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HYPERBOLIC FOUR-MANIFOLDS WITH ONE CUSP

ALEXANDER KOLPAKOV AND BRUNO MARTELLI

Abstract. We introduce an algorithm which transforms every four-dimensional cubulation into
a cusped finite-volume hyperbolic four-manifold. Combinatorially distinct cubulations give rise to
topologically distinct manifolds.

Using this algorithm we construct the first examples of finite-volume hyperbolic four-manifolds
with one cusp. More generally, we show that the number of k-cusped hyperbolic four-manifolds with
volume 6 V grows like CV lnV for any fixed k. As a corollary, we deduce that the 3-torus bounds
geometrically a hyperbolic manifold.

Introduction

By Margulis’ Lemma, a finite-volume complete hyperbolic n-manifold Mn has a finite number of
ends called cusps, each of which is diffeomorphic to Nn−1 × [0,+∞) for a certain closed connected
flat (n− 1)-manifold Nn−1.

In dimension three, we may construct cusped hyperbolic manifolds in various ways, for instance
by removing a knot or link from S3. There are essentially two different techniques to prove that
a link complement is hyperbolic: by decomposing it into geodesic ideal hyperbolic polyhedra, or
by checking that the manifold does not contain an immersed essential surface with χ > 0 and
thus invoking geometrisation. The first method was used by Thurston in his notes [19], where
he constructed various hyperbolic 3-manifolds with an arbitrary number of cusps. The computer
program SnapPy [6] may be used to check the hyperbolicity of any link with a reasonable number
of crossings.

In higher dimensions, constructing hyperbolic manifolds is more complicated. Due to the absence
of a geometrisation theorem of any kind, the hyperbolic structure on a smooth manifold needs to
be established explicitly, and this is typically done either by arithmetic methods or by assembling
geodesic polyhedra. The largest known census of cusped hyperbolic 4-manifolds is the list produced
by J. Ratcliffe and S. Tschantz [17] which contains 1171 distinct manifolds, all obtained by pairing
isometrically the faces of the ideal hyperbolic 24-cell: these manifolds have either 5 or 6 cusps.

We construct here the first example of a finite-volume hyperbolic four-manifold having only one
cusp. One of the motivations for this work is a result by D. Long and A. Reid [12] which shows that,
amongst the six diffeomorphism types of orientable flat 3-manifolds, at least two of them cannot be
cusp sections of a single-cusped four-manifold (but they are sections in some multi-cusped one [14]).
The authors then asked [12, 13] whether any single-cusped hyperbolic manifold exists in dimension
n > 4. The techniques introduced in the present paper answer this question in the affirmative if the
dimension is n = 4, but are not applicable in higher dimensions. We note that by a recent result of
M. Stover [18] there are no single-cusped hyperbolic arithmetic orbifolds in dimension n > 30.

In the present paper, we show that there are plenty of single-cusped hyperbolic four-manifolds,
and more generally of hyperbolic four-manifolds with any given number k > 1 of cusps. Let ρk(V )
be the number of pairwise non-homeomorphic orientable hyperbolic four-manifolds with k cusps and
volume at most V . The main result is the following.
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“Discrete hyperbolic geometry” no. 200020-144438/1. The second named author was supported by the Italian FIRB
project “Geometry and topology of low-dimensional manifolds”, RBFR10GHHH.
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2 ALEXANDER KOLPAKOV AND BRUNO MARTELLI

Figure 1. The minimally twisted chain link with 6 components. Its complement is
tessellated by four regular ideal octahedra. The block B has eight geodesic boundary
components, each isometric to this hyperbolic link complement.

Theorem 0.1. For every integer k > 1 there are two constants C > 1, V0 > 0 such that ρk(V ) >
CV lnV for all V > V0.

Let ρ(V ) be the total number of hyperbolic four-manifolds with volume at most V : it was proved
in [4] that CV lnV

1 > ρ(V ) > CV lnV
2 for some constants C1 > C2 > 1.

Following P. Ontaneda [16], we say that a flat manifold bounds geometrically a hyperbolic manifold
if it is diffeomorphic to a cusp section of some single-cusped hyperbolic manifold. By analysing the
cusp shapes we deduce the following corollary.

Corollary 0.2. The 3-torus bounds geometrically a hyperbolic manifold.

In fact, Ontaneda has proved that every flat manifold bounds geometrically a negatively pinched
Riemannian manifold [16], but Long and Reid showed that at least two amongst the six orientable
flat 3-manifolds cannot bound a hyperbolic manifold [12]. As we said above, the 3-torus is the first
example of a connected flat manifold of dimension n > 3 that bounds a hyperbolic manifold.

The proof of Theorem 0.1 is constructive and proceeds as follows. The ideal hyperbolic 24-cell C
is a well-known ideal right-angled four-dimensional hyperbolic polytope with 24 facets and 24 ideal
vertices: each facet is a regular ideal octahedron. The 24 facets are naturally divided into three sets
of 8 facets each, which we colour correspondingly in green, red and blue. We produce four identical
copies C11,C12,C21 and C22 of C and identify the corresponding red and blue facets as described by
the pattern below:

C11
oo R //

OO

B
��

C12OO

B
��

C21
oo
R
// C22

That is, we identify the red facets “horizontally” and the blue facets “vertically”. The resulting
object is a four-dimensional complete hyperbolic manifold B with non-compact geodesic boundary.
The geodesic boundary is formed by the 4 × 8 = 32 green facets which were left un-paired and has
eight components, each isometric to a well-known cusped hyperbolic three-manifold: the complement
of the chain link shown in Fig. 1.

The block B has eight boundary components and 24 cusps, each diffeomorphic to S1×S1× [0, 1]×
[0,+∞): this is a four-dimensional analogue of the annular cusps arising in dimension three. It turns
out that B looks combinatorially much alike as a four-dimensional hypercube H: the eight boundary
components correspond to the facets of H and the 24 cusps correspond to the 24 two-dimensional
faces of H. This combinatorial correspondence preserves all the geometric adjacencies.

As usual, we define a four-dimensional cubulation as the combinatorial data that consists of n
(four-dimensional) hypercubes and an isometric pairing of the resulting 8n facets. Having noticed
that B looks like a hypercube, we may transform every cubulation into an orientable complete
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finite-volume cusped hyperbolic four-manifold by substituting every hypercube with an instance of
B and glueing the geodesic boundaries as described by the combinatorics of the facet pairing. This
construction was inspired by a similar algorithm introduced in [5], which transforms a triangulation
into a hyperbolic 3-manifold. We have constructed a map{

cubulations
}
−→

{
orientable complete finite− volume
cusped hyperbolic four−manifolds

}
.

Various informations on the topology and geometry of the resulting hyperbolic four-manifold M
can be derived directly from the cubulation. The volume of M is 16n

3 π2 where n is the number
of hypercubes in the cubulation. The cusps of M may be recovered as follows: the facet-pairings
in the cubulation induce a partition of the 24n two-dimensional faces into cycles, and every cycle
corresponds to a cusp. Therefore, in order to construct a hyperbolic four-manifold with one cusp we
only need to construct a cubulation where all two-dimensional faces become identified (shortly: a
cubulation with only one 2-face). This can be done with a single hypercube.

The Mostow-Prasad rigidity together with the Epstein-Penner canonical decomposition [8] ensure
us that combinatorially distinct cubulations produce non-homeomorphic four-manifolds. In other
words, the map from the set of cubulation into the set of cusped hyperbolic manifolds described
above is injective. Therefore, in order to prove that ρ1(V ) > CV lnV we only need to show that the
number of cubulations with n hypercubes and one 2-face grows faster than Cn lnn.

