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CONNECTED COVERING NUMBERS

JONATHAN CHAPPELON, KOLJA KNAUER, LUIS PEDRO MONTEJANO,
AND JORGE LUIS RAMÍREZ ALFONSÍN

Dedicated to the memory of Michel Las Vergnas

Abstract. A connected covering is a design system in which the corresponding block
graph is connected. The minimum size of such coverings are called connected coverings
numbers. In this paper, we present various formulas and bounds for several parameter
settings for these numbers. We also investigate results in connection with Turán systems.
Finally, a new general upper bound, improving an earlier result, is given. The latter is
used to improve upper bounds on a question concerning oriented matroid due to Las
Vergnas.

1. Introduction

Let n, k, r be positive integers such that n > k > r > 1. A (n, k, r)-covering is a family B
of k-subsets of {1, . . . , n}, called blocks, such that each r-subset of {1, . . . , n} is contained
in at least one of the blocks. The number of blocks is the covering’s size. The minimum
size of such a covering is called the covering number and is denoted by C(n, k, r). Given
a (n, k, r)-covering B, its graph G(B) has as vertices B and two vertices are joined if
they have one r-subset in common. We say that a (n, k, r)-covering is connected if the
graph G(B) is connected. The minimum size of a connected (n, k, r)-covering is called
the connected covering number and is denoted by CC(n, k, r).
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Figure 1. A connected (7, 4, 3)-covering with 12 blocks.
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The graph corresponding to a connected (7, 4, 3)-covering is illustrated in Figure 1.
In this paper, we mainly focus our attention to coverings when k = r + 1 and thus, we
will denote C(n, r + 1, r) (resp. CC(n, r + 1, r)) by C(n, r) (resp. by CC(n, r)) for short.
The original motivation to study CC(n, r) comes from the following question posed by
Michel Las Vergnas.

Question 1.1. Let Ur,n be the rank r uniform matroid on n elements. What is the
smallest number s(n, r) of circuits of Ur,n, that uniquely determines all orientations of
Ur,n? This is, whenever two uniform oriented matroids coincide on these circuits they
must be equal.

In [5], Forge and Ramı́rez Alfonśın introduced the notion of connected coverings and
proved that

(1) s(n, r) 6 CC(n, r).

The latter was then used to improve the best upper bound, s(n, r) 6
(
n−1
r

)
, known at

that time due to Hamidoune and Las Vergnas [9]; see also [6] for related results.

It turns out that s(n, r) is also closely related to C(n, r).

Proposition 1.2. Let n and r be positive integers such that n > r + 1. Then,

C(n, r) 6 s(n, r).

The proof of Proposition 1.2, that is a bit technical (needing some oriented matroid
notions and thus lying slightly out of scope of this paper), is given in the Appendix.

Although the study of covering designs have already a long history of research (see [8]
for many upper bounds and [21] for a survey in the dual setting of Turán-systems),
Proposition 1.2 motivates even further the study of C(n, r) and specially, in view of (1),
its behavior in relation to CC(n, r). This relationship was already remarked in [5] where
it was proved that

(2) CC(n, r) 6 2C(n, r).

That was done by observing that the graph G associated to a covering with C(n, r)
blocks (and thus with |V (G)| = C(n, r)) can be make it connected by adding at most
C(n, r) extra vertices (blocks), obtaining a graph corresponding to a (n, r+1, r)-connected
covering with at most 2C(n, r) blocks.

Many interesting variants of Question 1.1 can be investigated. For instance, for non-
uniform (oriented) matroids (graphic, representable, etc.) and by varying the notion of
what determine means (up to orientations, bijections, etc.). These (and other) variants
are treated in another paper (see [3]).

This paper is organized as follows. In the next section, we recall some basic definitions and
results concerning (connected) coverings and its connection with Turán systems needed
for the rest of the paper. In Section 3, we investigate connected covering numbers when
the value r is either small or close to n. Among other results, we give the exact value
for CC(n, 2) (Theorem 3.2), for CC(n, 3) for n 6 12 (Theorem 3.3) and for CC(n, n− 3)
(Theorem 3.6). A famous conjecture of Turán and its connection with our results is also
discussed. In Section 4, we present a general upper bound for CC(n, r) (Theorem 4.10)
allowing us to improve the best known upper bound for s(n, r). We end the paper by
discussing some asymptotic results in Section 5.
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2. Basic results

Let n,m, p be positive integers such that n > m > p. A (n,m, p)-Turán-system is a
family D of p-subsets of {1, . . . , n}, called blocks, such that each m-subset of {1, . . . , n}
contains at least one of the blocks. The number of blocks is the size of the Turán-system.
The minimum size of such a covering is called the Turán Number and is denoted by
T(n,m, p). Given a (n,m, p)-Turán-system D, with 0 6 2p−m 6 p, its graph G(D) has
as vertices D and two vertices are joined if they have one 2p−m-subset in common. We
say that a (n,m, p)-Turán-system with 0 6 2p−m 6 p is connected if G(D) is connected.

