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Rigid transformations are involved in a wide range of digital image processing applications. In such a context, they are generally considered as continuous processes, followed by a digitization of the results. Recently, rigid transformations on Z 2 have been alternatively formulated as a fully discrete process. Following this paradigm, we investigate -from a combinatorial point of view -the effects of pixel-invariance constraints on such transformations. In particular we describe the impact of these constraints on both the combinatorial structure of the transformation space and the algorithm leading to its generation.

Introduction

Rigid transformations are frequently involved in applications of computer vision and image processing (e.g., motion tracking [START_REF] Harris | Tracking with rigid models[END_REF][START_REF] Yilmaz | Object tracking: A survey[END_REF], image registration [START_REF] Maintz | A survey of medical image registration[END_REF][START_REF] Zitová | Image registration methods: A survey[END_REF] or pattern recognition [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF][START_REF] Gose | Pattern Recognition and Image Analysis[END_REF]). In such applications, images are generally digital, and thus defined on finite sets of points in the Eulerian space Z n . However, rigid transformations applied on such digital images are usually performed on the Euclidean space (R n ). Their results then need to be followed by a subsequent digitization process to finally produce transformed images in Z n .

In a recent work [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF], we have proposed to alternatively study rigid transformations1 on Z 2 as a fully discrete process, similarly to previous contributions related, e.g., to rotations [START_REF] Andres | The quasi-shear rotation[END_REF][START_REF] Jacob | On discrete rotations[END_REF][START_REF] Nouvel | Configurations induced by discrete rotations: Periodicity and quasi-periodicity properties[END_REF][START_REF] Nouvel | Incremental and transitive discrete rotations[END_REF][START_REF] Reveillès | Géométrie discrète, calcul en nombres entiers et algorithmique[END_REF][START_REF] Richman | Understanding discrete rotations[END_REF] or quasi-affine transformations [START_REF] Coeurjolly | Quasi-affine transformation in 3-D: Theory and algorithms[END_REF]. In this context, two main questions were considered: (i) How many rigid transformations can be defined on a finite subspace of Z 2 ? (ii) How to generate all these transformations? The difficulty of these questions derives from the infinite number of rigid transformations in R 2 . Recently, some combinatorial studies have been devoted to 2D pattern matching under different classes of transformations such as rotations, scaling, affine and projective transformations. In particular, some discretization techniques were developed by Hundt et al. [START_REF] Hundt | On the complexity of affine image matching[END_REF][START_REF] Hundt | Combinatorial bounds and algorithmic aspects of image matching under projective transformations[END_REF][START_REF] Hundt | A combinatorial geometrical approach to twodimensional robust pattern matching with scaling and rotation[END_REF]. Inspired by these works, we provided in [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF] some combinatorial and algorithmic answers to the above two questions, and then contributed to the state of the art in this research area [START_REF] Amir | Faster two-dimensional pattern matching with rotations[END_REF][START_REF] Hundt | On the complexity of affine image matching[END_REF][START_REF] Hundt | Combinatorial bounds and algorithmic aspects of image matching under projective transformations[END_REF][START_REF] Hundt | A combinatorial geometrical approach to twodimensional robust pattern matching with scaling and rotation[END_REF][START_REF] Thibault | Rotations in 2D and 3D discrete spaces[END_REF].

More precisely, in [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF], a combinatorial structure, namely a discrete rigid transformation graph (or DRT graph), was introduced to model the parameter space of 2D rigid transformations on Z 2 . This DRT graph describes all the possible rigid transformations on a digital image. We showed that there exist in the order of N 9 such transformations, if N × N is the number of pixels in the image. In addition, the DRT graph explicitly models the "topological links" between such digital transformations, and thus allows the incremental construction of discrete rigid transformations via elementary image modifications pixel by pixel. The DRT graph can be used in a local fashion, e.g., in pattern-based strategies, as proposed in [START_REF] Ngo | Sufficient conditions for topological invariance of 2D digital images under rigid transformations[END_REF] for analysing the topological invariance of digital images under arbitrary rigid transformations. Beyond the theoretical aspects of the DRT graph, its high-order polynomial complexity makes it difficult to generate the whole graph for large images, and to use it directly in imaging applications such as registration or warping [START_REF] Amintoosi | A fast image registration approach based on SIFT key-points applied to super-resolution[END_REF][START_REF] Gribaa | Binary image registration based on geometric moments: Application to the registration of 3D segmented CT head images[END_REF][START_REF] Pennec | Landmark-based registration using features identified through differential geometry[END_REF][START_REF] Zitová | Image registration methods: A survey[END_REF].

To reduce the complexity of this graph, we propose to provide spatial constraints in order to guide the computation of such transformations. Indeed these constraints introduce prior knowledge that contribute to reducing the search space. In this article -that is an extended and improved version of the conference paper [START_REF] Ngo | Combinatorial properties of 2D discrete rigid transformations under pixel-invariance constraints[END_REF] -we investigate such constrained search paradigms from the combinatorial and algorithmic points of view. We focus in particular on the effects of geometric constraints on discrete rigid transformations, via the analysis of the DRT graph. More precisely, we investigate pixel-invariance constraints, which consist of enforcing the correspondence between points in an initial subspace of Z 2 and points (or more generally regions) in a transformed space.

This article is organised as follows. Section 2 briefly introduces some basic notions of rigid transformations on digital images. Section 3 describes pixel-invariance constraints in the associated parameter space of rigid transformations. In Section 4, we develop an algorithmic process for generating a combinatorial structure modeling all the discrete rigid transformations and their relationships under given constraints. This section is completed by an algorithmic appendix, provided at the end of the manuscript. Complexity analyses of the proposed algorithm and the induced structures are described in Section 5. A concluding discussion is finally provided in Section 6.

2 Background notions

Digital images and digital rigid transformations

In a 2D continuous space, an image can be defined as a function I : R 2 → V, where V is a given value space. In computer imaging, such images are represented as discrete functions obtained through a sampling process, and then called digital images. In general, the sampling process relies on partitioning R 2 into Voronoi cells induced by a square grid structure. It associates every point in R 2 to a unit grid square (namely, a pixel ), and equivalently to a point in Z 2 . Such a sampling process, also referred as digitization, is often carried out by the following function

D : R 2 -→ Z 2 x = (x, y) -→ p = (p, q) = ([x], [y]) (1) 
where [ . ] is a rounding operator. Consequently, a digital image associated to I can be formalized as I : Z 2 → V. In other words, we have I = I |Z 2 , and for each p ∈ Z 2 , the value I(p) models the value of I on the associated pixel p + [-1 2 , 1 2 ] 2 , namely the Voronoi cell of R 2 induced by Z 2 around p. A 2D rigid transformation is defined as a rotation followed by a translation. In the continuous framework, such a transformation can be formally expressed as a bijective function T : R 2 → R 2 such that for any x = (x, y) ∈ R 2 , the transformed point T (x) has the form

T (x) = cos θ -sin θ sin θ cos θ x y + a b (2) 
where the parameters a, b ∈ R represent the translation, while θ ∈ [0, 2π[ is the rotation angle. In particular, such a transformation is unambiguously modeled by a triplet of parameters (a, b, θ), and will be often denoted by T abθ . When applied to an image I : R 2 → V, it provides a new transformed image

I • T : R 2 → V.
It is not possible to apply directly T to a digital image I : Z 2 → V, since there is no guarantee that T (x) ∈ Z 2 for x ∈ Z 2 . In the discrete framework, the handling of digital rigid transformations requires to define a function T abθ : Z 2 → Z 2 , which is a discrete analogue of T abθ . Following the digitization paradigm D proposed above, a digital rigid transformation T associated to T can be conveniently performed by setting T = D • T , as illustrated in the following diagram.

Z 2 T =D•T -----→ Z 2   Id  D R 2 T ----→ R 2 (3)
The function T : Z 2 → Z 2 is then explicitly defined for p = (p, q) ∈ Z 2 by

T (p) = D • T (p) = [p cos θ -q sin θ + a] [p sin θ + q cos θ + b] (4) 
In general, this function is not bijective. However, by setting T -1 :

Z 2 → Z 2 as T -1 = D • T -1 , i.e.
, by considering the standard backward mapping, it is possible to define the digital transformed image I • T -1 : Z 2 → V with respect to T . In the sequel of this article, we focus on such digital rigid transformations.