The algorithm that transforms cubulations into hyperbolic manifolds can also be used to construct
plenty of closed Riemannian four-manifolds with non-positive sectional curvature or with Einstein
metrics. It suffices to construct a cubulation where every cusp is homeomorphic to a 3-torus (this
condition is easily checked combinatorially) and then perform a Dehn filling, i.e. glue a copy of
D2 × T 2 at each cusp. The Dehn filling is encoded by a triple (p, q, r) of co-prime integers, and if
the triple is sufficiently complicated the resulting manifold admits a non-positively curved metric
(by Gromov-Thurston’s 2π theorem, see [1]) and even an Einstein metric thanks to a theorem of
Anderson [1] that extends Thurston’s Dehn filling theorem to all dimensions.

Thus, various closed Einstein four-manifolds can be constructed on the basis of a simple combi-
natorial data: this can be seen as an analogue of presenting closed hyperbolic 3-manifolds as Dehn
surgeries along links in S3.

Structure of the paper. We introduce the building block B in Section 1, and then use it in order
to transform cubulations into hyperbolic four-manifolds in Section 2. We apply this construction in
Section 3 completing the proof of Theorem 0.1. Finally, we discuss Dehn fillings in Section 4.

1. The building block

We define the object which will play the central rôle in the sequel, namely, the building block
B. This is a hyperbolic four-dimensional finite-volume manifold with non-compact totally geodesic
boundary. In the following section we shall use B in order to transform any cubulation into a
hyperbolic four-manifold.

1.1. The octahedral 3-manifold. Let us start with the description of a cusped hyperbolic 3-
manifold whose eight disjoint isometric copies will form the boundary of the block B.

Let O be a regular ideal hyperbolic octahedron. Let us colour the faces of O in blue and red in
the chequerboard fashion (thus, every edge of O is adjacent to a red and a blue triangle). Now we
take four identical copies O11, O21, O12 and O22 of O and pair their faces following the rules below:

• for i ∈ {1, 2} we glue each red face of Oi1 to the corresponding red face of Ci2;
• for j ∈ {1, 2} we glue each blue face of O1j to the corresponding blue face of C2j .
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Figure 2. The minimally twisted chain link with 6 components (left) is symmetric
with respect to a π-rotation ι about the dotted circle. This symmetry quotients the
hyperbolic link complement N down to the octahedral orbifold (right), obtained from
the central picture by contracting each solid arc to a vertex. All the edges in the
orbifold on the right have index 2.

Figure 3. The regular ideal octahedron has a maximal horocusp section that consists
of six Euclidean unit squares.

The facets are matched by identifying all the pairs of corresponding points in them by means of a
hyperbolic isometry. The rules are summarised in the following glueing diagram:

(1) O11
oo R //

OO

B
��

O12OO

B
��

O21
oo
R
// O22

This glueing clearly gives rise to a hyperbolic 3-manifold N , since the dihedral angle along each
edge in O equals π

2 and the edges are assembled into sets of four elements each. We call N the
octahedral manifold. We may define an involution ι by interchanging O11 with O22 and O12 with
O21. The quotient orbifold N/ι may be then described as

O11
oo R //
oo
B
// O12.

It is tessellated by two isometric octahedra, with all the corresponding faces identified. Therefore
N/ι is the octahedral orbifold shown in Fig. 2-(right) with base space S3 and singular locus the
1-skeleton of an octahedron (all of its edges are labelled with the index 2). The manifold N is a
double cover of that orbifold, and Fig. 2 shows that N is homeomorphic to the complement of the
minimally twisted six chain link.
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The regular ideal octahedron O has a maximal horocusp section that consists of six Euclidean
unit squares, see Fig. 3. The maximal horocusp sections of O11, O12, O21 and O22 glue together up
to a maximal horocusp section of N that consists of six flat tori, each isometric to the square torus
T of area 4, constructed by identifying the opposite edges of a 2× 2 square. The six cusps of N are
in a natural 1− 1 correspondence with the ideal vertices of the octahedron O.

Let H (resp. V ) be the isometry of N that interchanges Oi1 with Oi2 (resp. O1j with O2j) for all
i (resp. j). The isometries H and V are orientation-reversing and we have ι = H · V = V ·H.

Proposition 1.1. Every isometry of N induces an isometry of O. Moreover, there is the following
exact sequence

0 −→ Z2 ⊕ Z2 −→ Isom(N) −→ Isom(O) −→ 0,

where Z2 ⊕ Z2 is generated by H and V .

Proof. The four octahedra form the canonical Epstein-Penner decomposition [8, Theorem 3.6] of N
and therefore are preserved by any isometry. On the other hand, every isometry ϕ of O is realised
by an isometry of N : if ϕ preserves the red-blue colouring, then it suffices to act by ϕ on each Oij ,
if it inverts the colouring then we act by ϕ on each Oij and then exchange O11 with O22, in order to
invert the colourings in the square diagram (1), so that the resulting isometry is well-defined on N .

The kernel of the surjective map Isom(N) → Isom(O) consists of all isometries of N that fix the
cusps. These are naturally identified with the symmetries of the square (1) that preserve the red-blue
colouring. Indeed, the kernel is the Z2 ⊕ Z2 group generated by H and V . �

Corollary 1.2. The involution ι is the unique non-trivial orientation-preserving isometry of N that
fixes the cusps.

The action of ι on each cusp is non-trivial: the cusp shape is a square torus, and ι acts like a
reflection with respect to the centre of the square. Therefore ι acts as an elliptic involution, whose
effect on the homology is multiplication by −1.

Let T ⊂ M be a torus inside an orientable closed three-manifold. The operation of cutting M
along T and re-glueing back using an elliptic involution is sometimes called a mutation: the result
of this operation is a new orientable three-manifold, which often is not homeomorphic to M . Here
we introduce a similar operation for hyperbolic four-manifolds.

Definition 1.3. Let M be an orientable hyperbolic four-manifold which contains a three-dimensional
geodesic sub-manifold N isometric to the octahedral manifold. Let us call a mutation of M along N
the operation of cutting M along N and re-glueing it back via the involutary isometry ι. The result
of this operation is a hyperbolic four-manifold, which is typically non-homeomorphic to the initial
one.

Remark 1.4. An embedded cusp section X of M is a collection of three-dimensional flat manifolds
that intersect the geodesic three-manifold N along six flat tori. A mutation of M along N changes the
cusp section X via mutation along these tori, because ι acts on the cusps like an elliptic involution.

1.2. The 24-cell. The 24-cell C is the only regular polytope in all dimensions n > 3 which is
self-dual and not a simplex. It may be defined as the convex hull

C = Conv(V )

of the set V that contains 24 points in R4 obtained by permuting the coordinates of

(±1,±1, 0, 0) .

These 24 points are the vertices of C . One checks easily that C has 24 facets, whose affine supporting
hyperplanes are

{±xi = 1},
{
±x1

2
± x2

2
± x3

2
± x4

2
= 1
}
.
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Each facet is a regular octahedron. The dual polytope C ∗ is therefore the convex hull

C ∗ = Conv(G ∪R ∪B)

where G contains the 8 points obtained by permuting the coordinates of

(±1, 0, 0, 0)

and R ∪B contains 16 points of the form(
±1

2
,±1

2
,±1

2
,±1

2

)
.

It is convenient to partition the latter set into R t B where R (resp. B) is the subset of 8 points
having an even (resp. odd) number of minus signs.