The minimum size of a connected (n,m, p)-Turán-system is the connected Turán Number
and is denoted by CT(n,m, p). By applying set complement to blocks, it can be obtained
that

(3) C(n, k, r) = T(n, n− r, n− k).

Moreover, if 0 6 n− 2k + r 6 n− k then

(4) CC(n, k, r) = CT(n, n− r, n− k).

Note that the precondition for (4) is fulfilled if k = r + 1.
Most of the papers on coverings consider n large compared with k and r, while for Turán
numbers it has frequently been considered n large compared with m and p, and often
focusing on the quantity limn→∞T(n,m, p)/

(
n
p

)
for fixed m and p. Thus, for Turán-type

problems, the value C(n, k, r) has usually been studied in the case when k and r are not
too far from n.

Forge and Ramı́rez Alfonśın [5] proved that

(5) CC(n, r) >

(
n
r

)
− 1

r
=: CC∗1(n, r).

Moreover, Sidorenko [22] proved that T(n, r+1, r) >
(

n−r
n−r+1

) (n
r)
r

, which by (3), we obtain
that

(6) CC(n, r) > C(n, r) = T(n, n− r, n− r − 1) >

(
r + 1

r + 2

) (
n

r+1

)
n− r − 1

=: CC∗2(n, r).

Combining (5) and (6), together with a straight forward computation we have

(7) CC(n, r) > max{CC∗1(n, r),CC∗2(n, r)},
where the maximum is attained by the second term if and only if r > 2

3
(n− 1).

The following recursive lower bound for covering numbers was obtained by Schönheim [20]
and, independently, by Katona, Nemetz and Simonovits [14]

(8) C(n, r) >

⌈
n

r + 1
C(n− 1, r − 1)

⌉
which can be iterated yielding to

(9) C(n, r) >

⌈
n

r + 1

⌈
n− 1

r

⌈
. . .

⌈
n− r + 1

2

⌉
. . .

⌉⌉⌉
=: L(n, r).

The following recursive upper bound for CC(n, r) due to Forge and Ramı́rez Alfonśın [5]
will be used later.

(10) CC(n, r) 6 CC(n− 1, r) + C(n− 1, r − 1).
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3. Results for small and large r

In this section, we investigate connected covering numbers for small and large r, that is,
when r is very close to either 1 or n. Let us start with the following observations.

Remarks 3.1.
a) CC(n, 0) = 1 since any 1-element set contains the empty set.
b) CC(n, 1) = n− 1 by taking the edges of a spanning tree of Kn.
c) CC(n, n− 2) = n− 1 by taking all but one (n− 1)-sets.
d) CC(n, n− 1) = 1 by taking the entire set.

All these values coincide with the corresponding covering numbers except in the case
r = 1, where C(n, 1) = dn

2
e.

3.1. Results when r is small.
For ordinary covering numbers, Fort and Hedlund [7] have shown that C(n, 2) := dn

3
dn
2
ee

that coincides with the lower bounds given in (9) when the case r = 2.

We also have the precise value for the connected case when r = 2.

Theorem 3.2. Let n be a positive integer with n > 3. Then, we have

CC(n, 2) =

⌈(
n
2

)
− 1

2

⌉
.

Proof. Note that the claimed value coincides with the lower bound CC∗1(n, 2). This lower
bound comes from the fact that every connected covering has a construction sequence,
where every new triangle shares at least one edge with an already constructed triangle.
We present a construction sequence where indeed every new triangle (except possibly the
last one) shares exactly one edge with the already constructed ones. Therefore, we attain
the lower bound. Part of the construction is shown in Figure 2. We start presenting the

1

2 4

3

n− 1

nn− 2

Figure 2. Part of the construction proving CC(n, 2) 6 CC∗1(n, 2).

black triangles from left to right. Then we present all triangles of the form (2i− 1, 2i, j)
for 1 6 i 6 n

2
and j > 2i + 3. (These are not depicted in the figure.) Now we present

the gray triangles from left to right. A gray triangle of the form (2i, 2i + 1, 2i + 4) is
connected to the already presented ones via (2i − 1, 2i, 2i + 4). Note (as in the figure)
the last triangle may indeed share two edges of already presented triangles, depending
on the parity of n. This amounts for the ceiling in the formula. It is easy to check that
all edges are covered. �

From a sequence of papers between 1960 and 2008 [10, 13, 23, 17, 18, 11, 12], it follows
that C(n, 3) = L(n, 3) for all integer n > 4 except for n = 7, where C(7, 3) = L(7, 3) + 1
and for n = 12k+7, k ∈ {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 16, 21, 23, 25, 29}, where the precise
value of C(n, 3) remains unknown. The situation for connected coverings is worse.

