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Abstract: This paper addresses a vehicle scheduling problerouatered in home health
care logistics. It concerns the delivery of drugsl anedical devices from the home care
company's pharmacy to patients' homes, deliveigpetial drugs from a hospital to patients,
pickup of bio samples and unused drugs and medeates from patients. The problem can
be considered as a special vehicle routing probm simultaneous delivery and pickup and
time windows, with four types of demands: delivérym depot to patient, delivery from a
hospital to patient, pickup from a patient to degiodl pickup from a patient to a medical lab.
Each patient is visited by one vehicle and eachclekisits each node at most once. Patients
are associated with time windows and vehicles widpacity. Two mixed-integer
programming models are proposed. We then propdSengtic Algorithm (GA) and a Tabu
Search (TS) method. The GA is based on a permaotaticomosome, a split procedure and
local search. The TS is based on route assignnttittugées of patients, an augmented cost
function, route re-optimization, and attribute-ldhsespiration levels. These approaches are
tested on test instances derived from existing WRREnchmarks.

Keywords: Home health care logistics, vehicle routing, piclumal delivery, time windows,
metaheuristics,



1 Introduction

This paper considers a special vehicle routing lprobwith simultaneous delivery and
pickup and time windows in home health care. Honsphalization organizations have been
created for patients requiring long and regulaidthezares in order to provide quality health
service at their home while reducing the bed resments at hospitals. Home hospitalization
initially focused on nursing cares and has beearsdd to complex and technical cares such
as chronic cares, rehabilitation, end-of-life ilie cares, and home chemotherapy. Home
health care services are provided in France by Hdeadth Care (HHC) companies. Each day,
a HHC company has various logistic activities inohg delivering drugs and medical devices
from its pharmacy (also called depot in this papepatients at their home. It also takes some
special drugs, such as chemotherapy drugs and plaalicts, from hospitals to patients. On
the other hand, the HHC also needs to pick up maégdrom patients and deliver to different
locations. Blood samples of the patients are cttand delivered to a medical lab. Medical
wastes, unused drugs and medical devices are wallend brought back to the HHC or the
depot. As HHC companies are usually small but seatteer large number of patients with
dispersed locations, it is crucial to carefully idesthe routes of the HHC vehicles in order to
reduce its operating cost while improving the see\quality to patients.

Since an HHC patient may be a delivery and a piciigmt simultaneously and have both
pickup and delivery demands, the design of HHC alehioutes is related to theshicle
routing problem with simultaneous pickup and deifivand time windowgVRPSDPTW)
introduced by (Hokey, 1989). The VRPSDPTW is a rard challenging problem in the field
of vehicle routing problem (VRP). It considers obe that require simultaneous pickup and
delivery service. Some common constraints must &sfeed in both HHC’s vehicle
scheduling problem and the VRPSDPTW. For examjleh elient must be visited and served
in a given time window; the load on a vehicle malktays be below the vehicle capacity.
However, the problem faced by the HHC company isemmomplex than the classical
VRPSDPTW. The first reason is the complexity ofldgistic operations with different types
of pickup and delivery demands of patients. Acaagdio the origins and destinations, both
pickup and delivery demands can be divided into subclasses. The pickup demands
include: (i) picking up the material from patient®imes and deliver to a lab, e.g., biological
samples; (ii) picking up some materials from thagras’ homes and bring back to the depot,
e.g., medical waste. Similarly, there are two saksds of delivery demands required by the
patients: (i) delivering the products from the camys depot to patients; (ii) delivering some
materials from a hospital to patients’ homes, especial drugs for cancer treatment. In the
classical VRPSDPTW all delivery goods are loadedegiot and all pickup goods have to be
transported to depot. In our HHC vehicle schedufingblem besides the depot, goods can be
transported from a hospital to patients and froengatients to a lab. Clearly, the composition
of vehicles’ loads in our case is more complex tM&PSDPTW. Furthermore, different from
the classical VRPSDPTWeach route of our problem must satisfy somrecedence



constraints e.g., for a patient who needs drugs providedhigyhiospital, the vehicle visiting
the patient has to visit the hospital first. Supk@al constraints are similar to the pairing and
precedence constraints in classigatkup and delivery problenfPDP), in which each
customer request is defined by an origin locatind a destination, the origin must visited
before the destination by the same vehicle. Howewer PDP is less complicated than our
problem, since the origins as well as the destinatof transportation requests in the PDP are
locations other than the depot, and a customenarnPDP only has either pickup or delivery
request. Thus, in this paper the HHC vehicle scliwgluproblem is rather a special
VRPSDPTW variant which has never been studied befdince both the VRPSDPTW and
PDP are NP-hard problems, our problem is more cexpilan these problems and is also
NP-hard. To the best of our knowledge, we havefowhd any existing work dealing this
special simultaneous pickup and delivery problerdHC industry.

In this paper, we first perform a literature revigwopose two mathematical formulations
of our problem, and then develop two heuristic atgms for this special vehicle scheduling
problem. The rest of this paper is organized alovi@. Section 2 introduces the relevant
literature. Our problem is formally defined and tmathematical models are given in Section
3. Section 4 proposes a Genetic algorithm (GA)olar problem. Section 5 proposes a Tabu
Search(TS) algorithm for solving the problem. Computatibegperiments are described in
Section 6. Section 7 concludes the paper.

2 Literaturereview

As stated before, two main bodies of vehicle rautiterature are relevant to our problem.
The first is thevehicle routing problem with simultaneous pickupd aelivery and time
windows in which goods are transported by a fleet of Jebidetween the depot and
customers within their time windows. The second isrteéepickup and delivery problem with
time windowg(PDPTW) problem, in which goods are transported betwegrickup andn
delivery locations, and the vehicle visiting eaohdtion must be within an associated time
window. We survey the literature in two parts.

The VRPSDPTW is an extension of the VRPSDP, andbkas much less studied than the
VRPSDP. The VRPSDP can be seen an extension okehile routing problems with
backhaul{VRPB). In the VRPB, the set of customers ared#idiin two subsets consisting of
linehaul and backhaul costumers, where a linehaul customer requiresvangguantity of
product to be delivered from the depot, and a bagckbustomer requires a given quantity of
product to be picked up to the depot. In the VRREB assumed that the vehicles only pick
goods up (serve backhaul customers) after they fiaighed delivering their entire load
(servelinehaul customers) (P. Toth and Vigo, 1997a) (Gdwtlckx and Jacobs-Blecha, 1989).
One reason for this assumption is the difficultye@rrange delivery and pickup goods on the
vehicles. The objective of the VRPB is to desiggetiof minimum cost routes so that on each
route neither the total load of linehaul customaws that of backhaul customers exceed the
vehicle capacity. The VRPB is a NP-hard problerationg sense and a number of algorithms
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are proposed for this problem. Exact methods ferMRPB are proposed by (Yano, et al.,
1987) (P. Toth and Vigo, 1997a) (Mingozzi, et 4B99). Heuristics have been developed by
(Goetschalckx and Jacobs-Blecha, 1989) (Paolo dothVigo, 1999) (Osman and Wassan,
2002) (Tavakkoli-Moghaddam, et al., 2006) (Y Gajpad PL Abad, 2009). If the linehaul
and backhaul customers canfleely mixed within a route, the VRPB is transfodre the
vehicle routing problem with mixed backha(N&RPMB). Clearly, the vehicle capacity check
in the VRPMB is more complicated than the VRPB. &solution methods for the VRPMB
have only been developed for the single vehicle ¢gdam Tzoreff, et al., 2002) (Sural and
Bookbinder, 2003) (Baldacci, et al., 2003). Heucsstor the VRPMB are given by (Nagy and
Salhi, 2005) (Salhi and Nagy, 1999) (Wade and $&004) (Reimann and Ulrich, 2006).
Based on the VRPMB, if we allow customers to haweehlpickup quantity and delivery
quantity, then, there exist two special problenh& vehicle routing problem with divisible
delivery and pickugVRPDDP), andhe vehicle routing problem with simultaneous delyv
and pickup(VRPSDP). The difference between the VRPDDP and $BPis the number of
times a customer is visited. In the VRPDDP custenger not have to be visited exactly once,
l.e., a customer can be visited twice, once fokygcand once for delivery service. The
VRPSDP requires that each customer is visited amyge by a vehicle. The VRPDDP
instances can be transformed to VRPMB by modelireryecustomer’s pickup and delivery
service as two separate customers. One exact métinathe VRPSDP was designed by
(Dell’Amico, et al., 2006). (Dethloff, 2002) propss an extension of the cheapest insertion
heuristic to the VRPSDP. Several tabu search dlgos for VRPSDP were proposed in
(Alfredo Tang Montané and Galvao, 2006) (Chen ang YAD05) (Bianchessi and Righini,
2007) (Crispim and Brandao, 2005). Recently, (Ad &achitvichyanukul, 2009) (Y. Gajpal
and P. Abad, 2009) (Subramanian, et al., 2010) pawgosed several metaheuristcsolve
VRPSDP.