The facets of C are regular octahedra in a 1− 1 correspondence with the vertices G∪R∪B of C ∗

and we colour them accordingly in green, red and blue. This three-colouring of C is indeed natural:
one can prove that every symmetry of C induces a permutation of the sets G,R and B, and vice
versa every permutation may be realised in this way.

Another fact worth mentioning is that Conv(R ∪ B) represents a hypercube and Conv(G) corre-
sponds to its dual 16-cell, also the same is true after permuting the sets R, B and G.

The 24-cell C is self-dual, i.e. it has a homothetic dual C ∗. Thus C has 24 facets, 96 triangular
two-dimensional faces, 96 edges and 24 vertices. A facet is a regular octahedron, and (in accordance
with the self-duality) each vertex figure is a cube.

1.3. The hypercube. Let us consider the hypercube

H = [−1, 1]4.

We have already noticed that the barycentre of a facet in H is a point in G. Thus we get a natural
1− 1 correspondence {

facets of H
}
←→ G←→

{
green facets of C

}
.

The vertices in V are precisely the barycentres of the 2-dimensional faces in H, and thus we get one
more 1− 1 correspondence{

2− faces of H
}
←→ V ←→

{
vertices of C

}
.

Said in a single phrase, the 24-cell with its green facets and its vertices looks like a hypercube
with its (cubic) facets and its (square) 2-faces. This analogy is the core of our construction.

Restricted to the facets, this analogy is just the duality of polyhedra: an octahedral green facet of
C is dual to a cubic facet of H, both contained in the same affine hyperplane xi = ±1. The duality
map sends the vertices of the octahedron to the square faces of the cube.

Remark 1.5. Although we will not use it here, we mention that the analogy extends to all the strata
of H, as follows: {

vertices of H
}
←→ B ∪R←→

{
blue and red facets of C

}
.

{
edges of H

}
←→

{
triangular 2− faces of C

separating blue and red facets

}
.
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1.4. The regular ideal hyperbolic 24-cell. Every n-dimensional regular polytope P has a hyper-
bolic ideal presentation obtained by normalising the coordinates of its vertices so that they lie on
the unit sphere Sn−1 and by interpreting Sn−1 as the ideal boundary of Hn in Klein’s ball model.

Note that the vertex figure of an ideal vertex is a Euclidean regular (n− 1)-dimensional polytope
in some horosphere, whose dihedral angles coincide with the dihedral angles of P . For this reason,
the ideal regular hyperbolic tetrahedron, cube, octahedron and dodecahedron have Coxeter dihedral
angles π

3 , π3 , π2 and π
3 , respectively, since their vertex figures are either equilateral triangles or squares.

In what follows we keep denoting by C the ideal regular hyperbolic 24-cell obtained from the
Euclidean 24-cell C defined in Section 1.2 in the way described above. The vertex figure of C
is a Euclidean cube and therefore C has all dihedral angles π

2 . The 24-cell is the unique regular
four-dimensional polytope having cubical vertex figures: the vertex figures of the other five regular
four-dimensional polytopes are other Platonic solids, and therefore their dihedral angles are not sub-
multiples of π. Hence C may be used as a building block in order to construct cusped hyperbolic
4-manifolds, as shown by J. Ratcliffe and S. Tschantz [17].

The boundary of C consists of 24 regular ideal hyperbolic octahedra, 96 ideal triangular 2-
dimensional faces and 96 geodesic edges.

Recall that the octahedral facets of C are coloured in green, red and blue. We now glue four
isometric copies of C together to produce a hyperbolic 4-manifold B with totally geodesic boundary.

1.5. The 24-cell block B. In Section 1.1 we constructed the octahedral hyperbolic 3-manifold N by
glueing four copies of the regular ideal octahedron O according to the diagram (1), and by employing
the bi-colouring of O. Now we construct the building block B from C exactly in the same way, using
the colouring of its facets.

We pick four isometric copies of C , which we denote by C11,C12,C21 and C22, then pair some of
their facets as follows:

• for i ∈ {1, 2} we glue each red facet of Ci1 to the corresponding red facet of Ci2;
• for j ∈ {1, 2} we glue each blue facet of C1j to the corresponding blue facet of C2j .

The facets are matched by identifying all the pairs of corresponding points in them by means of
a hyperbolic isometry. We have glued together the red and the blue facets according to the same
square diagram as (1):

C11
oo R //

OO

B
��

C12OO

B
��

C21
oo
R
// C22

We denote by B the resulting topological object. The identifications have paired all the blue and
red facets: the un-paired facets of B are therefore the 4× 8 = 32 remaining green facets. As above,
the fact that C is right-angled should guarantee that the resulting object is a hyperbolic manifold:
now we prove this in detail.

Proposition 1.6. The space B is a hyperbolic four-manifold with totally geodesic boundary.

Proof. The building block B is obtained from C11,C21,C12 and C22 by an isometric glueing of some
pairs of their facets. Let us consider B as a cell complex. Then the 4- and 3-dimensional strata of B
clearly have a hyperbolic structure (with geodesic boundary). We need to check that the structure
extends to any point x lying in the 1- or 2-dimensional stratum S, i.e. on an edge or in an ideal
triangle.

We may suppose that x lies in a boundary edge or a triangle S of C11. Let us represent C11 in the
upper half-space model for H4 and send one of the ideal vertices of S to the infinity. Let Ux be a
horizontal horosphere passing through x. Suppose for now that the fourth coordinate x4 of x is big
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enough, so that the intersection Ux ∩ C11 is a Euclidean cube C11. The point x is either a vertex of
or contained in an edge of C11.

The faces of the cube C11 are coloured in green, red and blue according to the colours of the
facets of C11 they are contained in. Opposite faces share the same colour. The block B contains
four isometric copies C11, C12, C21, C22 of this cube, which are glued according to the same pattern
as above:

C11
oo R //

OO

B
��

C12OO

B
��

C21
oo
R
// C22

These cubes form a flat manifold in B, which is isometric to T × [0, 1], where T is the Euclidean
square torus of area 4, obtained by identifying the opposite sides of a 2 × 2 square. Therefore x is
contained in a hyperbolic cusp based on that flat manifold: the hyperbolic structure clearly extends
to x. If x4 is arbitrary, then the intersection B ∩ Ux is only a subset of a cube, but still it looks
geometrically like a piece of a cube near x and hence the same argument applies. �

During the proof we have described the cusps of B: they are of the type T × [0, 1]× [0,+∞), and
they are 24 in total, one for each ideal vertex of C . We will return to that later: first we describe
the totally geodesic boundary of B.

Proposition 1.7. The block B has eight totally geodesic boundary components, each isometric to
the octahedral 3-manifold.

Proof. A green octahedral facet O of C gives rise to four regular ideal octahedra O11, O12, O21 and
O22 glued together in accordance with the square diagram (1), forming an octahedral 3-manifold.
The eight green facets of C produce eight such manifolds. �

The eight boundary components naturally correspond to the green facets of C . There is a sequence
of 1− 1 correspondences (recall that H is the hypercube):{

facets of H
}
←→ G←→

{
green facets of C

}
←→

{
(geodesic) boundary

components of B

}
1.6. The maximal cusp section. Finally, we describe the cusps of B. As an ideal regular polytope,
the 24-cell C has a maximal horosection which meets every boundary octahedron also in a maximal
(two-dimensional) horosection. The maximal horosection of an ideal regular octahedron clearly
consists of six unit squares. Hence the maximal horosection of C comprises a unit Euclidean cube
C for each vertex v of C .

