 on each type of test 

instances.  

Several conclusions can be drawn from these experimental results. First, the proposed GA 

and TS (both TS1 and TS2) perform well for test instances of different types and different 

sizes. For each combination of types and sizes, our heuristic algorithms significantly dominate 

the Cplex solver. For all 132 test instances, the Cplex solution costs and best GA solution 

costs deviate on average by 16.4%; the Cplex solution costs and TS1, TS2 best solution costs 

deviate on average up to 17.0% and 17.1%, respectively. Recall that both Cplex and TS start 

from the best solution of the initial GA population built by simple constructive heuristics, 

random generated solutions and the optimal split procedure. This implies that GA and TS can 

significantly improve the solutions of these heuristic solutions and our algorithmic approaches 

are highly competitive. 

Concerning the solution quality of the GA and TS approaches, the performances of all 

three heuristics are satisfactory. For example, as shown in Table 2, out of 36 small size test 
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instances, GA, TS1 and TS2 can get 72%, 78%, 72% best solutions, respectively. For 17 

instances out of all 36 small size instances, GA, TS1 and TS2 all find the same solution 

(referred to Tables in Appendix). Among the total 132 test instances, GA, TS1 and TS2 are 

able to find 48%, 46%, 53% best solutions, respectively. Note that Cplex does not get any best 

solution and the Cplex solution is always far from the best solutions found by other 

approaches.  

Meanwhile, we find that our approaches GA, TS1 and TS2 are robust and can find good 

solutions for different test instances in different runs. As shown in Table 1, for all the test 

instances, the average standard deviation of GA, TS1 and TS2 are 25.5, 24.8 and 24.1. 

Comparing GA and TS, we find that TS1 is slightly better the GA. For the total 132 test 

instances, the best solution costs of GA and TS1 deviate on average by 0.71%; their average 

and worst solution costs deviate by 0.79% and 0.97%, respectively. The superiority of TS1 is 

especially true for problem instances of the largest size. For example, as shown in Table 1, for 

the largest 24 instances, the best solution costs of GA and TS1 deviate on average by 1.29%; 

the deviation between their average and worst solution costs is 1.52% and 1.93%. Meanwhile, 

Table 2 shows that TS1 succeeds in finding 55% best solutions of the largest instances, while 

GA is able to find 17% best solutions. Nevertheless, for these instances, TS1’s improved 

solution quality is obtained at the cost of longer computation time. Over the 132 test instances, 

the CPU time of TS1 is on average 9.28% longer than that of GA.  

With the same computation time between GA and TS2, the performance of TS2 is slightly 

better than that of the GA. Over 132 test instances, concerning their best solution, TS2 is 

slightly better than GA on the average best solution costs with a deviation of 0.76%. 

Meanwhile, TS2 can find more best solutions than GA, with 48% best solutions found by GA 

and 53% by TS2. 

6.3 Test on VRPMBTW benchmarks 
This subsection restrict our problem to only P1 and D1 patients and our problem reduces to 

the classic VRP with mixed backhauls and time windows (VRPMBTW). Our GA and TS are 

tested on the benchmarks for the VRPMBTW against existing best solutions. (Gélinas, et al., 

1995) construct test data for the basic VRPBTW (all backhaul customers are serviced after all 

the linehaul customers) from Solomon VRPTW problems. They constructed VRPBTW 

instances by randomly choosing 10%, 30% and 50% of the 100 total customers in Solomon 

VRPTW benchmark to be backhaul customers instead. (Hasama, et al., 1998) designed 15 

VRPMBTW test problems from the data of (Gélinas, et al., 1995) by relaxing the 

linehaul-before-backhaul constraint, and proposed a simulated annealing (SA) heuristic 

method for the VRPMBTW. We test our two heuristics, GA and TS2, on Hasama’s problem 

instances.  

The results obtained by our algorithms and those provided the SA algorithm of (Hasama, 

et al., 1998) are detailed in Table 3. Column ‘Name’ gives the label of the instance. Column 

‘BH%’ presents the percentage of the backhaul among all customers. Columns 3 and 4 contain 
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the best solutions found by Hasama’s SA algorithm, where ‘Cost’ shows the travel distance 

and ‘V’ shows the number of the vehicles used. The next six columns contain the best, the 

average and the worst solution cost, the standard deviation, the average CPU time (for one run) 

and minimum vehicle number used in 10 GA runs for each instance. The number of vehicles 

used in the minimum cost solution is also given in parenthesis if it is larger than V. Similar 

results are given for TS2.  

