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Introduction

Let n, k, r be positive integers such that n k r 1. A (n, k, r)-covering is a family B of k-subsets of {1, . . . , n}, called blocks, such that each r-subset of {1, . . . , n} is contained in at least one of the blocks. The number of blocks is the covering's size. The minimum size of such a covering is called the covering number and is denoted by C(n, k, r). Given a (n, k, r)-covering B, its graph G(B) has B as vertices and two vertices are joined if they have one r-subset in common. We say that a (n, k, r)-covering is connected if the graph G(B) is connected. The minimum size of a connected (n, k, r)-covering is called the connected covering number and is denoted by CC(n, k, r).

The graph corresponding to a connected [START_REF] Hamidoune | Directed switching games on graphs and matroids[END_REF][START_REF] Forge | Disconnected coverings for oriented matroids via simultaneous mutations[END_REF], 3)-covering can be nicely illustrated as shown in Figure 1. In this paper, we mainly pay our attention to coverings when k = r + 1 and thus, we will denote C(n, r + 1, r) (resp. CC(n, r + 1, r)) by C(n, r) (resp. by CC(n, r)) for short. The original motivation to study CC(n, r) comes from the following question posed by Las Vergnas.

Question 1.1. Let U r,n be the rank r uniform matroid on n elements. What is the smallest number s(n, r) of circuits of U r,n , that uniquely determines all orientations of U r,n ? That is, whenever two uniform oriented matroids coincide on these circuits they must be equal.

In [START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF], Forge and Ramírez Alfonsín introduced the notion of connected coverings and proved that [START_REF] Applegate | On asymmetric coverings and covering numbers[END_REF] s(n, r) CC(n, r).

The latter was then used to improve the best upper bound, s(n, r)

n-1 r , known at that time due to Hamidoune and Las Vergnas [START_REF] Hamidoune | Directed switching games on graphs and matroids[END_REF]; see also [START_REF] Forge | Disconnected coverings for oriented matroids via simultaneous mutations[END_REF] for related results. It turns out that s(n, r) is also closely related to C(n, r). Indeed, by using results in [START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF][START_REF] Forge | Disconnected coverings for oriented matroids via simultaneous mutations[END_REF] it can be proved that [START_REF] Björner | Oriented matroids[END_REF] C(n, r) s(n, r).

A proof (needing some oriented matroid notions and thus lying slightly out of scope of this paper) of a more general version of the above inequality can be found in [START_REF] Knauer | How many circuits determine an oriented matroid?[END_REF].

Covering designs have been the subject of an enormous amount of research papers (see [START_REF] Gordon | New constructions for covering designs[END_REF] for many upper bounds and [START_REF] Sidorenko | What we know and what we do not know about Turán numbers[END_REF] for a survey in the dual setting of Turán-systems).

Although the construction of block design is often very elusive and the proof of their existence is sometimes tough, here, we will be able to present explicit constructions yielding exact values and bounds for,C(n, r) and CC(n, r) for infinitely many cases. The study of C(n, r) and CC(n, r) seems to be interesting not only for Design Theory but also, in view of Equations ( 2) and ( 1), for the implications on the behavior of s(n, r) in Oriented Matroid Theory. This relationship was already remarked in [START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF]Theorem 4.1] where it was proved that CC(n, r) 2C(n, r). The latter can be slightly improved as follows Many interesting variants of Question 1.1 can be investigated. For instance, for nonuniform (oriented) matroids (graphic, representable, etc.) and by varying the notion of what determine means (up to orientations, bijections, etc.). These (and other) variants are treated in another paper (see [START_REF] Knauer | How many circuits determine an oriented matroid?[END_REF]).

This paper is organized as follows. In the next section, we recall some basic definitions and results concerning (connected) coverings and its connection with Turán systems needed for the rest of the paper. In Section 3, we investigate connected covering numbers when the value r is either small or close to n. Among other results, we give the exact value for CC(n, 2) (Theorem 3.2), for CC(n, 3) for n 12 (Theorem 3.3) and for CC(n, n -3) (Theorem 3.6). A famous conjecture of Turán and its connection with our results is also discussed. In Section 4, we present a general upper bound for CC(n, r) (Theorem 4.8)

allowing us to improve the best known upper bound for s(n, r). We end the paper by discussing some asymptotic results in Section 5.

