
HAL Id: hal-00838253
https://hal.science/hal-00838253

Submitted on 8 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heuristic algorithms for a vehicle routing problem with
simultaneous delivery and pickup and time windows in

home health care
Ran Liu, Xiaolan Xie, Vincent Augusto, Carlos Rodriguez

To cite this version:
Ran Liu, Xiaolan Xie, Vincent Augusto, Carlos Rodriguez. Heuristic algorithms for a vehicle routing
problem with simultaneous delivery and pickup and time windows in home health care. European Jour-
nal of Operational Research, 2013, 230 (3), pp.475-486. �10.1016/j.ejor.2013.04.044�. �hal-00838253�

https://hal.science/hal-00838253
https://hal.archives-ouvertes.fr

1

Heuristic algorithms for a vehicle routing problem with simultaneous

delivery and pickup and time windows in home health care

Ran LIUa,b, Xiaolan XIEa,b, Vincent AUGUSTOa, Carlos RODRIGUEZa

a Ecole Nationale Supérieure des Mines

Centre for Health Engineering, CNRS UMR 6158 LIMOS-ROGI

158 cours Fauriel, 42023 Saint Etienne, France

b Shanghai Jiao Tong University

Centre for Healthcare Engineering, Dept. Industrial Engr. & Logistics Management

800 Dongchuan Road, Min Hang District，200240 Shanghai，China

Correspondence: Prof. Xiaolan XIE, Centre for Health Engineering (CIS), Ecole Nationale

Superieure des Mines de Saint-Etienne (ENSM.SE), 158 cours Fauriel, 42023 Saint-Etienne

cedex 2 France. Tel. +33(0)477426695; Fax +33(0)477420249; xie@emse.fr

Submitted on 10/04/2012, revised 27/03/2013

Abstract: This paper addresses a vehicle scheduling problem encountered in home health

care logistics. It concerns the delivery of drugs and medical devices from the home care

company's pharmacy to patients' homes, delivery of special drugs from a hospital to patients,

pickup of bio samples and unused drugs and medical devices from patients. The problem can

be considered as a special vehicle routing problem with simultaneous delivery and pickup and

time windows, with four types of demands: delivery from depot to patient, delivery from a

hospital to patient, pickup from a patient to depot and pickup from a patient to a medical lab.

Each patient is visited by one vehicle and each vehicle visits each node at most once. Patients

are associated with time windows and vehicles with capacity. Two mixed-integer

programming models are proposed. We then propose a Genetic Algorithm (GA) and a Tabu

Search (TS) method. The GA is based on a permutation chromosome, a split procedure and

local search. The TS is based on route assignment attributes of patients, an augmented cost

function, route re-optimization, and attribute-based aspiration levels. These approaches are

tested on test instances derived from existing VRPTW benchmarks.

Keywords: Home health care logistics, vehicle routing, pickup and delivery, time windows,

metaheuristics,

2

1 Introduction

This paper considers a special vehicle routing problem with simultaneous delivery and

pickup and time windows in home health care. Home hospitalization organizations have been

created for patients requiring long and regular health cares in order to provide quality health

service at their home while reducing the bed requirements at hospitals. Home hospitalization

initially focused on nursing cares and has been extended to complex and technical cares such

as chronic cares, rehabilitation, end-of-life palliative cares, and home chemotherapy. Home

health care services are provided in France by Home Health Care (HHC) companies. Each day,

a HHC company has various logistic activities including delivering drugs and medical devices

from its pharmacy (also called depot in this paper) to patients at their home. It also takes some

special drugs, such as chemotherapy drugs and blood products, from hospitals to patients. On

the other hand, the HHC also needs to pick up materials from patients and deliver to different

locations. Blood samples of the patients are collected and delivered to a medical lab. Medical

wastes, unused drugs and medical devices are collected and brought back to the HHC or the

depot. As HHC companies are usually small but serve rather large number of patients with

dispersed locations, it is crucial to carefully design the routes of the HHC vehicles in order to

reduce its operating cost while improving the service quality to patients.

Since an HHC patient may be a delivery and a pickup client simultaneously and have both

pickup and delivery demands, the design of HHC vehicle routes is related to the vehicle

routing problem with simultaneous pickup and delivery and time windows (VRPSDPTW)

introduced by (Hokey, 1989). The VRPSDPTW is a hard and challenging problem in the field

of vehicle routing problem (VRP). It considers clients that require simultaneous pickup and

delivery service. Some common constraints must be satisfied in both HHC’s vehicle

scheduling problem and the VRPSDPTW. For example, each client must be visited and served

in a given time window; the load on a vehicle must always be below the vehicle capacity.

However, the problem faced by the HHC company is more complex than the classical

VRPSDPTW. The first reason is the complexity of its logistic operations with different types

of pickup and delivery demands of patients. According to the origins and destinations, both

pickup and delivery demands can be divided into two subclasses. The pickup demands

include: (i) picking up the material from patients’ homes and deliver to a lab, e.g., biological

samples; (ii) picking up some materials from the patients’ homes and bring back to the depot,

e.g., medical waste. Similarly, there are two subclasses of delivery demands required by the

patients: (i) delivering the products from the company’s depot to patients; (ii) delivering some

materials from a hospital to patients’ homes, e.g., special drugs for cancer treatment. In the

classical VRPSDPTW all delivery goods are loaded at depot and all pickup goods have to be

transported to depot. In our HHC vehicle scheduling problem besides the depot, goods can be

transported from a hospital to patients and from the patients to a lab. Clearly, the composition

of vehicles’ loads in our case is more complex than VRPSDPTW. Furthermore, different from

the classical VRPSDPTW, each route of our problem must satisfy some precedence

3

constraints, e.g., for a patient who needs drugs provided by the hospital, the vehicle visiting

the patient has to visit the hospital first. Such special constraints are similar to the pairing and

precedence constraints in classical pickup and delivery problem (PDP), in which each

customer request is defined by an origin location and a destination, the origin must visited

before the destination by the same vehicle. However, the PDP is less complicated than our

problem, since the origins as well as the destinations of transportation requests in the PDP are

locations other than the depot, and a customer in the PDP only has either pickup or delivery

request. Thus, in this paper the HHC vehicle scheduling problem is rather a special

VRPSDPTW variant which has never been studied before. Since both the VRPSDPTW and

PDP are NP-hard problems, our problem is more complex than these problems and is also

NP-hard. To the best of our knowledge, we have not found any existing work dealing this

special simultaneous pickup and delivery problem in HHC industry.

In this paper, we first perform a literature review, propose two mathematical formulations

of our problem, and then develop two heuristic algorithms for this special vehicle scheduling

problem. The rest of this paper is organized as follows. Section 2 introduces the relevant

literature. Our problem is formally defined and two mathematical models are given in Section

3. Section 4 proposes a Genetic algorithm (GA) for our problem. Section 5 proposes a Tabu

Search (TS) algorithm for solving the problem. Computational experiments are described in

Section 6. Section 7 concludes the paper.

2 Literature review

As stated before, two main bodies of vehicle routing literature are relevant to our problem.

The first is the vehicle routing problem with simultaneous pickup and delivery and time

windows, in which goods are transported by a fleet of vehicles between the depot and

customers within their time windows. The second one is the pickup and delivery problem with

time windows (PDPTW) problem, in which goods are transported between n pickup and n

delivery locations, and the vehicle visiting each location must be within an associated time

window. We survey the literature in two parts.

The VRPSDPTW is an extension of the VRPSDP, and has been much less studied than the

VRPSDP. The VRPSDP can be seen an extension of the vehicle routing problems with

backhauls (VRPB). In the VRPB, the set of customers are divided in two subsets consisting of

linehaul and backhaul costumers, where a linehaul customer requires a given quantity of

product to be delivered from the depot, and a backhaul customer requires a given quantity of

product to be picked up to the depot. In the VRPB, it is assumed that the vehicles only pick

goods up (serve backhaul customers) after they have finished delivering their entire load

(serve linehaul customers) (P. Toth and Vigo, 1997a) (Goetschalckx and Jacobs-Blecha, 1989).

One reason for this assumption is the difficulty to re-arrange delivery and pickup goods on the

vehicles. The objective of the VRPB is to design a set of minimum cost routes so that on each

route neither the total load of linehaul customers nor that of backhaul customers exceed the

vehicle capacity. The VRPB is a NP-hard problem in strong sense and a number of algorithms

4

are proposed for this problem. Exact methods for the VRPB are proposed by (Yano, et al.,

1987) (P. Toth and Vigo, 1997a) (Mingozzi, et al., 1999). Heuristics have been developed by

(Goetschalckx and Jacobs-Blecha, 1989) (Paolo Toth and Vigo, 1999) (Osman and Wassan,

2002) (Tavakkoli-Moghaddam, et al., 2006) (Y Gajpal and PL Abad, 2009). If the linehaul

and backhaul customers can be freely mixed within a route, the VRPB is transformed to the

vehicle routing problem with mixed backhauls (VRPMB). Clearly, the vehicle capacity check

in the VRPMB is more complicated than the VRPB. Exact solution methods for the VRPMB

have only been developed for the single vehicle case (Eilam Tzoreff, et al., 2002) (Süral and

Bookbinder, 2003) (Baldacci, et al., 2003). Heuristics for the VRPMB are given by (Nagy and

Salhi, 2005) (Salhi and Nagy, 1999) (Wade and Salhi, 2004) (Reimann and Ulrich, 2006).