From this point on -for the sake of readability and without loss of correctness -we will note T instead of T -1 , due to the bijectivity of T and T -1 . From a theoretical point of view, the above notions (images, rigid transformations) are defined on Z 2 and R 2 . Practically, our purpose is however to study rigid transformations on images of finite size. Under this hypothesis, only some digital rigid transformations are relevant, namely those that actually have an effect on such finite images. We focus on this finite case, and we assume that digital images are defined on subsets of Z 2 of size N × N . Without loss of generality, a digital image I is then written as

I : S → V for S = [[0, N ]] 2 ⊂ Z 2 .

Discontinuities of digital rigid transformations

In R 2 , any rigid transformation T abθ is a continuous function (see Equation (2)). However, this notion of continuity is lost once the function is digitized. Indeed, due to the digitization process involved in the definition of digital rigid transformations (see Equation ( 4)), the parameter space (a, b, θ) of rigid transformations is divided into 3D open cells, in each of which the function (a, b, θ) → T abθ = D • T abθ is constant. In particular, these 3D open cells are separated by 2D closed cells corresponding to rigid transformations that map at least one integer coordinate point onto a half-grid point (see Fig. 1). Such transformations, which lead to discontinuities within the parameter space, are called critical transformations.

Definition 1 (Critical transformation [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF]) Let (a, b, θ) ∈ R 2 × [0, 2π[, and T abθ : R 2 → R 2 be its associated rigid transformation. We say that T abθ is a critical transformation if there exists p ∈ Z 2 such that T abθ (p) ∈ H, where H is the half-grid defined by

H = R × Z + 1 2 ∪ Z + 1 2 × R (p, q) ∈ Z 2 T abθ (k + 1 2 , λ) ∈ H (a) (p, q) ∈ Z 2 T abθ (λ, l + 1 2 ) ∈ H (b)
Fig. 1 Examples of critical transformations T abθ , each of which maps at least one integercoordinate point onto a "vertical" (a) or "horizontal" (b) half-grid point. The integercoordinate points in Z 2 are depicted by dots, while the half-grid points are depicted by lines.

Note that the half-grid H corresponds to the boundaries of the Voronoi cells of R 2 induced by Z 2 . More precisely, for each p = (p, q) ∈ Z 2 that is mapped onto a half-grid point which can be either vertical (k + 1 2 , λ) ∈ H or horizontal (λ, l + 1 2 ) ∈ H, we have a set of critical transformations, denoted either Φ pqk or Ψ pql , defined by the set of (a, b, θ) that satisfies one of the following formulas :

Φ pqk : R × [0, 2π[ -→ R (b, θ) -→ a = φ pqk (θ) = k + 1 2 + q sin θ -p cos θ (5) 
Ψ pql : R × [0, 2π[ -→ R (a, θ) -→ b = ψ pql (θ) = l + 1 2 -p sin θ -q cos θ (6) 
The 2D surfaces Φ pqk (resp. Ψ pql ) defined in the parameter space (a, b, θ) are called tipping surfaces [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF]. Their respective cross-sections φ pqk (resp. ψ pql ) on the 2D plane (a, θ) (resp. (b, θ)) are called tipping curves. These tipping surfaces/curves, which correspond to the discontinuities of the digital rigid transformations, expressed in the parameter space (a, b, θ), are illustrated in Fig. 2. It is important to remark that the tipping surfaces Φ pqk and Ψ pql can be straightforwardly recovered by extruding the tipping curves φ pqk and ψ pql , respectively.

Partition of the parameter space and DRT graph

As a result of the discontinuity of digital rigid transformations induced by the digitization process (Equation (1)), it is possible that some distinct rigid transformations (Equation ( 2)) be mapped onto a same digital rigid transformation (Equation ( 4)). This leads to considering equivalence classes between transformations, which are defined by the following relation

T abθ ∼ T a ′ b ′ θ ′ ⇐⇒ T abθ = T a ′ b ′ θ ′ (7) 
It has to be noticed that this equivalence relation is only defined between non-critical rigid transformations. As stated above, it is possible to identify a rigid transformation with its triplet of parameters (a, b, θ). In this context, the equivalence classes of transformations, called the discrete rigid transformations2 (DRTs), can be modeled by 3D open cells in this parameter space, whose boundaries are 2D tipping surfaces defined above (see Fig. 2(a)). In other words, the parameter space (a, b, θ) of rigid transformations is partitioned into disjoint sets of non-critical transformations, each of which is associated to exactly one DRT, and bounded by the surfaces modeling critical transformations.

We have shown in [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF] that the subdivision of this parameter space could be modeled by using a dual combinatorial structure, that maps each 3D cell (i.e., each DRT) onto a 0D point and each 2D tipping-surface segment (linked to a set of critical transformations) onto a 1D edge. The resulting structure is called a DRT graph (see Fig. 3).

Definition 2 (DRT graph [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF]) Given a set of tipping surfaces, Φ pqk and Ψ pql , the graph G = (V, E) associated to DRTs induced by those Φ pqk and Ψ pql is defined in the following way:

each vertex v ∈ V models a 3D open cell associated to a DRT; -each labelled edge e = (u, w, f ) ∈ E (where f is either Φ pqk or Ψ pql ) models the tipping surface f between two adjacent vertices v, w ∈ V .

This graph G is called a DRT graph.

In [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF], we have proved that the space complexity of the DRT graph for any set S of size N ×N is polynomial. An exact computation algorithm is proposed to build this graph in linear time with respect to the size of the graph. The DRT graph models "neighbouring" relationships between DRTs. Indeed, by associating a resulting digital transformed image to each 3D open cell/DRT, the existence of a 2D surface between two cells indicates that the associated transformed images differ in exactly one pixel among the N 2 ones. More precisely, let us consider an edge e = (v, w, f ) ∈ E between two distinct vertices v, w ∈ V . The function f (that is either equal to Φ pqk or Ψ pql ) indicates that exactly one point p = (p, q) ∈ S differs between the transformed images corresponding to the DRTs v and w. Practically, let q be the point with coordinates (k, l) with respect to f . Let I v and I w be the transformed images corresponding to the vertices v and w respectively. The value of p at the vertex v is defined by I v (p) = I(q) where I : S → V is the original image. After the elementary change along edge e, we obtain a new transformed image I w by simply setting the pixel value at p to I w (p) = I(q +δ) where δ = (±1, 0) or (0, ±1) with respect to f . In this way, one can generate all the transformed images of I by incrementally and exhaustively scanning the associated DRT graph. This property, exemplified in Fig. 4, was used in [START_REF] Ngo | Sufficient conditions for topological invariance of 2D digital images under rigid transformations[END_REF] for verifying the topological invariance of digital images under rigid transformations.

Constraints and feasible rigid transformation sets

The DRT graph is highly complex in space and time, which makes its practical construction and handling challenging for large images. In the sequel, we investigate how the use of constraints may reduce these complexities. More precisely, we focus on pixel-invariance constraints which consist of enforcing correspondence between points in the initial and transformed image. In particular, we expect these constraints to reduce the size of the parameter space partition, in terms of the number of 3D cells, and therefore the size of the associated DRT graph.

Pixel-invariance constraints and interpretation in the parameter space

In the context of rigid transformations in R 2 , enforcing the correspondence between two points p and p ′ in the initial and in the transformed spaces respectively, leads to restricting the number of authorised transformations. More precisely, from Equation (2) we obtain, for a given pair of corresponding points, two equations representing 2D trigonometric surfaces, that intersect to provide a 1D trigonometric curve, which models an (affine) space of rotations (see Fig. 5(a)).

A unique constraint then leads to an infinite space of transformations, that we call feasible transformations. In order to obtain a finite space of feasible transformations, we then need two (distinct) constraints, i.e., two pairs of corresponding points (p, p ′ ) and (q, q ′ ). If these pairs are well chosen, i.e., they satisfy the isometric properties of rigid transformations ( p-p ′ 2 = q-q ′ 2 ), then the space of feasible transformations is restricted to a unique transformation (see Fig. 5(b)) that corresponds to the intersection of the two 1D curves induced by these constraints. Otherwise, the space of feasible transformations is empty. More generally, setting the correspondence between k ≥ 2 distinct couples of points (p i ,

p ′ i ), for i ∈ [[1, k]]
, restricts the authorised transformations to at most a single feasible one.

In contrast, in the context of digital rigid transformations (see Equation ( 4)), the way to restrict transformations under similar constraints is more permissive. Indeed, when setting the correspondence between one or several pairs of points (p i , p ′ i ) of Z 2 , a larger space of rigid transformations remains valid (see Fig. 5(c,d)). Such constraints, which rely on the pixel decomposition of the image, are called pixel-invariance constraints and are defined as follows.