The faces of C inherit the colour of the facets of C that they are contained in: every cube is hence
coloured in green, red or blue, with opposite faces sharing the same colour. The block B contains
four isometric copies C11, C12, C21 and C22 of C, which are glued in accordance to the usual pattern:

C11
oo R //

OO

B
��

C12OO

B
��

C21
oo
R
// C22

These four cubes glue together in order to form the flat manifold T × [0, 1] where T is the Euclidean
torus obtained by identifying the opposite sides of a 2 × 2 square. The maximal horosection of C
then gives rise to a maximal horosection of B made of 24 components (one for each vertex of C ),
each isometric to T × [0, 1].
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Figure 4. A toric cusp in B. Every flat section is T × [0, 1], up to a similarity, where
T is the square torus obtained by identifying the opposite sides of a 2×2 square. The
flat section is tessellated by four cubes: these are four copies of the same vertex cube
in C , glued following the pattern as in (1).

A horosection isometric to T × [0, 1] bounds a toric cusp homeomorphic to T × [0, 1] × [0,+∞):
this is a four-dimensional analogue to the annular cusps that one may find in hyperbolic 3-manifolds
with totally geodesic boundary, see fig. 4.

Thus, concerning the geodesic boundary components, we have found a sequence of natural 1 − 1
correspondences:{

2− faces of H
}
←→ V ←→

{
vertices of C

}
←→

{
(toric) cusps of B

}
.

Summing up, the block B looks combinatorially like the hypercube H, with 8 geodesic boundary
components corresponding to the facets of H, and 24 toric cusps corresponding to the 2-faces of H.
(The vertices and edges of H do not play a rôle here.) The correspondence is easily described on the
facets: a geodesic boundary component N is made of four copies of an octahedral green facet O of
C , which is dual to the corresponding cubic facet C of H. The six cusps of N correspond to the six
vertices of O and hence, by duality, to the square faces of C.

The picture is similar to the one given in [5] where the authors constructed a 3-dimensional block
combinatorially equivalent to a tetrahedron. In that paper this correspondence was used to transform
any 3-dimensional triangulation into an orientable hyperbolic cusped 3-manifold. Here we perform
an analogous construction, using hypercubes instead of tetrahedra.

2. Cubulations

We now construct orientable hyperbolic four-manifolds by glueing several copies of the block B
along their totally geodesic boundaries. The combinatorial tool which is best suited to describe this
procedure is a cubulation.

2.1. The construction. A combinatorial four-dimensional cubulation (here for short, a cubulation)
is a data that consists of n copies H1, . . . ,Hn of the standard hypercube H together with an isometric
pairing of the given 8n facets. An isometric pairing is a partition of the 8n facets into pairs, together
with a Euclidean isometry between the two cubes in each pair.

Here we show how a cubulation determines a finite-volume cusped orientable hyperbolic four-
manifold, unique up to some well-understood mutations (recall Definition 1.3). Note that we make no
requirements on the cubulation: the topological space obtained by glueing the hypercubes H1, . . . ,Hn

does not need to be a manifold. However, we always assume that it is connected.
First, we pick n isometric copies B1, . . . ,Bn of the block B. Recall that there is a 1 − 1 corre-

spondence between the facets (resp., 2-faces) of H and the boundary components (resp., cusps) of B.
For every isometric pairing ϕ : C1 → C2 of two cubic facets we construct an isometry ϕ∗ : N1 → N2

between the corresponding geodesic boundary components. Recall that Nh is made of four copies
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Ohij of an ideal octahedron Oh naturally dual to the cube Ch, for every h = 1, 2. The isometry ϕ

defines an isometry ϕ : O1 → O2 according to the duality.

By Proposition 1.1, there are precisely four distinct choices for ϕ∗. Let ϕij∗ : N1 → N2 be the
isometry that sends O1

11 to O2
ij via ϕ and extends (uniquely) to the whole of N1. The four choices

are

ϕ11
∗ , ϕ12

∗ = H ◦ ϕ11
∗ , ϕ21

∗ = V ◦ ϕ11
∗ , ϕ22

∗ = ι ◦ ϕ11
∗ .

Amongst these isometries, two are orientation-preserving and the other two are orientation-reversing;
the isometries ϕ11

∗ and ϕ22
∗ are of the same type and differ only by the involution ι, as are the isometries

ϕ12
∗ and ϕ21

∗ . The following lemma follows from the construction.

Lemma 2.1. The map ϕ11
∗ is orientation-reversing if and only if ϕ is.

Since we want to obtain an orientable four-manifold, we choose one of the two orientation-reversing
isometries.

The possible two choices differ exactly by composition with the involution ι. That is, the resulting
orientable four-manifold M is uniquely determined, up to mutations along some of the 4n geodesic
octahedral manifolds which it contains by construction.

Summing up, we have described an algorithm that transforms every cubulation into a cusped
hyperbolic orientable four-manifold, well-defined up to a mutation. We now study these hyperbolic
manifolds in detail.

2.2. The hyperbolic four-manifolds. A cubulation C is an isometric pairing of the facets of n
hypercubes H1, . . . ,Hn. Every hypercube has 8 cubic facets and 24 square two-dimensional faces.
Every square face is contained in exactly two cubic facets and is hence identified by the pairing to
two other square faces (counted with multiplicities).

Consider the abstract set of 24n square faces and connect two of them if they are identified by
some pairing: the resulting graph will be a union of cycles. The number k of the resulting cycles
and the length of each depend not only on n, but on the combinatorial structure of the cubulation
as well.

We have described a procedure that transforms the cubulation C into a hyperbolic orientable
four-manifold M . A considerable amount of information about M can be derived directly from C,
thanks to the following correspondences that follow immediately from the construction:

• the n hypercubes in C correspond to the n copies of the block B in M ;
• the 4n pairs of cubes in C correspond to the totally geodesic octahedral 3-manifolds separating

two adjacent blocks;
• the k cycles of squares in C correspond to the k cusps of M .

For example, the volume formula is a direct consequence:

Proposition 2.2. We have χ(M) = 4n and Vol(M) = 4π2

3 χ(M) = 16n
3 π2.

Proof. The manifold M is tessellated by n isometric copies of B and hence by 4n copies of the 24-cell

C , which has the volume 4
3π

2, see for instance [11]. The formula Vol(M) = 4π2

3 χ(M) holds for any
hyperbolic four-manifold [7]. �

Note that there exist cusped hyperbolic four-manifolds having any positive Euler characteristic,
c.f. [17].

We now turn to the k cusps of M , corresponding to the k cycles of squares in C. The toric
maximal sections of the Bi’s glue together to a maximal cusp section of M , determined only by the
cubulation. It consists of k components, one for each cycle of squares. As above, let T denote the
square torus obtained by identifying the opposite sides of a 2× 2 Euclidean square. We tessellate T
into four unit squares in the obvious way.
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Figure 5. A cusp in M is constructed from T × [0, h] by glueing the two boundary
tori via an isometry that preserves the tessellation into four unit squares. In the
picture, h = 4.

Proposition 2.3. Let X be a connected component of the maximal cusp section of M , corresponding
to a cycle of h square 2-faces. The flat 3-manifold X is isometric to

T × [0, h]/ψ

where ψ identifies T × 0 and T × h via an orientation-preserving isometry of T which preserves its
tessellation into unit squares. Topologically, the cusp section is homeomorphic to the torus bundle
over S1 with one of the following monodromies:(

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)
.

Proof. The flat manifold X is made of h pieces, each isometric to a toric cusp T × [0, 1] corresponding
to some vertex in some block Bi. The tessellation into squares of T corresponds to the subdivision
of B into Cij ’s. By construction, every piece is glued to the subsequent one via an isometry that
preserves the tessellation: therefore the maximal cusp section looks exactly as required, see Fig. 5.