Contrary to the VRPB, VRPMB, and VRPSDP, only adewesearchers consider the time
window constraints in these problems, especiallytfe VRPSDP. For example, an exact
algorithm was designed for tMRPB with time windowis (Gélinas, et al., 1995). (Duhamel,
et al.,, 1997) (REIMANN, et al., 2002) (Thangiah, at, 1996) (Zhong and Cole, 2005)
proposed heuristics for this problem. For ¥i@PMB with time windowgHasama, et al.,
1998) (Kontoravdis and Bard, 1995) (Zhong and Ca()5) designed heuristics, with the
primary objective of minimizing the number of thehisdes and the second objective of
minimizing traveling distances. For the most cormpae, VRPSDPTW, only (Angelelli and
Mansini, 2002) proposed an exact method and (Mingyamd Erbao, 2010) and (Wang and
Chen, 2012) proposed genetic algorithms.

Compared with VRPSDPTW, there is an abundant bddgsearch on the second related
problem PDPTW. The PDPTW originates from the b&& (M. W. P. Savelsbergh and Sol,
1995). In the PDP, a customer order consists of paxts: a pickup at one location and a
delivery at another location. The PDP has beemantely studied in the past three decades.
For survey on the PDP, the reader is referred to \W P. Savelsbergh and Sol, 1995),



(Berbeglia, et al., 2007), and (S. Parragh, et 2008). For the PDPTW, several exact
approaches have been designed. (Dumas, et al.) (@9Favelsbergh and Sol, 1998) (Xu, et
al., 2003) (Sigurd and Pisinger, 2004) used bramth price schemes for the PDPTW. (J.-F.
Cordeau, 2006) (Ropke, et al., 20@#&veloped branch and cut approach for the PDPTW.
(Ropke and Cordeau, 2009) introduced a new branchcat and price algorithm for the
PDPTW. Meanwhile, many heuristics have proposedtlier PDPTW. (Jaw, et al., 1986),
(Madsen, et al., 1995), (Diana and Dessouky, 20Q4),and Dessouky, 2006) presented
various insertion-based heuristics for solving H2PTW. (P. Toth and Vigo, 1997b) (Nanry
and Wesley Barnes, 2000) (J.-F. Cordeau and Laf0@8) solved the PDPTW by means of
tabu search heuristics. (Li and Lim, 2001), (PatZkra005), (Ropke and Pisinger, 2006) and
(S. N. Parragh, et al., 2010) designed simulatetta@ing, genetic algorithm, adaptive large
neighborhood search heuristic, and variable neididmal search heuristic for solving the
PDPTW. Extensive review of the PDPTW literatureoig of the scope of in this paper and
interested readers are referred to the surveyBarbgglia, et al., 2007) and (S. Parragh, et al.,
2008).

Although a large number of literatures have studedVRPSDPTW and PDPTW, to our
best knowledge, no existing literature consider ghablem, which contains following two
vehicle service strategies simultaneously: (i) tfamsportation of goods from the depot to
linehaul customers and from backhaul customers tmatike depot; (ii) goods are transported
between pickup and delivery locations. Our HHC gkhscheduling problem includes both
of these two service strategies and can be seas@acial VRPSDPTW variant.

3 Mathematical For mulation

This paper addresses the daily scheduling problemebicles of a home health care
company for delivery of drugs and medical devices for pickup of biological samples and
medical wastes or unused drugs. This section pesval formal description of the problem
and then presents two equivalent mixed integer raragning formulations of the problem
that will serve to assess the efficiency of theristic methods of this paper.

The problem can be defined as follows. Get (V, A) be a directed graph with a 3ét
{0, 1, ...,n, n+1}{h, I} of nodes and a s&&={(i, j): i, J[N, i#} of arcs. Nodes @ndn+1
represent the origin and destination depots whrehira practice the pharmacy of the home
health care company. Each vehicle starts at natel@®nds at node+1. NodesN ={1,..., n}
correspond to patients’ homes. Nodeand | represent the locations of a hospital and a
medical lab.

Each patient O N has four types of delivery and pickup requiremetiis di,, piz andpiz,
whered;; represents the amount of materials (drugs/medmates) to deliver from the depot
0 to patient, di, the amount of materials (special drugs) to delfv@m the hospital to patient
I, pinthe amount of materials to pick up from patieand bring back to the depot1, andpi,
the amount of materials (biological samples) t&pip from patient and bring to the medical



lab h. Each type of requirements is calledi@mand Different materials are assumed to be
compatible and can be loaded in the same veliglel N denotes the set of patients needing
type 1 delivery service, i.e. patientwith di; > 0. Similarly D,, P;, P, denote sets of patients
needing type 2 delivery, type 1 and type 2 pickapvises. A patient may require different
types of demands. For example, for a patiehD,NP,, the company has to pick up the
quantitypi, from nodei and deliver to the lab and deliver the quardityfrom the hospital to
this node. For notation convenience, we set zenoaahels for nodes,®+1, h, I.

A time window f;, bj] is associated with each nodeV, wherea, andb; represent the
earliest and latest time. A vehicle is allowed tave beforea and wait until the patient
becomes available, but arrivals afteare prohibited. The depot node also has a timdavin
representing the earliest and latest times wherwvéehecles may leave from and return to the
depot. Each ard,(j) €A is associated with a routing cagtand a travel tim&;. The service
time for a patient is assumed to be included in the travel time

A fleet K of identical vehicles, initially located at the depi,available to serve the
patients. Each vehicle has a capacit@of

The problem consists in determining a set of attrKosoutes of minimal overall cost in
order to serve all delivery and pickup demandsligbatients under the obvious time window
and vehicle capacity constraints and the follovasgumptions.

Assumption AEach route starts and ends the depot and vigitsleeation at most once;
Assumption BEach patient is visited by exactly one vehicledibits demands;
Assumption CEach route makes a hospital visit before visiti$st®,-patients;
Assumption DEach route makes a lab visit after all visits $Pi-patients.

A typical route is as follows. The vehicle starte tdepot with all materials for its
D;-patients, visits some patients g-delivery and any pickup, visits the hospital todcal
materials for itsD,-patients, visits other patients, then goes tolabeto deliver materials of
all P,-patients, visits other patients before returniagthie depot with all materials of its
P;-patients.