Based on the VRPMB, if we allow customers to have both pickup quantity and delivery

quantity, then, there exist two special problems: the vehicle routing problem with divisible

delivery and pickup (VRPDDP), and the vehicle routing problem with simultaneous delivery

and pickup (VRPSDP). The difference between the VRPDDP and VRPSDP is the number of

times a customer is visited. In the VRPDDP customers do not have to be visited exactly once,

i.e., a customer can be visited twice, once for pickup and once for delivery service. The

VRPSDP requires that each customer is visited only once by a vehicle. The VRPDDP

instances can be transformed to VRPMB by modeling every customer’s pickup and delivery

service as two separate customers. One exact method for the VRPSDP was designed by

(Dell’Amico, et al., 2006). (Dethloff, 2002) proposes an extension of the cheapest insertion

heuristic to the VRPSDP. Several tabu search algorithms for VRPSDP were proposed in

(Alfredo Tang Montané and Galvão, 2006) (Chen and Wu, 2005) (Bianchessi and Righini,

2007) (Crispim and Brandão, 2005). Recently, (Ai and Kachitvichyanukul, 2009) (Y. Gajpal

and P. Abad, 2009) (Subramanian, et al., 2010) have proposed several metaheuristics to solve

VRPSDP.

Contrary to the VRPB, VRPMB, and VRPSDP, only a fewer researchers consider the time

window constraints in these problems, especially for the VRPSDP. For example, an exact

algorithm was designed for the VRPB with time windows in (Gélinas, et al., 1995). (Duhamel,

et al., 1997) (REIMANN, et al., 2002) (Thangiah, et al., 1996) (Zhong and Cole, 2005)

proposed heuristics for this problem. For the VRPMB with time windows, (Hasama, et al.,

1998) (Kontoravdis and Bard, 1995) (Zhong and Cole, 2005) designed heuristics, with the

primary objective of minimizing the number of the vehicles and the second objective of

minimizing traveling distances. For the most complex one, VRPSDPTW, only (Angelelli and

Mansini, 2002) proposed an exact method and (Mingyong and Erbao, 2010) and (Wang and

Chen, 2012) proposed genetic algorithms.

Compared with VRPSDPTW, there is an abundant body of research on the second related

problem PDPTW. The PDPTW originates from the basic PDP (M. W. P. Savelsbergh and Sol,

1995). In the PDP, a customer order consists of two parts: a pickup at one location and a

delivery at another location. The PDP has been intensively studied in the past three decades.

For survey on the PDP, the reader is referred to (M. W. P. Savelsbergh and Sol, 1995),

5

(Berbeglia, et al., 2007), and (S. Parragh, et al., 2008). For the PDPTW, several exact

approaches have been designed. (Dumas, et al., 1991) (M. Savelsbergh and Sol, 1998) (Xu, et

al., 2003) (Sigurd and Pisinger, 2004) used branch and price schemes for the PDPTW. (J.-F.

Cordeau, 2006) (Ropke, et al., 2007) developed branch and cut approach for the PDPTW.

(Ropke and Cordeau, 2009) introduced a new branch and cut and price algorithm for the

PDPTW. Meanwhile, many heuristics have proposed for the PDPTW. (Jaw, et al., 1986),

(Madsen, et al., 1995), (Diana and Dessouky, 2004), (Lu and Dessouky, 2006) presented

various insertion-based heuristics for solving the PDPTW. (P. Toth and Vigo, 1997b) (Nanry

and Wesley Barnes, 2000) (J.-F. Cordeau and Laporte, 2003) solved the PDPTW by means of

tabu search heuristics. (Li and Lim, 2001), (Pankratz, 2005), (Ropke and Pisinger, 2006) and

(S. N. Parragh, et al., 2010) designed simulated annealing, genetic algorithm, adaptive large

neighborhood search heuristic, and variable neighborhood search heuristic for solving the

PDPTW. Extensive review of the PDPTW literature is out of the scope of in this paper and

interested readers are referred to the surveys of (Berbeglia, et al., 2007) and (S. Parragh, et al.,

2008).

Although a large number of literatures have studied the VRPSDPTW and PDPTW, to our

best knowledge, no existing literature consider the problem, which contains following two

vehicle service strategies simultaneously: (i) the transportation of goods from the depot to

linehaul customers and from backhaul customers back to the depot; (ii) goods are transported

between pickup and delivery locations. Our HHC vehicle scheduling problem includes both

of these two service strategies and can be seen as a special VRPSDPTW variant.

3 Mathematical Formulation

This paper addresses the daily scheduling problem of vehicles of a home health care

company for delivery of drugs and medical devices and for pickup of biological samples and

medical wastes or unused drugs. This section provides a formal description of the problem

and then presents two equivalent mixed integer programming formulations of the problem

that will serve to assess the efficiency of the heuristic methods of this paper.

The problem can be defined as follows. Let G = (V, A) be a directed graph with a set V=

{0, 1, ..., n, n+1} ∪ { h, l} of nodes and a set A={(i, j): i, j∈ V, i≠j} of arcs. Nodes 0 and n+1

represent the origin and destination depots which are in practice the pharmacy of the home

health care company. Each vehicle starts at node 0 and ends at node n+1. Nodes N = {1,..., n}

correspond to patients’ homes. Node h and l represent the locations of a hospital and a

medical lab.

Each patient i ∈ N has four types of delivery and pickup requirements: di1, di2, pi1 and pi2,

where di1 represents the amount of materials (drugs/medical devices) to deliver from the depot

0 to patient i, di2 the amount of materials (special drugs) to deliver from the hospital to patient

i, pi1 the amount of materials to pick up from patient i and bring back to the depot n+1, and pi2

the amount of materials (biological samples) to pick up from patient i and bring to the medical

6

lab h. Each type of requirements is called a demand. Different materials are assumed to be

compatible and can be loaded in the same vehicle. D1 ⊆ N denotes the set of patients needing

type 1 delivery service, i.e. patients i with di1 > 0. Similarly, D2, P1, P2 denote sets of patients

needing type 2 delivery, type 1 and type 2 pickup services. A patient may require different

types of demands. For example, for a patient i∈D2∩P2, the company has to pick up the

quantity pi2 from node i and deliver to the lab and deliver the quantity di2 from the hospital to

this node. For notation convenience, we set zero-demands for nodes 0, n+1, h, l.

A time window [ai, bi] is associated with each node i∈V, where ai and bi represent the

earliest and latest time. A vehicle is allowed to arrive before ai and wait until the patient

becomes available, but arrivals after bi are prohibited. The depot node also has a time window,

representing the earliest and latest times when the vehicles may leave from and return to the

depot. Each arc (i, j)∈A is associated with a routing cost cij and a travel time tij. The service

time for a patient i is assumed to be included in the travel time tij.

A fleet K of identical vehicles, initially located at the depot, is available to serve the

patients. Each vehicle has a capacity of Q.

The problem consists in determining a set of at most K routes of minimal overall cost in

order to serve all delivery and pickup demands of all patients under the obvious time window

and vehicle capacity constraints and the following assumptions.

Assumption A. Each route starts and ends the depot and visits each location at most once;

Assumption B. Each patient is visited by exactly one vehicle for all its demands;

Assumption C. Each route makes a hospital visit before visits to its D2-patients;

Assumption D. Each route makes a lab visit after all visits to its P2-patients.

A typical route is as follows. The vehicle starts the depot with all materials for its

D1-patients, visits some patients for D1-delivery and any pickup, visits the hospital to load all

materials for its D2-patients, visits other patients, then goes to the lab to deliver materials of

all P2-patients, visits other patients before returning to the depot with all materials of its

P1-patients.

In the following, we propose two three-index MIP formulations. The first mathematical

formulation termed MIP1 is derived from the model of (Dell’Amico, et al., 2006) and (Ropke

and Cordeau, 2009). Four types of decision variables are used.
k
ijx binary variable equal to 1 if vehicle k travels directly from node i to node j;

k
iB time at which vehicle k begins to serve at node i;
k
ijy quantity of P1- and P2-pickup carried along arc (i, j) by vehicle k;

k
ijw

quantity of D1- and D2-delivery carried along arc (i, j) by vehicle k.

MIP1:

k
ij ij

i V j V k K

Min c x
∈ ∈ ∈
∑∑∑ (1)

7

Subject to:

1k
ji

k K j V

x i N
∈ ∈

= ∀ ∈∑∑ (2)

. . 2,
k k
i j j l

j V j V

x x i P k K
∈ ∈

≤ ∀ ∈ ∈∑ ∑ (3)

. . 2,k k
j i h j

j V j V

x x i D k K
∈ ∈

≤ ∀ ∈ ∈∑ ∑ (4)

0 1k
i

i V

x k K
∈

≤ ∀ ∈∑ (5)

, 1 1k
i n

i V

x k K+
∈

≤ ∀ ∈∑ (6)

. .
{ , },k k

j i i j
j V j V

x x i N l h k K
∈ ∈

= ∀ ∈ ∪ ∈∑ ∑ (7)

.
1 { , },k

j i
j V

x i l h k K
∈

≤ ∀ ∈ ∈∑ (8)

.
() , , ,k k k

j i ij i jB B t x i V j V i j k K≥ + ∀ ∈ ∈ ≠ ∈ (9)

1 2 { }k k
ji ij j j

i V k K i V k K

y y p p j N h
∈ ∈ ∈ ∈

− = + ∀ ∈ ∪∑∑ ∑∑ (10)

1 2 { }k k
ij ji j j

i V k K i V k K

w w d d j N l
∈ ∈ ∈ ∈

− = + ∀ ∈ ∪∑∑ ∑∑ (11)

2

2
k k k
hi ih ij i

i V i V i V j D

w w x d k K
∈ ∈ ∈ ∈

− = ∀ ∈∑ ∑ ∑ ∑ (12)