The manifold X is homeomorphic to a torus bundle over S1 with some monodromy A having
detA = 1. Since ψ preserves the tessellation, it also preserves the pair (meridian, longitude) up to
signs and permutation of its components. Therefore A preserves the unordered pair of coordinate
axis in R2 and hence is one of the following rotation matrices:(

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)
.

The latter two are conjugate and hence give rise to the same fibred 3-manifold, up to homeomorphism.
�

Corollary 2.4. The flat 3-manifold X has volume 4h. The maximal cusp section of M has total
volume 4× 24n = 96n.

Recall that a cusped hyperbolic manifold has an Epstein-Penner canonical decomposition into
geodesic ideal polytopes, determined by the choice of a section at each cusp [8].

Proposition 2.5. The Epstein-Penner canonical decomposition of M determined by the maximal
cusp section is the decomposition of M into 4n ideal 24-cells.

Proof. The maximal cusp section and the decomposition into ideal 24-cells lift to the tessellation of
H4 by ideal 24-cells, together with a horocusp at each ideal vertex. The set of horocusps is invariant
under the action of the isometry group of the tessellation. The Epstein-Penner decomposition is
formed by interpreting the horocusps as points of the light cone in R4,1 and taking their convex hull.
Thus, by symmetry, the resulting decomposition is just the original decomposition into 24-cells. �
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How can we determine the precise isometry or homeomorphism class of X by looking only at the
combinatorics of C? It is much easier to answer this question when the cubulation is orientable.

2.3. Orientable cubulations. Recall that a cubulation C is an isometric pairing of the 8n facets
of n copies H1, . . . ,Hn of the hypercube H. As usual, the natural orientation of H induces an
orientation on all its facets, which is replicated in the copies H1, . . . ,Hn.

Definition 2.6. The cubulation C is orientable if all the isometric pairings are orientation-reversing.

In our construction, a cubulation C determines a hyperbolic manifold M only up to mutations.
When C is orientable, we may resolve this ambiguity as follows: by Lemma 2.1 every glueing map
ϕ11
∗ is orientation-reversing, and hence we choose ϕ∗ = ϕ11

∗ in all our pairings.
This choice turns out to be very convenient for the analysis of the maximal cusp section. Recall

that each cusp of M corresponds to a cycle of squares in C, which may be represented as

(2) Q1
ψ1 // Q2

ψ2 // · · ·
ψh−1 // Qh

ψh // Q1.

Each Qi is a square in some hypercube and each ψi is an isometry. The composition ψ = ψh◦· · ·◦ψ1

is an isometry of a Euclidean square, whose conjugacy class depends only on the cycle and thus is
called its monodromy. Since C is orientable, the monodromy ψ is orientation-preserving and is
represented (up to a conjugation) by one of the following rotation matrices:(

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)
.

As above, let T be the torus obtained by identifying the opposite faces of the 2× 2 square [−1, 1]2.
The matrix ψ acts on [−1, 1]2 and hence on T .

Proposition 2.7. Let C be an orientable cubulation. The cusp section corresponding to a cycle of
h squares with monodromy ψ is isometric to T × [0, h]/ψ.

Proof. The cycle of squares (2) corresponds to a cycle of tori

T1
f1 // T2

f2 // · · ·
fh−1 // Th

fh // T1.

in the cusp section. Each Ti is a square 2 × 2 torus. Let Si ⊂ Ti be the unit top-left square in Ti:
it is naturally dual to the square Qi. By our convention, the isometry fi sends Si onto Si+1, and it
does so via an isometry dual to ψi. Therefore f = fh ◦ · · · ◦ f1 sends S1 to itself via a map conjugate
to ψ. Therefore the whole of f is conjugate to ψ, as required. �

Example 2.8. Define an orientable cubulation by taking one hypercube H and pairing its opposite
facets via translations. All the parallel square 2-faces are identified: we thus get 6 cycles of 4 squares
each; each cycle has trivial monodromy. The resulting hyperbolic manifold M has 6 cusps. Each
maximal cusp section is a 3-torus isometric to a right-angled parallelepiped with side lengths 2, 2
and 4 whose opposite faces are identified by translations.

Example 2.9. Define an orientable cubulation by taking two copies H1 and H2 of the hypercube
H and pairing each facet of H1 with the corresponding facet of H2 via the identity map. We get 24
cycles of square 2-faces, each cycle containing only two squares with trivial monodromy. The resulting
hyperbolic manifold M has 24 cusps. Each maximal cusp section is a cubic 3-torus isometric to a
cube with side-lengths 2 whose opposite faces are identified by translations. This very symmetric
manifold M may be constructed directly by taking eight copies of the triple-coloured 24-cell C and
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glueing them together according to the following cubic diagram:

C111
oo R //

OO

B ��

C112OO

B

��
C211

��
G ??

oo R //
OO

B

��

C212

��
G ??

OO
B

��
C121

ooR // C122

C221
oo
R
//

��
G ??

C222

��
G

??

The manifold M is analogous to the octahedral manifold N : indeed we can compute Isom(M)
by applying the same proof of Proposition 1.1. Let H (resp. V , and L) be the isometry of M that
interchanges Cij1 with Cij2 (resp. Ci1j with Ci2j , and C1ij with C2ij). Then ι = H · V · L is the
central involution of the above cubical diagram. We get the following exact sequence:

0 −→ Z2 ⊕ Z2 ⊕ Z2 −→ Isom(M) −→ Isom(C ) −→ 0,

where the group Z2 ⊕ Z2 ⊕ Z2 is generated by H, V and L.

2.4. Uniqueness. Two cubulations C = {H1, . . . ,Hn} and C ′ = {H ′1, . . . ,H ′n} are combinatorially
equivalent if there is a sequence of isometries {ϕi : Hi → H ′i}i=1,...,n which transforms all the pairings
of C into the pairings of C ′. Below we prove the following theorem.

Theorem 2.10. Non-equivalent cubulations with at least 3 hypercubes produce non-homeomorphic
hyperbolic four-manifolds.

A cubulation actually produces a finite set of hyperbolic four-manifolds related by mutations, and
the theorem says that any two manifolds produced by non-equivalent cubulations with at least 3
hypercubes are non-homeomorphic. A similar theorem was proved in [5], and our proof strategy is
the same. We do not know if the hypothesis on the number of hypercubes is necessary, but it helps
to simplify the arguments. We start by proving a lemma.

Lemma 2.11. Combinatorially non-equivalent cubulations with at least 3 hypercubes produce com-
binatorially non-equivalent decompositions into ideal 24-cells.

Proof. A cubulation C consisting of n hypercubes gives rise to a hyperbolic four-manifold M (defined
up to mutations) which can be decomposed into 4n hyperbolic ideal regular 24-cells. We show that
the cubulation C can be recovered (up to combinatorial equivalence) from such a decomposition:
this proves the lemma.

Recall that in the block B every 24-cell is adjacent to two other 24-cells along two sets of eight
facets sharing same colour. If every 24-cell of the decomposition is adjacent only to two other 24-cells
along eight facets, then the blocks can be recovered from the decomposition into 24-cells. Thus, the
decomposition into blocks determine C and the lemma is proved.