In the following, we propose two three-index MIRrfwlations. The first mathematical
formulation termed MIP1 is derived from the modg(Bell’Amico, et al., 2006) and (Ropke
and Cordeau, 2009). Four types of decision vargabite used.

>§jk binary variable equal to 1 if vehidketravels directly from nodeto node;
B“ time at which vehiclé begins to serve at node
yijk guantity ofP;- andP,-pickup carried along arg, () by vehiclek;

Wijk quantity ofD;- andD,-delivery carried along arc, () by vehiclek.

MIPL:  Mind > ¢ (1)

iDvV I Vk K



Subject to:

WZK%;X; =1 00 N 2)
2% = 2% 00 Rk K 3)
gx;‘iszlefj 00 D,k K (4)
i@ si Ok K (5)
g)g'fnﬂsl 0K K (6)
%x;:mzvxkj 00 N {IlHJk K 7)
JZXﬁSl OO {I,h},& K (8)
gz(akﬂ))l(jk 00 VO ¥i [k K (9)
%‘.EZK:YE ‘Di%;(%k:RHl?z O) N {h (10)
%:EZK:M_%‘QM:O’#% Op N {} (11)
22N =DiZmiZP X P, 0K K (13)
3k2(3k+L)Z>.§kz 00 Bk K (14)
B,kz(Bnkm)g){ 00 D& K (15)
a<B'<h : 0i V/k K (16)
yi+w <Qf 0D VO] Bk K (17)
x 0{0,3 Oif wi [k K (18)

The objective function (1) minimizes the total routing cosngints (2) ensure that all
the demands are satisfied. Constraints (3) guarantee that a vehiohg \a$t,-patient also
visits the lab. Constraints (4) are similar but for hospitat.v@nstraints (5) and (6) force the
route of each vehicle to start and end at the depot. Constrainengd)e the flow balance of
the vehicles, i.e., if a vehicle visits a node it must leaventhae. Constraints (8) indicate that
each vehicle can only visit the hospital and the lab once. Constrédh impose the
consistency of the visiting times. Constraints (10) and (14)Ylew equations for pickup and
delivery demands. Constraints (12) impose that all delivery desv@iip patients are loaded
at the hospital. Constraints (13) impose the unloading gicklp demands d?, patients at
the lab. Constraints (14) ensure that egpatient is visited before a lab visit; constraints (15)



ensure the hospital visit before any visit t®apatient. Finally, constraints (16) and (17)
impose the time window and vehicle capacity comsisa This MIP1 model is nonlinear
because of constraints(9), (14) and (15) that ealmlearized as follows:

B =B +{ -M1-x) 00 VG V\@k K (19)
B> B+t —|v|(1—z ) OO0 RK K (20)
B,kzafm—lvl(l—z x) OO0 DK K (21)

The second mathematical formulation termed MIPZ ukEision variablesq'j‘ and B*
as in MIP1 plus the following new decision variable
;',—‘ . quantity ofP;-pickup withj[){1,2} carried by vehicl&k when leaving nodg

Vijk : quantity ofDj-delivery withjJ{1,2} carried by vehicl&k when leaving node

MIP2: Mind > > ¢ x

subject tlczv c@ovr:kstiaints (2)-(9), (14)-(16), (18) and

zo2(Z+p) X OO VOjON {Jh i0jk K (22)
z,2(Z,+ p) X 00 WILOON {13 iDjk K (23)
viz(vi+d)x OO VO ON {4, i0jk K (24)
Vez(Vo+d )X Of VWROION {3 i0jk K (25)
Z+Z25+y+V,<Q 0O Vk K (26)

Constraints (22) determine the vehicle loadingRgpickup. Constraints (23) track the
vehicle loading folP,-pickup and ensure that it becomes null after the lab visit atpti@um.
Constraints (24) and (25) determine the vehicle loadingpfaandD, delivery. Constraints
(26) are vehicle capacity constraints. Again nonlinear constraints (2R)cé2b easily be
linearized by standard reformulation techniques.

As explained in Sections 1 and 2, our problem is related tdyhapmplex vehicle routing
problems including VRPSDPTW and PDPTW problems. It can bdygaived that our
problem is strongly NP-hard as it covers classical VRP problemgpesak case. It is
expected that the above MIP formulation can only be used to soblésze problems. This
is evidence by numerical results of Section 6 in which we trylieedifferent test instances
with the Cplex 12.3 solver. Even for instances of very smadl with 30 patients and 40
demands, Cplex is not able solve the problem optimally. #imesof the small size instances,
it even cannot get a feasible solution in reasonable time (abduiut8). For these reasons,
we propose in the following a genetic algorithm and a tabu searchodthéd address
problems of large size.



4 A geneticalgorithm

The genetic algorithm proposed in this paper consbitiee following features: a
permutation chromosome, exact fitness computatipnsplitting, improvement by local
search, diversity of the population and mutli-staith partially replaced population. These
ingredients were shown powerful in (Prins, 2004) designing efficient GA for
vehicle-routing like problems.

In this paper, the chromosome is a permutationligiadients that give order of visits in
different routes. An exact split algorithm will h@esented to split the permutation into
sub-strings of patients to be visited by a vehagld to insert hospitals and labs.

Algorithm 1: Outline of the GA

1: Generate an initial populatiofi of chromosomes

Main GA exploration phase

2: Select two parent®; andP, by binary tournament;

CrossoverRy, P2) by OX operator;

Evaluate the two resulting children by Splitting;

Repeat 2-4 if no child is feasible. Otherwise, seteandomly a feasible chil@;

ImproveC by Local Search, with probabilityy;

InsertC in /7to replace a randomly selected individual amonghéléworst of/7, if

C is not the current worst and C has a distincegwalue than those i;

8: Repeat 2-7 foN; iterations or tillN; iterations without improving the current best;

End of themain GA phase

9: Restart the main GA phase 2-8 with a partially aeptl population, foN; phases or
till N4 phases without improving the best solution.

N g R w

The overall structure of the GA is illustrated idgérithm 1. It starts with the
generation of an initial population with insertiamf good heuristic solutions to be
presented. The central part of our GA is an incrgaleGA exploration phase in which
only one chromosome is replaced at each iteratiostarts with the selection of two
parents by binary tournament. The OX operator tixas proved appropriate for VRP
problems in (Prins, 2004) is then applied to geteetwao child chromosomes. These child
chromosomes are evaluated by the exact split #fgoriThe selection and crossover
operations are repeated till obtaining a feasibiedachromosome, i.e. a chromosome for
which a feasible split solution exists. With someolability, this feasible child
chromosome is further improved by Local Search & gsesented. The new child
chromosome is inserted in the current populatiosieutwo conditions: (i) it is better than
the current worst and (ii) it does not have idaltiitness as an existing chromosome.

In our GA implementation, the main GA phase is genied forN;=3000 iterations or till
N,=1500 iterations without improving the current béldte main GA phase is repeated for



N3=10 phases or tilN,=5 phases without improving the current best. Btamt the GA phase,
we keep thay best chromosomes wiily =3 and replace the others with randomly generated
chromosomes. Through some preliminary experiméimésproposed GA gives better solution
when increasing the local search probabitityand the size of the populatidr|| especially
whenpnis smaller than 0.8 anfll| is less than 35. The negative side is the inorgasnning
time of GA. To balance the accuracy and the spé&alAg the local search is applied with a
probability pn = 0.8, and the size of the population is keptdia¢[1] = 30 chromosomes.