2

2
k k k
il li ij i

i V i V i V j P

y y x p k K
∈ ∈ ∈ ∈

− = ∀ ∈∑ ∑ ∑∑ (13)

2() ,k k k
l i il ij

j V

B B t x i P k K
∈

≥ + ∀ ∈ ∈∑ (14)

2() ,k k k
i h hi ij

j V

B B t x i D k K
∈

≥ + ∀ ∈ ∈∑ (15)

,k
i i ia B b i V k K≤ ≤ ∀ ∈ ∈ (16)

. .
, ,k k k

i j i j ijy w Qx i V j V k K+ ≤ ∀ ∈ ∈ ∈ (17)

{ }0,1 , , ,k
ijx i j V i j k K∈ ∀ ∈ ≠ ∈ (18)

The objective function (1) minimizes the total routing cost. Constraints (2) ensure that all

the demands are satisfied. Constraints (3) guarantee that a vehicle visiting a P2-patient also

visits the lab. Constraints (4) are similar but for hospital visit. Constraints (5) and (6) force the

route of each vehicle to start and end at the depot. Constraints (7) ensure the flow balance of

the vehicles, i.e., if a vehicle visits a node it must leave this node. Constraints (8) indicate that

each vehicle can only visit the hospital and the lab once. Constraints (9) impose the

consistency of the visiting times. Constraints (10) and (11) are flow equations for pickup and

delivery demands. Constraints (12) impose that all delivery demands of D2 patients are loaded

at the hospital. Constraints (13) impose the unloading of all pickup demands of P2 patients at

the lab. Constraints (14) ensure that each P2 patient is visited before a lab visit; constraints (15)

8

ensure the hospital visit before any visit to a D2 patient. Finally, constraints (16) and (17)

impose the time window and vehicle capacity constraints. This MIP1 model is nonlinear

because of constraints(9), (14) and (15) that can be linearized as follows:

(1) , \ 0,k k k
j i ij ijB B t M x i V j V k K≥ + − − ∀ ∈ ∈ ∈ (19)

2(1) ,k k k
l i il ij

j V

B B t M x i P k K
∈

≥ + − − ∀ ∈ ∈∑ (20)

2(1) ,k k k
i h hi ij

j V

B B t M x i D k K
∈

≥ + − − ∀ ∈ ∈∑ (21)

The second mathematical formulation termed MIP2 uses decision variables k
ijx and k

iB

as in MIP1 plus the following new decision variables:

 k
ijz : quantity of Pj-pickup with j∈ {1,2} carried by vehicle k when leaving node i;

 k
ijv : quantity of Dj-delivery with j∈ {1,2} carried by vehicle k when leaving node i.

MIP2:

k
ij ij

i V j V k K

Min c x
∈ ∈ ∈
∑∑∑

subject to constraints (2)-(9), (14)-(16), (18) and

1 1 1() , { , }, ,k k k
j i j ijz z p x i V j N l h i j k K≥ + ∀ ∈ ∈ ∪ ≠ ∈ (22)

2 2 2() \{ }, { , }, ,k k k
j i j ijz z p x i V l j N l h i j k K≥ + ∀ ∈ ∈ ∪ ≠ ∈ (23)

1 1 1() , { , }, ,k k k
i j j ijv v d x i V j N l h i j k K≥ + ∀ ∈ ∈ ∪ ≠ ∈ (24)

2 2 2() \{ }, { , }, ,k k k
i j j ijv v d x j V h i N l h i j k K≥ + ∀ ∈ ∈ ∪ ≠ ∈ (25)

1 2 1 2 ,k k k k
i i i iz z v v Q i V k K+ + + ≤ ∀ ∈ ∈ (26)

Constraints (22) determine the vehicle loading for P1-pickup. Constraints (23) track the

vehicle loading for P2-pickup and ensure that it becomes null after the lab visit at the optimum.

Constraints (24) and (25) determine the vehicle loading for D1 and D2 delivery. Constraints

(26) are vehicle capacity constraints. Again nonlinear constraints (22)-(25) can easily be

linearized by standard reformulation techniques.

As explained in Sections 1 and 2, our problem is related to highly complex vehicle routing

problems including VRPSDPTW and PDPTW problems. It can be easily proved that our

problem is strongly NP-hard as it covers classical VRP problems as special case. It is

expected that the above MIP formulation can only be used to solve small-size problems. This

is evidence by numerical results of Section 6 in which we try to solve different test instances

with the Cplex 12.3 solver. Even for instances of very small size with 30 patients and 40

demands, Cplex is not able solve the problem optimally. For some of the small size instances,

it even cannot get a feasible solution in reasonable time (about 48 hours). For these reasons,

we propose in the following a genetic algorithm and a tabu search method to address

problems of large size.

9

4 A genetic algorithm

The genetic algorithm proposed in this paper combines the following features: a

permutation chromosome, exact fitness computation by splitting, improvement by local

search, diversity of the population and mutli-start with partially replaced population. These

ingredients were shown powerful in (Prins, 2004) in designing efficient GA for

vehicle-routing like problems.

In this paper, the chromosome is a permutation of all patients that give order of visits in

different routes. An exact split algorithm will be presented to split the permutation into

sub-strings of patients to be visited by a vehicle and to insert hospitals and labs.

Algorithm 1: Outline of the GA

1: Generate an initial population Π of chromosomes

Main GA exploration phase

2: Select two parents P1 and P2 by binary tournament;

3: Crossover (P1, P2) by OX operator;

4: Evaluate the two resulting children by Splitting;

5: Repeat 2-4 if no child is feasible. Otherwise, select randomly a feasible child C;

6: Improve C by Local Search, with probability pm;

7: Insert C in Π to replace a randomly selected individual among the half worst of Π, if

C is not the current worst and C has a distinct fitness value than those in Π ;
8: Repeat 2-7 for N1 iterations or till N2 iterations without improving the current best;

End of the main GA phase

9: Restart the main GA phase 2-8 with a partially replaced population, for N3 phases or

till N4 phases without improving the best solution.

The overall structure of the GA is illustrated in Algorithm 1. It starts with the

generation of an initial population with insertion of good heuristic solutions to be

presented. The central part of our GA is an incremental GA exploration phase in which

only one chromosome is replaced at each iteration. It starts with the selection of two

parents by binary tournament. The OX operator that was proved appropriate for VRP

problems in (Prins, 2004) is then applied to generate two child chromosomes. These child

chromosomes are evaluated by the exact split algorithm. The selection and crossover

operations are repeated till obtaining a feasible child chromosome, i.e. a chromosome for

which a feasible split solution exists. With some probability, this feasible child

chromosome is further improved by Local Search to be presented. The new child

chromosome is inserted in the current population under two conditions: (i) it is better than

the current worst and (ii) it does not have identical fitness as an existing chromosome.

In our GA implementation, the main GA phase is performed for N1=3000 iterations or till

N2=1500 iterations without improving the current best. The main GA phase is repeated for

10

N3=10 phases or till N4=5 phases without improving the current best. To restart the GA phase,

we keep the ψ best chromosomes with ψ =3 and replace the others with randomly generated

chromosomes. Through some preliminary experiments, the proposed GA gives better solution

when increasing the local search probability pm and the size of the population |Π|, especially

when pm is smaller than 0.8 and |Π| is less than 35. The negative side is the increasing running

time of GA. To balance the accuracy and the speed of GA, the local search is applied with a

probability pm = 0.8, and the size of the population is kept fixed at |Π| = 30 chromosomes.

It has been proven that perverting the diversity of GA population can diminish the risk of

premature convergence (Sörensen and Sevaux, 2006). A simple and stricter rule is imposed in

this paper to keep the diversity of the population, i.e., the fitness of any two feasible

chromosomes must be different. For this reason, a child chromosome C is inserted during

each main GA phase only if it has a different fitness than existing individuals. Diversity is

also checked in the generation of the initial population and the partially replaced population

for restart.

The remaining of this Section is devoted the detailed presentation of the fitness evaluation,

generation of initial solutions, and local search.

4.1 The chromosome and fitness evaluation
In our GA, a chromosome C is a permutation (s1, s2…sn) of all patients (1, 2, …, n) and

the fitness is the optimal criterion value of our problem such that each route visits a sub-string

of patients of C and in the order of C with of course necessary visits to the hospital and lab.

For example, the solution of a chromosome (3, 5, 1, 2, 4) could be (0, 3, 5, h, 1, n+1) and (0, 2,

4, l, n+1).

Hereafter we propose a split procedure for fitness evaluation of our problem. It is a

shortest path approach. It first builds an auxiliary graph H which contains nodes (s0, s1, s2…,

sn) with s0 = 0 and in which each arc corresponds to a feasible route. There is an arc (si, sj)

from node si to sj with i < j if there exists a feasible route visiting all patients (si+1, …, sj) in

the given order. The length of the arc is the minimal total routing cost of such a route. The

fitness of the chromosome is the shortest path from s0 to sn with at most K arcs.

In this approach, when considering an arc (si, sj), all possible and necessary insertions of

the hospital h and the lab l in the route (0, si+1,…, sj, n+1) are considered. For each insertion

of (h, l), the earliest visiting time of each node is determined, the corresponding time window

constraint checked and the insertion is abandoned if the time window constraint is violated.

The length l ij of the arc (si, sj) is the smallest earliest visiting time of node n+1 among all

feasible routes.