(a) (b) (c) (d) (e) (f)
Definition 4 (Pixel invariance constraints) Let p = (p, q) and p ′ = (p ′ , q ′ ) in S ⊂ Z 2 , where S is of size N × N . There exists a pixel-invariance constraint between p and p ′ if the authorised digital rigid transformations T between p and p ′ satisfy the equality T (p) = p ′ , i.e., if

p ′ - 1 2 < p cos θ -q sin θ + a < p ′ + 1 2 (8) q ′ - 1 2 < p sin θ + q cos θ + b < q ′ + 1 2 (9) 
More generally, there exist pixel-invariance constraints between two sets

{p i } m i=1 and {p ′ i } m i=1 (m ≥ 1) if T (p i ) = p ′ i ( i.e., if Inequalities (8)-(9) are satisfied) for every i ∈ [[1, m]].
In the absence of constraints, the 3D parameter space (a, b, θ) induced by the subset of size N × N where the image is defined, is divided into cells whose boundaries are the tipping surfaces Φ pqk and Ψ pql , with p, q ∈ [[0, N -1]] and k, l ∈ [[0, N ]]. In this case, the whole parameter space models adequate rigid transformations.

Under a pixel-invariance constraint, some of the digital rigid transformations may become unfeasible. In other words, only a part of the parameter space -namely the subspace of the parameters (a, b, θ) that satisfy this constraint -remains valid. From the definition of pixel-invariance constraint, provided by Inequalities ( 8)-( 9), this parameter subspace is defined by the intersection of four half-spaces associated to four tipping surfaces. This is visually illustrated in Fig. 5(c,e). The graph modelling the subdivision of such subspace is in particular a part of the whole DRT graph, induced by the pixel-invariance constraint.

Feasible rigid transformation sets

More generally, if a set P of m pixel-invariance constraints is provided, the parameter subspace of relevant transformations is defined as the intersection of m 3D regions induced by these constraints, i.e., as the intersection of 4m half-spaces defined by Inequalities ( 8)- [START_REF] Gribaa | Binary image registration based on geometric moments: Application to the registration of 3D segmented CT head images[END_REF].

Let

p, q ∈ [[0, N -1]] and k, l ∈ [[0, N ]]. Let us consider the functions V pqk , H pql : R × [0, 2π[ → R respectively defined by V pqk (a, θ) = a -φ pqk (θ) (10) H pql (b, θ) = b -ψ pql (θ) (11) 
where φ pqk and ψ pql are two tipping curves (see Equations ( 5)-( 6)). We then define the half-spaces induced by the associated tipping surfaces Φ pqk and Ψ pql with respect to inequalities ( 8)-( 9) as

V + pqk = {(a, b, θ) | V pqk (a, θ) > 0} (12) V - pqk = {(a, b, θ) | V pqk (a, θ) < 0} (13) 
and

H + pql = {(a, b, θ) | H pql (b, θ) > 0} (14) 
H - pql = {(a, b, θ) | H pql (b, θ) < 0} (15) 
The notion of a feasible rigid transformation set is then defined as follows.

Definition 5 (Feasible rigid transformation set)

Let P = {(p i , p ′ i )} m i=1 (m ≥ 1) be a set of pixel-invariance constraints with p i = (p i , q i ) and p ′ i = (p ′ i , q ′ i ) in S ⊂ Z 2 . The feasible rigid transformation set ( FRTS) associated to P is the subspace R ⊂ R 2 × [0, 2π[ of the parameter space (a, b, θ) defined by R = i∈[[1,m]] V + piqip ′ i ∩ V - piqip ′ i +1 ∩ H + piqiq ′ i ∩ H - piqiq ′ i +1 (16) 
For a single pixel-invariance constraint (i.e., for m = 1), the FRTS forms a "tube" in the parameter space (a, b, θ) (see Fig. 5(c)). For two -or morepixel-invariance constraints (i.e., for m ≥ 2), the FRTS forms a bounded and connected set (see Fig. 5(d)), or possibly becomes empty.

The FRTS is generated by m pixel-invariance constraints, and divided into 3D cells whose boundaries are the tipping surfaces induced by at most (N 2 -m) unconstrained pixels of the given image of size N ×N . It has to be recalled that each cell contains a set of rigid transformations that provide the same digital transformation, namely a discrete rigid transformation (DRT). In particular, the combinatorial structure modeling the subdivision of an FRTS into DRTs is represented by a part of the DRT graph, as defined in Section 2.3, and is called a feasible discrete rigid transformation graph (FDRT graph, for short). More explanation as well as the construction of this graph is given in Section 4.

We now recall the notion of directional convexity, and show that any FRTS is directionally convex. This property will be used in the next section to study the combinatorial structure of DRTs under pixel-invariance constraints.

Definition 6 (Directional convexity [START_REF] Matousek | On directional convexity[END_REF])

A region R ⊆ R n in an n-varia- ble space (x 1 , . . . , x n ) is x k -convex (with 1 ≤ k ≤ n) if, for any two points p 1 , p 2 ∈ R such that the segment [p 1 p 2 ] = {αp 1 + (1 -α)p 2 | α ∈ [0, 1]} is parallel to the x k -axis, [p 1 p 2 ] is included in R.
Property 7 Any FRTS is both a-and b-convex in the space (a, b, θ).

Proof This is a direct consequence of the fact that any FRTS is the intersection of half-spaces which are both a-and b-convex (see Equation ( 16)).

Based on the relations that link tipping surfaces and tipping curves (see Equations ( 5)-( 6) and Figs. 2 and5(c-f)), it is plain that an FRTS, defined in the parameter space (a, b, θ) by Equation ( 16), can be fully described from its two projections R V and R H on the planes (a, θ) and (b, θ) respectively, defined as

R V = i∈[[1,m]] v + piqip ′ i ∩ v - piqip ′ i +1 (17) 
R H = i∈[[1,m]] h + piqiq ′ i ∩ h - piqiq ′ i +1 (18) 
where v * pqk (resp. h * pql ) is the cross-section of v * pqk (resp. h * pql ) with the plane (a, θ) (resp. (b, θ)). In this context, v + * , h + * are called upper half-planes3 and v - * , h - * lower half-planes. From Property 7, it is obvious that R V (resp. R H ) has a pair of upper and lower half-planes (v + , v -) (resp. (h + , h -)) as the upper and lower parts of the boundary for each θ. Thus, the boundary of R V (resp. R H ) consists of two sets of half-planes:

the upper boundary set U containing only upper half-planes; -the lower boundary set L containing only lower half-planes.

From Property 7, we can also derive the following corollary for R V ; a similar corollary is established for R H as well.

Corollary 8 Let R V be the projection of an FRTS R (as defined in Equation (17)), and U (resp. L) be the upper (resp. lower) boundary of R V . Then U (resp. L) always contains at least one upper (resp. lower) half-plane.

We now derive the following result related to the connectedness of an FRTS, which will be useful in the following section. Here, instead of the parameter space R 2 × [0, 2π[ of (a, b, θ), we consider -without loss of correctness -the quotient space R 3 /∼ where (a, b, θ) ∼ (a, b, θ + 2π).

Property 9 An FRTS is connected in the quotient space R 3 /∼ of the parameter space (a, b, θ).

Proof If m = 1, Inequalities (8)-( 9), imply that the FRTS is the Minkowski addition between a 1D (connected) trigonometric curve -defined as a function from the (a, b) space to the θ one -and a (connected

) square pattern ] -1 2 , 1 2 [ 2 ⊂ R 2 defined in the (a, b) space.
The FRTS is then necessarily connected.