If not, there is a 24-cell which is adjacent to three 24-cells, along eight facets to each. This
implies that the block B that contains this 24-cell is incident along all of its 8 geodesic boundary
components to another block B′ (which might coincide with B). Therefore C consists only of one
or two hypercubes, which contradicts our hypothesis. �

We would like to conclude by saying that the decomposition into ideal 24-cells is determined by
the topology of M only. Proposition 2.5 says that the decomposition is determined by the topology
of M and the maximum cusp section: thus we need to prove that the maximum cusp section is
determined by the topology. When M has only one cusp this is immediate: when the are more
cusps the situation is more delicate, because the maximum cusp section depends on the ratios of
the volumes spanned by different cusp sections. Luckily, the topology alone tells us which ratio to
choose. A similar argument was used in [5].
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Lemma 2.12. Let M be a hyperbolic manifold produced by a cubulation. Then the maximal cusp
section of M is determined only by its topology.

Proof. The maximal cusp section is obtained by selecting for each cusp corresponding to a cycle of h
squares the unique section X with three-dimensional volume equal to 4h. If we show that the integer
h can be recovered intrinsically from the topology of the cusp, the proof is finished.

More precisely, the flat manifold X is only determined up to similarity, and we now prove that
h can be recovered from its similarity class. As Proposition 2.3 says, up to a similarity we have
X = T × [0, h]/ψ, where T is the 2 × 2 square torus and ψ identifies T × 0 with T × h via an
orientation-preserving isometry of T that preserves its tessellation into four unit squares.

We have that X = R3/Γ where Γ is a discrete group of orientation-preserving isometries of R3

without fixed points, determined only up to a similarity. The group Γ contains a finite-index trans-
lation subgroup T < Γ isomorphic to Z3 which may be seen as a lattice in R3, which is also defined
up to a similarity.

Let v1, v2 ∈ T be two vectors such that the following conditions are satisfied:

(1) v1 and v2 are orthogonal and have the same length l;

(2) the number h = 2Vol(X)
l3

is an integer;
(3) v1 and v2 are the shortest such vectors.

The resulting integer h = 2Vol(X)
l3

depends only on the similarity class of X because the formula is
invariant under a rescaling of the flat metric on X. To show that in this way we recover the number
h, we have to analyse separately a number of cases proving the existence of the vectors v1 and v2

in each of them. Recall that up to a similarity we have X = T × [0, h]/ψ. Then, if h > 3, it is
clear that v1 and v2 are the length two vectors corresponding to the translations along the respective
dimensions of T , which is a side of the parallelepiped that gives rise to the lattice T . If h = 2, there
can be another pair of vectors having length two, not necessarily corresponding to T , that we can

choose as vi’s. However, we always have l = 2 and Vol(X) = l2h = l3h
2 . Thus, we are left with the

case of h = 1.
Suppose ψ is not a translation, that is X is not a 3-torus. Thus T 6= Γ and T is generated by

(2, 0, 0), (0, 2, 0), and a third vector of the form (a, b, c) with c = 2 or c = 4, which corresponds to
either ψ2 or ψ4 depending on the homeomorphism class of X. In this case we conclude as above.
Finally, we are left with the case T = Γ and h = 1. We know that ψ preserves the tessellation of the
torus T into four squares. There are four possible such translations, and so the lattice T is generated
by one of the following triples:

(2, 0, 0), (0, 2, 0), (0, 0, h);

(2, 0, 0), (0, 2, 0), (1, 0, h);

(2, 0, 0), (0, 2, 0), (0, 1, h);

(2, 0, 0), (0, 2, 0), (1, 1, h).

It is easy to check that in all the above cases v1 and v2 are either the original vectors (2, 0, 0) and
(0, 2, 0) that generate the torus T , or some other pair of vectors having length l = 2, that we can

choose as vi’s. The requirement that 2Vol(X)
l3

is an integer excludes the solutions with l =
√

2 that
arise for instance if v1 = (1, 0, 1) and v2 = (−1, 0, 1) when Γ is generated by (2, 0, 0), (0, 2, 0), and
(1, 0, 1). �

Proof of 2.10. Non-equivalent cubulations produce combinatorially non-equivalent decompositions
into ideal 24-cells by Lemma 2.11. These decompositions are certain Epstein-Penner canonical de-
compositions by Proposition 2.5, which depend only on the topology of the manifolds by Lemma
2.12. Therefore, non-equivalent decompositions give rise to non-homeomorphic manifolds. �
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Figure 6. The Schlegel diagram of the hypercube H. Each facet is labelled with an
integer 1 to 8. The innermost facet has label 7, the outermost has label 8.

3. Four-manifolds with k cusps

We can now use cubulations to construct plenty of cusped hyperbolic four-manifolds. Let ρk(V )
denote the number of non-homeomorphic orientable hyperbolic four-manifolds with k cusps and
volume at most V . Below, we prove the following theorem.

Theorem 3.1. For every integer k > 1 there are two constants C > 1, V0 > 0 such that ρk(V ) >
CV lnV for all V > V0.

Let us start by constructing a hyperbolic four-manifold with one cusp.

3.1. A hyperbolic manifold with one cusp. In the previous section we have shown how to trans-
form a four-dimensional cubulation into a hyperbolic four-manifold. Recall that the 2-dimensional
faces in a cubulation are partitioned into cycles, and that each cycle gives rise to a cusp in the
respective manifold. Therefore, in order to construct a hyperbolic manifold with one cusp we have
to find a cubulation with only one cycle of square 2-faces. We construct such a cubulation here.

The cubulation consists of one hypercube H shown in Fig. 6. Its eight cubic facets are numbered
from 1 to 8. We pair the opposite faces (1, 2), (3, 4), (5, 6) and (7, 8) via certain Euclidean isometries.
The isometries are described in Fig. 7: we have reproduced every facet from Fig. 6 and drawn a frame
x, y, z in each, that consists of a vertex and three adjacent oriented edges ordered as x, y, z. We
identify the facets on the left with the facets on the corresponding right using the unique isometry
that matches the frames.

Proposition 3.2. The cubulation is orientable and has a unique cycle of 2-faces.

Proof. Every facet inherits an orientation from the orientation of H. In Fig. 6, all the facets are
projected inside 8. Therefore, the orientation of the facets 1 to 7 is the same, and that of 8 is reversed.
The isometries in Fig. 7 pairing (1, 2), (3, 4) and (5, 6) are orientation-reversing as isometries in R3,
while that pairing (7, 8) is orientation-preserving. Thus, all the isometries are orientation-reversing
if seen with the intrinsic orientation of ∂H: the cubulation is hence orientable.
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(a) (b)

(c) (d)

Figure 7. The pairing of the facets of H. Every row describes a pair of opposite
facets, which are identified by the unique isometry which matches the x, y, z frames.
The facet labels of H are encircled. The square 2-face labels are bold. All facets have
the same orientation, except for 8.

We now prove that all the square 2-faces form a unique cycle. We have labelled the 24 distinct
2-faces of H with the symbols

a,b, c,d, e, f ,1,2,3,4,5,6,g,h,k, l,7,8,9,0,m,n,o,p.

The labels are shown in Fig. 7. The facet pairing induces the following identifications of the corre-
sponding 2-faces:

a→ 1 f → 6 1→ 8 c→ ∅
b→ 2 e→ 5 g→ 9 k→ 7
c→ 3 d→ 4 h→ d l→ 6

(3)

m→ ∅ n→ l e→ 9 2→ g
3→ f a→ 4 n→ 5 o→ b
h→ o 8→ p k→m 7→ p

(4)

Altogether these identifications produce a unique cycle:

(5) a18p7km∅c3f6ln5e9g2bohd4a.

�

The algorithm described in the previous section transforms the cubulation into a cusped hyperbolic
four-manifold M with one cusp.

