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Geometric ρ-mixing property of the interarrival times

of a stationary Markovian Arrival Process

L. Hervé and J. Ledoux∗

12 October 2012

Abstract

In this note, the sequence of the interarrivals of a stationary Markovian Arrival process
is shown to be ρ-mixing with a geometric rate of convergence when the driving process
is ρ-mixing. This provides an answer to an issue raised in the recent paper [4] on the
geometric convergence of the autocorrelation function of the stationary Markovian Arrival
process.

keywords: Markov renewal process
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1 Introduction

We provide a positive answer to a question raised in [4] on the geometric convergence of
the autocorrelation function associated with the interarrival times of a stationary m-state
Markovian Arrival Process (MAP). Indeed, it is shown in [3, Prop. 3.1] that the increment
sequence {Tn := Sn−Sn−1}n≥1 associated with a discrete time stationary Markov additive
process {(Xn, Sn)}n∈N ∈ X×R

d is ρ-mixing with a geometric rate provided that the driving
stationary Markov chain {Xn}n∈N is ρ-mixing. There, X may be any measurable set. In
the case where the increments {Tn}n≥1 are non-negative random variables, {(Xn, Sn)}n∈N
is a Markov Renewal Process (MRP). Therefore, we obtain the expected answer to the
question in [4] since such an MRP with {Tn}n≥1 being the interarrival times can be
associated with a m-state MAP and the ρ-mixing property of {Tn}n≥1 with geometric
rate ensures the geometric convergence of the autocorrelation function of {Tn}n≥1. We
refer to [1, Chap. XI] for basic properties of MAPs and Markov additive processes.
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2 Geometric ρ-mixing of the sequence of interarrivals

of an MAP

Let us recall the definition of the ρ-mixing property of a (strictly) stationary sequence
of random variables {Tn}n≥1 (e.g. see [2]). The ρ-mixing coefficient with time lag k > 0,
denoted usually by ρ(k), is defined by

ρ(k) := sup
n≥1

sup
m∈N

sup
{∣

∣Corr
(

f(T1, . . . , Tn);h(Tn+k, . . . , Tn+k+m)
)∣

∣,

f, g R-valued functions such that

E
[

|f(T1, . . . , Tn)|
2
]

and E
[

|h(Tn+k, . . . , Tn+k+m)|
2
]

are finite
}

(1)

where Corr
(

f(T1, . . . , Tn);h(Tn+k, . . . , Tn+k+m)
)

is the correlation coefficient of the two
square-integrable random variables. Note that {ρ(k)}n≥1 is a non-increasing sequence.
Then {Tn}n≥1 is said to be ρ-mixing if

lim
k→+∞

ρ(k) = 0.

When, for any n ∈ N, the random variable Tn has a moment of order 2, the autocorrelation
function of {Tn}n≥1 as studied in [4], that is Corr(T1;Tk+1) as a function of the time lag
k, clearly satisfies

∀k ≥ 1, |Corr(T1;Tk+1)| ≤ ρ(k). (2)

Therefore, any rate of convergence of the ρ-mixing coefficients {ρ(k)}k≥1 is a rate of
convergence for the autocorrelation function.

We only outline the main steps to obtain from [3, Prop. 3.1] a geometric convergence
rate of {ρ(k)}n≥1 for the m-state MRP {(Xn, Sn)}n∈N associated with a m-state MAP. In
[4, Section 2], the analysis of the autocorrelation function in the two-states case is based
on such an MRP (notation and background in [4] are that of [5]). Recall that a m-state
MAP is a bivariate continuous-time Markov process {(Jt, Nt)}t≥0 on {1, . . . ,m}×N where
Nt represents the number of arrivals up to time t, while the states of the driving Markov
process {Jt}t≥0 are called phases. Let Sn be the time at the nth arrival (S0 = 0 a.s.) and
let Xn be the state of the driving process just after the nth arrival. Then {(Xn, Sn)}n∈N
is known to be an MRP with the following semi-Markov kernel Q on {1, . . . ,m} × [0,∞)

∀(x1, x2) ∈ {1, . . . ,m}2, Q(x1; {x2} × dy) := (eD0yD1)(x1, x2)dy (3)

parametrized by a pair of m × m-matrices usually denoted by D0 and D1. The matrix
D0 + D1 is the infinitesimal generator of the background Markov process {Jt}t≥0 which
is always assumed to be irreducible, and D0 is stable. The process {Xn}n∈N is a Markov
chain with state space X := {1, . . . ,m} and transition probability matrix P :

∀(x1, x2) ∈ X
2, P (x1, x2) = Q(x1; {x2} × [0,∞)) =

(

(−D0)
−1D1

)

(x1, x2). (4)
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{Xn}n∈N has an invariant probability measure φ (i.e. φP = φ). It is well-known that,
for n ≥ 1, the interarrival time Tn := Sn − Sn−1 has a moment of order 2 (whatever the
probability distribution of X0). We refer to [1] for details about the above basic facts on
an MAP and its associated MRP.