Once the auxiliary graph H is built, the fitness is determined by dynamic programming by

determining iteratively the shortest path SPik from s0 to si with at most k arcs. Clearly, the

fitness is SPnK determined by the following recursion:

11

1 , 1,..., 1

0

ijjk ii j

00

kSP MIN SP l k K

SP

+ <
= + ∀ = −

=

Figure 1 is an illustrative example. The first part of Figure 1 shows a small instance with a

depot(D), a hospital(h), a lab(l), three patients (a, b, c) and 2 identical vehicles with capacity

Q=10. The chromosome is (a, b, c). The distances between any two nodes are given beside

the arc, and the demand of each patient is shown in brackets. There are no time window

constraints. In the second part of Figure 1, each arc in the auxiliary graph represents a

possible vehicle route and its traveling distance. The route visiting patients a and b, i.e., arc

(D, b), has two possible positions for visiting the hospital and the one leading to shortest

distance is chosen to represent this arc. Based on the second part, is the shortest path with no

more than 2 arcs is (D-a-c) and has a cost of 52. The corresponding solution consisting of

two vehicle routes is given in the third part of Figure 1.

Figure1. Split procedure for the chromosome (a, b, c)

12

4.2 Constructing the initial population
The initial population is a combination of heuristic solutions and randomly generated

chromosomes. It uses four simple constructive heuristics including three saving-based

heuristics and a Nearest Neighbor (NN) heuristic. The heuristics make use of randomly set

parameters but details will be given later.

The initial population is generated in two phases. Phase 1 starts with a population of the

four heuristic solutions with randomly set parameters and randomly generated chromosomes.

Phase 1 repeats till a feasible chromosome is obtained. Phase 2 tries to ensure the diversity of

the population. It replaces two types of individuals with new random chromosomes: feasible

chromosomes having the same fitness as another one and infeasible chromosomes. Phase 2 is

repeated for N5 = 100 times or till the diversity is ensured.

When restarting the GA exploration phase, the current population is partially replaced by

keeping the ψ best chromosomes, replacing the remaining ones with random chromosomes,

and applying phase 2 to ensure the diversity.

We now give details of the four construction heuristics. The first simplest saving method,

called saving1, is as follows.

Step1 assigns each patient to a separate route. Each patient of P1 and D1 is connected with

the depot, forming a route beginning and ending at depot. Each P2 patient j is connected with

the lab and the depot, forming a route (depot-j-l-depot). Similarly, each patient of D2 is

connected with the hospital and the depot;

Step2 merges two routes associated with the maximal saving value, which is calculated as

in the classical saving method by checking the time windows and vehicle capacity constraints.

In the classical saving, when two routes (depot-…-i-depot) and (depot-j-…-depot) can be

feasibly merged into a single route (depot-…-i-j-…depot), the saving value is

ci0+c0j 1 ijcλ− where 1λ is a parameter randomly sampled in [0.8, 1]. In our problem, the saving

value is equal to the total distance of arcs to delete in the merged route minus the distances of

arcs to add in the new giant route. If both two routes contain the hospital (lab), only the first

hospital (the second lab) is kept in the new giant route. For example, the left part of Figure2

show two routes (depot-h-…-i-depot) and (depot-h-j-…-depot) where i and j are D2

patients and the others are D1 or P1 patients. When merging two routes into one giant route

(shown in the right part), three arcs are deleted (represented by dotted line), and one arc (i, j)

is inserted into the new route. Thus, the saving value is ∆1=ci0+chj+c0h 1 ijcλ− .

13

Figure2. The example of saving methods

Step3: repeat merging routes until no improvement is possible. The final chromosome is

obtained by concatenation of the resulting routes in the linguistic order of the first patient in

each route.

Two other saving heuristic saving2 and saving3 are also implemented with different

one-step look-ahead criterion to improve saving1. Saving2 combines the immediate saving

value ∆1 of merging two routes and the maximum positive saving value ∆1-max of this giant

route with other remaining routes in the next step. Saving2 merges two routes with the largest

∆2=∆1+ 2 1 maxλ −∆ among all merging with positive ∆1 where 2λ is the parameter, randomly

sampled in [0.1, 0.3]. Saving3 is similar with ∆2 replacing by ∆3=∆1+ 3 1-sumλ ∆ where 3λ is a

third parameter, randomly sampled in [0.01, 0.03] 1-sum∆ is the sum of top-10 positive

savings of merging the giant route and remaining routes in the next step.

In the last heuristic NN, we only consider the depot and patients and neglect the lab and

hospital. First, NN links the depot to its closest patient, i.e. the patient i with the smallest

routing cost from 0 to i. Then, the NN adds a directed path connecting the last added node to

the closest unvisited patient. The procedure repeats until all the patients are included in the

path. The resulting sequence of patients is the chromosome of the NN heuristic.

4.3 Improving a feasible chromosome by local search (LS)
This subsection starts with the split solution of a feasible chromosome and then improves

it by several local moves including 1-1exchange, 1-0 relocation, 2-Opt exchange, and 2-Opt*

exchange. The first-accept strategy is used, i.e., once a new better neighboring solution is

identified, it replaces the current solution. For each solution, it first tries 1-1exchange and

accept the first improving 1-1exchange. If no improvement is possible with 1-1exchange, it

then tries the other local moves. The process repeats until no improvement is possible at all.

For 1-1exchange and 1-0 relocation, both intra-route and inter-route movements are tried.

The 1-1exchange tries to exchange positions of any two patients. The 1-0 relocation is the

operator for one patient and transfers a patient from its position in one route to another

position either the same or a different route. The 2-Opt exchange is only executed on a single

route and it tries to improve the route by replacing two of its edges by two other edges. The

2-Opt* exchange is an inter-route method: two edges are selected from two different routes,

14

respectively, and the end portions of two edges are exchanged, so as to generate two new

routes.

Note that the inter-route 1-0 relocation and 2-Opt* may combine two routes into one and

reduce the usage of the vehicles in the solution. In such case, the empty route is removed from

the solution. Compared with classical VRPTW, in our work additional precedence constraints

also must be checked during the LS procedure. During the search procedure, once a

neighboring solution is identified, we checked whether it can satisfy the vehicle capacity, time

windows, and precedence constraints. If not, it is aborted directly.

When the LS procedure stops, the resulting routes are concatenated in linguistic order to

give the improved chromosome. The split procedure is applied to this new chromosome for

evaluation of its fitness.

5 A tabu search algorithm

Tabu search (TS) is also one of the most powerful and competitive heuristics in the fields

of VRP, VRPTW and other VRP variants (Gendreau, et al., 1994) (J. Cordeau, et al., 1997)

(Hertz, et al., 2000) (Côté and Potvin, 2009) (Zachariadis, et al., 2009). Essentially, TS

iteratively explores the solution space by moving from the current solution to another solution

in its neighborhood. Since the current solution may deteriorate during the search, some

anti-cycling strategies are used to help the search process explore a broad portion of the

solution space.

In this section, we design a TS algorithm for our problem. It is based on the general TS

framework of (J. F. Cordeau, et al., 2001) with similar attribute set and augmented criterion

function for constraint violations. The general framework of our TS is given in Algorithm 2. It

starts with the best feasible solution of the GA initial population given in Section 4 and

searches on the set of solutions in which each patient belongs to a route. The neighborhood is

defined by relocation of a patient from one route to another route or location exchange of

patients in different routes. Our tabu search also includes the re-optimization of all modified

routes after each local move. The TS stops after L1=5000 iterations or after L2=2500 iterations

without improvement of the best solution. Our TS restarts from the second best and empty

tabu list if there is no improvement after L3=1000 iterations. Restarts bring TS to new search

regions (Dell'amico, et al., 1999).

In the following, we give detailed presentation of the augmented criterion function, the

neighborhood structure, the route re-optimization, the attribute set, tabu duration and

aspiration criterion.

Algorithm 2: Outline of the TS

1: Determine an initial solution Sol;

2: Determine the best neighbor solution Sol' that is not tabu or satisfies an aspiration

criterion;

15

3: Re-optimize each modified route of Sol' and set Sol := Sol';

4: Update tabu list and aspiration levels;

5: Stop the TS if the stopping criterion is met;

6: Restart the TS from the second best if a restart criterion is met;

7: Go to 2.

5.1 Augmented criterion function
In our TS, both feasible and infeasible solutions are allowed. Each solution Sol partitions

the set of patients into different routes and is completely represented by its set of routes k with

each route represented by the sequence of nodes visited including the depot, the hospital and

the lab.

For each route, the visiting times at different nodes can be easily determined by taking

into account the visiting sequence and the earliest available time of each node. The vehicle

load can be determined as follows. The vehicle starts at the depot with all demands of D1

patients, drops all delivery demands di1 and di2 and loads all pickup demands pi1 and pi2 at

each patient visit, loads all demands of D2 patients of the route at the hospital, and drops all

demands of P2 patients of the route at the lab visit.

For each route k of a solution Sol, let wk(Sol) be the total traveling distance (original

objective value), dk(Sol) be the total violation of vehicle capacity, ek(Sol) be the total violation

of time window, gk(Sol) be the total violation of precedence constraints. The evaluation of

wk(Sol) is straightforward and the evaluation of the others is as follows:

()()
k

k ik
i R

d Sol Load Q
+

∈

= −∑ (27)

()()
i

k tk i
i R

e Sol m b
+

∈

= −∑ (28)

()k hk lkg Sol N N= + (29)

where (x)+ =max(0, x), Rk is the set of nodes visited by vehicle k, Loadik is the vehicle load

when leaving node i, mik is the visiting time of node i in route k and bi its latest visiting time,

Nhk (Nlk) is the number of D2 (P2) patients visited before a hospital visit (after a lab visit) in

route k.

The following augmented criterion function f (Sol) is used in our TS:

()() () () () ()k k k k
k K

f Sol w Sol d Sol e Sol g Solα β γ
∈

= + ⋅ + ⋅ + ⋅∑ (30)

where α, β, and γ are positive parameters to adjust the penalty of constraint violation. If Sol is

a feasible solution, f(Sol) coincides with w(Sol). According to this definition, the TS search

process will contain a mix of feasible and infeasible solutions, reducing the probability of

becoming trapped in a local solution.