4



1234

1239

1289

1789

1679

1467

1267

1256

1356

1357

1368

3456

3569

5689

5678

2367 2378

2358

2458

2457

2579

2469

2468

1458

1459 3478

3479

3489

Figure 3. An example proving CC(9, 3) 6 28. The circle-vertices are a covering.

Theorem 3.3. Let n be a positive integer with 4 6 n 6 12. Then, we have

CC(n, 3) =

⌈(
n
3

)
− 1

3

⌉
.

Proof. Note that the claimed value coincides with the lower bound CC∗1(n, 3). For n 6 6
this is already checked in [5]. Figure 1 proves CC(7, 3) 6 12 = CC∗1(7, 3). By using (10),
C(7, 2) = 7, and CC(7, 3) = 12, we obtain that CC(8, 3) 6 19 = CC∗1(8, 3). Figure 3
proves CC(9, 3) 6 28 = CC∗1(9, 3). From equation (10) and the fact that CC(9, 3) = 28
and C(9, 2) = 12, we conclude that CC(10, 3) 6 40 = CC∗1(10, 3). Now, Figure 4 proves
that CC(11, 3) 6 55 = CC∗1(11, 3). Finally, to construct a connected covering witnessing
CC∗1(12, 3) we delete the block {2, 4, 6, 8} from the covering in Figure 4. One can check
that this still leaves a covering B, whose graph now has three components. Now, we take
the following (disconnected) (11, 3, 2)-covering: {1, 3, 11}, {1, 4, 6}, {1, 2, 8}, {1, 5, 9}, {1, 7, 10}, {3, 4, 9}, {2, 3, 10}, {3, 5, 6},

{3, 7, 8}, {2, 4, 6}, {4, 5, 7}, {4, 11, 10}, {4, 6, 8}, {2, 5, 11}, {2, 7, 9}, {5, 8, 10},
{6, 7, 11}, {8, 9, 11}, {6, 9, 10}

 .

We add to each of these block the element 12 and thus together with B obtain a (12, 4, 3)-
covering B′. To see that B′ is connected, note that each of the blocks containing 12 is
connected to a block from B. Moreover, the blocks {1, 4, 6, 12}, {2, 4, 6, 12}, {4, 6, 8, 12}
form a triangle and each of them has a neighbor in a different component of G(B). Thus,
G(B′) is connected and B′ has 73 blocks which coincides with CC∗1(12, 3). �
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Figure 4. An example proving CC(11, 3) 6 55. The circle-vertices are a covering.
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Theorem 3.3 supports the following

Conjecture 3.4. For every positive integer n > 4, we have

CC(n, 3) = CC∗1(n, 3).

Even, more ambitious,

Question 3.5. Let n and r be two positive integers such that n > r + 1 > 4. Is it true
that if CC(n, r) = CC∗1(n, r) then CC(n′, r) = CC∗1(n

′, r) for every integer n′ > n ?

3.2. Results when r is large.

Theorem 3.6. Let n be a positive integer with n > 3. Then, we have

CC(n, n− 3) =

(⌈
n
2

⌉
2

)
+

(⌊
n
2

⌋
2

)
+ 1.

Proof. The parameter C(n, n − 3) = T(n, 3, 2) was determined already by Mantel in

1907 [16] and is
(dn

2
e

2

)
+
(bn

2
c

2

)
. Turán proved that the unique minimal configuration of

sets of size 2 hitting all sets of size 3 of an n-set are the edges of two vertex-disjoint
complete graphs Kdn

2
e and Kbn

2
c, see [24].

Now, by (3) and (4), the covering corresponding to the Turán-system is connected if and
only if the graph whose edges correspond to the blocks of the Turán-system is connected.
Thus, since the unique optimal construction by Turán is not connected but can be made
connected by adding a single edge connecting the two complete graphs, this is optimal
with respect to connectivity. Therefore, CC(n, n−3) = T(n, 3, 2)+1, giving the result. �

Proposition 3.7. Let n be a positive integer with n > 4. Then, we have

CC(n, n− 4) 6


m(m− 1)(2m− 1) if n = 3m,

m2(2m− 1) if n = 3m+ 1,

m2(2m+ 1) if n = 3m+ 2.