Basic results

Let n, m, p be positive integers such that n m p. A (n, m, p)-Turán-system is a family D of p-subsets of {1, . . . , n}, called blocks, such that each m-subset of {1, . . . , n} contains at least one of the blocks. The number of blocks is the size of the Turán-system. The minimum size of such a covering is called the Turán Number and is denoted by T(n, m, p). Given a (n, m, p)-Turán-system D, with 0 2pm p, its graph G(D) has as vertices D and two vertices are joined if they have one 2pm-subset in common. We say that a (n, m, p)-Turán-system with 0 2p

-m p is connected if G(D) is connected.
The minimum size of a connected (n, m, p)-Turán-system is the connected Turán Number and is denoted by CT(n, m, p). By applying set complement to blocks, it can be obtained that

(4) C(n, k, r) = T(n, n -r, n -k). Moreover, if 0 n -2k + r n -k then (5) CC(n, k, r) = CT(n, n -r, n -k).
Note that the precondition for ( 5) is fulfilled if k = r + 1.

Most of the papers on coverings consider n large compared with k and r, while for Turán numbers it has frequently been considered n large compared with m and p, and often focusing on the quantity lim n→∞ T(n, m, p)/ n p for fixed m and p. Thus, for Turán-type problems, the value C(n, k, r) has usually been studied in the case when k and r are not too far from n. Forge and Ramírez Alfonsín [START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF] proved that [START_REF] Gordon | New constructions for covering designs[END_REF] CC(n, r) n r -1 r =: CC * 1 (n, r).

Moreover, Sidorenko [START_REF] Sidorenko | The method of quadratic forms in a combinatorial problem of Turán[END_REF] proved that T(n, r + 1, r)

n-r n-r+1 ( n r )
r . Together with (4), we obtain that

(7) CC(n, r) C(n, r) = T(n, n -r, n -r -1) r + 1 r + 2 n r+1 n -r -1 =: CC * 2 (n, r).
Combining ( 6) and ( 7), together with a straight forward computation we have (8) CC(n, r) max{CC * 1 (n, r), CC * 2 (n, r)}, where the maximum is attained by the second term if and only if r 2 3 (n -1). The following recursive lower bound for covering numbers was obtained by Schönheim [START_REF] Schönheim | On coverings[END_REF] and, independently, by Katona, Nemetz and Simonovits [START_REF] Katona | On a problem of Turán in the theory of graphs[END_REF] (9)

C(n, r) n r + 1 C(n -1, r -1)
which can be iterated yielding to

(10) C(n, r) n r + 1 n -1 r . . . n -r + 1 2 . . . =: L(n, r).
Forge and Ramírez Alfonsín [START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF]Theorem 4.2] proved that CC(n, r)

n-1 i=r+1 C(i, r -1). In this proof, they used the following recursive upper bound that will be useful for us later, [START_REF] Kostochka | A class of constructions for Turán's (3, 4)-problem[END_REF] CC(n, r) CC(n -1, r) + C(n -1, r -1).

Results for small and large r

In this section, we investigate connected covering numbers for small and large r, that is, when r is very close to either 1 or n. Let us start with the following observations. All these values coincide with the corresponding covering numbers except in the case r = 1, where C(n, 1) = ⌈ n 2 ⌉. 3.1. Results when r is small. For ordinary covering numbers, Fort and Hedlund [START_REF] Fort | Minimal coverings of pairs by triples[END_REF] have shown that C(n, 2) := ⌈ n 3 ⌈ n 2 ⌉⌉ that coincides with the lower bounds given in [START_REF] Knauer | How many circuits determine an oriented matroid?[END_REF] when the case r = 2. We also have the precise value for the connected case when r = 2. Theorem 3.2. Let n be a positive integer with n 3. Then, we have

CC(n, 2) = n 2 -1 2 .
Proof. Note that the claimed value coincides with the lower bound CC * 1 (n, 2). This lower bound comes from the fact that every connected covering has a construction sequence, where every new triangle shares at least one edge with an already constructed triangle. We present a construction sequence where indeed every new triangle (except possibly the last one) shares exactly one edge with the already constructed ones. Therefore, we attain the lower bound. Part of the construction is shown in Figure 2. We start presenting the black triangles from left to right. Then we present all triangles of the form (2i -1, 2i, j) for 1 i n 2 and j 2i + 3. (These are not depicted in the figure.) Now we present the gray triangles from left to right. A gray triangle of the form (2i, 2i + 1, 2i + 4) is connected to the already presented ones via (2i -1, 2i, 2i + 4). Note (as in the figure) the last triangle may indeed share two edges of already presented triangles, depending on the parity of n. This accounts for the ceiling in the formula. It is easy to check that all edges are covered.