3.2. Proof of Theorem 3.1. Thanks to the discussion carried over in the previous sections, the
proof of Theorem 3.1 reduces to the following lemma, which deals with cubulations only and not
with hyperbolic geometry. Let ηk(n) be the number of combinatorially distinct cubulations with at
most n hypercubes whose 2-dimensional faces form exactly k cycles.
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Figure 8. Adding a flower to an edge of the incidence graph. The new cubulation
C ′ has one hypercube more than C.

Figure 9. The sequence of 2-faces in the partial cubulation.

Lemma 3.3. For every integer k > 1 there are two constants C, n0 > 1 such that ηk(n) > Cn lnn for
all n > n0.

Proof of Theorem 3.1 from Lemma 3.3. By Theorem 2.10 non-equivalent cubulations (with at least
3 hypercubes) produce non-homeomorphic hyperbolic four-manifolds. �

The rest of this section is devoted to the proof of Lemma 3.3. The incidence graph G of a cubulation
C is constructed by placing a vertex for every hypercube and an edge for every facet-pairing. Every
vertex in G has valence 8. We start by the following proposition.

Proposition 3.4. Let a cubulation C have k > 1 cycles of square 2-faces and incidence graph G.
There is a cubulation C ′ with k− 1 cycles of 2-faces, whose incident graph G′ is obtained from G by
applying the transformation depicted in Fig. 8 to some edge of G.

Proof. Every cycle of 2-faces in C may be seen as a closed path in G. This closed path may pass
multiple times over a vertex or edge of G. Let us denote these cycles by f1, . . . , fk.

Every edge e of G corresponds to a pairing of 3-dimensional cubes, identified to a single cube K
in the cubulation. The edge e is traversed 6 times by the paths f1, . . . , fk: each passing corresponds
to a 2-face of K. A path may traverse e multiple times in both directions.

Since k > 1, it is easy to deduce that there is at least one edge e which is traversed by at least
two distinct paths: in other words, not all of the six faces in the corresponding cube K belong to
the same cycle. Then we may pick two non-opposite 2-faces of K that belong to distinct cycles, say
f1 and f2.

We now want to insert a new hypercube at e and construct a new cubulation in which f1 and
f2 become a single cycle. In order to do so, we construct a “partial cubulation” as follows. Let us
consider a new hypercube H as in Fig. 6 and pair the facets (3, 4), (5, 6) and (7, 8) as described by
Fig. 7, leaving the facets 1 and 2 unglued. The 2-faces of the facets 1 and 2 are labelled respectively
with the symbols a,b, c,d, e, f and 1,2,3,4,5,6. The partial cubulation induces a partition of the
24 two-dimensional faces of H into six sequences, obtained by cutting the cycle (5) at six points,
separating the pairs a1, c3, f6, 5e, 2b, d4. These six sequences are:

18p7km∅c, 3f , 6ln5, e9g2, bohd, 4a.
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Figure 10. By inserting the partial cubulation at an edge we reduce the number of
cycles by one.

We visualise the six paths in Fig. 9. Each path connects a pair of 2-faces belonging to the unglued
facets 1 and 2. We note that there are only two paths connecting two square 2-faces belonging to
the same 3-dimensional cube: they connect b to d and 5 to 6.

We now turn back to our original cubulation C. We visualise the six paths traversing the edge e
as in Fig. 10-(left): the three pairs of paths correspond to the three pairs of opposite faces in K. By
hypothesis, the cycles f1 and f2 pass through two non-opposite faces. We now modify the cubulation
C by inserting the partial cubulation at the edge e as suggested by Fig. 10. The incidence graph
changes as in Fig. 8 and the cycles look now as shown in Fig. 10: the two cycles f1 and f2 are fused
into a single cycle, and all other cycles remain the same. This proves the proposition. �

We can now prove Lemma 3.3 in the case of k = 1.

Lemma 3.5. There are two constants C, n0 > 1 such that η1(n) > Cn lnn for all n > n0.

Proof. Recall that a regular v-graph is a simple graph where every vertex has valency v. By simple
we mean that every edge connects two distinct vertices and distinct edges connect distinct pairs of
vertices.

By [3], the number of non-isomorphic v-regular graphs with n vertices grows like Cn lnn for any
fixed v > 3 and C > 1 depending only on v. Therefore, it would have been sufficient to prove that
every 8-regular graph G arises as the incidence graph of a cubulation with only one 2-face. However,
we are unable to prove exactly this statement, but we can use the previous proposition to prove a
slightly weaker version of it, which is enough for our purposes.

Let G be a 8-regular graph with n vertices. Let C be any cubulation with incidence graph G.
The cubulation C has at most 24n cycles of square 2-faces: Proposition 3.4 implies that by adding
at most 24n flowers at its edges, as shown in Fig. 8, we may transform G into a graph G′, which is
the incidence graph of a cubulation with only one 2-face.

Every flower increases the number of vertices of G by one. Therefore every 8-regular graph G with
n vertices gives rise to a graph G′ with at most 25n vertices which is the incidence graph of some
cubulation with one 2-face. The graph G can be reconstructed from G′ by eliminating all the petals,
i.e. the edges with coinciding endpoints: therefore non-isomorphic regular graphs G and H give rise
to non-isomorphic graphs G′ and H ′ and hence to non-isomorphic cubulations.

Let f(n) be the number of non-isomorphic simple 8-regular graphs. We know that f(n) > C0
n lnn

for some C0, n0 > 1 and all n > n0. We have proved that η1(25n) > f(n) > C0
n lnn. The latter

implies that η1(n) > C1
n lnn, with some C0 > C1 > 1 and n1 > n0 > 1. �

We now turn to the general case, and so we will need the following proposition.
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Proposition 3.6. Let C be a cubulation with incidence graph G. For every k > 0 there is a
cubulation C ′ with more than 2k cycles of 2-faces, whose incident graph G′ is obtained from G by
applying k times the move of Fig. 8.

Proof. First we construct a partial cubulation as in the proof of Proposition 3.4, but this time we
use the cubulation from Example 2.8: we take a hypercube H and identify three pairs of opposite
facets by a translation, leaving the fourth pair unglued. In contrary to the one used in the proof of
Proposition 3.4, this partial cubulation contains two inner cycles of 2-faces. Take any edge e of G.
Let us insert k subsequent copies of this partial cubulation at e: the resulting cubulation C ′ contains
more than 2k cycles of 2-faces. The graph G changes by adding k flowers at e, as required. �

We finish the proof of Lemma 3.3.

Lemma 3.7. For every integer k > 1 there are two constants C, n0 > 1 such that ηk(n) > Cn lnn for
all n > n0.

Proof. The proof proceeds as for Lemma 3.5. Let C a cubulation with incidence graph G. By adding
k flowers we get a cubulation C ′ with more than 2k cycles of 2-faces thanks to Proposition 3.6.
Then, in accordance with Proposition 3.4, by adding at most 25(n+ k) more flowers we finally get a
cubulation C ′′ with exactly k distinct cycles of square 2-faces. The rest of the argument is analogous
to that of Lemma 3.5. �

The proof of Theorem 3.1 is now complete.

3.3. Cusp shapes. In Section 3.1 we have introduced an orientable cubulation C with one hypercube
H and one cycle of 2-faces, determining a hyperbolic manifold M with one cusp. We are now
interested in determining the topology of its cusp section.

Proposition 3.8. The maximal cusp section of M is the flat 3-torus obtained by identifying the
opposite faces of a right-angled parallelepiped of size 2× 2× 24.