Proof. As in Theorem 3.6 the construction comes from making one for a (well-known)
Turán-system connected. Divide {1, . . . , n} into three sets A0, A1, A2 of as equal sizes
as possible. The blocks D of the (n, 4, 3)-Turán-system are the triples {x, y, z} with
x, y ∈ Ai and z ∈ Ai ∪ A(i+1) mod 3 for i = 0, 1, 2. It is easy to see, that this actually is a
(n, 4, 3)-Turán-system of the claimed size. Now, G(D) has three connected components
corresponding to the indices defining the triples. It can be turned into a connected
(n, 4, 3)-Turán-system D′ by choosing one edge {x, y} in each Ai and replacing all triples
of the form {x, y, z} with z ∈ A(i+1) mod 3 by all triples of the form {x, y, z} with z ∈
A(i−1) mod 3. It is easy to check that |D′| = |D| and that G(D′) is connected for n > 8.
See Figure 1 for proving our statement for n = 7, Theorem 3.2 for n = 6, and Remark 3.1
for n = 4, 5. �

A famous conjecture of Turán [25] states that the bounds in Proposition 3.7 are best
possible for C(n, n− 4). By combining (1) and Proposition 3.6, we have

(11) C(n, n− 4) 6 CC(n, n− 4) 6


m(m− 1)(2m− 1) if n = 3m,

m2(2m− 1) if n = 3m+ 1,

m2(2m+ 1) if n = 3m+ 2.

Turán’s conjecture has been verified [22] for all n 6 13 and so, by (11), the connected
covering number can also be determined for these same values.

Towards proving Turán’s conjecture, it would be of interest to investigate the following.
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Question 3.8. Is it true that one of the inequalities in (11) is actually an equality ?

Bounds and precise values for all CC(n, r) with n 6 14 are given in Table 1. All the
exact values previously given in [5] for the same range have been improved by using our
above results.

r \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9 10 11 12 13
2 1 3 5e,t 7e,u 10e 14e 18e 22e 27e 33e 39e 45e

3 1 4 7p,t 12p,u 19p 28p 40p 55p 73p [95l, 97r] [121l, 123r]
4 1 5 10t 20u [32l, 34r] [53l, 59r] [83l, 89r] [124l, 136r] [179l, 193r] [250l, 271r]
5 1 6 13t 30u [51l, 60r] [96a, 111r] [159l, 177r] [258l, 290r] [401l, 447r]
6 1 7 17t 45u [84a, 95r] [165a, 195r] [286l, 327r] [501l, 572r]
7 1 8 21t 63u [126a, 147r] [269a, 323r] [491l, 587r]
8 1 9 26t 84u [185a, 210r] [419a, 505r]
9 1 10 31t 112u [259s, 297r]
10 1 11 37t [143s, 144u]
11 1 12 43t

12 1 13
13 1

Table 1. Bounds and values of CC(n, r) for n 6 14.

Key of Table 1 :

r — Upper bound for CC(n, r)(from (10))
e — Exact values for CC(n, 2) (Theorem 3.2)
t — Exact values for CC(n, n− 3) (Theorem 3.6)
l — Lower bound CC∗1(n, r)
p — Some exact values for CC(n, 3) (Theorem 3.3)
u — Upper bound for CC(n, n− 4) (Proposition 3.7)
s — Lower bound for C(n, r) (from (8))
a — Lower bounds for C(n, r) (from [1])

Table 1 led us to consider the following.

Question 3.9. Is the sequence (CC(n, i))06i6n−1 unimodal for every n ? or perhaps

logarithmically concave1 ?

4. A general upper bound

Let n and r be positive integers such that n > r + 1 > 3. Forge and Ramı́rez Alfonśın
[5] obtained the following general upper bound

(12) CC(n, r) 6

bn−r+1
2 c∑

i=1

(
n− 2i

r − 1

)
+

⌊
n− r

2

⌋
=: S(n, r).