It has been proven that perverting the diversitgéf population can diminish the risk of
premature convergence (Sérensen and Sevaux, 2086hple and stricter rule is imposed in
this paper to keep the diversity of the populatios,, the fithess of any two feasible
chromosomes must be different. For this reasorhild chromosomeC is inserted during
each main GA phase only if it has a different f#mehan existing individuals. Diversity is
also checked in the generation of the initial papah and the partially replaced population
for restart.

The remaining of this Section is devoted the detagresentation of the fitness evaluation,
generation of initial solutions, and local search.

4.1 Thechromosome and fitness evaluation

In our GA, a chromosome€ is a permutations{, s...s,) of all patients (1, 2, ..n) and
the fitness is the optimal criterion value of owoldem such that each route visits a sub-string
of patients ofC and in the order of with of course necessary visits to the hospital k.

For example, the solution of a chromosome (3, 2, 4) could be (0, 3, &, 1,n+1) and (O, 2,
4,1, nt1).

Hereafter we propose a split procedure for fitnegaluation of our problem. It is a
shortest path approach. It first builds an auxligraphH which contains nodes( s;, S...,
Sy) with 5= 0 and in which each arc corresponds to a feasthlte. There is an ars(s)
from nodes to 5 with i <j if there exists a feasible route visiting all pats -1, ..., ) in
the given order. The length of the arc is the malitotal routing cost of such a route. The
fitness of the chromosome is the shortest path &oims, with at mosK arcs.

In this approach, when considering an &cs), all possible and necessary insertions of
the hospitah and the lal in the route (0s+4,..., S, n+1) are considered. For each insertion
of (h, 1), the earliest visiting time of each node is deieed, the corresponding time window
constraint checked and the insertion is abandohteitime window constraint is violated.
The lengthl; of the arc §, s) is the smallest earliest visiting time of nogel among all
feasible routes.

Once the auxiliary grapH is built, the fitness is determined by dynamicgreanming by
determining iteratively the shortest pa&Ry from 5, to 5 with at mostk arcs. Clearly, the
fitness isSR.x determined by the following recursion:
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i<j

SPuu=MINSR+ |, 0k 1., K 1
SBo =0

Figure 1 is an illustrative example. The first pafrEigure 1 shows a small instance with a
depotD), a hospitalf), a lab(), three patientsa( b, c) and 2 identical vehicles with capacity
Q=10. The chromosome ig,(b, c). The distances between any two nodes are givsitde
the arc, and the demand of each patient is showbraokets. There are no time window
constraints. In the second part of Figure 1, eachim the auxiliary graph represents a
possible vehicle route and its traveling distanidge route visiting patienta andb, i.e., arc
(D, b), has two possible positions for visiting the htapand the one leading to shortest
distance is chosen to represent this arc. Basddeosecond part, is the shortest path with no
more than 2 arcs is (&—c) and has a cost of 52. The corresponding solut@rsisting of
two vehicle routes is given in the third part ofjfiie 1.

b (dp=4)

HHC

network

D-a-h-b-D, cost: 32 -
3 1(D-h-a-b-D cost: 31

Auxiliary
graph

Vehicle

routes

Odepot O patient gp hospital A lab
Figurel. Split procedure for the chromosome (&) b,
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4.2 Constructing theinitial population

The initial population is a combination of heumssolutions and randomly generated
chromosomes. It uses four simple constructive Begasi including three saving-based
heuristics and &learest Neighbo(NN) heuristic. The heuristics make use of randomty se
parameters but details will be given later.

The initial population is generated in two phad&isase 1 starts with a population of the
four heuristic solutions with randomly set parame#nd randomly generated chromosomes.
Phase 1 repeats till a feasible chromosome isrdataPhase 2 tries to ensure the diversity of
the population. It replaces two types of individualith new random chromosomes: feasible
chromosomes having the same fitness as anothear@hafeasible chromosomes. Phase 2 is
repeated foNs = 100 times or till the diversity is ensured.

When restarting the GA exploration phase, the canpepulation is partially replaced by
keeping they best chromosomes, replacing the remaining ones naitdom chromosomes,
and applying phase 2 to ensure the diversity.

We now give details of the four construction helisss The first simplest saving method,
calledsaving, is as follows.

Stepl assigns each patient to a separate routk.datient ofP; andD; is connected with
the depot, forming a route beginning and endindegiot. EachP, patientj is connected with
the lab and the depot, forming a route (depdtdepot). Similarly, each patient &, is
connected with the hospital and the depot;

Step2 merges two routes associated with the maxgenaihg value, which is calculated as
in the classical saving method by checking the tvirtelows and vehicle capacity constraints.
In the classical saving, when two routes (depoti—depot) and (depej-...—depot) can be
feasibly merged into a single route (depati-j—...depot), the saving value is
Cio+Coj —Ag, Wherej is a parameter randomly sampled in [0.8, 1]. In publem, the saving
value is equal to the total distance of arcs tetéeh the merged route minus the distances of
arcs to add in the new giant route. If both twotesucontain the hospital (lab), only the first
hospital (the second lab) is kept in the new grante. For example, the left part of Figure2
show two routegdepoth-...-i-depot) and (depoeb-j—...—depot) wherei andj are D,
patients and the others dbg orP; patients. When merging two routes into one gianteo
(shown in the right part), three arcs are deletedrésented by dotted line), and one arg) (
is inserted into the new route. Thus, the savinge/&sA;=Cio+Chj+Con—Ag; -
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depot epot

Figure2. The example of saving methods
Step3: repeat merging routes until no improvemsrmiassible. The final chromosome is
obtained by concatenation of the resulting routethe linguistic order of the first patient in
each route.

Two other saving heuristisaving and saving are also implemented with different
one-step look-ahead criterion to improve savin§aving combines the immediate saving
value A; of merging two routes and the maximum positiveirggwalue A;.max Of this giant
route with other remaining routes in the next s&aving merges two routes with the largest
A=M+A0_ ... among all merging with positiva; where 2, is the parameter, randomly

sampled in [0.1, 0.3]Saving is similar with A, replacing byAs=A;+A,A,  where A, is a

1-sum

third parameter, randomly sampled in [0.01, 0.@3],, is the sum of top-10 positive
savings of merging the giant route and remaininge®in the next step.

In the last heuristidNN, we only consider the depot and patients and oeghte lab and
hospital. First,NN links the depot to its closest patient, i.e. tladigmti with the smallest
routing cost from 0 ta. Then, theNN adds a directed path connecting the last added twod
the closest unvisited patient. The procedure repeatil all the patients are included in the
path. The resulting sequence of patients is thenrsbsome of th&N heuristic.

4.3 Improving a feasible chromosome by local search (LS)

This subsection starts with the split solution déasible chromosome and then improves
it by several local moves including 1-1exchang®, relocation, 2-Opt exchange, and 2-Opt*
exchange. Thdirst-acceptstrategy is used, i.e., once a new better neigidpaolution is
identified, it replaces the current solution. Focheaolution, it first tries 1-lexchange and
accept the first improving 1-l1exchange. If no imyanment is possible with 1-l1exchange, it
then tries the other local moves. The process tepedil no improvement is possible at all.

For 1-1lexchange and 1-0 relocation, biotha-route andinter-route movements are tried.
The 1-lexchange tries to exchange positions oftagypatients. The 1-0 relocation is the
operator for one patient and transfers a patiemi fits position in one route to another
position either the same or a different route. ZH@pt exchange is only executed on a single
route and it tries to improve the route by replgdwo of its edges by two other edges. The
2-Opt exchange is an inter-route method: two edges aeeted from two different routes,
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respectively, and the end portions of two edgeseamhanged, so as to generate two new
routes.