The precise value of C(n, 3) remains unknown only for finitely many n, see [START_REF] Mills | On the covering of triples by quadruples[END_REF][START_REF] Mills | A covering of triples by quadruples[END_REF][START_REF] Ji | An improvement on covering triples by quadruples[END_REF]. The situation for connected coverings is worse. Proof. Note that the claimed value coincides with the lower bound CC * 1 (n, 3). For n 6 this is already checked in [START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF]. Figure 1 proves CC(7, 3) 12 = CC * 1 [START_REF] Hamidoune | Directed switching games on graphs and matroids[END_REF][START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF]. By using [START_REF] Kostochka | A class of constructions for Turán's (3, 4)-problem[END_REF], C(7, 2) = 7, and CC(7, 3) = 12, we obtain that CC [START_REF] Ji | An improvement on covering triples by quadruples[END_REF][START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF] 19 = CC * 1 [START_REF] Ji | An improvement on covering triples by quadruples[END_REF][START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF]. Figure 3 proves CC(9, 3) 28 = CC * 1 (9, 3). From equation ( 11) and the fact that CC(9, 3) = 28 and C(9, 2) = 12, we conclude that CC(10, 3) 40 = CC * 1 (10, 3). Now, Figure 4 proves that CC(11, 3) 55 = CC * 1 [START_REF] Kostochka | A class of constructions for Turán's (3, 4)-problem[END_REF][START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF]. Finally, to construct a connected covering witnessing CC * 1 (12, 3) we delete the block {2, 4, 6, 8} from the covering in Figure 4. One can check that this still leaves a covering B, whose graph now has three components. Now, we take the following (disconnected) (11, 3, 2)-covering: We add to each of these block the element 12 and thus together with B obtain a (12, 4, 3)covering B ′ . To see that B ′ is connected, note that each of the blocks containing 12 is connected to a block from B. Moreover, the blocks {1, 4, 6, 12}, {2, 4, 6, 12}, {4, 6, 8, 12} form a triangle and each of them has a neighbor in a different component of G(B). Thus, G(B ′ ) is connected and B ′ has 73 blocks which coincides with CC * 1 [START_REF] Kuzjurin | Explicit constructions of Rödl's asymptotically good packings and coverings[END_REF][START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF]. 

CC(n, n -3) = n 2 2 + n 2 2 + 1.
Proof. The parameter C(n, n -3) = T(n, 3, 2) was determined already by Mantel in 1907 [START_REF] Mantel | Problem 28[END_REF] and is

⌈ n 2 ⌉ 2 + ⌊ n 2 ⌋
2 . Turán proved that the unique minimal configuration of sets of size 2 hitting all sets of size 3 of an n-set are the edges of two vertex-disjoint complete graphs K ⌈ n 2 ⌉ and K ⌊ n 2 ⌋ , see [START_REF] Turán | Eine Extremalaufgabe aus der Graphentheorie[END_REF]. Now, by ( 4) and ( 5), the covering corresponding to the Turán-system is connected if and only if the graph whose edges correspond to the blocks of the Turán-system is connected. Thus, since the unique optimal construction by Turán is not connected but can be made connected by adding a single edge connecting the two complete graphs, this is optimal with respect to connectivity. Therefore, CC(n, n-3) = T(n, 3, 2)+1, giving the result. Proposition 3.7. Let n = 5, 6, 8, 9 be a positive integer with n 4. Then, we have

CC(n, n -4)      m(m -1)(2m -1) if n = 3m, m 2 (2m -1) if n = 3m + 1, m 2 (2m + 1)
if n = 3m + 2.

If n = 5, 6, 9 the value of CC(n, n -4) is one larger than claimed in the formula. Further, CC(8, 4) ∈ {20, 21}, i.e., it remains open if the above formula has to be increased by one or not in order to give the precise value.

Proof. We will show that a Turán-system D verifying the claimed bounds due to Kostochka [START_REF] Kostochka | A class of constructions for Turán's (3, 4)-problem[END_REF] is connected. Indeed the construction of [START_REF] Kostochka | A class of constructions for Turán's (3, 4)-problem[END_REF] is a parametrized family of Turán-systems, each of whose members attains the claimed bound. Our construction results from picking special parameters: Assume that n 12 and n is divisible by 3. Split [n] into three sets A 1 , A 2 , A 3 of equal size. Pick special elements x i , y i ∈ A i and denote

B i := A i \ {x i , y i } for i = 0, 1, 2.
The blocks of D consist of 3-element sets {a, b, c} of the following forms:

L i : a, b, c ∈ A i , T 1 i : a = x i and b, c ∈ A i+1 , T 2 i : a = y i and b, c ∈ B i-1 ∪ {x i+1 , y i+1 }, T 3 i : a ∈ B i and b, c ∈ B i-1 ∪ {x i+1 , y i-1
} where i = 0, 1, 2, and addition of indices is understood modulo 3. Let us now show that D is connected. Clearly, all blocks in a given A i are connected and all 2-element subsets in each A i are covered by a block in this A i . Thus, it suffices to verify that there are two 2-element sets {e, f } ⊆ A 0 and {e ′ , f ′ } ⊆ A 2 which can be connected by a sequence of blocks of D, because then any block in A 0 containing {e, f } is connected to any block in A 2 containing {e ′ , f ′ }. The connectivity of D then follows by the symmetry of the construction. Let {e, f } ⊆ B 0 . Take {e, f, y 1 } ∈ T 2 1 , then {e, y 1 , y 2 } ∈ T 2 1 , and then {e, f ′ , y 2 } ∈ T 3 0 , where f ′ ∈ B 2 , i.e, {y 2 , f ′ } ⊆ B 2 . Now, following [START_REF] Kostochka | A class of constructions for Turán's (3, 4)-problem[END_REF] deleting any element of such a system yields a Turán-system D ′ of the claimed size for n ′ = n -1. We can just delete any x i , since these are not used for connectivity. Following [START_REF] Kostochka | A class of constructions for Turán's (3, 4)-problem[END_REF], two elements can be removed from D to obtain a Turánsystem D ′′ of the claimed size for n ′′ = n -2, if the set formed by these two elements belongs to exactly n 3 -1 blocks. This is the case for {x i , x i+1 }, which belongs to exactly n 3 -1 blocks from T 1 i . Again, this preserves connectivity. We are left with the cases n 9. In [START_REF] Sidorenko | The method of quadratic forms in a combinatorial problem of Turán[END_REF] it is shown that the Turán-systems of the claimed size for n = 9 are exactly the members of the family constructed in [START_REF] Kostochka | A class of constructions for Turán's (3, 4)-problem[END_REF]. There are exactly two such systems: In both cases [START_REF] Katona | On a problem of Turán in the theory of graphs[END_REF] is split into three sets A 1 , A 2 , A 3 of size 3. In the first system we pick a x i ∈ A i and denote A i \ {x i } by B i . The blocks then are the 3-element sets {a, b, c} of the following forms:

L i : a, b, c ∈ A i , T 1 i : a = x i and b, c ∈ A i+1 , T 2 i : a ∈ B i and b, c ∈ B i-1 ∪ {x i+1 }.
The second system coincides with an instance of a construction due to Turán [START_REF] Turán | Research problems[END_REF]. It consists of the following 3-element sets:

L i : a, b, c ∈ A i , T 1 i : a ∈ A i and b, c ∈ A i+1 .
It is easy to check that both systems are not connected. On the other hand, the second one can be made connected adding a single block taking one element from each A i . This proves the claim for n = 9. Further, removing any vertex not contained in the added block, one obtains a connected Turán-system for n = 8 with 21 blocks. While there are Turán-systems showing T(8, 4, 3) = 20 we do not know if there is any such connected system. See Figure 1 for proving our statement for n = 7, Theorem 3.2 for n = 6, and Remark 3.1 for n = 4, 5.

A famous conjecture of Turán [START_REF] Turán | Research problems[END_REF] states that the bounds in Proposition 3.7 are best possible for C(n, n -4). By combining (1) and Proposition 3.7, for n 10 we have

(12) C(n, n -4) CC(n, n -4)      m(m -1)(2m -1) if n = 3m, m 2 (2m -1) if n = 3m + 1, m 2 (2m + 1) if n = 3m + 2.
Turán's conjecture has been verified for all n 13 by [START_REF] Sidorenko | The method of quadratic forms in a combinatorial problem of Turán[END_REF] and so, by [START_REF] Kuzjurin | Explicit constructions of Rödl's asymptotically good packings and coverings[END_REF], the connected covering number can also be determined for these same values.

Towards proving Turán's conjecture, it would be of interest to investigate the following.

Question 3.8. Is it true that one of the inequalities in ( 12) is actually an equality ?

Bounds and precise values for all CC(n, r) with n 14 are given in Table 1. All the exact values previously given in [START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF] for the same range have been improved by using our above results. 9)) a -Lower bounds for C(n, r) (from [START_REF] Applegate | On asymmetric coverings and covering numbers[END_REF]) Question 3.9. Is the sequence (CC(n, i)) 0 i n-1 unimodal for every n ? or perhaps logarithmically concave 1 ?