1A finite sequence of real numbers {a1, a2, . . . , an} is said to be unimodal (resp. logarithmically concave
or log-concave) if there exists a t such that s1 6 s2 6 · · · 6 st and st > st+1 > · · · > sn (resp. if
a2i > ai−1ai+1 holds for every ai with 1 6 i 6 n− 1). Notice that a log-concave sequence is unimodal.
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Let us notice that the upper bounds obtained by applying the recursive equation (10), that
were used in Table 1, are better than the one given by (12). Moreover, by iterating (10)
it can be obtained

(13) CC(n, r) 6
n−1∑
i=r

C(i, r − 1).

Although (13) might be used to get an explicit upper bound for s(n, r), it is not clear
how good it would be since that would depend on the known exact values and the upper
bounds of C(n, r) used in the recurrence (and thus intrinsically difficult to compute).
On the contrary, in [5] was used (12) to give the best known (to our knowledge) explicit
upper bound for s(n, r).

In this section, we will construct a connected (n, r+1, r)-covering giving an upper bound
for CC(n, r) better than S(n, r) and so, yielding to a better upper bound for s(n, r) than
that given in [5].

Theorem 4.1. Let n and r be positive integers such that n > r + 1 > 3. Then,

CC(n, r) 6 N(n, r),

with

(14) N(n, r) :=

dn−r
2 e−1∑
i=0

(n− r − 2i)

(
r − 2 + 2i

r − 2

)
+

⌈
n− r

2

⌉
− 1 + δ0C(n− 2, r − 2),

where δ0 is the parity function of n− r, that is,

δ0 =

{
0 if n− r is odd,
1 otherwise.

Proof. From now, for any positive integer s, we denote by [s] the set of the first s positive
integers, that is, [s] = {1, . . . , s} and we denote by Us,t the set of all t-subsets of [s].
Moreover, suppose that for any subset of integers {b1, . . . , bs}, we have bi < bj for all
1 6 i < j 6 s. We distinguish different cases depending on the parity of n− r.
Case 1. Suppose that n− r is an odd number and let m such that n− r = 2m+ 1. We
will construct a connected (r + 2m+ 1, r + 1, r)-covering of size

m∑
i=0

(
r − 2 + 2i

r − 2

)
(2m+ 1− 2i) +m.

First, we consider a particular (r + 2m + 1, r + 1, r)-covering, which is constituted by
a large number of blocks but whose associated graph has a small number of connected
components. For any i ∈ {0, . . . ,m}, let Ni be the following subset of (r + 1)-subsets of
[r + 2m+ 1] :

Ni :=

{b1, . . . , br+1}

∣∣∣∣∣∣
{b1, . . . , br−2} ∈ Ur+2i−2,r−2
br−1 = r + 2i− 1, br = r + 2i
br+1 ∈ {r + 2i+ 1, . . . , r + 2m+ 1}

 .

Claim 4.2. The set A =
m⋃
i=0

Ni is an (r + 2m+ 1, r + 1, r)-covering.

8



Let S = {s1, . . . , sr} be an r-subset of [r + 2m + 1]. If sr−1 = r + 2i − 1 for some
i ∈ {0, . . . ,m}, then

S ⊂ (S ∪ {r + 2i+ 1}) ∈ Ni , for sr = r + 2i,
S ⊂ (S ∪ {r + 2i}) ∈ Ni , for sr > r + 2i.

Either, if sr−1 = r + 2i for some i ∈ {0, . . . ,m}, then

S ⊂ (S ∪ {r + 2i− 1}) ∈ Ni , for sr−2 < r + 2i− 1,
S ⊂ (S ∪ {α}) ∈ Ni , for sr−2 = r + 2i− 1,

where α ∈ [r+ 2i− 2] \ {s1, . . . , sr−3}. In every case, there exists a block in Ni, for some
i ∈ {0, . . . ,m}, containing the r-subet S. This concludes the proof of Claim 4.2.

Claim 4.3. The graph G (Ni) is connected, for every i ∈ {0, . . . ,m}.
Let i ∈ {0, . . . ,m} and let S = {s1, . . . , sr−2, r+ 2i− 1, r+ 2i, sr+1} be a block in Ni. For
every j ∈ {0, . . . , r − 2}, we consider the following (r + 1)-subsets Sj ∈ Ur+2i+1,r+1 :

S0 = {s1, . . . , sr−2, r + 2i− 1, r + 2i, r + 2i+ 1},
Sj = {1, . . . , j, sj+1, . . . , sr−2, r + 2i− 1, r + 2i, r + 2i+ 1}, for 1 6 j 6 r − 3,

Sr−2 = {1, . . . , r − 2, r + 2i− 1, r + 2i, r + 2i+ 1}.
By definitions, it is easy to see that Sj ∈ Ni for all j ∈ {0, . . . , r − 2}. Now, we consider
the r-subsets Tj ∈ Ur+2i−1,r defined by