Let us now suppose that m = 2. Let (p i , p ′ i ), for i = 1, 2, be the two pixelinvariance constraints that generate the FRTS R. As explained above, R can be described from its two projections R V and R H on the planes (a, θ) and (b, θ) respectively by tipping curves. Let us first consider R V ; from Equation [START_REF] Ngo | Combinatorial properties of 2D discrete rigid transformations under pixel-invariance constraints[END_REF],

R V has two upper half-planes U = {v + p1q1q ′ 1 , v + p2q2q ′ 2 } and two lower half-planes L = {v - p1q1q ′ 1 +1 , v - p2q2q ′ 2 +1 }.
Then, any pair of upper and lower half-planes of

R V , (v + , v -) ∈ U × L, has the intersection v + ∩ v -that is connected in R 2 /∼
of the parameter space (a, θ), where (a, θ) ∼ (a, θ + 2π), as the associated tipping curves have at most two intersections for θ ∈ [0, 2π[ (see [18, 

Prop. 2, Cor. 2]). For instance, each of v + p1q1q ′ 1 ∩ v - p2q2q ′ 2 +1 and v + p2q2q ′ 2 ∩ v - p1q1q ′
1 +1 is a connected region in the quotient space R 2 / ∼. However, the intersection of these two regions, i.e. R V , may give at most two connected regions in the quotient space R 2 /∼. A similar result is obtained for R H . We now show that the 3D intersection of (the extrusion of) R V and R H gives only one admissible connected region in the quotient space R 3 / ∼. As we know that the intersection of R H and R V , i.e. R, is never empty, there always exist

(r i , s i ) ∈ ]p ′ i -1 2 , p ′ i + 1 2 [ × ]q ′ i -1 2 , q ′ i + 1 2 [ for i = 1, 2 such that r 1 = p 1 cos θ -q 1 sin θ + a (19) 
s 1 = p 1 sin θ + q 1 cos θ + b (20) r 2 = p 2 cos θ -q 2 sin θ + a (21) 
s 2 = p 2 sin θ + q 2 cos θ + b (22) 
At any intersection between ( 19) and ( 21) in the plane (a, θ), the following equation must be satisfied:

K -P cos θ + Q sin θ = 0 (23) 
by setting P = p 1 -p 2 , Q = q 1 -q 2 and K = r 1 -r 2 . Similarly, at any intersection between ( 20) and ( 22) in the plane (b, θ), the following equation must be satisfied:

L -P sin θ -Q cos θ = 0 (24) 
by additionally setting L = s 1 -s 2 . The system of linear equations ( 23),( 24) has a determinant equal to P 2 + Q 2 = 0, since the two pixel-invariance constraints are distinct. It then admits exactly one solution for the pair of unknowns cos θ and sin θ, and thus at most one solution for θ in [0, 2π[ . Since the FRTS R contains such a solution, R must be connected. The same result for m > 2 follows by induction.

Combinatorial structure of feasible discrete rigid transformations

An FRTS contains the rigid transformations that satisfy some given pixelinvariance constraints. It can then be subdivided into DRTs (see Section 2.3). This section presents a method for constructing the combinatorial structure of DRTs in an FRTS (namely, the FDRT graph) based on the idea of the sweeping algorithm [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF] recalled in Section 4.1. This algorithm is used for building a graph modeling a subdivision of the parameter space from a given set of tipping surfaces without considering the FRTS. Then, the construction of a FDRT graph is performed by following these three successive steps:

(i) finding the boundaries of the FRTS in the parameter space (Section 4.2);

(ii) finding the tipping surfaces passing through this FRTS (Section 4.3) and their intersecting points (Section 4.4); (iii) constructing the associated DRT graph (Section 4.5).

In this FDRT graph construction algorithm, the sweeping method (Section 4.1) is required for the step (i) and (iii) with some modifications.

Incremental construction of a discrete rigid transformation graph based on a sweeping method

In [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF], we showed how to build a DRT graph using an incremental algorithm, that mainly relies on the algorithmic notion of surface arrangement [START_REF] Chan | On levels in arrangements of surfaces in three dimensions[END_REF][START_REF] Sharir | Recent developments in the theory of arrangements of surfaces[END_REF]. A surface arrangement is defined as a decomposition of the space R 3 into cells by a finite set of surfaces. Such a decomposition generates four types of cells: 0D vertices, 1D arcs, 2D surfaces and 3D regions. Surface arrangement algorithms present a polynomial complexity Ω(n 4 ) [START_REF] Sharir | Recent developments in the theory of arrangements of surfaces[END_REF], where n is the number of surfaces. However, we are only interested in the information of regions (3D cells) and faces (2D cells) in the arrangement. In this specific case -when the surfaces are tipping surfaces -a better complexity for building the DRT graph in O(n 3 ) can be achieved [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF]. We now first describe a DRT graph construction method, in which the input and output are as follows:

• Input: a set of tipping surfaces S;

• Output: the DRT graph modeling G, the subdivision of the parameter space (a, b, θ) induced by S.

As described in Section 2.2, while projecting two families of tipping surfaces on the planes (a, θ) and (b, θ), we obtain the corresponding families of tipping curves defined by Formulae ( 5)-( 6) (see Fig. 2). Relying on this property, the subdivision of the parameter space (a, b, θ) by these surfaces can be fully described from their two cross-sections in the planes (a, θ) and (b, θ), respectively expressed by two sets of tipping curves [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF]. This leads to a constructive algorithm with a better complexity. More precisely, we first consider the structure of the graphs in the 2D planes (a, θ) and (b, θ), and then combine them to build the complete DRT graph G. In the sequel, we first recall the principles of this algorithm and its implementation for building G in the 2D planes. Then, we extend it to the 3D parameter space to compute the complete DRT graph.

2D sweeping method

The sweeping method in 2D then consists of sweeping a cut across all tipping curves in the plane -either (a, θ) or (b, θ) -from θ = 0 to 2π. Such a cut is denoted by γ and defined as a monotonic line [START_REF] Edelsbrunner | Topologically sweeping an arrangement[END_REF] intersecting exactly once each tipping curve in the plane. The monotonicity with respect to θ of the cut is a result of a-and b-convexity in the space (a, b, θ) (see Property 7). A cut is then modeled by its sequence of intersecting tipping curves (see Fig. 6). This sequence can be conveniently represented as a directed graph as follows.

Definition 10 Let γ = (ψ 1 , ψ 2 , . . .) be a sequence corresponding to a cut, where ψ 1 , ψ 2 , . . . are tipping curves. A graph G γ = (V γ , E γ ) with respect to γ consists of:

a set of vertices V γ = {v 0 , v 1 , . . .} each of which corresponds to an interval on γ separated by tipping curves; and a set of labelled edges E γ = {(v 0 , v 1 , ψ 1 ), (v 1 , v 2 , ψ 2 ), . . .}, for which each edge (u, w, f ) ∈ E γ connects two vertices u, w ∈ V γ separated by the tipping curve f , which is considered as an edge label.

From an algorithmic point of view, the graph G γ is directed, since the edge direction information is necessary for updating the sequence of γ during its progression with respect to the θ-axis from left to right (i.e., form 0 to 2π). In this context, the edge direction in G γ is specified by the sequence order of γ (see Definition 10); e.g., the elements of E γ are ordered in the same way as γ as illustrated in Fig. 6. While moving the cut γ, its sequence changes only at intersections of tipping curves, called event points. When a cut reaches an event point, the algorithm performs an update of its sequence, and generates new vertices and edges in the graph (see Fig. 7). This constitutes an elementary step of the algorithm. Practically, it is only required to maintain a set of sorted event points with respect to θ, and to progress the cut in their increasing order to build the graph incrementally. In the context of tipping curves, the event points can be classified into simple cases: only two tipping curves intersect at an event point (Fig. 8(a)); -degenerate or non-simple cases: more than two tipping curves intersect (or, are intersecting and/or tangent) at an event point (Fig. 8(b,c)).

In the sequel, we only deal with the simple cases. A way to deal with the degenerate cases and other details can be found in [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF].

3D sweeping method

For building a DRT graph G in the 3D parameter space (a, b, θ), two cuts are used such that each cut sweeps in either the plane (a, θ) or (b, θ). We denote those cuts by γ a and γ b respectively. For each update of the cuts, γ a and γ b , the associated graphs, G γa and G γ b , are respectively modified, so that a part of G is generated. We call such a part of G a partial graph, denoted by δG. In fact, δG is a combination of the two graphs G γa and G γ b as follows (and also see Fig. 9).

Definition 11

The partial graph δG = (δV, δE) is generated from G γa = (V γa , E γa ) and G γ b = (V γ b , E γ b ), such that:

-δV = {(v a , v b ) | v a ∈ V γa , v b ∈ V γ b }, and -δE = {((u 1 , v), (u 2 , v), ψ u ) | u 1 , u 2 ∈ V γa , v ∈ V γ b , (u 1 , u 2 , ψ u ) ∈ E γa } ∪ {((u, v 1 ), (u, v 2 ), ψ v ) | v 1 , v 2 ∈ V γ b , u ∈ V γa , (v 1 , v 2 , ψ v ) ∈ E γ b }.
When the i-th elementary step is applied to G γa or G γ b , the sweep progresses as the partial graph δG i is generated and integrated in G for constructing the final graph as well. The following proposition was originally proposed in [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF]. Proposition 12 ([18]) Let S be a set of tipping surfaces, e be the total number of ordered event points, and G be a DRT graph modeling the subdivision of the parameter space by S. We have

G = i∈[[1,e]] δG i ( 25 
)
where δG i is a partial graph at the i-th elementary step. Note that a partial graph δG i is a directed graph by construction. However the final graph G is not directed, so that we do not keep directions while integrating δG i into G. More algorithmic details on the sweeping algorithm for tipping surfaces can be found in [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF].