Note that the inter-route 1-0 relocation and 2-Qptty combine two routes into one and
reduce the usage of the vehicles in the solutiosuth case, the empty route is removed from
the solution. Compared with classical VRPTW, in wark additional precedence constraints
also must be checked during the LS procedure. Dutireg search procedure, once a
neighboring solution is identified, we checked wheih can satisfy the vehicle capacity, time
windows, and precedence constraints. If not, abisrted directly.

When the LS procedure stops, the resulting routes@ancatenated in linguistic order to
give the improved chromosome. The split procedsrapplied to this new chromosome for
evaluation of its fitness.

5 A tabu search algorithm

Tabu search (TS) is also one of the most powerfdl@mpetitive heuristics in the fields
of VRP, VRPTW and other VRP variants (Gendreawnlgt1994) (J. Cordeau, et al., 1997)
(Hertz, et al., 2000) (Co6té and Potvin, 2009) (zZaidis, et al.,, 2009). Essentially, TS
iteratively explores the solution space by movirggf the current solution to another solution
in its neighborhood. Since the current solution nueriorate during the search, some
anti-cycling strategies are used to help the seprobess explore a broad portion of the
solution space.

In this section, we design a TS algorithm for ouslyem. It is based on the general TS
framework of (J. F. Cordeau, et al., 2001) withiEmattribute set and augmented criterion
function for constraint violations. The generahfigvork of our TS is given in Algorithm 2. It
starts with the best feasible solution of the GAiahipopulation given in Section 4 and
searches on the set of solutions in which eaclemiatielongs to a route. The neighborhood is
defined by relocation of a patient from one rouwdeahother route or location exchange of
patients in different routes. Our tabu search aistudes the re-optimization of all modified
routes after each local move. The TS stops &fte5000 iterations or aftdr,=2500 iterations
without improvement of the best solution. Our TStaets from the second best and empty
tabu list if there is no improvement aftej=1000 iterations. Restarts bring TS to new search
regions (Dell'amico, et al., 1999).

In the following, we give detailed presentationtbé augmented criterion function, the
neighborhood structure, the route re-optimizatitime attribute set, tabu duration and
aspiration criterion.

Algorithm 2: Outline of the TS

1: Determine an initial solutioBot
2: Determine the best neighbor soluti®ol' that is not tabu or satisfies an aspiration
criterion;

14



Re-optimize each modified route $6I'and setol := Sol’;
Update tabu list and aspiration levels;

Stop the TS if the stopping criterion is met;

Restart the TS from the second best if a restderion is met;
Goto 2.

N o g R w

5.1 Augmented criterion function

In our TS, both feasible and infeasible solutiores @&lowed. Each solutio8ol partitions
the set of patients into different routes and is pletely represented by its set of routesith
each route represented by the sequence of nodesviscluding the depot, the hospital and
the lab.

For each route, the visiting times at different @@dan be easily determined by taking
into account the visiting sequence and the earéieatlable time of each node. The vehicle
load can be determined as follows. The vehicletstair the depot with all demands Bf
patients, drops all delivery demands andd;; and loads all pickup demang@s andp;, at
each patient visit, loads all demandsafpatients of the route at the hospital, and drdps a
demands oP, patients of the route at the lab visit.

For each routk of a solutionSol let wi(Sol) be the total traveling distance (original
objective value)di(Sol) be the total violation of vehicle capacig(Sol be the total violation
of time window, gk(Sol be the total violation of precedence constraifitse evaluation of
wi(So) is straightforward and the evaluation of the odhe as follows:

d. (So) :Z( Loag, - Q" (27)

e(so)=3 (m-1b (28)
iR

gk(SOD = N]k + Nk (29)

where §)* =max0, X), Ry is the set of nodes visited by vehitlel oady is the vehicle load
when leaving nodg my is the visiting time of nodein routek andb; its latest visiting time,
Nnk (Ni) is the number oD, (P,) patients visited before a hospital visit (aftelah visit) in
routek.

The following augmented criterion functiéSo) is used in our TS:
f(Sol) = kZ( w(So)+a Od( S+ 0& Spky 0.0 99 (30)

wherea, S, and yare positive parameters to adjust the penaltyosiraint violation. IfSolis

a feasible solutionf(So) coincides withw(Sol). According to this definition, the TS search
process will contain a mix of feasible and infesesibolutions, reducing the probability of
becoming trapped in a local solution.

Our TS algorithm adjusts, £, ydynamically to facilitate the exploration of theasch
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space. The TS algorithm starts or restarts froraetimitial parametersy,, 5,and y,, set at
respectively 1, 1, 100. We set three intervas,[ @ ...J: [ Buins Biad 3N [Viin +Vinax] 1O limit
these parameters during search process in thevialjorespective ranges [0.01, 1000], [0.01,
1000] and [0.01, 5000]. At each TS iteration, pgng@arameter for the vehicle capacity
constrainta is modified as follows. If the solution generatdteraroute re-optimization is
feasible,a is divided by a factor 1g;. If the solution is infeasible and the vehicle capais
violated, o is multiplied by a factor 1g,. If the solution is infeasible but the vehicle
capacity is satisfied, parameter is divided by a factor 1 (0<¢, <¢,). And, parameters
£ and y are adjusted in the same rules. The following ipatarsg; = 0.2 andg, = 0.05
are used. Note these parameters, engf, y ¢ and @, are tuned by the preliminary
experiments, as well as some guidelines in prevstudies on unified tabu search (J. Cordeau,
et al., 1997). The sensitivity analyses on the ipatars were performed sequentially, leaving
the remaining parameters unchanged.

5.2 Neighborhood structure

Recall that each solutioBol in our TS partitions the set of patients into elifnt routes
and is completely represented by its set of rowids each route represented by the sequence
of nodes visited including the depot, the hospatal the lab.

The neighborhood of a solutidsol is defined by two local moves. The first local move
for a solutionSol removes a patient from one rolkend inserts it into another nonempty
routek’. The second local move consists in exchangingdbte assignment of two patients
and | in different routesk andk'. The relocation move can be denotediak’ and route
exchange move denoted ag,(k, k)

More specifically, relocation move, k) of a patient on routk consists in (i) removing
patienti from routek; (ii) inserting it in routek’ at a position that minimize the cost of rolte
le.

W, (So)+ad.(Sa+4Ue( Soky I d Sk,

and (iii) removing the hospital (lab) in routaf there is no mord, (P,) patient in routek
after the local move. Route exchange mayg K, k') of two patients on different rout&ésand

k' consists in (i) removing patient@ndj from their routes, (ii) inserting patientj) in route

k' (k) at a position that minimize the cost of rolt€k’), and (iii) removing any unnecessary
hospital and lab visit in routdsandk'. The cost of the neighbor solution is the augment
cost function of the solution obtained after thealonove.

Note that when inserting a patient in roliteve do not relocate or insert the hospital visit
and the lab visit in the route even if it is neeeggo satisfy the new patient. This is due to the
relative long computation time needed to find tlestlkposition for inserting hospital or lab.
Nevertheless, the relocation or insertion of h@dpénd lab visits are considered in the
re-optimization of modified route once the nextdbmove has been selected.
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Other local moves such astra-route crossovermethod and -»pt* (Alfredo Tang
Montané and Galvdo, 2006) were also used in thegatitre for solving the VRPs and
VRPSDP. We tested such local moves in our TS ashahali observe significant improvement.
Since most of our TS running time is spent by thigmborhood search, implement more local
moves has a clear disadvantage of increasing wdrstantially the size of the neighborhood
and the computation time. For this reason, we louit TS to two local moves.