Table 3. Results on VRPMBTW test instances 

Instance SA GA TS2 

Name BH% Cost V Best AVG Worst STD CPU V Best AVG Worst STD V 

R101 10 1686.5 21 1685.0 1694.6 1705.5 7.4 704.1 21 1680.1 1683.1 1685.4 3.6 21 

R101 30 1693.4 20 1667.4 (22) 1686.0 1709.9 10.7 578.2 21 1663.5 1677.1 1668.9 5.0 21 

R101 50 1696.4 21 1664.0 1691.2 1711.1 14.7 717.0 21 1665.8 1687.0 1699.3 10.8 21 

R102 10 1753.4 20 1490.3 1499.7 1521.9 13.2 702.9 19 1494.1(19) 1501.2 1508.6 6.2 18 

R102 30 1583.0 19 1492.6 1510.4 1523.5 14.4 730.2 18 1489.8 1518.4 1530.7 13.9 18 

R102 50 1602.7 19 1486.8 1499.6 1509.0 12.9 581.3 19 1486.8 1507.1 1519.0 7.4 19 

R103 10 1250.6 15 1228.6 1242.0 1251.4 10.7 720.5 15 1228.4 1247.2 1259.8 12.4 15 

R103 30 1259.1 16 1224.7 1240.6 1260.5 12.1 596.4 15 1223.8 1229.9 1231.1 2.6 15 

R103 50 1495.5 17 1227.9 1240.6 1253.9 7.7 693.5 15 1231.0 1237.0 1241.4 2.9 15 

R104 10 1078.2 11 1002.5 1012.0 1022.1 8.8 623.9 12 1006.6(12) 1015.2 1022.9 6.1 11 

R104 30 1125.3 12 1000.6 (12) 1020.8 1041.9 13.9 759.3 11 1000.2(12) 1012.6 1020.0 4.2 11 

R104 50 1177.4 12 1002.5 1024.0 1038.5 12.7 729.8 12 1006.8 1017.7 1025.2 6.9 11 

R105 10 1479.4 16 1394.6 (17) 1413.3 1435.2 12.6 586.5 16 1411.2 1419.3 1426.1 3.0 16 

R105 30 1417.4 15 1415.8 1432.1 1450.5 11.4 809.7 17 1416.0 1432.9 1442.5 8.9 17 

R105 50 1464.5 15 1396.5 1427.2 1442.9 13.0 703.3 16 1396.2 1416.5 1428.4 7.0 16 

Average  1450.9  1358.7 1375.6 1391.9 11.7 682.4  1360.0 1373.5 1380.6 6.7 16.3 

From Table 3, our GA and TS2 algorithms dominate the SA algorithm of (Hasama, et al., 

1998) in terms of solution quality. The primary objective of (Hasama, et al., 1998) is to 

minimize the number of vehicles used to serve the customers, and the second objective is to 

minimize the total travel distance. Therefore, we first compare the number of vehicles. 

Although our heuristics do not use this as their objective, the proposed GA still can reduces 

the number of vehicles needed for 4 out of the 15 instances, and TS2 reduces the number of 

vehicles for 6 instances. Concerning the travel distance, the solutions of our GA and TS2 are 

much better than the solution produced by (Hasama, et al., 1998). For each instance, GA and 

TS2 can get better solution. The average percentage deviations between the best solution costs 

of our GA and TS2 and Hasama’s SA are 6.35% and 6.27% respectively. 

7 Conclusions and future research 
This paper investigates a special simultaneous pickup and delivery problem with time 

windows in HHC, an extension of the classical VRPSDPTW. The problem is of interest 

because of its theoretical complexity and of the important applications in the home health care 
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industry. We formulate the problem as two integer programming models to minimize the total 

vehicle cost for serving all patients demands. We also propose two meta-heuristics, Tabu 

search and genetic algorithm, to solve this problem. As this problem is new and no benchmark 

exists, experiments are conducted by using a range of test instances, which are designed based 

on existing VRPTW benchmarks to reflect different realistic scenarios. In general, both TS 

and GA can provide good solutions in a reasonable time span, and TS requires relatively more 

computational time. Our proposed heuristic approaches are also tested on a set of VRPMBTW 

benchmarks against best known results. The results of our metaheuristics are clearly better 

than the best-known solutions in the existing literature. 

This research can be extended in different directions. Firstly, the problem can be extended 

to a planning horizon of several days, e.g., a week, to combine planning of delivery/pickup 

and vehicle routing. In real-life applications, usually each patient requires a certain number of 

visits and services within this time horizon. The HHC has to choose the visiting days for each 

patient and to solve a vehicle scheduling problem for each day. In the vehicle scheduling 

problem of each day, some special constraints and conditions encountered in the HHC must 

be considered. This problem is a special periodic vehicle scheduling problem and even more 

complex than the problem studied in this paper. Meanwhile, in many real-world home health 

care logistic applications, some elements in the problem may not be known in advance, e.g., 

patients’ delivery/pickup demands, travel and service times of the vehicle. Such uncertain 

elements significantly affect the system performance. The vehicle scheduling problems in 

HHC under such uncertain conditions are also very important and interesting. 
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