Finding the boundary of a feasible rigid transformation set

It is possible to describe an FRTS R defined from a set P of pixel-invariance constraints using a set of half-spaces constituting only the boundary of R, instead of using all the half-spaces from P in Definition 5. This section explains how to find such a set of half-spaces, by using the above sweeping algorithm.

We have here the input and output as follows:

• Input: A set of m pixel-invariance constraints P = {(p i , p ′ i )} m i=1 . • Output: The boundary set B = U ∪ L of the FRTS R induced by P. (a) (b)
Fig. 10 (a) Progression of a cut γ in the cross-section R V of an FRTS R (in red) on the plane (a, θ). The initial cut is

γ 1 = (v + 1 , v - 1 , v + 2 , v - 2 ). When it crosses R V , it becomes γ 2 = (v + 1 , v + 2 , v - 1 , v - 2 )
, and finally

γ 3 = (v + 2 , v - 2 , v + 1 , v - 1 )
after leaving R V . (b) Cross-sections of the constraints on the planes (a, θ) and (b, θ) via the use of tipping curves.

As explained in Section 3.2, an FRTS R induced by P in the parameter space (a, b, θ) can be fully described from its two cross-sections R V and R H on the planes (a, θ) and (b, θ) as defined in Equations ( 17)-( 18), and illustrated in Fig. 5. Relying on the similarity of R V and R H , hereafter we consider only R V (the same argument stands for R H ). Our problem is then specified as follows: given a constraint set P of half-planes of R V , report the set of half-planes constituting the boundary of R V . From Corollary 8, Properties 7 and 9, we recall that R V contains two non-empty sequences of half-planes:

a upper boundary sequence U V = (v + piqiq ′ i , . . .) that contains only the upper half-planes; and a lower boundary sequence L V = (v - piqiq ′ i +1 , . . .) that contains only the lower half-planes.

The 2D sweeping algorithm 4 , presented in Section 4.1.1, is used to find the U and L sequences of R V in which the input set of tipping curves is obtained from the constraints in P. Note that no FDRT graph is built at this stage; we only need to observe the sequence of the cut γ during its update in order to obtain all the elements of U V and L V . Indeed, while sweeping γ, its sequence changes at event points. We remark that γ intersects with R V when its sequence of half-planes is separated into two subsequences, γ + and γ -, such that γ = γ + γ -where γ + contains only the upper half-planes and γ - contains only the lower half-planes. Moreover, we see that the last element of γ + and the first element of γ -correspond respectively to the upper and lower half-planes of U V and L V constituting the boundary of R V . The cut is moved out of R V when there is no longer any such separation. Under the change of γ in R V , an upper or lower half-plane is progressively added in U V and L V at each event point, as illustrated in Fig. 10(a). Similarly, we can obtain the sets U H and L H constituting the boundary of R H for the plane (b, θ).

By using two cuts γ a and γ b sweeping in the two planes (a, θ) and (b, θ), we can find the boundary of an FRTS R, B = U ∪ L where U = U V ∪ U H and L = L V ∪ L H . Indeed, at each event point either on (a, θ) or (b, θ), the algorithm updates and checks the sequence of the corresponding cuts. We start getting the boundary segments of R from the first θ at which both sequences of γ a and γ b are separated in two parts. Similarly, we stop collecting the boundary segments of R at the first θ at which there is no longer any such separation in neither γ a nor γ b , as illustrated in Fig. 10(b). Moreover, from this procedure we can also obtain the lowest and greatest values of θ of R, denoted respectively by θ min and θ max , which are needed in the next stage of the algorithm. From Properties 7 and 9, we know that these values θ min and θ max of R are unique.

Finding tipping surfaces passing through a feasible rigid transformation set

In order to compute an FDRT graph modeling the subdivision of an FRTS R into DRTs, we require not only the tipping surfaces constituting the boundary of R but also those passing through R. In this section, we explain how to find these tipping surfaces.

So far, we know that an FRTS R contains all the rigid transformations satisfying given pixel-invariance constraints. R is partitioned into DRTs as well as the whole parameter space of rigid transformations, as explained in Section 2.3; the subdivision of R is induced by the tipping surfaces existing in R (see Fig. 11(a)). Therefore, we need to determine these surfaces among all the tipping surfaces in the parameter spaces (a, b, θ) of the rigid transformations associated to the image of size N × N , i.e., all vertical and horizontal tipping surfaces Φ pqk and Ψ pql , respectively, for p, q ∈ [[0, N -1]] and k, l ∈ [[0, N ]].

• Input: The boundary set B = U V ∪ U H ∪ L V ∪ L H of R.
• Output: The set of tipping curves P passing through R. This problem is equivalent to finding the set P V (resp. P H ) of tipping curves φ pqk (resp. ψ pql ) passing through R V (resp. R H ), the cross-sections of R on the plane (a, θ) (resp. (b, θ)) (see Fig. 11(b)). Then, we have P = P V ∪ P H .

Let us consider the cross-section R V of R. We call a segment of tipping curves that constitutes the boundary of R V a boundary segment. Any tipping curve φ pqk passes through R V if it intersects one of the boundary segments of R V ; without loss of generality, we denote such a boundary segment φ p ′ q ′ k ′ . This is easily detected by verifying the relationship between φ pqk and φ p ′ q ′ k ′ , and the intersection is on a boundary segment of R V as follows: (i) verify if φ pqk and φ p ′ q ′ k ′ intersect; this is true iff the following relations are satisfied [18, Property 2]:

∆ 1 + ∆ 2 > 0 (26) |KP ± ∆ 1 | ≤ P 2 + Q 2 (27) |KQ ± ∆ 2 | ≤ P 2 + Q 2 (28) 
where 

P = p -p ′ , Q = q -q ′ , K = k -k ′ , ∆ 1 = P 2 (P 2 + Q 2 -K 2 ) and ∆ 2 = Q 2 (P 2 + Q 2 -K 2 ); (ii) if
sin θ = KQ ± √ ∆ 1 P 2 + Q 2 (29) cos θ = KP ± √ ∆ 2 P 2 + Q 2 (30)
and verify if θ min ≤ θ ≤ θ max 5 , where θ min and θ max are obtained from Section 4.2; (iii) if (ii) is verified, then calculate

a upper = max V + pqk ∈U {φ pqk (θ)} (31) a lower = min V - pqk ∈L {φ pqk (θ)} (32)
and verify if a upper ≤ a ≤ a lower , where the value a at the above intersection θ is calculated from Equation ( 5). Note that the values cos θ and sin θ are used to represent θ. Since all cos θ, sin θ, cos θ min , sin θ min , cos θ max , sin θ max , a, a min and a max are quadratic irrationals6 , they can be compared exactly in average constant time [START_REF] Rosen | Elementary Number Theory and its Applications[END_REF].

We have φ pqk passes through R H , i.e., φ pqk ∈ P H , if all (i), (ii) and (iii) are satisfied. Then, the verification is performed for all tipping curves on the plane (a, θ) for computing P H . A similar approach is applied for the plane (b, θ) to compute P H .

Determination of event points in a feasible rigid transformation set

When carrying out the sweeping algorithm, it is mandatory to know how to detect event points in R or, equivalently, when to perform an elementary step. Due to the similarity of R V and R H , in the following we consider only the cross-section R V of R. In the sweeping method for building a FDRT graph, event points are intersections of tipping curves at which the sequence of the cut γ in R V is changed, as illustrated in Fig. 12. More precisely, event points in R V are intersections of the tipping-curve segments which constitute the boundary of R V , i.e., B V = U V ∪ L V (see Section 4.2), or pass through R V , i.e., P V (see Section 4.3). Note that event points generated by these tipping curves can be either on a boundary segment or in the interior of R V , and are called boundary event points or interior event points, respectively (see Fig. 12). We denote the set of boundary event points as E b , and this of interior event points as E i . This distinction of event points is necessary in the next step for computing a FTRS graph. The procedure for handling event points in R H is explained in Section 4.5. We here focus on how to detect these event points. Similarly to the previous method in Section 4.3, if an intersection coordinate (θ, a) satisfies θ min ≤ θ ≤ θ max and a lower (θ) ≤ a ≤ a upper (θ), then it is an event point in R H . The algorithm described in Section 4.1.1 deals with interior event points in E i . In contrast, boundary event points in E b must be treated separately as follows.