Let us introduce the m×m-matrix

Φ := e⊤φ (5)

when e is the m-dimensional row-vector with all components equal to 1. Any R-valued
function v on X may be identified to a R

m-dimensional vector. We use the subordinate
matrix norm induced by ℓ2(φ)-norm ‖v‖2 :=

√
∑

x∈X |v(x)|
2φ(x) on R

m

‖M‖2 := sup
v:‖v‖2=1

‖Mv‖2.

Let Eφ be the expectation with respect to the initial conditions (X0, S0) ∼ (φ, δ0). Recall
that Tn := Sn − Sn−1 for n ≥ 1. When X0 ∼ φ, we have (see [3, Section 3]):

1. if g is a R-valued function such that E
[

|g(X1, T1, . . . , Xn, Tn)|
]

< ∞, then ∀k ≥ 0, ∀n ≥
1

E[g(Xk+1, Tk+1, . . . , Xk+n, Tk+n) | σ(Xl, Tl : l ≤ k)]

=

∫

(X×[0,∞))n
Q(Xs; dx1 × dz1)

n
∏

i=2

Q(xi−1; dxi × dzi)g(x1, z1, . . . , xn, zn)

= (Q⊗n)(g)
(

Xk

)

(6)

where Q⊗n denotes the n-fold kernel product
n

⊗
i=1

Q of Q defined in (3).

2. Let f and h be two R-valued functions such that Eφ

[

|f(T1, . . . , Tn)|
2
]

< ∞ and
Eφ

[

|h(Tn+k, . . . , Tn+k+m)|
2
]

< ∞ for (k, n) ∈ (N∗)2,m ∈ N. From (6) with
g(x1, z1, . . . , xn+k+m, zn+k+m) ≡ f(z1, . . . , zn)h(zn+k, . . . , zn+k+m), the process {Tn}n≥1

is stationary and the following covariance formula holds (see [3, Lem. 3.3] for details)

Cov
(

f(T1, . . . , Tn);h(Tn+k, . . . , Tn+k+m)
)

= Eφ

[

f(T1, . . . , Tn) (P
k−1 − Φ)

(

Q⊗m+1(h)
)

(Xn)
]

. (7)

where matrices P , Φ are defined in (4) and (5).

First, note that the random variables f(·) and h(·) in (1) may be assumed to be of L2-norm
1. Thus we just have to deal with covariances. Second, the Cauchy-Schwarz inequality
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and Formula (7) allow us to write

Cov
(

f(T1, . . . , Tn);h(Tn+k, . . . , Tn+k+m)
)2

≤ Eφ

[

|f(T1, . . . , Tn)|
2
]

Eφ

[

∣

∣(P k−1 − Φ)
(

Q⊗m+1(h)
)

(Xn)
∣

∣

2
]

= Eφ

[

∣

∣(P k−1 − Φ)
(

Q⊗m+1(h)
)

(X0)
∣

∣

2
]

(φ is P -invariant)

=
∥

∥(P k−1 − Φ)
(

Q⊗m+1(h)
)∥

∥

2

2

≤ ‖P k−1 − Φ‖22
∥

∥Q⊗m+1(h)
∥

∥

2

2

≤ ‖P k−1 − Φ‖22 (since
∥

∥Q⊗m+1(h)‖2 ≤ 1).

Therefore, we obtain from (1) and (2) that the autocorrelation coefficient Corr(T1;Tk+1)
as studied in [4], satisfies

∀k ≥ 1, |Corr(T1;Tk+1)| ≤ ρ(k) ≤ ‖P k−1 − Φ‖22. (8)

The convergence rate to 0 of the sequence {Corr(T1;Tk+1)}n≥1 is bounded from above by
that of {‖P k−1 −Φ‖2}k≥1. Under usual assumptions on the MAP, {Xn}n∈N is irreducible
and aperiodic so that there exists r ∈ (0, 1) such that

‖P k − Φ‖2 = O(rk) (9)

with r = max(|λ|, λ is an eigenvalue of P such that |λ| < 1). For a stationary Markov
chain {Xn}n∈N with general state space, we know from [6, p 200,207] that Property (9)
is equivalent to the ρ-mixing property of {Xn}n∈N.

3 Comments on [4]

In [4], the analysis is based on a known explicit formula of the correlation function in
terms of the parameters of the m-state MRP (see [4, (2.6)]). Note that this formula can
be obtained using n = 1,m = 0 and f(T1) = T1, h(T1+k) = T1+k in (7). When m := 2 and
under standard assumptions on MAPs, matrix P is diagonalizable with two distinct real
eigenvalues, 1 and 0 < λ < 1 which has an explicit form in terms of entries of P . Then,
the authors can analyze the correlation function with respect to the entries of matrix P

[4, (3.4)-(3.7)]. As quoted by the authors, such an analysis would be tedious and difficult
with m > 2 due to the increasing number of parameters defining an m-state MAP. Note
that Inequality (8) and Estimate (9) when m := 2 provide the same convergence rate as
in [4], that is λ the second eigenvalue of matrix P .
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