Our TS algorithm adjusts α, β, γ dynamically to facilitate the exploration of the search

16

space. The TS algorithm starts or restarts from three initial parameters 0α , 0β and 0γ , set at

respectively 1, 1, 100. We set three intervals [,min maxα α], [,min maxβ β] and [,min maxγ γ] to limit

these parameters during search process in the following respective ranges [0.01, 1000], [0.01,

1000] and [0.01, 5000]. At each TS iteration, penalty parameter for the vehicle capacity

constraint α is modified as follows. If the solution generated after route re-optimization is

feasible, α is divided by a factor 1+1ϕ . If the solution is infeasible and the vehicle capacity is

violated, α is multiplied by a factor 1+1ϕ . If the solution is infeasible but the vehicle

capacity is satisfied, parameter α is divided by a factor 1+ϕ2 (2 10 ϕ ϕ< ≤). And, parameters

β and γ are adjusted in the same rules. The following parameters ϕ1 = 0.2 and ϕ2 = 0.05

are used. Note these parameters, e.g., α, β, γ, ϕ1 and ϕ2, are tuned by the preliminary

experiments, as well as some guidelines in previous studies on unified tabu search (J. Cordeau,

et al., 1997). The sensitivity analyses on the parameters were performed sequentially, leaving

the remaining parameters unchanged.

5.2 Neighborhood structure
Recall that each solution Sol in our TS partitions the set of patients into different routes

and is completely represented by its set of routes with each route represented by the sequence

of nodes visited including the depot, the hospital and the lab.

The neighborhood of a solution Sol is defined by two local moves. The first local move

for a solution Sol removes a patient from one route k and inserts it into another nonempty

route k′. The second local move consists in exchanging the route assignment of two patients i

and j in different routes k and k'. The relocation move can be denoted as (i, k') and route

exchange move denoted as (i, j, k, k')

More specifically, relocation move (i, k') of a patient on route k consists in (i) removing

patient i from route k; (ii) inserting it in route k′ at a position that minimize the cost of route k′,

i.e.

' ' ' '() () () ()k k k kw Sol d Sol e Sol g Solα β γ+ ⋅ + ⋅ + ⋅ ,

and (iii) removing the hospital (lab) in route k if there is no more D2 (P2) patient in route k

after the local move. Route exchange move (i, j, k, k') of two patients on different routes k and

k' consists in (i) removing patients i and j from their routes, (ii) inserting patient i (j) in route

k' (k) at a position that minimize the cost of route k' (k'), and (iii) removing any unnecessary

hospital and lab visit in routes k and k'. The cost of the neighbor solution is the augmented

cost function of the solution obtained after the local move.

Note that when inserting a patient in route k, we do not relocate or insert the hospital visit

and the lab visit in the route even if it is necessary to satisfy the new patient. This is due to the

relative long computation time needed to find the best position for inserting hospital or lab.

Nevertheless, the relocation or insertion of hospital and lab visits are considered in the

re-optimization of modified route once the next local move has been selected.

17

Other local moves such as intra-route crossover method and 2-opt* (Alfredo Tang

Montané and Galvão, 2006) were also used in the literature for solving the VRPs and

VRPSDP. We tested such local moves in our TS and did not observe significant improvement.

Since most of our TS running time is spent by the neighborhood search, implement more local

moves has a clear disadvantage of increasing very substantially the size of the neighborhood

and the computation time. For this reason, we limit our TS to two local moves.

5.3 Re-optimization of a modified route
Each local move in our TS can modify two routes. A modified route might miss necessary

hospital or lab visit, violate vehicle capacity, time window and precedence constraints. This

subsection presents a method to rebuild and improve each modified route. The remaining part

of this subsection concerns the re-optimization of a given modified route.

The re-optimization starts with a constructive method and then improves the route by

local search. More specifically, it starts with a simple and effective constructive heuristic, the

nearest insertion (NI) (Bentley, 1992). Our NI heuristic is a three-step method.

Step1: Delete all the existing trips in this route. Then create a partial route beginning and

ending at the depot and visiting the farthest patient.

Step2: Insert the patient whose insertion generates the smallest increment on the cost

() () ()w Sol d Sol e Solα β+ ⋅ + ⋅ , i.e., travel cost plus penalty of the vehicle capacity and time

window violation. This step is repeated until all patients are inserted.

Step3: Insert the lab and hospital into the route at feasible positions with the smallest

increment on the cost () () ()w Sol d Sol e Solα β+ ⋅ + ⋅ . Precedence constraints are satisfied and

g(Sol)=0 at this step, i.e. the hospital is visited before all D2 patients and the lab is visited after

all P2 patients.

The NI route is not necessarily good enough or even feasible for our problem. It is further

improved by local search combing the first-accept strategy and three moves: 1-1exchange, 1-0

relocation, 2-Opt exchange. Before the local search, we check the feasibility of the NI route. If

the NI route is feasible, infeasible solutions are not allowed in local search. If the NI route is

not feasible, infeasible neighbor solutions are allowed in local search and the augmented

criterion function f(Sol) is used.

5.4 Attribute set, Tabu list, Tabu duration and Aspiration criterion

In our TS, we associate with each solution Sol an attribute set At(Sol)={(i, k)|i∈N, k∈K}

indicating for each patient i the vehicle k serving it. Of course, the attribution set is only a

partial characterization of the solution used to define the tabu list. The relocation move (i, k')

of a patient i in route k to a different route k' is equivalent to replace an attribute (i, k) from

At(Sol) by a new attribute (i, k′) with k ≠ k'. The route exchange of two patients in different

routes can be seen as replacing two attributes in At(Sol).

TS utilizes adaptive memory, called tabu list and tabu duration, to implement a

18

diversification strategy. In our TS, when a patient i is removed from a route k, we assign a

tabu status to the attribute (i, k), and set a tabu duration θ to this attribute. That is to say, in

the next θ iterations, inserting patient i back into route k is forbidden when we perform the

neighborhood search. The size of the tabu list θ takes its values in [minθ , maxθ] and starts

from 0θ . Tabu list θ is also a self-adjusting parameter, and dynamically modifies during the

TS search. After each improvement of the current best solution Sbest, we set parameter θ

equal to θmin. After φθ consecutive times unimproved iteration, parameter θ is updated to be

min(θ +1, maxθ). In the preliminary experiments, we find 0θ = 7, φθ = 30 suit most test

instances. It is not necessary to increase the value of 0θ with the instance size (customer

number). And, we set [minθ , maxθ] = [5, 15] in our TS implementation.

The tabu status of a local move can be overridden by an aspiration criterion in our TS. We

define an aspiration value for each attribute, which is equal to the cost of the best feasible

solution found with that attribute. For each feasible solution found after the re-optimization of

modified routes, we update the aspiration value of each attribute of this feasible solution. A

relocation move (i, k') is considered at an iteration if (i, k') is not in the tabu list, or the

neighbor solution is feasible and its cost is smaller than the aspiration value of (i, k'). A route

exchange move (i, j, k, k') is considered if (i, k') and (j, k) are not in the tabu list, or the

neighbor solution is feasible and its cost is smaller than the smallest aspiration value of (i, k')

and (j, k).

6 Computational experiments

This section reports the results of a series of computational experiments for comparison of

the genetic algorithm, the tabu search, and application of the commercial solver Cplex 12.3

for the two mathematical formulations MIP1 and MIP2 of Section 3, and other methods of the

literature for some special cases of our problem.

To the best of our knowledge, this paper is the first study of this special vehicle scheduling

problem in the home health care industry. There are no benchmark instances to evaluate the

performances of our heuristic approaches. Therefore, we construct some test instances based

on existing VRPTW benchmarks. Further, as our problem with only P1 or D1 patients reduces

to the classic VRPMBTW, our approaches are also compared with existing VRPMBTW

approaches on existing benchmark instances for the VRPMBTW.

As our problem is highly combinatorial, the performance of Cplex solver strongly

depends on its parameterization. We tried different Cplex parameters including default

settings, strong branching, depth-first search, MIP emphasis feasibility or optimality. No

parameter setting led to satisfactory performance. For most of the small-size test instances of

this Section, Cplex cannot find a feasible solution after 48 hours. It does not make sense to

compare our heuristic solutions with direct implementation of MIP models in Cplex. Instead,

we use in this section MIPstart strategy by letting Cplex to start with the initial solution of our

TS, i.e. the best initial solution of our GA. Cplex installs it as the incumbent and initial

19

solution of its branch and cut procedure, which allows Cplex to eliminate portions of the

search space and results in smaller branch and cut trees. Cplex starts from this initial solution

and goes on solving the problem based on this solution, until exhausting the memory or

predetermined maximum computation time. In our preliminary experiments, we also find that

Cplex with MIP2 formulation always outperforms Cplex with MIP1. For this reason, this

section limits to Cplex with MIP2 formulation. Further, the Cplex lower bounds are very poor

and are not given in this paper.

All the algorithms of this paper are implemented in C. All heuristic algorithms (GA, TS,…)

are carried out on a 3.2 GHz Dual Core computer with a 2 GB memory under Linux. We set a

time limit of 72 hours and a memory limit of 20 GB for Cplex for each instance. After some

preliminary experiments, the parameters of the proposed GA and TS have been set to the

values reported earlier in this paper. For fair comparison with GA, our tabu search algorithm

is implemented with two stopping criteria: (i) maximum number of iterations and maximum

number of iterations without improvement, and (ii) same computation time as GA. The first

tabu search is denoted TS1 and the second one TS2. GA, TS1 and TS2 run 10 times for each

instance. The best results, the average results and average running time are used to assess the

efficiency of these algorithms.