5.3 Re-optimization of a modified route

Each local move in our TS can modify two routesnddified route might miss necessary
hospital or lab visit, violate vehicle capacityng window and precedence constraints. This
subsection presents a method to rebuild and impeaegh modified route. The remaining part
of this subsection concerns the re-optimizatioa given modified route.

The re-optimization starts with a constructive mdttamd then improves the route by
local search. More specifically, it starts withimgle and effective constructive heuristic, the
nearest insertioiNI) (Bentley, 1992). OuNI heuristic is a three-step method.

Stepl: Delete all the existing trips in this roukben create a partial route beginning and
ending at the depot and visiting the farthest patie

Step2: Insert the patient whose insertion generdiessmallest increment on the cost
w(So) +a [ Sol+p e S, i.e., travel cost plus penalty of the vehicle cdyaand time

window violation. This step is repeated until akipnts are inserted.

Step3: Insert the lab and hospital into the routéeasible positions with the smallest
increment on the costv(So)+a [ Sol+4 0é Sd. Precedence constraints are satisfied and

g(So)=0 at this step, i.e. the hospital is visited befalt D, patients and the lab is visited after
all P, patients.

The NI route is not necessarily good enough or even feafiplour problem. It is further
improved by local search combing the first-accéattegy and three moves: 1-1lexchange, 1-0
relocation, 2-Opt exchange. Before the local seavelhcheck the feasibility of thél route. If
the NI route is feasible, infeasible solutions are ntwvetd in local search. If thEl route is
not feasible, infeasible neighbor solutions arevedid in local search and the augmented
criterion functionf(Sol)is used.

5.4 Attribute set, Tabu list, Tabu duration and Aspiration criterion

In our TS, we associate with each solutiwi an attribute seAt(So)={(i, K)|i €N, ke K}
indicating for each patientthe vehiclek serving it. Of course, the attribution set is oaly
partial characterization of the solution used tbrgethe tabu list. The relocation movek)
of a patient in routek to a different routé' is equivalent to replace an attributekj from
At(So) by a new attributei (k') with k # k'. The route exchange of two patients in different
routes can be seen as replacing two attributéy8ol).

TS utilizes adaptive memory, called tabu list amdbut duration, to implement a
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diversification strategy. In our TS, when a patierg removed from a routk, we assign a
tabu status to the attribute K), and set a tabu duratioé to this attribute. That is to say, in
the next @ iterations, inserting patiemtback into routek is forbidden when we perform the
neighborhood search. The size of the tabu distakes its values ing,,,,6,.] and starts
fromg,. Tabu list & is also a self-adjusting parametand dynamically modifies during the
TS search. After each improvement of the curremst 3elutionS,es; we set parameted
equal todmin. After g, consecutive times unimproved iteration, paramefeis updated to be
min(6+1,4,.,)- In the preliminary experiments, we fing, = 7, §, = 30 suit most test
instances. It is not necessary to increase theevafug, with the instance size (customer
number). And, we setd, ,6,.] =[5, 15] in our TS implementation.

The tabu status of a local move can be overridgeanbaspiration criterion in our TS. We
define an aspiration value for each attribute, Whi equal to the cost of the best feasible
solution found with that attribute. For each fesssolution found after the re-optimization of
modified routes, we update the aspiration valueawth attribute of this feasible solution. A
relocation movei( k') is considered at an iteration If ) is not in the tabu list, or the
neighbor solution is feasible and its cost is saerathan the aspiration value of K). A route
exchange movei,(j, k, k) is considered ifi( k') and {, k) are not in the tabu list, or the
neighbor solution is feasible and its cost is senahan the smallest aspiration valueipk(
and {, k).

6 Computational experiments

This section reports the results of a series ofprgational experiments for comparison of
the genetic algorithm, the tabu search, and apgmitaf the commercial solver Cplex 12.3
for the two mathematical formulations MIP1 and MifZSection 3, and other methods of the
literature for some special cases of our problem.

To the best of our knowledge, this paper is the $itsdy of this special vehicle scheduling
problem in the home health care industry. Therenarbenchmark instances to evaluate the
performances of our heuristic approaches. Thergfeeeconstruct some test instances based
on existing VRPTW benchmarks. Further, as our gmblvith onlyP; or D, patients reduces
to the classic VRPMBTW, our approaches are alsopemed with existing VRPMBTW
approaches on existing benchmark instances foviRRMBTW.

As our problem is highly combinatorial, the perfamece of Cplex solver strongly
depends on its parameterization. We tried differ€plex parameters includindefault
settings, strong branching, depth-first search, Mifphasis feasibility or optimality. No
parameter setting led to satisfactory performakoe.most of the small-size test instances of
this Section, Cplex cannot find a feasible solutdter 48 hours. It does not make sense to
compare our heuristic solutions with direct implerta¢éion of MIP models in Cplex. Instead,
we use in this sectiodMIPstart strategy by letting Cplex to start with the inlis@lution of our
TS, i.e. the best initial solution of our GA. Cpléstalls it as the incumbent and initial
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solution of its branch and cut procedure, whiclovadl Cplex to eliminate portions of the
search space and results in smaller branch anleast Cplex starts from this initial solution
and goes on solving the problem based on thisisalutintil exhausting the memory or
predetermined maximum computation time. In ouripriglary experiments, we also find that
Cplex with MIP2 formulation always outperforms Cpleiith MIP1. For this reason, this
section limits to Cplex with MIP2 formulation. Fhbdr, the Cplex lower bounds are very poor
and are not given in this paper.

All the algorithms of this paper are implementedinAll heuristic algorithms (GA, TS,...)
are carried out on a 3.2 GHz Dual Core computdn @i2 GB memory under Linux. We set a
time limit of 72 hours and a memory limit of 20 G& Cplex for each instance. After some
preliminary experiments, the parameters of the egdGA and TS have been set to the
values reported earlier in this paper. For fair panson with GA, our tabu search algorithm
is implemented with two stopping criteria: (i) maxim number of iterations and maximum
number of iterations without improvement, and ¢@me computation time as GA. The first
tabu search is denoted TS1 and the second oneGAZ2IS1 and TS2 run 10 times for each
instance. The best results, the average resultardge running time are used to assess the
efficiency of these algorithms.

6.1 Test Instances from VRPTW benchmarks

We first derive test instances from existing VRPB&hchmarks of (Solomon, 1987) and
(Gehring and Homberger, 1999). Eighteen Solomon MMPinstances are selected to
generate our test instances. Each Solomon instamu@ins 100 customers over a service
region defined on a 16Q00 grid. These VRPTW instances are divided intedlctlasses that
differ by the geographical distribution of the amers: they are clustered in tiietype
instances, randomly located in tRetype instances, and partly clustered, partly ramgo
located in theRC type instances. Meanwhile, each class is diviged two series: in the
100-series instances time windows are tighter,iartie 200-series instances time windows
are wider. To test different characteristics otanses, we select® type instances, R type
instances and ®RC type instances. Among 6 instances of each typth e 100-series
instances and 200-series ones exist.

For each Solomon instance, we derive 6 new insgafteour problem with 4Z demands
as follows. First, we randomly choose Z customeosnfthe Solomon instance as tRe
patients in our new instance, each of which hasnaadd equal to 50% of the customer’s
demand given in the Solomon instance. TherR,ZZ D; and Z D, patients are randomly
selected from the Solomon instance. Clearly, oriepiamay be selected more than once and
the number of patients is less than then numbeegdirements (42). If the basic Solomon
instance is C101 and 37 patients and 40 demandsiaxbur new instance, it is denoted as
C101-37-40. The coordinates of the depot is inb@rih our instances, and the locations of
lab and hospital are (10, 15) and (40, 50). Fohextient, the time window in the Solomon
instance is used directly. Time windows for theatefab and hospital are selected as follows
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to avoidance infeasible solutions. The depot’s tiwiedow of the Solomon instance is
multiplied by 1.2 and assigned to the depot, lab laospital in our instance. Iviolative’
patients still exist in our instance, the new twiadow is repeatedly multiplied again by 1.2
until all ‘violative’ patients are eliminated. In the preliminary expemt, we find that all
‘violative’ patients disappear after two tries.