T0 = {s1, . . . , sr−2, r + 2i− 1, r + 2i},
T1 = {s2, . . . , sr−2, r + 2i− 1, r + 2i, r + 2i+ 1},
Tj = {1, . . . , j − 1, sj+1, . . . , sr−2, r + 2i− 1, r + 2i, r + 2i+ 1}, for 1 6 j 6 r − 3,

Tr−2 = {1, . . . , r − 3, r + 2i− 1, r + 2i, r + 2i+ 1}.
Since T0 ⊂ S and T0 ⊂ S0, we know that S and S0 are adjacent in the graph G(Ni).
By the same way, since Tj ⊂ Sj−1 and Tj ⊂ Sj, the blocks Sj−1 and Sj are adjacent in
G(Ni) for all j ∈ {1, . . . , r − 2}. It follows that (S, S0, S1, . . . , Sr−2) is a path in G(Ni).
So we have proved that there always exists a path between any block S of Ni and the
fixed block Sr−2. This concludes the proof of Claim 4.3.

Claim 4.4. For any integer i ∈ {0, . . . ,m − 1}, there exists an (r + 1)-subset Ci such
that the graph G(Ni ∪ Ci ∪Ni+1) is connected.

Let i ∈ {0, . . . ,m− 1} and let

Ci := {1, . . . , r − 2, r + 2i, r + 2i+ 1, r + 2i+ 2}.
Then, the block Ci is adjacent to

Bi = {1, . . . , r − 2, r + 2i− 1, r + 2i, r + 2i+ 1} ∈ Ni

and is adjacent to

Bi+1 = {1, . . . , r − 2, r + 1 + 2i, r + 2 + 2i, r + 3 + 2i} ∈ Ni+1

in G(Ni ∪ Ci ∪ Ni+1). Since G(Ni) and G(Ni+1) are connected by Claim 4.3, we obtain
that G(Ni ∪ Ci ∪Ni+1) is connected. This concludes the proof of Claim 4.4.

By combining results of Claims 4.2, 4.3 and 4.4, we know that the set

B =

(
m⋃
i=0

Ni

)⋃(
m−1⋃
i=0

Ci

)
9



is a connected (r + 2m+ 1, r + 1, r)-covering. Finally, since

|Ni| =
(
r − 2 + 2i

r − 2

)
(2m+ 1− 2i),

for all i ∈ {0, . . . ,m}, we deduce that

|B| =
m∑
i=0

(
r − 2 + 2i

r − 2

)
(2m+ 1− 2i) +m.

This completes the proof in this case.

Case 2. Suppose that n− r is an even number and let m such that n− r = 2m. We will
construct a connected (r + 2m, r + 1, r)-covering of size

m−1∑
i=0

(
r − 2 + 2i

r − 2

)
(2m− 2i) + C(r − 2 + 2m, r − 2) +m− 1.

As already defined in Case 1, for any integer i ∈ {0, . . . ,m−1}, we consider the collection
Ni of (r + 1)-subsets of [r + 2m] defined by

Ni := Ur+2i−2,r−2 × {r + 2i− 1} × {r + 2i} × {r + 2i+ 1, . . . , r + 2m}.
Let

A :=
m−1⋃
i=0

Ni.

Observe that A is not an (r + 2m, r + 1, r)-covering. In fact, from Claim 4.2, we know
that the r-subsets of [r + 2m] that are not in A are just the subsets of the form

{b1, . . . , br−2, r + 2m− 1, r + 2m},
where {b1, . . . , br−2} ∈ Ur+2m−2,r−2. Now, we completeA in order to obtain an (r+2m, r+
1, r)-covering. Let C be an (r+ 2m− 2, r− 1, r− 2)-covering of size C(r+ 2m− 2, r− 2).
We consider the set

Nm := {B ∪ {r + 2m− 1, r + 2m} | B ∈ C}
Claim 4.5. The set A ∪Nm is an (r + 2m, r + 1, r)-covering.

Since the r-subsets of [r+ 2m] that are not in A are elements of Ur+2m−2,r−2×{r+ 2m−
1} × {r + 2m} and since every element of Ur+2m−2,r−2 is contained in a block of C, the
result of Claim 4.5 follows.

For every i ∈ {0, . . . ,m − 1}, we already know, from Claim 4.3, that the graph G(Ni)
is connected. Moreover, for every i ∈ {0, . . . ,m − 2}, Claim 4.4 implies that the graph
G(Ni ∪ Ci ∪Ni+1) is connected, where

Ci := {1, . . . , r − 2, r + 2i, r + 2i+ 1, r + 2i+ 2} ∈ Ur+2m,r+1.