6.1 Test Instances from VRPTW benchmarks
We first derive test instances from existing VRPTW benchmarks of (Solomon, 1987) and

(Gehring and Homberger, 1999). Eighteen Solomon VRPTW instances are selected to

generate our test instances. Each Solomon instance contains 100 customers over a service

region defined on a 100×100 grid. These VRPTW instances are divided into three classes that

differ by the geographical distribution of the customers: they are clustered in the C type

instances, randomly located in the R type instances, and partly clustered, partly randomly

located in the RC type instances. Meanwhile, each class is divided into two series: in the

100-series instances time windows are tighter, and in the 200-series instances time windows

are wider. To test different characteristics of instances, we select 6 C type instances, 6 R type

instances and 6 RC type instances. Among 6 instances of each type, both the 100-series

instances and 200-series ones exist.

For each Solomon instance, we derive 6 new instances for our problem with 4Z demands

as follows. First, we randomly choose Z customers from the Solomon instance as the P1

patients in our new instance, each of which has a demand equal to 50% of the customer’s

demand given in the Solomon instance. Then, Z P2, Z D1 and Z D2 patients are randomly

selected from the Solomon instance. Clearly, one patient may be selected more than once and

the number of patients is less than then number of requirements (4Z). If the basic Solomon

instance is C101 and 37 patients and 40 demands exist in our new instance, it is denoted as

C101-37-40. The coordinates of the depot is inherited in our instances, and the locations of

lab and hospital are (10, 15) and (40, 50). For each patient, the time window in the Solomon

instance is used directly. Time windows for the depot, lab and hospital are selected as follows

20

to avoidance infeasible solutions. The depot’s time window of the Solomon instance is

multiplied by 1.2 and assigned to the depot, lab and hospital in our instance. If ‘violative’

patients still exist in our instance, the new time window is repeatedly multiplied again by 1.2

until all ‘violative’ patients are eliminated. In the preliminary experiment, we find that all

‘violative’ patients disappear after two tries.

For each Solomon instance, this constructing procedure are repeated 6 times, generating 2

small (40 demands), 2 moderate (80 demands), and 2 large (120 demands) instances.

Concerning the vehicle capacity and vehicle number, their values have been reduced

compared to the ones considered for the VRPTW, because they are loose for our problem. The

detailed information about these two characteristics is illustrated in Tables 4-7.

Besides the Solomon instances, we also create the largest instances from VRPTW

instances of (Gehring and Homberger, 1999). These instances are similar but larger than

Solomon instances and have hundreds of customers. We choose 12 instances from this

benchmark, each of which has 400 customers, and undergoes the procedure described above

to generate 24 new instances for our study. Each of these instances contains 200 demands, and

also named as the VRPTW instance’s label with patients number, and demands number.

6.2 Computational Results on VRPTW-based instances
In this subsection, Tables 1 and 2 summarize the results obtained from the GA and TS on

all VRPTW-based instances. The detailed computational results obtained on the small

instances (containing 40 demands), moderate instances (80 demands), large instances (120

demands), and the largest instances (200 demands) are presented in four Tables 4-7 in the

Appendix, respectively.

Table 1. Average routing costs of 10 independent GA and TS runs on VRPTW-based instances

Demand
Type Cplex

GA TS1 TS2

Best AVG Worst STD CPU Best AVG Worst STD CPU Best AVG Worst STD

50

C 1065.7 881.9 890.5 895.6 5.6 88.6 882.0 893.3 900.7 7.0 63.6 881.6 890.1 899.1 6.1

R 1051.0 875.3 889.0 901.2 10.1 74.2 873.5 884.2 894.1 6.8 52.6 874.1 882.5 889.5 6.6

RC 1158.3 954.4 966.4 977.2 7.1 78.0 955.3 970.6 983.3 8.5 67.3 955.4 965.3 972.8 6.0

80

C 1776.8 1424.3 1457.4 1480.7 18.4 356.0 1423.0 1463.2 1481.1 18.9 335.6 1419.7 1466.2 1491.5 20.3

R 1680.7 1409.1 1441.1 1463.9 24.4 343.4 1410.2 1446.6 1467.4 22.0 243.3 1402.1 1436.4 1455.5 17.5

RC 1867.8 1577.6 1617.5 1648.9 20.6 298.6 1572.1 1610.7 1634.2 19.3 218.6 1570.9 1612.8 1641.2 20.4

120

C 1965.6 1503.9 1542.1 1565.1 27.7 615.3 1514.9 1565.0 1599.1 26.9 597.2 1502.0 1550.4 1584.0 26.3

R 2012.8 1505.4 1553.5 1575.9 27.1 617.3 1514.4 1566.8 1601.1 28.1 558.2 1513.9 1558.4 1584.8 25.2

RC 2181.7 1691.3 1736.4 1764.8 25.7 541.9 1692.6 1728.2 1764.5 25.6 471.1 1682.3 1726.8 1753.8 24.3

200

C 9744.1 8267.5 8387.2 8485.5 54.7 3274.4 8166.7 8283.9 8349.6 53.6 4301.6 8198.7 8295.2 8369.3 53.8

R 10759.9 9219.3 9380.8 9499.1 54.0 3111.0 9107.4 9239.7 9305.1 56.9 3707.8 9091.4 9164.7 9234.7 58.7

RC 9773.1 8580.1 8706.5 8808.7 62.7 3342.7 8456.1 8548.9 8622.3 54.0 3784.9 8473.1 8555.2 8624.7 55.6

AVG 3176.8 2654.6 2704.0 2739.6 25.5 863.5 2635.6 2682.7 2713.0 24.8 951.8 2634.3 2675.7 2705.3 24.1

21

Table 2. Percentage of best solutions found of GA and TS on VRPTW-based instances

Demand# Type Cplex GA TS1 TS2

40

C 0% 83% 92% 92%

R 0% 58% 67% 58%

RC 0% 75% 75% 67%

80

C 0% 42% 42% 58%

R 0% 42% 17% 58%

RC 0% 50% 25% 42%

120

C 0% 50% 42% 67%

R 0% 58% 17% 25%

RC 0% 42% 25% 42%

200

C 0% 13% 63% 38%

R 0% 25% 38% 50%

RC 0% 13% 63% 25%

AVG 0% 48% 46% 53%

Table 1 shows the average routing costs by grouping problem instances according to the

number of demands and the type of the instance. The results are obtained from 10

independent runs for each problem instance of the three approaches (GA, TS1, and TS2) plus

the one obtained with CPLEX. Column ‘Best’ is the average over all relevant problem

instances of the best solutions among 10 independent runs of an approach for each instance.

Column ‘AVG’ is the average travel cost over all problem instances and over all runs of the

approach. Similarly, column ‘Worst’ represents the average value of the worst solution costs

among relevant test instances. We calculate the standard deviation of 10 runs of each test

instance, and Column ‘STD’ gives the average standard deviation among all relevant test

instances. Column ‘CPU’ is the average CPU time in seconds of one run among relevant test

instances. The last line in Table 1 provides the average values for all the test instances. Table 2

shows the percentage of the best solutions obtained by GA, TS1 and TS2 on each type of test

instances.

Several conclusions can be drawn from these experimental results. First, the proposed GA

and TS (both TS1 and TS2) perform well for test instances of different types and different

sizes. For each combination of types and sizes, our heuristic algorithms significantly dominate

the Cplex solver. For all 132 test instances, the Cplex solution costs and best GA solution

costs deviate on average by 16.4%; the Cplex solution costs and TS1, TS2 best solution costs

deviate on average up to 17.0% and 17.1%, respectively. Recall that both Cplex and TS start

from the best solution of the initial GA population built by simple constructive heuristics,

random generated solutions and the optimal split procedure. This implies that GA and TS can

significantly improve the solutions of these heuristic solutions and our algorithmic approaches

are highly competitive.

Concerning the solution quality of the GA and TS approaches, the performances of all

three heuristics are satisfactory. For example, as shown in Table 2, out of 36 small size test

22

instances, GA, TS1 and TS2 can get 72%, 78%, 72% best solutions, respectively. For 17

instances out of all 36 small size instances, GA, TS1 and TS2 all find the same solution

(referred to Tables in Appendix). Among the total 132 test instances, GA, TS1 and TS2 are

able to find 48%, 46%, 53% best solutions, respectively. Note that Cplex does not get any best

solution and the Cplex solution is always far from the best solutions found by other

approaches.

Meanwhile, we find that our approaches GA, TS1 and TS2 are robust and can find good

solutions for different test instances in different runs. As shown in Table 1, for all the test

instances, the average standard deviation of GA, TS1 and TS2 are 25.5, 24.8 and 24.1.

Comparing GA and TS, we find that TS1 is slightly better the GA. For the total 132 test

instances, the best solution costs of GA and TS1 deviate on average by 0.71%; their average

and worst solution costs deviate by 0.79% and 0.97%, respectively. The superiority of TS1 is

especially true for problem instances of the largest size. For example, as shown in Table 1, for

the largest 24 instances, the best solution costs of GA and TS1 deviate on average by 1.29%;

the deviation between their average and worst solution costs is 1.52% and 1.93%. Meanwhile,

Table 2 shows that TS1 succeeds in finding 55% best solutions of the largest instances, while

GA is able to find 17% best solutions. Nevertheless, for these instances, TS1’s improved

solution quality is obtained at the cost of longer computation time. Over the 132 test instances,

the CPU time of TS1 is on average 9.28% longer than that of GA.