• Input: A set of tipping curves C = B V ∪ P V . • Output: The set E = E b ∪ E i of event points of R H generated by C.
According to their nature, the boundary event points in E b can be classified into the following six types. Let q ∈ E b be presented as the set of tipping curves intersecting at q [18], i.e., in simple case q = {φ u , φ v }. As illustrated in Fig. 13, q is a boundary event point in the following cases:

the boundary segment, which is either upper (type (a)) or lower (type (b)), changes from φ u to φ v ; -the boundary segment does not change, such that the tipping curves φ v goes into (resp. out) R by crossing the upper boundary segment φ u (type (c) (resp. type (d))); -goes into (resp. out) R by crossing the lower boundary segment φ u (type (e) (resp. type (f))).

Following this classification, the type of a boundary event point can be easily detected during the sweeping of the cut γ as follows. Let q = {φ u , φ v } ∈ E b . Let γ(φ 1 , φ 2 , . . . , φ n-1 , φ n ) be the cut on the left of q. Let U and L be respectively the upper and lower boundary sequences, and φ 1 ∈ U and φ n ∈ L be respectively the current upper and lower boundaries. Then a type of the boundary event point q is detected by verifying:

-if φ u , φ v ∈ U ∪ L, then q is in: -type (a), if (φ u = φ 1 and φ v = φ 2 ) or (φ v = φ 1 and φ u = φ 2 ); -type (b), if (φ u = φ n and φ v = φ n-1 ) or (φ v = φ n and φ u = φ n-1 ); -otherwise, if either φ u ∈ U ∪ L or φ v ∈ U ∪ L, then q is in: -type (c), if φ u = φ 1 and φ v = φ 2 ; -type (d), if φ u = φ 1 and φ v = φ 2 ; -type (e), if φ u = φ n and φ u = φ n-1 ; -type (f), if φ u = φ n and φ u = φ n-1 .

Feasible discrete rigid transformation graph construction

In order to build the FDRT graph in an FRTS, we use the sweeping algorithm described in Section 4.1. This algorithm can be extended to deal with supplementary constraints. The resulting graph G actually extends the notion of DRT graph initially introduced in [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF].

• Input: The boundary set B = U ∪ L of the FRTS R, the set of event points E = E i ∪ E b , θ min and θ max of R. • Output: The FDRT graph G in R.
In this part, the cut γ sweeps from θ min to θ max instead of [0, 2π[, and contains only the tipping surfaces belonging to R. As described in Section 4.1, an elementary step at each event point consists of the two following steps:

(i) update the graphs G γa and G γ b according to the change of the cuts γ a and γ b respectively, and (ii) build the partial graph δG from G γa and G γ b .

As Step (ii) directly derives from Definition 10 and Section 4.1.2, we here explain how to perform Step (i). For the sake of concision, we restrict ourselves to the handling of event points for simple cases; the degenerate cases are obtained by modifying the procedure of this simple case, as detailed in [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF]. Given the similarity between R V and R H , with no loss of generality, we only show the cases for G γa of R V in the sequel.

We recall that at each elementary step for an event point, the sequence of the cut γ a is changed. According to this change, the associated graph G γa is modified. Note that the procedure for handling with interior event points is similar to that given in [18, Procedure 1]. However the procedure for boundary event points requires some modifications.

We here explain only how to update the cut at boundary event points. We first dealt with the types (a) and (b). Without loss of generality, let q = {φ u , φ v } be a boundary event point generated by two tipping curves φ u , φ v where φ u ∈ U H or L H , and γ, γ ′ be the cuts before and after q respectively. Assuming γ = (φ 1 , φ 2 , . . . , φ n-1 , φ n ), if q is on:

the upper boundary of R H , i.e., φ u = φ 1 and

φ v = φ 2 , then γ ′ = (φ v , φ 2 , . . . , φ n-1 , φ n ) (type (a)); -the lower boundary of R H , i.e., φ u = φ n and φ v = φ n-1 , then γ ′ = (φ 1 , φ 2 , . . . , φ n-1 , φ v ) (type (b)).
Similarly, the procedures for updating the cut for types (c) and (d) are given as follows. Let q = {φ u , φ v } be an event point on the upper boundary, such that φ u = φ 1 . We have two cases:

-when φ v goes into R H , such that φ v = φ 2 , then γ ′ = (φ 1 , φ v , φ 2 , . . . , φ n ); -when φ v goes out from R H , such that φ v = φ 2 , then γ ′ = (φ 1 , φ 3 , . . . , φ n ).
The procedures for types (e) and (f) can be considered in the same way. Fig. 14 illustrates the elementary steps for these boundary event points. These procedures are more formally detailed in Appendix A. The space complexity of an FDRT graph corresponds to the numbers of its vertices and edges. These values directly depend on the number of event points involved in its construction, and the number of vertices generated at each event point. Using a similar approach to [18, Proposition 3], we obtain that the number of edges is in the same order as the number of vertices. The following discussions, dealing only with vertices, then provide results for the space complexity of FDRT graphs including those for edges. As mentioned in Section 4.1, the construction of a DRT graph G is obtained from its projections on the planes (a, θ) and (b, θ). In the absence of constraints, it was shown in [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF] that there are O(N 3 ) tipping curves in each plane. Since any two tipping curves intersect in at most two points for θ ∈ [0, 2π[ , the number of event points is at most in O(N 6 ). Moreover, at each elementary step, i.e., at each event point, the number of generated vertices is in O(N 3 ). The number of vertices in G is then in O(N 9 ), and thus this justifies the result already stated in Property 3. For one pixel-invariance constraint, we have the following property:

Property [START_REF] Hundt | A combinatorial geometrical approach to twodimensional robust pattern matching with scaling and rotation[END_REF] The FDRT graph G associated to a digital image of size N × N under one pixel-invariance constraint has a space complexity O(N 7 ).

Proof The complexity analysis scheme remains similar to the non-constrained case. However, for one pixel-invariance constraint, some of the DRTs (i.e., some of the vertices of the DRT graph) become infeasible, and the number of event points decreases from O(N 6 ) to O(N 5 ), due to periodicity properties (see [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF]Property 4]). Moreover, we derive from Property 5 in [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF] that the number of tipping curves in the projection on the plane either (a, θ) or (b, θ) of the FRTS associated to the given constraint, is O(N 2 ) instead of O(N 3 ). Thus at each elementary step, associated to each event point, the number of generated vertices is O(N 2 ). In total, there are O(N 5 ) × O(N 2 ) = O(N 7 ) vertices added to the FDRT graph.

Geometrically, the associated FRTS correspond to a tube-like volume as illustrated in Fig. 5(c).

For more than one pixel-invariance constraints, the space complexity of the DRT graph does not only depend on the number of constraints, but also on the geometric configuration of the points involved in these constraints. This implies that the space complexity may not necessarily decrease, and so remains the same as with the one pixel-invariance constraint in the worst case.

Property 14

The FDRT graph G associated to a digital image of size N × N under two pixel-invariance constraints has a space complexity of O(N 7 ) in the worst case.

Proof Let us consider the two pixel-invariance constraints induced by the set of points {p 1 , p 2 } and {p ′ 1 , p ′ 2 }, with p 1 = p 2 + (0, 1) and p ′ 1 = p ′ 2 + (0, 1). While the first constraint reduces the space complexity of G from O(N 9 ) to O(N 7 ) as stated in Property 13 (see also Fig. 5(c)), the second reduces the θ part of the FRTS from [0, 2π[ to ]0, π[ . With these constraints, the size of G is only divided by a constant factor of 2. As a consequence, the complexity remains O(N 7 ). However, we show in Section 5.1.2, that the actual space complexities of FDRT graphs under multiple pixel-invariance constraints are generally lower than this worst case.
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Experimental results

We now describe some experiments and results obtained with the proposed algorithm for FDRT graph construction under pixel-invariance constraints. This algorithm was implemented in C++. Experiments were carried out on a personal computer equipped with a 3.0GHz Intel R Core TM 2 Duo processor and 4GB of memory. The aim of these experiments is to validate the proposed algorithm with respect to the theoretical complexity results established above, but also to investigate practical complexities for tighter constraints.