We end this proof by showing that the graph G(A∪Nm ∪C0 ∪ · · · ∪Cm−2) is connected.

Claim 4.6. For any B ∈ Nm, there exist i ∈ {0, . . . ,m− 1} and C ∈ Ni such that B is
adjacent to C in the graph G(Ni ∪Nm).

Let B = {b1, . . . , br−1, r + 2m − 1, r + 2m} ∈ Nm. If br−1 = r + 2i − 1 for some i ∈
{0, . . . ,m− 1}, then we have {b1, . . . , br−2} ∈ Ur+2i−2,r−2. Let

C := {b1, . . . , br−2, r + 2i− 1, r + 2i, r + 2m}.
By definition, C is in Ni. Moreover, since {b1, . . . , br−2, r + 2i − 1, r + 2m} ⊂ B and
{b1, . . . , br−2, r + 2i − 1, r + 2m} ⊂ C, we deduce that B and C are adjacent in the
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graph G(Ni ∪ Nm). Either, if br−1 = r + 2i for some i ∈ {0, . . . ,m − 1}, then we have
{b1, . . . , br−2} ∈ Ur+2i−1,r−2. We distinguish two cases on the value of br−2. First, if
br−2 < r + 2i− 1, then {b1, . . . , br−2} ∈ Ur+2i−2,r−2. Let

C := {b1, . . . , br−2, r + 2i− 1, r + 2i, r + 2m}.
As above, since {b1, . . . , br−2, r + 2i, r + 2m} ⊂ B and {b1, . . . , br−2, r + 2i, r + 2m} ⊂ C,
we deduce that B and C are adjacent in the graph G(Ni ∪ Nm). Finally, suppose that
br−2 = r + 2i− 1. Let α ∈ [r + 2i− 2] \ {b1, . . . , br−3} and let

C := {b1, . . . , br−3, r + 2i− 1, r + 2i, r + 2m} ∪ {α} ∈ Ur+2m,r+1.

Since {b1, . . . , br−3, r+2i−1, r+2i, r+2m} ⊂ B and {b1, . . . , br−3, r+2i−1, r+2i, r+2m} ⊂
C, we deduce that B and C are adjacent in the graph G(Ni ∪ Nm). This concludes the
proof of Claim 4.6.

By combining results of Claims 4.4, 4.5 and 4.6, we know that the set

B =

(
m⋃
i=0

Ni

)⋃(
m−2⋃
i=0

Ci

)
is a connected (r + 2m, r + 1, r)-covering. Finally, since

|Ni| =
(
r − 2 + 2i

r − 2

)
(2m+ 1− 2i),

for all i ∈ {0, . . . ,m− 1}, and

|Nm| = C(r + 2m− 2, r − 2),

we deduce that

|B| =
m−1∑
i=0

(
r − 2 + 2i

r − 2

)
(2m+ 1− 2i) + C(r + 2m− 2, r − 2) +m− 1.

This completes the proof of Theorem 4.1. �

Let us illustrate the construction given in the above theorem.

Example 4.7. N(7, 4) = 10. We consider

N0 = {12345, 12346, 12347} and N1 = {12567, 13567, 14567, 23567, 24567, 34567}.
It can be checked that N0∪N1 is a (7, 5, 4)-covering and G(N0) and G(N1) are connected.
Now, by taking C0 = 12456, it follows that G(N0 ∪ C0 ∪N1) is connected.

We may now show that S(n, r) > N(n, r). For this we need first the following Theorem
and Proposition.

Theorem 4.8. Let r and n be positive integers such that n > r + 1 > 3. Then,

S(n, r) = N(n, r) +

bn−r
2 c−1∑
i=0

(⌊
n− r

2

⌋
− i
)(

r − 2 + 2i

r − 3

)
+ δ0 (1− C(n− 2, r − 2)) ,

where δ0 is the parity function of n− r.
11



Proof. By induction on n > r. For n = r + 1 and n = r + 2 we have from (12) and (14)
that

S(r + 1, r) =

(
r − 1

r − 1

)
= 1, N(r + 1, r) = 1.

(
r − 2

r − 2

)
+ 1− 1 = 1,

and

S(r + 2, r) =

(
r

r − 1

)
+ 1 = r + 1, N(r + 2, r) = 2.

(
r − 2

r − 2

)
+ 1− 1 + C(r, r − 2)

= 2 + 1− 1 + r − 1 = r + 1.