For each Solomon instance, this constructing praeedre repeated 6 times, generating 2
small (40 demands), 2 moderate (80 demands), aharge (120 demands) instances.
Concerning the vehicle capacity and vehicle numbfeejr values have been reduced
compared to the ones considered for the VRPTW,Usectney are loose for our problem. The
detailed information about these two charactesgsdllustrated in Tables 4-7.

Besides the Solomon instances, we also create afyest instances from VRPTW
instances of (Gehring and Homberger, 1999). Thastamces are similar but larger than
Solomon instances and have hundreds of customesschWose 12 instances from this
benchmark, each of which has 400 customers, andrgoes the procedure described above
to generate 24 new instances for our study. Eathese instances contains 200 demands, and
also named as the VRPTW instance’s label with pttirumber, and demands number.

6.2 Computational Resultson VRPTW-based instances

In this subsection, Tables 1 and 2 summarize thalteeobtained from the GA and TS on
all VRPTW-based instances. The detailed computatioesults obtained on the small
instances (containing 40 demands), moderate insta(@0 demands), large instances (120
demands), and the largest instances (200 demarelgresented in four Tables 4-7 in the
Appendix, respectively.

Table 1. Average routing costs of 10 independent GA anduFSs bn VRPTW-based instances

o o P+~ U

Demand GA TS1 TS2
# Type| Cplex | Best | AVG| Worsi STPpCPU Best | AVG| Worst STDCPU Best| AVG| Worst ST
C | 1065.7| 8819 890.5 895/6 5|6 886 88R.0 893.3 79p.0| 63.6| 881.64 890.1 899]1 6.
R 1051.0] 875.3 889.0 9012 10.174.2 | 873.5| 884.74 8941 68 52K 874.1 88R.5 889.56
50 RC | 1158.3| 954.4 966.4 9772 7|11 780 9553 970.6 398BB.5| 67.3| 9554 965.83 972/8 6.
C 1776.8| 1424.81457.4/1480.7| 18.4| 356.0 | 1423.01463.2| 1481.1| 18.9| 335.6 | 1419.71466.2| 1491.5| 20.3
R 1680.7| 1409.11441.1] 1463.9| 24.4| 343.4 | 1410.2 1446.6| 1467.4| 22.0| 243.3 | 1402.11436.4| 1455.5| 17.5
80 RC | 1867.8] 1577.61617.5/1648.9| 20.6] 298.6 | 1572.11610.7/ 1634.2| 19.3| 218.6 | 1570.91612.8| 1641.2| 20.4
C 1965.6| 1503.91542.1]| 1565.1| 27.7| 615.3 | 1514.91565.0{ 1599.1| 26.9| 597.2 | 1502.0 1550.4{ 1584.0| 26.3
R 2012.8| 1505.41553.5| 1575.9| 27.1| 617.3 | 1514.41566.8| 1601.1] 28.1| 558.2 | 1513.91558.4| 1584.8| 25.2
120 RC | 2181.7] 1691.31736.4/1764.8| 25.7| 541.9| 1692.61728.2| 1764.5/ 25.6| 471.1 | 1682.31726.8| 1753.8| 24.3
C | 9744.1| 8267.58387.2| 8485.5| 54.7| 3274.4| 8166.7| 8283.9| 8349.6| 53.6| 4301.6| 8198.7| 8295.2| 8369.3| 53.8
R [10759.9 9219.3| 9380.8| 9499.1| 54.0| 3111.0{ 9107.4| 9239.7| 9305.1| 56.9| 3707.8| 9091.4| 9164.7| 9234.7| 58.7
200 RC | 9773.1] 8580.18706.5| 8808.7| 62.7| 3342.7| 8456.1| 8548.9| 8622.3| 54.0| 3784.9| 8473.1]| 8555.2| 8624.7| 55.6
AVG 3176.8 | 2654.62704.0| 2739.6| 25.5| 863.5| 2635.6 2682.7| 2713.0| 24.8| 951.8 | 2634.32675.7| 2705.3] 24.1
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Table 2. Percentage of best solutions found of GA and TSRRTW-based instances

Demand# Type Cplex GA TS1 TS2
C 0% 83% 92% 92%

40 R 0% 58% 67% 58%
RC 0% 75% 75% 67%

C 0% 42% 42% 58%

80 R 0% 42% 17% 58%
RC 0% 50% 25% 42%

0% 50% 42% 67%

120 R 0% 58% 17% 25%
RC 0% 42% 25% 42%

0% 13% 63% 38%

200 R 0% 25% 38% 50%
RC 0% 13% 63% 25%

AVG 0% 48% 46% 53%

Table 1 shows the average routing costs by groupioglem instances according to the
number of demands and the type of the instance. rEselts are obtained from 10
independent runs for each problem instance offttteetapproaches (GA, TS1, and TS2) plus
the one obtained with CPLEX. ColumBéest is the average over all relevant problem
instances of the best solutions among 10 independastof an approach for each instance.
Column ‘AVG is the average travel cost over all problem instarend over all runs of the
approach. Similarly, columrWorst represents the average value of the worst solutasts
among relevant test instances. We calculate thedatd deviation of 10 runs of each test
instance, and ColumrSTD gives the average standard deviation among &ivamt test
instances. ColumrnCPU is the average CPU time in seconds of one runrgmelevant test
instances. The last line in Table 1 provides thexaye values for all the test instances. Table 2
shows the percentage of the best solutions obtdup&alA, TS1 and TS2 on each type of test
instances.

Several conclusions can be drawn from these expeatahresults. First, the proposed GA
and TS (both TS1 an@iS2) perform well for test instances of differeppds and different
sizes. For each combination of types and sizesheuristic algorithms significantly dominate
the Cplex solver. For all 132 test instances, tipéeXC solution costs and best GA solution
costs deviate on average by 16.4%; the Cplex soluidsts and TS1, TS2 best solution costs
deviate on average up to 17.0% and 17.1%, respdctiRecall that both Cplex and TS start
from the best solution of the initial GA populatidmilt by simple constructive heuristics,
random generated solutions and the optimal sphitguture. This implies that GA and TS can
significantly improve the solutions of these hetizisolutions and our algorithmic approaches
are highly competitive.

Concerning the solution quality of the GA and T®rapches, the performances of all
three heuristics are satisfactory. For exampleshasvn in Table 2, out of 36 small size test
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instances, GA, TS1 and TS2 can get 72%, 78%, 728b dmutions, respectively. For 17
instances out of all 36 small size instances, G&1 Bnd TS2all find the same solution
(referred to Tables in Appendix). Among the totaP 18st instances, GA, TS1 and TS2 are
able to find 48%, 46%, 53% best solutions, respelti Note that Cplex does not get any best
solution and the Cplex solution is always far frahe best solutions found by other
approaches.