With the same computation time between GA and TS2, the performance of TS2 is slightly

better than that of the GA. Over 132 test instances, concerning their best solution, TS2 is

slightly better than GA on the average best solution costs with a deviation of 0.76%.

Meanwhile, TS2 can find more best solutions than GA, with 48% best solutions found by GA

and 53% by TS2.

6.3 Test on VRPMBTW benchmarks
This subsection restrict our problem to only P1 and D1 patients and our problem reduces to

the classic VRP with mixed backhauls and time windows (VRPMBTW). Our GA and TS are

tested on the benchmarks for the VRPMBTW against existing best solutions. (Gélinas, et al.,

1995) construct test data for the basic VRPBTW (all backhaul customers are serviced after all

the linehaul customers) from Solomon VRPTW problems. They constructed VRPBTW

instances by randomly choosing 10%, 30% and 50% of the 100 total customers in Solomon

VRPTW benchmark to be backhaul customers instead. (Hasama, et al., 1998) designed 15

VRPMBTW test problems from the data of (Gélinas, et al., 1995) by relaxing the

linehaul-before-backhaul constraint, and proposed a simulated annealing (SA) heuristic

method for the VRPMBTW. We test our two heuristics, GA and TS2, on Hasama’s problem

instances.

The results obtained by our algorithms and those provided the SA algorithm of (Hasama,

et al., 1998) are detailed in Table 3. Column ‘Name’ gives the label of the instance. Column

‘BH%’ presents the percentage of the backhaul among all customers. Columns 3 and 4 contain

23

the best solutions found by Hasama’s SA algorithm, where ‘Cost’ shows the travel distance

and ‘V’ shows the number of the vehicles used. The next six columns contain the best, the

average and the worst solution cost, the standard deviation, the average CPU time (for one run)

and minimum vehicle number used in 10 GA runs for each instance. The number of vehicles

used in the minimum cost solution is also given in parenthesis if it is larger than V. Similar

results are given for TS2.

Table 3. Results on VRPMBTW test instances

Instance SA GA TS2

Name BH% Cost V Best AVG Worst STD CPU V Best AVG Worst STD V

R101 10 1686.5 21 1685.0 1694.6 1705.5 7.4 704.1 21 1680.1 1683.1 1685.4 3.6 21

R101 30 1693.4 20 1667.4 (22) 1686.0 1709.9 10.7 578.2 21 1663.5 1677.1 1668.9 5.0 21

R101 50 1696.4 21 1664.0 1691.2 1711.1 14.7 717.0 21 1665.8 1687.0 1699.3 10.8 21

R102 10 1753.4 20 1490.3 1499.7 1521.9 13.2 702.9 19 1494.1(19) 1501.2 1508.6 6.2 18

R102 30 1583.0 19 1492.6 1510.4 1523.5 14.4 730.2 18 1489.8 1518.4 1530.7 13.9 18

R102 50 1602.7 19 1486.8 1499.6 1509.0 12.9 581.3 19 1486.8 1507.1 1519.0 7.4 19

R103 10 1250.6 15 1228.6 1242.0 1251.4 10.7 720.5 15 1228.4 1247.2 1259.8 12.4 15

R103 30 1259.1 16 1224.7 1240.6 1260.5 12.1 596.4 15 1223.8 1229.9 1231.1 2.6 15

R103 50 1495.5 17 1227.9 1240.6 1253.9 7.7 693.5 15 1231.0 1237.0 1241.4 2.9 15

R104 10 1078.2 11 1002.5 1012.0 1022.1 8.8 623.9 12 1006.6(12) 1015.2 1022.9 6.1 11

R104 30 1125.3 12 1000.6 (12) 1020.8 1041.9 13.9 759.3 11 1000.2(12) 1012.6 1020.0 4.2 11

R104 50 1177.4 12 1002.5 1024.0 1038.5 12.7 729.8 12 1006.8 1017.7 1025.2 6.9 11

R105 10 1479.4 16 1394.6 (17) 1413.3 1435.2 12.6 586.5 16 1411.2 1419.3 1426.1 3.0 16

R105 30 1417.4 15 1415.8 1432.1 1450.5 11.4 809.7 17 1416.0 1432.9 1442.5 8.9 17

R105 50 1464.5 15 1396.5 1427.2 1442.9 13.0 703.3 16 1396.2 1416.5 1428.4 7.0 16

Average 1450.9 1358.7 1375.6 1391.9 11.7 682.4 1360.0 1373.5 1380.6 6.7 16.3

From Table 3, our GA and TS2 algorithms dominate the SA algorithm of (Hasama, et al.,

1998) in terms of solution quality. The primary objective of (Hasama, et al., 1998) is to

minimize the number of vehicles used to serve the customers, and the second objective is to

minimize the total travel distance. Therefore, we first compare the number of vehicles.

Although our heuristics do not use this as their objective, the proposed GA still can reduces

the number of vehicles needed for 4 out of the 15 instances, and TS2 reduces the number of

vehicles for 6 instances. Concerning the travel distance, the solutions of our GA and TS2 are

much better than the solution produced by (Hasama, et al., 1998). For each instance, GA and

TS2 can get better solution. The average percentage deviations between the best solution costs

of our GA and TS2 and Hasama’s SA are 6.35% and 6.27% respectively.

7 Conclusions and future research
This paper investigates a special simultaneous pickup and delivery problem with time

windows in HHC, an extension of the classical VRPSDPTW. The problem is of interest

because of its theoretical complexity and of the important applications in the home health care

24

industry. We formulate the problem as two integer programming models to minimize the total

vehicle cost for serving all patients demands. We also propose two meta-heuristics, Tabu

search and genetic algorithm, to solve this problem. As this problem is new and no benchmark

exists, experiments are conducted by using a range of test instances, which are designed based

on existing VRPTW benchmarks to reflect different realistic scenarios. In general, both TS

and GA can provide good solutions in a reasonable time span, and TS requires relatively more

computational time. Our proposed heuristic approaches are also tested on a set of VRPMBTW

benchmarks against best known results. The results of our metaheuristics are clearly better

than the best-known solutions in the existing literature.

This research can be extended in different directions. Firstly, the problem can be extended

to a planning horizon of several days, e.g., a week, to combine planning of delivery/pickup

and vehicle routing. In real-life applications, usually each patient requires a certain number of

visits and services within this time horizon. The HHC has to choose the visiting days for each

patient and to solve a vehicle scheduling problem for each day. In the vehicle scheduling

problem of each day, some special constraints and conditions encountered in the HHC must

be considered. This problem is a special periodic vehicle scheduling problem and even more

complex than the problem studied in this paper. Meanwhile, in many real-world home health

care logistic applications, some elements in the problem may not be known in advance, e.g.,

patients’ delivery/pickup demands, travel and service times of the vehicle. Such uncertain

elements significantly affect the system performance. The vehicle scheduling problems in

HHC under such uncertain conditions are also very important and interesting.

Acknowledgement

This research is partially funded by Saint Etienne Metropôle for providing a Post-Doc

fellowship for the first author. The authors are also grateful to OIKIA home health care

company for sharing information for home health care logistics.

References

Ai, T. J., Kachitvichyanukul, V. (2009). A particle swarm optimization for the vehicle routing problem
with simultaneous pickup and delivery. Computers & Operations Research, 36, 1693-1702.

Alfredo Tang Montané, F., Galvão, R. D. (2006). A tabu search algorithm for the vehicle routing
problem with simultaneous pick-up and delivery service. Computers & Operations Research, 33,
595-619.

Angelelli, E., Mansini, R. (2002). The vehicle routing problem with time windows and simultaneous
pick-up and delivery. Quantitative approaches to distribution logistics and supply chain management,
249–267.

Baldacci, R., Hadjiconstantinou, E., Mingozzi, A. (2003). An exact algorithm for the traveling
salesman problem with deliveries and collections. Networks, 42, 26-41.

Bentley, J. J. (1992). Fast algorithms for geometric traveling salesman problems. Informs Journal on
Computing, 4, 387-411.

Berbeglia, G., Cordeau, J. F., Gribkovskaia, I., Laporte, G. (2007). Static pickup and delivery problems:
a classification scheme and survey. Top, 15, 1-31.

25

Bianchessi, N., Righini, G. (2007). Heuristic algorithms for the vehicle routing problem with
simultaneous pick-up and delivery. Computers & Operations Research, 34, 578-594.

Côté, J.-F., Potvin, J.-Y. (2009). A tabu search heuristic for the vehicle routing problem with private
fleet and common carrier. European Journal of Operational Research, 198, 464-469.

Chen, J. F., Wu, T. H. (2005). Vehicle routing problem with simultaneous deliveries and pickups.
Journal of the Operational Research Society, 57, 579-587.

Cordeau, J.-F. (2006). A Branch-and-Cut Algorithm for the Dial-a-Ride Problem. Operations Research,
54, 573-586.

Cordeau, J.-F., Laporte, G. (2003). A tabu search heuristic for the static multi-vehicle dial-a-ride
problem. Transportation Research Part B: Methodological, 37, 579-594.

Cordeau, J., Gendreau, M., Laporte, G. (1997). A tabu search heuristic for periodic and multi-depot
vehicle routing problems. Networks, 30, 105-119.

Cordeau, J. F., Laporte, G., Mercier, A. (2001). A unified tabu search heuristic for vehicle routing
problems with time windows. Journal of the Operational Research Society, 52, 928-936.

Crispim, J., Brandão, J. (2005). Metaheuristics applied to mixed and simultaneous extensions of
vehicle routing problems with backhauls. Journal of the Operational Research Society, 56, 1296-1302.