A general upper bound

Let n and r be positive integers such that n r + 1 3. Forge and Ramírez Alfonsín [START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF] obtained the following general upper bound [START_REF] Mantel | Problem 28[END_REF] S(n, r) :=

⌊ n-r+1 2 ⌋ i=1 n -2i r -1 + n -r 2 CC(n, r).
Let us notice that the upper bounds obtained by applying the recursive equation [START_REF] Kostochka | A class of constructions for Turán's (3, 4)-problem[END_REF], that were used in Table 1, are better than the one given by [START_REF] Mantel | Problem 28[END_REF]. Moreover, by iterating [START_REF] Kostochka | A class of constructions for Turán's (3, 4)-problem[END_REF] it can be obtained ( 14) CC(n, r)

n-1 i=r C(i, r -1).
Although [START_REF] Mills | On the covering of triples by quadruples[END_REF] might be used to get an explicit upper bound for s(n, r), it is not clear how good it would be since that would depend on the known exact values and the upper bounds of C(n, r) used in the recurrence (and thus intrinsically difficult to compute). On a i-1 a i+1 holds for every a i with 1 i n -1). Notice that a log-concave sequence is unimodal.

the contrary, in [START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF] Equation ( 13) was used to give the best known (to our knowledge) explicit upper bound for s(n, r). In this section, we will construct a connected (n, r + 1, r)-covering giving an upper bound for CC(n, r) better than S(n, r) and so, yielding a better upper bound for s(n, r) than that given in [START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF]. Theorem 4.1. Let n and r be positive integers such that n r + 1 3. Then CC(n, r) N(n, r), where

(15) N(n, r) := ⌈ n-r 2 ⌉-1 i=0 (n -r -2i) r -2 + 2i r -2 + n -r 2 -1 + δ 0 C(n -2, r -2),
and δ 0 is the parity function of nr, that is,

δ 0 = 0 if n -r is odd, 1 otherwise. 
Proof. From this point on, for any positive integer s, we will denote [s] := {1, . . . , s} and by [s] t the set of all t-subsets of [s]. Moreover, for any subset of integers {b 1 , . . . , b s }, we may suppose that b i < b j for all integers i and j such that 1 i < j s.

Case 1. Suppose that nr is odd and let m such that nr = 2m + 1. We will construct a connected (r

+ 2m + 1, r + 1, r)-covering of size m + m i=0 r -2 + 2i r -2 (2m + 1 -2i).
We consider a particular (r+2m+1, r+1, r)-covering, which is constituted by a large number of blocks but whose associated graph has a small number of connected components.

For any i ∈ {0, . . . , m}, let N i be the following subset of (r + 1)-subsets of [r + 2m + 1]:

N i :=    {b 1 , . . . , b r+1 } {b 1 , . . . , b r-2 } ∈ [r+2i-2] r-2 b r-1 = r + 2i -1, b r = r + 2i b r+1 ∈ {r + 2i + 1, . . . , r + 2m + 1}    . Claim 4.2. The set m i=0 N i is a (r + 2m + 1, r + 1, r)-covering. Let b = {b 1 , . . . , b r } ∈ [r+2m+1] r . If b r-1 = r -1 + 2i for some i ∈ {0, . . . , m}, then b ⊂ B for some B ∈ N i . The same occurs if b r-1 = r + 2i. Claim 4.3. The graph G (N i ) is connected, for any i ∈ {0, . . . , m}. Let B = {b 1 , . . . , b r+1 } and C = {c 1 , . . . , c r+1 } in N i . Clearly, B is adjacent to {b 1 , . . . , b r , c r+1 } in G(N i ). Since b r-1 = c r-1 , b r = c r and {d 1 , . . . , d r-2 , c r-1 , c r , c r+1 } ∈ N i for all {d 1 , . . . , d r-2 } ⊂ [r -2 + 2i],
then there exists a path from B to C. Claim 4.4. There exists a (r + 1)-subset 

C i such that G(N i ∪ C i ∪ N i+1 ) is connected for any i ∈ {0, . . . , m -1}. Let B i = {1, . . . , r -2, r -1 + 2i, r + 2i, r + 1 + 2i} ∈ N i and B i+1 = {1, . . . , r -2, r + 1 + 2i, r + 2 + 2i, r + 3 + 2i} ∈ N i+1 . Then, the (r + 1)-subset C i = {1, . . . , r -2, r + 2i, r + 1 + 2i, r + 2 + 2i} is adjacent to B i and B i+1 in G(N i ∪ C i ∪ N i+1
N i ) m-1 i=0 C i is a connected (r+2m+ 1, r + 1, r)-covering. Finally, since |N i | = r-2+2i r-2
(2m + 1 -2i) for any i ∈ {0, . . . , m}, the theorem holds in this case.