The first experiments, illustrated in Fig. 15, deal with FDRT graphs for one pixel-invariance constraint. They confirm the theoretical results established in Property 13. One may notice that in previous works dealing with discrete rotations [START_REF] Amir | Faster two-dimensional pattern matching with rotations[END_REF][START_REF] Thibault | Rotations in 2D and 3D discrete spaces[END_REF], a complexity of only O(N 3 ) was established. In those works, no translation was considered. In the current case, we allow translations due to the pixel-invariance formulation. As a result, for a given constraint, we obtain a set of feasible transformations forming a tube which contains arbitrary rotations and their associated translations whose regions forms a pixel, as illustrated in Fig. 5(c).

As discussed in Section 5.1.1, the space complexity of G under two pixelinvariance constraints is also O(N 7 ) (see Property 14) if we consider a pair of pixels separated by a distance of 1. This constitutes however an extreme case. In practice, the complexity of an FDRT graph is generally lower, since the distance between two constraint points is likely to exceed 1 (see Fig. 18(a)). It is reasonable to infer that the longer the distance between these points, the more constrained the feasible transformations, and therefore the lower the complexity of G. Following this intuition, we propose the following conjecture which links the complexity of G with the distance between points of given constraints.

Conjecture 15

The FDRT graph G associated to a digital image of size N × N under two pixel-invariance constraints has a space complexity of Θ(N α d -β ), with α, β > 0, where d denotes the Euclidean distance between two pixelinvariance constraints.

The α and β values are assumed to be constant, and we propose to estimate them experimentally (see Fig. 16). To this end, we synthesized images of sizes varying from 8 × 8 to 15 × 15. For each image size, we set several distances, and randomly chose several two pixel-invariance constraints for each distance. The estimation of α and β is interpreted as a plane fitting estimation in the 3D space induced by N , d and the space complexity c by taking log for both side of c = sN α d -β , i.e., log c = log s + α log N -β log d, where s is a constant. By using the least-squares method, we obtained α = 5.5 and β = 1.6 with a residual standard error for derived parameters of 0.1244 on 676 experiments performed and the adjusted multiple correlation coefficient of 0.9993, which corresponds to an accurate fit.

We now consider more than two constraints. We may have expected the FDRT graph G associated to these constraints to be reduced. Nevertheless, this is not always true. Indeed, the space complexity of G then depends on the geometric configuration of the pixel-invariance constraints, as illustrated by the following examples. Let us consider two pixel-invariance constraints (in red and blue in Fig. 17(a)). When a supplementary constraint is added (for instance the yellow one in Fig. 17(a)) we can see in Fig. 17(c) that the FRTS is strictly reduced, and so is the FDRT graph G. On the contrary, let us consider the supplementary constraint determined by green pixels in Fig. 17(b). We can observe that such a constraint does not reduce the FRTS, and the FDRT graph G then remains unchanged (see Fig. 17(d)). However, in practice, the higher the number of constraints, the lower the complexity of the FDRT. This is illustrated in Figure 18(b-d) that corresponds to experiments for 3, 5 and 10 random pixel-invariance constraints, respectively. 

Time complexity of feasible discrete rigid transformation graph construction

From Section 4, we know that the construction of an FDRT graph is obtained from its projections on the planes (a, θ) and (b, θ), and can be performed in three successive steps:

1. finding the boundary of the FRTS R; 2. finding the event points in R, more precisely, in the projections R H and R V of R on the planes (a, θ) and (b, θ) respectively; and 3. building the FDRT graph G associated to R.

In each of the (a, θ) and (b, θ) planes, the event points are generated by 2m tipping curves, induced by the m given constraints (with 0 ≤ m ≤ N 2 ). Moreover, it is proved in [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF] that the number of event points for 2m tipping curves is O(m 2 ). In Step 1, the event points need to be sorted, then at each event a verification of the cut separation is done. This sorting and verification lead to a complexity of O(m 2 log m) and O(m 3 ) respectively. Therefore, Step 1 requires a time complexity of O(m 3 ), which is equivalent to O(N 6 ).

In Step 2, the process of detecting whether a tipping surface passes through R can be done in linear time with respect to the number of boundary segments of R, i.e., O(m). Since there are O(N 3 ) tipping surfaces, the time complexity of this sub-step is O(mN 3 ). Then, we search the event points in R. Due to the periodicity of tipping curves [18, Property 4], we know that the total number of event points in R is O(N 5 ), and thus the mandatory sorting of these event points needs a time complexity of O(N 5 log N ).

The sweep of a cut, in Step 3, requires O(N 5 ) iterations (one for each event point), and at each iteration, O(N 2 ) vertices are generated. Therefore, Step 3 requires a time complexity of O(N 7 ), which is the most costly step in the algorithm.

Finally, the FDRT graph G for a given image of size N × N under m constraints is then constructed with a time cost of O(N 7 ).

Conclusion

This article continued the study initiated in [START_REF] Ngo | Combinatorial properties of 2D discrete rigid transformations under pixel-invariance constraints[END_REF][START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF] by investigating the effects of geometric constraints on rigid transformations, applied to digital images. By enforcing the correspondence between one or several pairs of pixels, we restricted allowable transformations to a parameter subspace, called a feasible rigid transformation set (FRTS), in which all such constraints are satisfied. A proposed algorithm allowed us to build a combinatorial structure (namely a graph) for modeling the subdivision of the FRTS on a subset of Z 2 of size N × N . We theoretically analysed the complexity of this graph with one given pixel-invariance constraint to be O(N 7 ). For two constraints, the complexity could not be theoretically given. However, we experimentally evaluated its complexity as Θ(N 5.5 d -1.6 ), where d denotes the Euclidean distance between two pixel-invariance constraints.

From the discussion of Section 5.1.2 regarding the complexity of the FDRT graph under more than two constraints, it appears that pixels can be classified into two categories: those which can be involved in supplementary constraints that reduce the FRTS, and those that cannot (see Fig. 19). The later ones are called static pixels. Based on this classification, it may be possible to choose only those which actually reduce the FRTS when iteratively defining constraints. This strategy may be investigated in further works.

A -Procedures for modifying a graph associated to a cut at boundary event points

Let Gγ a = (Vγ a , Eγ a ) (resp. Gγ b = (Vγ b , Eγ b )) be the graph associated to the cut γa (resp. γ b ) at Step i. At each event point of Step i + 1, the algorithm updates the status of the cuts γa and γ b , by which their associated graphs Gγ a and Gγ b are respectively modified (see Fig. 14). The partial graph δG is then generated from the modified graphs Gγ a and Gγ b , and integrated in the final DRT graph G. This is called an elementary step of the algorithm (see Sections 4.1 and 4.5). Due to the similarity between γa and γ b , in the sequel we deal with γa and a similar result is obtained for γ b .

The procedure for modifying the graph Gγ a with respect to the change of γa at boundary event points is as follows. Let q = {φu, φv} be a boundary event point which changes the upper (resp. lower) boundary from φu to φv, i.e., type (a) (resp. (b)). Let γa = (φu, φ 2 , . . . , φn) (resp. γa = (φ 1 , . . . , φ n-1 , φu)) be the cut on the left of q, then after q we have γa = (φv, φ 2 , . . . , φn) (resp. γa = (φ 1 , . . . , φ n-1 , φv)). We can generate the modified graph of Gγ a at q according to the following steps:

finding the current edge e of the boundary tipping surface φu; -deleting e and replacing by a new edge e ′ having the same vertices as e and φv as its label;

The implementation is given in Procedure 1, which requires the following functions:

ϑ(e) returns the two adjacent vertices of the edge e in Vγ a .

Procedure 1: Modification of the graph associated to a cut with respect to a boundary event point of either type (a) or (b).

Input: A graph Gγ a = (Vγ a , Eγ a ) associated to a cut γa = (φ 1 , φ 2 , . . . , φ n-1 , φn) and a boundary event point q = {φu, φv}. Output: The modified graph of Gγ a at q. 1 if (φu = φ 1 and φv = φ 2 ) or (φv = φ 1 and φu = φ 2 ) then Similarly, we have in Procedure 2 the algorithm for modifying the graph Gγ a at a boundary event point q = {φu, φv} which has φv goes in and out by crossing the upper boundary φu, i.e., type (c) and (d).