Dell'amico, M., Lodi, A., Maffioli, F. (1999). Solution of the Cumulative Assignment Problem With a
Well-Structured Tabu Search Method. Journal of Heuristics, 5, 123-143.

Dell’Amico, M., Righini, G., Salani, M. (2006). A Branch-and-Price Approach to the Vehicle Routing
Problem with Simultaneous Distribution and Collection. Transportation Science, 40, 235-247.

Dethloff, J. (2002). Relation between vehicle routing problems: an insertion heuristic for the vehicle
routing problem with simultaneous delivery and pick-up applied to the vehicle routing problem with
backhauls. Journal of the Operational Research Society, 53, 115-118.

Diana, M., Dessouky, M. M. (2004). A new regret insertion heuristic for solving large-scale dial-a-ride
problems with time windows. Transportation Research Part B: Methodological, 38, 539-557.

Duhamel, C., Potvin, J. Y., Rousseau, J. M. (1997). A tabu search heuristic for the vehicle routing
problem with backhauls and time windows. Transportation Science, 31, 49-59.

Dumas, Y., Desrosiers, J., Soumis, F. (1991). The pickup and delivery problem with time windows.
European Journal of Operational Research, 54, 7-22.

Eilam Tzoreff, T., Granot, D., Granot, F., Sošić, G. (2002). The vehicle routing problem with pickups
and deliveries on some special graphs. Discrete Applied Mathematics, 116, 193-229.

Gélinas, S., Desrochers, M., Desrosiers, J., Solomon, M. M. (1995). A new branching strategy for time
constrained routing problems with application to backhauling. Annals of Operations Research, 61,
91-109.

Gajpal, Y., Abad, P. (2009). An ant colony system (ACS) for vehicle routing problem with
simultaneous delivery and pickup. Computers & Operations Research, 36, 3215-3223.

Gajpal, Y., Abad, P. (2009). Multi-ant colony system (MACS) for a vehicle routing problem with
backhauls. European Journal of Operational Research, 196, 102-117.

Gehring, H., Homberger, J. (1999). A parallel hybrid evolutionary metaheuristic for the vehicle routing
problem with time windows. In.

Gendreau, M., Hertz, A., Laporte, G. (1994). A Tabu Search Heuristic for the Vehicle Routing Problem.
Management Science, 40, 1276-1290.

Goetschalckx, M., Jacobs-Blecha, C. (1989). The vehicle routing problem with backhauls. European
Journal of Operational Research, 42, 39-51.

Hasama, T., Kokubugata, H., Kawashima, H. (1998). A heuristic approach based on the string model
to solve vehicle routing problem with backhauls. In.

26

Hertz, A., Laporte, G., Mittaz, M. (2000). A tabu search heuristic for the capacitated arc routing
problem. Operations Research, 48, 129-135.

Hokey, M. (1989). The multiple vehicle routing problem with simultaneous delivery and pick-up
points. Transportation Research Part A: General, 23, 377-386.

Jaw, J. J., Odoni, A. R., Psaraftis, H. N., Wilson, N. H. M. (1986). A heuristic algorithm for the
multi-vehicle advance request dial-a-ride problem with time windows. Transportation Research Part
B: Methodological, 20, 243-257.

Kontoravdis, G., Bard, J. F. (1995). A GRASP for the vehicle routing problem with time windows.
ORSA journal on Computing, 7, 10-10.

Li, H., Lim, A. (2001). A Metaheuristic for the Pickup and Delivery Problem with Time Windows. In
Proceedings of the 13th IEEE International Conference on Tools with Artificial Intelligence (pp. 160):
IEEE Computer Society.

Lu, Q., Dessouky, M. (2006). A new insertion-based construction heuristic for solving the pickup and
delivery problem with time windows. European Journal of Operational Research, 175, 672-687.

Madsen, O. B. G., Ravn, H. F., Rygaard, J. M. (1995). A heuristic algorithm for a dial-a-ride problem
with time windows, multiple capacities, and multiple objectives. Annals of Operations Research, 60,
193-208.

Mingozzi, A., Giorgi, S., Baldacci, R. (1999). An exact method for the vehicle routing problem with
backhauls. Transportation Science, 33, 315-329.

Mingyong, L., Erbao, C. (2010). An improved differential evolution algorithm for vehicle routing
problem with simultaneous pickups and deliveries and time windows. Engineering Applications of
Artificial Intelligence, 23, 188-195.

Nagy, G., Salhi, S. (2005). Heuristic algorithms for single and multiple depot vehicle routing problems
with pickups and deliveries. European Journal of Operational Research, 162, 126-141.

Nanry, W. P., Wesley Barnes, J. (2000). Solving the pickup and delivery problem with time windows
using reactive tabu search. Transportation Research Part B: Methodological, 34, 107-121.

Osman, I. H., Wassan, N. A. (2002). A reactive tabu search meta‐heuristic for the vehicle routing
problem with back‐hauls. Journal of Scheduling, 5, 263-285.

Pankratz, G. (2005). A grouping genetic algorithm for the pickup and delivery problem with time
windows. Or Spectrum, 27, 21-41.

Parragh, S., Doerner, K., Hartl, R. (2008). A survey on pickup and delivery problems Part II:
Transportation between pickup and delivery locations. Journal für Betriebswirtschaft, 58, 81-117.

Parragh, S. N., Doerner, K. F., Hartl, R. F. (2010). Variable neighborhood search for the dial-a-ride
problem. Computers & Operations Research, 37, 1129-1138.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & Operations Research, 31, 1985-2002.

REIMANN, M., DOERNER, K., HARTL, R. F. (2002). Insertion based ants for Vehicle Routing
problems with Backhauls and time windows. Lecture Notes in Computer Science, 135-148.

Reimann, M., Ulrich, H. (2006). Comparing backhauling strategies in vehicle routing using ant colony
optimization. Central European Journal of Operations Research, 14, 105-123.

Ropke, S., Cordeau, J. F. (2009). Branch and cut and price for the pickup and delivery problem with
time windows. Transportation Science, 43, 267-286.

Ropke, S., Cordeau, J. F., Laporte, G. (2007). Models and branch‐and‐cut algorithms for pickup
and delivery problems with time windows. Networks, 49, 258-272.

Ropke, S., Pisinger, D. (2006). An Adaptive Large Neighborhood Search Heuristic for the Pickup and
Delivery Problem with Time Windows. Transportation Science, 40, 455-472.

27

Süral, H., Bookbinder, J. H. (2003). The single‐vehicle routing problem with unrestricted backhauls.
Networks, 41, 127-136.

Sörensen, K., Sevaux, M. (2006). MA|PM: Memetic algorithms with population management.
Computers & Operations Research, 33, 1214-1225.

Salhi, S., Nagy, G. (1999). A cluster insertion heuristic for single and multiple depot vehicle routing
problems with backhauling. The Journal of the Operational Research Society, 50, 1034-1042.

Savelsbergh, M., Sol, M. (1998). DRIVE: Dynamic routing of independent vehicles. Operations
Research, 46, 474-490.

Savelsbergh, M. W. P., Sol, M. (1995). The general pickup and delivery problem. Transportation
Science, 29, 17-29.

Sigurd, M., Pisinger, D. (2004). Scheduling transportation of live animals to avoid the spread of
diseases. Transportation Science, 38, 197-209.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35, 254-265.

Subramanian, A., Drummond, L., Bentes, C., Ochi, L., Farias, R. (2010). A parallel heuristic for the
vehicle routing problem with simultaneous pickup and delivery. Computers & Operations Research,
37, 1899-1911.

Tavakkoli-Moghaddam, R., Saremi, A., Ziaee, M. (2006). A memetic algorithm for a vehicle routing
problem with backhauls. Applied Mathematics and Computation, 181, 1049-1060.

Thangiah, S. R., Potvin, J. Y., Sun, T. (1996). Heuristic approaches to vehicle routing with backhauls
and time windows. Computers & Operations Research, 23, 1043-1057.

Toth, P., Vigo, D. (1997a). An exact algorithm for the vehicle routing problem with backhauls.
Transportation Science, 31, 372-385.

Toth, P., Vigo, D. (1997b). Heuristic algorithms for the handicapped persons transportation problem.
Transportation Science, 31, 60-71.

Toth, P., Vigo, D. (1999). A heuristic algorithm for the symmetric and asymmetric vehicle routing
problems with backhauls. European Journal of Operational Research, 113, 528-543.

Wade, A., Salhi, S. (2004). An ant system algorithm for the mixed vehicle routing problem with
backhauls. In (pp. 699-719): Kluwer Academic Publishers.

Wang, H.-F., Chen, Y.-Y. (2012). A genetic algorithm for the simultaneous delivery and pickup
problems with time window. Computers & Industrial Engineering, 62, 84-95.

Woodward, C. A., Abelson, J., Tedford, S., Hutchison, B. (2004). What is important to continuity in
home care?: Perspectives of key stakeholders. Social Science & Medicine, 58, 177-192.

Xu, H., Chen, Z. L., Rajagopal, S., Arunapuram, S. (2003). Solving a practical pickup and delivery
problem. Transportation Science, 37, 347-364.

Yano, C. A., Chan, T. J., Richter, L. K., Cutler, T., Murty, K. G., McGettigan, D. (1987). Vehicle
routing at quality stores. Interfaces, 17, 52-63.

Zachariadis, E. E., Tarantilis, C. D., Kiranoudis, C. T. (2009). A Guided Tabu Search for the Vehicle
Routing Problem with two-dimensional loading constraints. European Journal of Operational
Research, 195, 729-743.

Zhong, Y., Cole, M. H. (2005). A vehicle routing problem with backhauls and time windows: a guided
local search solution. Transportation Research Part E: Logistics and Transportation Review, 41,
131-144.