Case 2. Suppose nr is even and let m be such that nr = 2m. We are going to construct a (r + 2m, r + 1, r)-connected covering of size

m -1 + C(r -2 + 2m, r -2) + m-1 i=0 r -2 + 2i r -2 (2m -2i).
As already defined in Case 1, we consider the collection N i of (r + 1)-subsets of [r + 2m] defined by . We distinguish two cases on the value of It can be checked that N 0 ∪ N 1 is a (7, 5, 4)-covering and G(N 0 ) and G(N 1 ) are connected. Now, by taking C 0 = 12456, it follows that G(N 0 ∪ C 0 ∪ N 1 ) is connected.

N i := [r+2i-2]
b r-2 . First, if b r-2 < r + 2i -1, then {b 1 , . . . , b r-2 } ∈ [r+2i-2]

Hence, (

m i=0 N i ) ∪ ( m-2 i=0 C i ) is a connected (r + 2m, r + 1, r)-covering. Since |N i | = r-2+2i r-2 ( 
We may now show that S(n, r) > N(n, r). For this we need first the following Theorem and Proposition. Theorem 4.7. Let r and n be positive integers such that n r + 1 3. Then,

S(n, r) = N(n, r) + ⌊ n-r 2 ⌋-1 i=0 n -r 2 -i r -2 + 2i r -3 + δ 0 (1 -C(n -2, r -2)) ,
where δ 0 is the parity function of nr.

Proof. By induction on n > r. From ( 13) and ( 15), the identity is verified for n = r + 1 and n = r + 2. Suppose now that the identity is verified for a certain value of n and let D be the difference

D := (S(n + 2, r) -N(n + 2, r)) -(S(n, r) -N(n, r)) .
Then S(n + 2, r) = N(n + 2, r) + (S(n, r) -N(n, r)) + D.

By using [START_REF] Mantel | Problem 28[END_REF], we obtain

S(n+2, r)-S(n, r) = ⌊ n-r+1 2 ⌋+1 i=1 n + 2 -2i r -1 + n -r 2 + 1 - ⌊ n-r+1 2 ⌋ i=1 n -2i r -1 - n -r 2 = n r -1 + 1.
By using (15), we have

N(n+2, r)-N(n, r) = ⌈ n-r 2 ⌉ i=0 (n + 2 -r -2i) r -2 + 2i r -2 + n -r 2 + δ 0 C(n, r -2) - ⌈ n-r 2 ⌉-1 i=0 (n -r -2i) r -2 + 2i r -2 - n -r 2 + 1 -δ 0 C(n -2, r -2) = ⌈ n-r 2 ⌉-1 i=0 2 r -2 + 2i r -2 + n + 2 -r -2 n -r 2 r -2 + 2 n-r 2 r -2 +δ 0 (C(n, r -2) -C(n -2, r -2)) + 1.
Moreover, for nr odd, it follows that

N(n + 2, r) -N(n, r) = ⌈ n-r 2 ⌉ i=0 2 r -2 + 2i r -2 + (δ 0 -1) n -1 r -2 +δ 0 (C(n, r -2) -C(n -2, r -2)) + 1. Therefore D = n r -1 - ⌈ n-r 2 ⌉ i=0 2 r -2 + 2i r -2 +(1-δ 0 ) n -1 r -2 +δ 0 (C(n -2, r -2) -C(n, r -2)) . From the identity r-2+2i r-2 = r-1+2i r-2 -r-2+2i r-3
, we obtain that

⌈ n-r 2 ⌉ i=0 2 r -2 + 2i r -2 = ⌈ n-r 2 ⌉ i=0 r -2 + 2i r -2 + ⌈ n-r 2 ⌉ i=0 r -1 + 2i r -2 - ⌈ n-r 2 ⌉ i=0 r -2 + 2i r -3 = r-1+2⌈ n-r 2 ⌉ i=r-2 i r -2 - ⌈ n-r 2 ⌉ i=0 r -2 + 2i r -3 = r + 2 n-r 2 r -1 - ⌈ n-r 2 ⌉ i=0 r -2 + 2i r -3 .
Thus,

D = n r -1 - r + 2 n-r 2 r -1 + (1 -δ 0 ) n -1 r -2 + ⌈ n-r 2 ⌉ i=0 r -2 + 2i r -3 +δ 0 (C(n -2, r -2) -C(n, r -2)) .
If nr is even, then δ 0 = 1 and

n r -1 - r + 2 n-r 2 r -1 + (1 -δ 0 ) n -1 r -2 = n r -1 - n r -1 = 0.
Either, if nr is odd, then δ 0 = 0 and 

n r -1 - r + 2 n-r 2 r -1 + (1 -δ 0 ) n -1 r -2 = n r -1 - n + 1 r -1 + n -1 r -2 = - n r -2 + n -1 r -2 = - n -1 r -3 .