Proof. We need to determine the monodromy of the respective cycle of 2-faces. In order to do so,
we develop the eight cubic faces of the hypercube H as in Fig. 11 and we fix a marking frame on the
square face a in the cube 1 as follows:

Then we accurately carry the frame along the cycle

a18p7km∅c3f6ln5e9g2bohd4a

until we find out that the final frame matches the initial one (marked with a circle in the figure).
Therefore the monodromy is the identity map and Proposition 2.7 implies that the maximal section
is as required. �

Corollary 3.9. The 3-torus bounds geometrically a hyperbolic manifold.

Which flat manifolds are realisable as cusp sections of some manifolds arising from our construc-
tion? We already know from Proposition 2.3 that only three homeomorphism types may be realised.
We have obtained the 3-torus with one cusps, and we can also obtain the other two types with two
cusps:

Proposition 3.10. Let X be a torus bundle over S1 with monodromy(
−1 0
0 −1

)
or

(
0 1
−1 0

)
.

There exists a hyperbolic 4-manifold with two cusps, both having a cross-section homeomorphic to
X.
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(a) (b)

(c) (d)

Figure 11. The pairing of the facets of H and the evolution of the frame associated
with the square 2-face labelled a. The facets of H are flattened.

Proof. We consider the orientable cubulations with one hypercube H depicted in Fig. 12 and Fig. 13
(also, see Fig. 6): these give rise to two hyperbolic manifolds K and L . Each cubulation has
two cycles of square 2-faces: the monodromies are calculated in Fig. 14 and Fig. 15 and they are
respectively (

0 1
−1 0

)
,

(
0 −1
1 0

)
and

(
−1 0
0 −1

)
,

(
−1 0
0 −1

)
.

�

Using Ontaneda’s terminology [16], we may say that X t X bounds geometrically a hyperbolic
manifold when X is a torus bundle with monodromy

(−1 0
0 −1

)
or
(

0 1
−1 0

)
. We were not able to prove

that X bounds a hyperbolic manifold with our constructions; in fact, we formulate the following
conjecture:

Conjecture 3.11. The cusp section of a hyperbolic 4-manifold with a single cusp arising from a
cubulation is a flat 3-torus.

Finally, it is easy to construct for every integer n > 1 an n-sheeted covering Mn of M with n
cusps, whose sections are n flat tori. It suffices to take n copies H0, . . . ,Hn−1 of the hypercube H
shown in Fig. 6 and pair their facets as follows:

(1i, 2i), (3i, 4i), (5i, 6i), (7i, 8i+1)

where Ni indicates the facet number N in Hi and i + 1 means addition modulo n. For every pair,
the isometry is again the one described in Fig. 7.
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(a) (b)

(c) (d)

Figure 12. The cubulation giving rise to the manifold K from Proposition 3.10

(a) (b)

(c) (d)

Figure 13. The cubulation giving rise to the manifold L from Proposition 3.10

Proposition 3.12. The resulting hyperbolic manifold Mn has n cusps. Its maximal cusp section
consists of n flat 3-tori, each obtained by identifying the opposite faces of a right-angled parallelepiped
of size 2× 2× 24.

Proof. The square 2-faces are identified according to the following patterns, obtained by adding
subscripts to (3)-(4):

ai → 1i fi → 6i 1i → 8i ci → ∅i
bi → 2i ei → 5i gi → 9i ki → 7i
ci → 3i di → 4i hi → di li → 6i

(6)
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(a) (b)

(c) (d)

Figure 14. The cycles of 2-faces, giving rise to the cusps of the manifold K from
Proposition 3.10. The frames that allow us to compute the monodromy are depicted

mi → ∅i ni → li ei → 9i+1 2i → gi+1

3i → fi ai → 4i ni → 5i+1 oi → bi+1

hi → oi 8i → pi ki →mi+1 7i → pi+1.
(7)

The cubulation has exactly n cycles of square 2-faces, each of the form

ai1i8ipi7i−1ki−1mi∅ici3ifi6ilini5i+1ei+19i+2gi+22i+1bi+1oihidi4iai.

The cycle is analogous to (5) and thus has trivial monodromy. �

Corollary 3.13. For every integer n there is a hyperbolic orientable four-manifold with n cusps, all
whose sections are 3-tori.

4. Dehn filling

In the previous sections we have developed an algorithm that transforms an orientable cubulation
C into a hyperbolic four-manifold M . Here we assume that the monodromy of every cycle of 2-
dimensional faces is trivial, so every cusp section is isometric to the 3-torus obtained by identifying
the opposite faces of the right-angled parallelepiped [−1, 1]×[−1, 1]×[0, h] (see for instance Examples
2.8 and 2.9).

The manifold M is the interior of a compact manifold M with boundary that consists of 3-tori.
Let us consider one boundary component X ⊂ ∂M . A Dehn filling on X is the topological operation
that consists of attaching a copy of D2 × T 2 along X. The resulting smooth manifold is determined
only by the homotopy class of the closed curve ∂D2×{pt} in π1(X) = H1(X,Z). If we fix a basis for
the homology, we identify H1(X,Z) with Z3 and the Dehn filling is determined by a triple (p, q, r)
of co-prime integers. A natural basis here is given by the three sides of the parallelepiped.
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(a) (b)

(c) (d)

Figure 15. The cycles of 2-faces, giving rise to the cusps of the manifold L from
Proposition 3.10. The frames that allow us to compute the monodromy are depicted.

It is then possible to encode the Dehn fillings of M by assigning a triple (p, q, r) at each cycle of
2-dimensional faces. This determines a curve in the 3-torus [−1, 1]× [−1, 1]× [0, h]/∼ having length

` =
√

(2p)2 + (2q)2 + (hr)2.
By Thurston-Gromov’s 2π-theorem, which holds in all dimensions (see for instance [1]), whenever

` > 2π the Dehn filled manifold admits a non-positively curved metric and is hence in particular
aspherical by Cartan-Hadamard theorem. We can therefore construct plenty of non-positively curved
four-manifolds from a simple combinatorial datum: a cubulation where each cycle of 2-faces has trivial
monodromy and is assigned a triple of co-prime numbers (p, q, r) such that p2 + q2 + (hr/2)2 > π2.

Recently, M. Anderson has extended Thurston’s Dehn filling theorem by showing that if ` is big
enough then the filled manifold admits an Einstein metric [1], see also [2]. We can therefore also
construct many such manifolds from a simple combinatorial datum.

Let σ and ‖·‖ denote the signature and Gromov norm, respectively, and let n denote the number of
hypercubes in the original cubulation. Let v4 be the volume of the ideal regular hyperbolic 4-simplex.

Proposition 4.1. The Dehn filled manifold Mfill has

χ(Mfill) = χ(M) = 4n,

σ(Mfill) = σ(M) = 0,

‖Mfill‖ 6 ‖M‖ =
Vol(M)

v4
=

16n

3v4
π2.

Proof. Both the Euler characteristic and the signature are additive on the pieces when we glue
T 2 ×D2 to M by Novikov’s additivity theorem [15]. We have σ(T 2 ×D2) = χ(T 2 ×D2) = 0, and
hence χ(Mfill) = χ(M) = 4n by Proposition 2.2 and σ(Mfill) = σ(M) = −η(∂M) by [12]. The
boundary of M consists of 3-tori, that are mirrorable and hence their η-invariant vanishes.
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The Gromov norm of Mfill is not bigger than that of M by [10] and we have ‖M‖ = Vol(M)
v4

=
16n
3v4

π2. �

Via cubulations we may also construct certain hyperbolic four-manifolds M1, . . . , Mk, representing
the interiors of compact ones, say M1, . . . ,Mk, with toric boundaries, and then pair the boundary
tori along some diffeomorphisms, obtaining various graph manifolds [9].
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