Meanwhile, we find that our approaches GA, TS1 @8& are robust and can find good
solutions for different test instances in differenhs. As shown in Table 1, for all the test
instances, the average standard deviation of GA, &&d TS2 are 25.5, 24.8 and 24.1.
Comparing GA and TS, we find that TS1 is slightstter the GA. For the total 132 test
instances, the best solution costs of GA and TSdatkeon average by 0.71%; their average
and worst solution costs deviate by 0.79% and 0,9@%pectively. The superiority of TS1 is
especially true for problem instances of the largese. For example, as shown in Table 1, for
the largest 24 instances, the best solution cdsBAcand TS1 deviate on average by 1.29%;
the deviation between their average and worstisolwosts is 1.52% and 1.93%. Meanwhile,
Table 2 shows that TS1 succeeds in finding 55% sm@stions of the largest instances, while
GA is able to find 17% best solutions. Nevertheldes these instances, TSlisiproved
solution quality is obtained at the cost of longemputation time. Over the 132 test instances,
the CPU time of TS1 is on average 9.28% longer thahof GA.

With the same computation time between GA and Ti&2performance of TS2 is slightly
better than that of the GA. Over 132 test instanceacerning their best solution, TS2 is
slightly better than GA on the average best satuttmsts with a deviation of 0.76%.
Meanwhile, TS2 can find more best solutions than ®i#h 48% best solutions found by GA
and 53% by TS2.

6.3 Test on VRPMBTW benchmarks

This subsection restrict our problem to oRlyandD; patients and our problem reduces to
the classicVRP with mixed backhauls and time winddW&PMBTVW. Our GA and TS are
tested on the benchmarks for the VRPMBTW againistieg best solutions. (Gélinas, et al.,
1995) construct test data for the basic VRPBTWHatkhaul customers are serviced after all
the linehaul customers) from Solomon VRPTW problembey constructed VRPBTW
instances by randomly choosing 10%, 30% and 50%hefl00 total customers in Solomon
VRPTW benchmark to be backhaul customers instddasgma, et al., 1998) designed 15
VRPMBTW test problems from the data of (Gélinas, att, 1995) by relaxing the
linehaul-before-backhaul constraint, and proposedimulated annealing (SA) heuristic
method for the VRPMBTW. We test our two heuristiG® and TS2, on Hasama’s problem
instances.

The results obtained by our algorithms and thoseiged the SA algorithm of (Hasama,
et al., 1998) are detailed in Table 3. Colurhiameé gives the label of the instance. Column
‘BH% presents the percentage of the backhaul amorayisibmers. Columns 3 and 4 contain
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the best solutions found by Hasama’s SA algoritiutnere Cost shows the travel distance
and V' shows the number of the vehicles used. The next@umns contain the best, the
average and the worst solution cost, the standargiion, the average CPU time (for one run)
and minimum vehicle number used in 10 @/As for each instance. The number of vehicles
used in the minimum cost solution is also giverpamenthesis if it is larger thavi Similar
results are given for TS2.

Table 3. Results on VRPMBTW test instances

Instance SA GA TS2

Name | BH% | Cost | V Best AVG Worst | STD| CPU| V Best AVG Worst | STD \Y

R101 10 | 1686.5 21 1685.0 1694. 17055 7.4 704121 1680.1 1683.1| 16854 3.6/ 21

R101 30 | 16934 20 | 1667.4 (22)| 1686.0 1709.9 10{7 578.2 |211663.5 1677.1] 1668.9 5.0 21

R101 50 | 16964 21 1664.0 1691.2| 1711.1 147 717,021 1665.8 1687.0 1699.3 108 21

R102 10 17534 20 1490.3 1499.7| 15219 13.2 7029 19 1494.1(19) 1501.2 ®5086.2 | 18

R102 30 1583.0 19 1492.6 1510.4 15285 144 7302 1489.8 1518.4| 1530.7 13.9 18

R102 50 1602.7 19 1486.8 1499.6| 1509.0 12.9 581,319 1486.8 1507.1| 1519.0 7.4 19

R103 10 | 1250.4 15 1228.6 1242.0 12514 10{7 720.85 1228.4 1247.2| 1259.8 124 15

R103 30 | 1259.1 1¢ 1224.7 1240.6  126p.5 12.1 5948 1223.8 1229.9| 1231.1 2.6/ 15

R103 50 | 14958 17 12279 1240.6] 12539 7.7 693.p15 1231.0 1237.0 12414 2.9 15

R104 10 1078.2 11 1002.5 1012.0] 1022.1] 8.8 623.9 122 1006.6(12) 1015.2 102281 | 11

R104 30 1125.3 12 1000.6 (12) 1020.8 1041.9 13.9 .37b91 | 1000.2(12) | 1012.6| 1020.0 4.2 11

R104 50 11774 12 10025 1024.0f 1038.5 12.7 729)8 12 1006.9 1017.7 1025.29 |6.11

R105 10 | 14794 16 | 13946 (17) | 1413.3| 14352 12.6 586,516 1411.2 1419.3 14261 3.0 16

R105 30 | 14174 1% 14158 1432.1| 14505 11.4 809)7 17 1416.¢ 1432.9 1442.59 |8.17

R105 50 | 14645 1% 1396.5 1427.2  144P9 13.0 703.3| 16396.2 1416.5| 1428.4 7.0 16

Average 1450.9 1358.7 13756 13919 10.7 6824 360D 1373.5 13806 6.7 16

From Table 3, our GA and TS2 algorithms dominage 3 algorithm of (Hasama, et al.,
1998) in terms of solution quality. The primary etfjve of (Hasama, et al., 1998) is to
minimize the number of vehicles used to serve tistamers, and the second objective is to
minimize the total travel distance. Therefore, virstfcompare the number of vehicles.
Although our heuristicslo not use this as their objective, the proposed GA séli reduces
the number of vehicles needed for 4 out of thenkfances, and TS2 reduces the number of
vehicles for 6 instances. Concerning the travdhdise, the solutions of our GA and TS2 are
much better than the solution produced by (Hasatal., 1998). For each instance, GA and
TS2 can get better solution. The average percemtagations between the best solution costs
of our GA and TS2 and Hasama’s SA are 6.35% ant612spectively.

7 Conclusionsand futureresearch

This paper investigates a special simultaneousupicnd delivery problem with time
windows in HHC, an extension of the classical VRIPSW. The problem is of interest
because of its theoretical complexity and of thpanant applications in the home health care
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industry. We formulate the problem as two integ@gpamming models to minimize the total
vehicle cost for serving all patients demands. \l¢® @ropose two meta-heuristics, Tabu
search and genetic algorithm, to solve this problsthis problem is new and no benchmark
exists, experiments are conducted by using a rahtgst instances, which are designed based
on existing VRPTW benchmarks to reflect differeealistic scenarios. In general, both TS
and GA can provide good solutions in a reasonafle span, and TS requires relatively more
computational time. Our proposed heuristic approseine also tested on a set of VRPMBTW
benchmarks against best known results. The restiltgair metaheuristics are clearly better
than the best-known solutions in the existing étere.

This research can be extended in different dirasti&irstly, the problem can be extended
to a planning horizon of several days, e.g., a weekombine planning of delivery/pickup
and vehicle routing. In real-life applications, ay each patient requires a certain number of
visits and services within this time horizon. Thel®l has to choose the visiting days for each
patient and to solve a vehicle scheduling problemelach day. In the vehicle scheduling
problem of each day, some special constraints andittons encountered in the HHC must
be considered. This problem is a special periodinale scheduling problem and even more
complex than the problem studied in this paper. idale, in many real-world home health
care logistic applications, some elements in tledlpm may not be known in advance, e.g.,
patients’ delivery/pickup demands, travel and servimes of the vehicle. Such uncertain
elements significantly affect the system perforneanthe vehicle scheduling problems in
HHC under such uncertain conditions are also vapgoirtant and interesting.
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