Asymptotics

In [START_REF] Rödl | On a packing and covering problem[END_REF] Rödl uses the probabilistic method to show the existence of asymptotically good coverings. Restricted to our case this means that C(n, r)

n r → 1 r + 1
as n → ∞.

Since CC(n, r) 2C(n, r) (see [START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF]) we immediately obtain:

CC(n, r) n r → a 2 r + 1
as n → ∞.

In [START_REF] Forge | Connected coverings and an application to oriented matroids[END_REF] it was shown that S(n, r)

n r → 1 2
as n → ∞ and since by Theorem 4.8 the difference N(n, r) -S(n, r) is in O(n r-1 ) we have the same asymptotic behavior for N(n, r).

It is however still a topic of research to find explicit constructions witnessing the bound of Rödl, see [START_REF] Kuzjurin | Explicit constructions of Rödl's asymptotically good packings and coverings[END_REF].

( 3 )

 3 CC(n, r) 2C(n, r) -1, since the graph G associated to a covering with C(n, r) blocks (and thus with |V (G)| = C(n, r)) can be made connected by adding at most C(n, r) -1 extra vertices (blocks), obtaining a graph corresponding to a (n, r+1, r)-connected covering with at most 2C(n, r)-1 blocks.

Remarks 3

 3 .1. a) CC(n, 0) = 1 since any 1-element set contains the empty set. b) CC(n, 1) = n -1 by taking the edges of a spanning tree of K n . c) CC(n, n -2) = n -1 by taking all but one (n -1)-sets. d) CC(n, n -1) = 1 by taking the entire set.

Figure 2 .

 2 Figure 2. Part of the construction proving CC(n, 2) CC * 1 (n, 2).

Figure 3 .Theorem 3 . 3 .

 333 Figure 3. An example proving CC(9, 3) 28. The circle-vertices are a covering.

  3, 11}, {1, 4, 6}, {1, 2, 8}, {1, 5, 9}, {1, 7, 10}, {3, 4, 9}, {2, 3, 10}, {3, 5, 6}, {3, 7, 8}, {2, 4, 6}, {4, 5, 7}, {4, 10, 11}, {4, 6, 8}, {2, 5, 11}, {2, 7, 9}, {5, 8, 10}, {6, 7, 11}, {8, 9, 11}, {6, 9, 10}    .

Figure 4 .

 4 Figure 4. An example proving CC(11, 3) 55. The circle-vertices are a covering.

r- 2 × 2 .

 22 {r + 2i -1} × {r + 2i} × {r + 2i + 1, . . . , r + 2m} for any i ∈ {0, . . . , m -1}. Let C be a (r + 2m -2, r -1, r -2)-covering of size C(r + 2m -2, r -2) and consider the set N m := {B ∪ {r + 2m -1, r + 2m} | B ∈ C}. Then, one can check that m i=0 N i is a (r + 2m, r + 1, r)-covering. Similarly as in the proofs of Claims 4.3 and 4.4, it follows that G(N i ) is connected for any i ∈ {0, . . . , m -1} and there exists a (r + 1)-subsetC i such that G(N i ∪ C i ∪ N i+1 ) is connected for any i ∈ {0, . . . , m -2}. Claim 4.5. . For any B ∈ N m , there exist i ∈ {0, . . . , m -1} and C ∈ N i such that B is adjacent to C in the graph G(N i ∪ N m ). Let B = {b 1 , . . . , b r-1 , r+2m-1, r+2m} ∈ N m . If b r-1 = r+2i-1 for some i ∈ {0, . . . , m-1}, then {b 1 , . . . , b r-2 } ∈ [r+2i-2] r-Let C = {b 1 , . . . , b r-2 , r + 2i -1, r + 2i,r + 2m}, by definition C ∈ N i and moreover, since {b 1 , . . . , b r-2 , r + 2i -1, r + 2m} ⊂ B and {b 1 , . . . , b r-2 , r + 2i -1, r + 2m} ⊂ C, we deduce that B and C are adjacent in the graph G(N i ∪ N m ). Either, if b r-1 = r + 2i for some i ∈ {0, . . . , m -1}, we have that {b 1 , . . . , b r-2 } ∈ [r+2i-1] r-2

r- 2 .