Fig. 2

 2 Fig. 2 (a) Tipping surfaces in the 3D parameter space (a, b, θ), and (b) their cross-sections, namely tipping curves, in the 2D planes (a, θ) and (b, θ).

Property 3 (

 3 [START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF]) The DRT graph associated to a digital image of size N ×N has a space complexity of O(N 9 ).

Fig. 3

 3 Fig. 3 (a) The parameter space of rigid transformations subdivided by four tipping surfaces, and (b) the associated DRT graph.

Fig. 4

 4 Fig. 4 Left: a part of a DRT graph in which a vertex/DRT represents a digital transformed image and an edge e = (v, w, f ) between two vertices v and w indicates that one pixel value is different between the associated transformed images Iv and Iw (see text). Right: the transformed images associated to the vertices of the DRT graph (in left). The images from upper-left to bottom-right correspond to the vertices ordered from 1 to 10 in the graph.

Fig. 5

 5 Fig. 5 Feasible rigid transformations induced by geometric constraints in the continuous (a,b) and discrete (c-f) frameworks. (a) Transformations with one point correspondence (red curve). (b) Transformation with two point correspondences (red dot at the intersection of the two red curves). (c) Transformations with one pixel correspondence (red tube-like volume). (d) Transformations with two pixel correspondences (red volume). (e,f) Projection/intersection of red volume parts of (c,d) respectively to the planes (a, θ) and (b, θ) with the associated tipping curves.
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 6 Fig.6Example of a cut γ and its associated graph Gγ.

Fig. 7

 7 Fig.7Progress of the cut at an event point by which the cut is updated and the corresponding graph is modified.

Fig. 8

 8 Fig. 8 Examples of a simple event point generated by only two tipping curves (a), and degeneracies (b,c) generated by more than two tipping curves.

Fig. 9

 9 Fig. 9 Generation of a partial graph δG from two graphs Gγ a and Gγ b associated to cuts γa and γ b respectively.

Fig. 11 (

 11 Fig. 11 (a) Example of tipping surfaces passing through R (in red) and not passing through R (in blue) in the parameter space (a, b, θ). (b) Its cross-sections R V and R H of (a) on the planes (a, θ) and (b, θ) respectively.

Fig. 12

 12 Fig.12Examples of boundary event points (in black), interior event points (in yellow) and intersections of tipping curves but not event points (in red) for computing a FRTS graph.

Fig. 13

 13 Fig. 13 Classification of simple boundary event points. An event point generated by two tipping curves φu and φv: (a,b) changes the boundary from φu to φv, (c,d) φv goes in and out by crossing the upper boundary φu, and (e,f) φv goes in and out by crossing the lower boundary φu.

Fig. 14

 14 Fig. 14 Illustrations of elementary steps -update γ and generate its graph Gγ -for a tipping curve changing (a) an upper or (b) a lower boundary, and going (c) in or (d) out of an upper boundary.

Fig. 15

 15 Fig. 15 Space complexities of FDRT graphs expressed as the numbers of vertices and edges in FDRT graphs under one pixel-invariance constraint, for images of size N × N .

Fig. 16

 16 Fig. 16 Experimental space complexities of FDRT graphs in the two pixel-invariance constraints case. The complexities are measured over 676 experiments as a function of image size, varying from 8 × 8 to 15 × 15, and varying distances between two given constraints limited by the image sizes. Left: 3D log plot of distance, image size and space complexity. Right: least-squares best plane fit (colored in blue).

Fig. 17

 17 Fig.17For two given pixel-invariance constraints (in red and blue), there exists a supplementary pixel-invariance constraint (in yellow) that contributes to reducing the associated FRTS (a). There also exists a supplementary pixel-invariance constraint (in green) that does not (b). (c) and (d) illustrate the cross-sections of the FRTS, on the planes (a, θ) and (b, θ), induced by the constraints given in (a) and (b) respectively.

  Fig.17For two given pixel-invariance constraints (in red and blue), there exists a supplementary pixel-invariance constraint (in yellow) that contributes to reducing the associated FRTS (a). There also exists a supplementary pixel-invariance constraint (in green) that does not (b). (c) and (d) illustrate the cross-sections of the FRTS, on the planes (a, θ) and (b, θ), induced by the constraints given in (a) and (b) respectively.

Fig. 18

 18 Fig. 18 Experimental results of space complexities of FDRT graphs for two (a), three (b), five (c) and ten (d) pixel-invariance constraints.

  Static vs. nonstatic pixels in the left image of (a). Static vs. nonstatic pixels in the left image of (c).

Fig. 19 (

 19 Fig.19 (a,c) Pixel-invariance constraints (denoted by the arrows). (b,d) Classification of the remainder pixels in the image under constraints given in (a,c) respectively. The green pixels are static and the purple ones are not (see text).

2 e 1 8 e 1 ← 9 {w} ← ϑ(e 1 )Procedure 2 : 2 if φv = φ 2 then 3 eu 6 V 8 if φv = φ 2 then 9 eu

 218191223689 ← ε(φ 1 ) ; e 2 ← ε(φ 2 ) 3 {w} ← ϑ(e 1 ) ∩ ϑ(e 2 ) 4 {φ ′ } ← {φu, φv} \ {φ 1 } // φ ′ = {either φu or φv} is a new upper boundary 5 E - γa ← {(w 0 , w, φ 1 )} // {w 0 } = ϑ(e 1 ) \ {w} is a top vertex6 E + γa ← {(w 0 , w, φ ′ )} 7 if (φu = φn and φv = φ n-1 ) or (φv = φn and φu = φ n-1 ) then ε(φn) ; e 2 ← ε(φ n-1 ) ∩ ϑ(e 2 ) 10 {φ ′ } ← {φu, φv} \ {φn} // φ ′ = {either φu or φv} is a new lower boundary 11 E - a ← {(w, wn, φn)} // {wn} = ϑ(e 1 ) \ {w} is a bottom vertex 12 E + γa ← {(w, wn, φ ′ )} 13 Eγ a ← Eγ a \ E - γa ∪ E + γa // No new vertex is generated at q Modification of the graph associated to a cut with respect to a boundary event point of either type (c) or (d).Input: A graph Gγ a = (Vγ a , Eγ a ) associated to a cut γa = (φ 1 , φ 2 , . . . , φ n-1 , φn) and a boundary event point q = {φu, φv}. Output: The modified graph of Gγ a at q.1 if φu = φ 1 then ← ε(φu) 4 {w} ← ϑ(eu) \ {w 0 } // w 0 is a top vertex 5 E - γa ← {(w 0 , w, φu)} + γa ← {w ′ } // w ′ is a new vertex 7 E + γa ← {(w 0 , w ′ ,φu), (w ′ , w, φv)} ← ε(φu) ; ev ← ε(φv) 10 {w} ← ϑ(eu) ∩ ϑ(ev) 11 {w ′ } ← ϑ(ev ) \ {w} // w ′ is an adjacent vertex of w 12 V - γa ← {w} // w is a removed vertex 13 E - γa ← {(w 0 , w, φu), (w, w ′ , φv)} 14 E + γa ← {(w 0 , w ′ , φu)} 15 Vγ a ← Vγ a \ V - γa ∪ V + γa 16 Eγ a ← Eγ a \ E - γa ∪ E + γa ε(φ) returns the edge corresponding to the tipping curve φ in δEγ a .

  they intersect, then calculate the following values at the intersection [18, Corollary 1]:

In fact, rigid transformations are composed of reflections, rotations and translations, while combinations of only translations and rotations are called proper rigid transformations. In this article, as in[START_REF] Ngo | Combinatorial structure of rigid transformations in 2D digital images[END_REF], we focus on the latter, since reflections are not as generally useful in matching and tracking applications, and may needlessly complicate the search space. By an abuse of language, we will continue to refer to proper rigid transformations as rigid transformations.

Contrarily to the terminology frequently used in the literature, the term digital refers here to the digitization process D defined in Equation (4), while the term discrete refers to the combinatorial structure induced by this operator D.

Note that the term half-space is used for 3D regions induced by the tipping surfaces in the parameter space (a, b, θ), while the term half-plane is used for 2D regions induced by the tipping curves in the plane either (a, θ) or (b, θ).

This algorithm can easily be modified to deal with the quotient space R 3 /∼.

Note that there are four possible combinations for sin θ and cos θ. However, from [18, Corollary 2] and Property 9, only one of them is valid for the value of θ at the intersection.

A quadratic irrational is an irrational number that is a solution of some quadratic equations.
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