 2 Consider now C = {b 1 , . . . , b r-2 , r + 2i -1, r + 2i, r + 2m}. As above, since {b 1 , . . . , b r-2 , r + 2i, r + 2m} ⊂ B and {b 1 , . . . , b r-2 , r + 2i, r + 2m} ⊂ C, we deduce that B and C are adjacent in the graph G(N i ∪ N m ). Finally, suppose that b r-2 = r + 2i -1 and let α ∈ [r + 2i -2] \ {b 1 , . . . , b r-3 } and C = {b 1 , . . . , b r-3 , r + 2i -1, r + 2i, r + 2m} ∪ {α} ∈ [r+2m] r+1 . Since {b 1 , . . . , b r-3 , r + 2i -1, r + 2i, r + 2m} ⊂ B and {b 1 , . . . , b r-3 , r + 2i -1, r + 2i, r + 2m} ⊂ C, we deduce that B and C are adjacent in the graph G(N i ∪ N m ). This concludes the proof of Claim 4.5.

  2m -2i) for any i ∈ {0, . . . , m -1} and |N m | = C(n -2, r -2), the theorem holds.Let us illustrate the construction given in the above theorem.

Example 4 . 6 .

 46 N(7, 4) = 10. We consider N 0 = {12345, 12346, 12347} and N 1 = {12567, 13567, 14567, 23567, 24567, 34567}.

- 3 + 3 + 3 + 3 . 2 r- 1

 333321 δ 0 (C(n -2, r -2) -C(n, r -2)) = ⌊ n-r 2 ⌋ i=0 r -2 + 2i r -3 + δ 0 (C(n -2, r -2) -C(n, r -2)) .Now, with the induction hypothesis, we obtainS(n+2, r)-N(n+2, r) = (S(n, r) -N(n, r)) δ 0 (C(n -2, r -2) -C(n, rδ 0 (1 -C(n, r -2)) .Theorem 4.8. Let r and n be positive integers such that nr is an even number. Then,S(n, r) N(n, r) + Proof. It is known [6, page 7] that C(n, r)n-+C(n-2, r). By applying this inequality repeatedly we have C(n -2, r -2)

Table 1

 1 [20, 21 u ] [32 l , 35 r ] [53 l , 59 r ] [83 l , 89 r ] [124 l , 136 r ] [179 l , 193 r ] [250 l , 271 r ] , 61 r ] [96 a , 111 r ] [159 l , 177 r ] [258 l , 290 r ] [401 l , 447 r ]

	r \ n 1 2 3 4 5	6	7	8	9	10	11	12	13	14
	0	1 1 1 1 1	1	1	1	1	1	1	1	1	1
	1	1 2 3 4	5	6	7	8	9	10	11	12	13
	2	1 3 5 e,t 7 e	10 e	14 e	18 e	22 e	27 e	33 e	39 e	45 e
	3	1 4 7 p,t 12 p,u	19 p	28 p	40 p	55 p	73 p	[95 l , 97 r ]	[121 l , 123 r ]
	4 10 t 5 1 5 1 6 [51 l 6 13 t 31 u 1 7 17 t 45 u	[84 a , 95 r ] [165 a , 195 r ] [286 l , 327 r ] [501 l , 572 r ]
	7				1	8	21 t	63 u	[126 a , 147 r ] [269 a , 323 r ] [491 l , 587 r ]
	8					1	9	26 t	84 u	[185 a , 210 r ] [419 a , 505 r ]
	9						1	10	31 t	112 u	[259 s , 297 r ]
	10							1	11	37 t	[143 s , 144 u ]
	11								1	12	43 t
	12									1	13
	13										1

led us to consider the following.

Table 1 .

 1 Bounds and values of CC(n, r) for n 14.

Key of Table 1 :

r -Upper bound for CC(n, r)(from Equation (

11

)) e -Exact values for CC(n, 2) (Theorem 3.2) t -Exact values for CC(n, n -3) (Theorem 3.6) l -Lower bound CC * 1 (n, r) p -Some exact values for CC(n, 3) (Theorem 3.3) u -Upper bound for CC(n, n -4) (Proposition 3.7) s -Lower bound for C(n, r) (from Equation (

  ). This concludes the proof of Claim 3. By Claims 4.2, 4.3 and 4.4, we obtain that ( m i=0
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