Thus the identity is verified for n = r+ 1 and n = r+ 2. Suppose now that for a certain
value of n, we have

S(n, r) = N(n, r) +

bn−r
2 c−1∑
i=0

(⌊
n− r

2

⌋
− i
)(

r − 2 + 2i

r − 3

)
+ δ0 (1− C(n− 2, r − 2)) ,

and let D be the difference

D := (S(n+ 2, r)− N(n+ 2, r))− (S(n, r)− N(n, r)) .

Then,
S(n+ 2, r) = N(n+ 2, r) + (S(n, r)− N(n, r)) +D.

By using (12), we obtain

S(n+2, r)−S(n, r) =

bn−r+1
2 c+1∑
i=1

(
n+ 2− 2i

r − 1

)
+

⌊
n− r

2

⌋
+ 1−

bn−r+1
2 c∑

i=1

(
n− 2i

r − 1

)
−
⌊
n− r

2

⌋

=

bn−r+1
2 c∑

i=0

(
n− 2i

r − 1

)
+ 1−

bn−r+1
2 c∑

i=1

(
n− 2i

r − 1

)

=

(
n

r − 1

)
+ 1.

By using (14), we have

N(n+2, r)−N(n, r) =

dn−r
2 e∑

i=0

(n+ 2− r − 2i)

(
r − 2 + 2i

r − 2

)
+

⌈
n− r

2

⌉
+ δ0C(n, r − 2)

−
dn−r

2 e−1∑
i=0

(n− r − 2i)

(
r − 2 + 2i

r − 2

)
−
⌈
n− r

2

⌉
+ 1− δ0C(n− 2, r − 2)

=

dn−r
2 e−1∑
i=0

2

(
r − 2 + 2i

r − 2

)
+

(
n+ 2− r − 2

⌈
n− r

2

⌉)(
r − 2 + 2

⌈
n−r
2

⌉
r − 2

)
+δ0 (C(n, r − 2)− C(n− 2, r − 2)) + 1.

Moreover, since

n− r − 2

⌈
n− r

2

⌉
=

{
0 if n− r is even,
−1 otherwise,
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and (
r − 2 + 2

⌈
n−r
2

⌉
r − 2

)
=

(
n− 1

r − 2

)
for n− r odd, it follows that

N(n+ 2, r)− N(n, r) =

dn−r
2 e∑

i=0

2

(
r − 2 + 2i

r − 2

)
+ (δ0 − 1)

(
n− 1

r − 2

)
+δ0 (C(n, r − 2)− C(n− 2, r − 2)) + 1

Therefore

D =

(
n

r − 1

)
−
dn−r

2 e∑
i=0

2

(
r − 2 + 2i

r − 2

)
+(1−δ0)

(
n− 1

r − 2

)
+δ0 (C(n− 2, r − 2)− C(n, r − 2)) .

Moreover, from the identity(
r − 2 + 2i

r − 2

)
=

(
r − 1 + 2i

r − 2

)
−
(
r − 2 + 2i

r − 3

)
,

we obtain that

dn−r
2 e∑

i=0

2

(
r − 2 + 2i

r − 2

)
=

dn−r
2 e∑

i=0

(
r − 2 + 2i

r − 2

)
+

dn−r
2 e∑

i=0

(
r − 1 + 2i

r − 2

)
−
dn−r

2 e∑
i=0

(
r − 2 + 2i

r − 3

)

=

r−1+2dn−r
2 e∑

i=r−2

(
i

r − 2

)
−
dn−r

2 e∑
i=0

(
r − 2 + 2i

r − 3

)

=

(
r + 2

⌈
n−r
2

⌉
r − 1

)
−
dn−r

2 e∑
i=0

(
r − 2 + 2i

r − 3

)
.

Thus,

D =

(
n

r − 1

)
−
(
r + 2

⌈
n−r
2

⌉
r − 1

)
+ (1− δ0)

(
n− 1

r − 2

)
+

dn−r
2 e∑

i=0

(
r − 2 + 2i

r − 3

)
+δ0 (C(n− 2, r − 2)− C(n, r − 2)) .

If n− r is even, then δ0 = 1 and(
n

r − 1

)
−
(
r + 2

⌈
n−r
2

⌉
r − 1

)
+ (1− δ0)

(
n− 1

r − 2

)
=

(
n

r − 1

)
−
(

n

r − 1

)
= 0.

13



Either, if n− r is odd, then δ0 = 0 and(
n

r − 1

)
−
(
r + 2

⌈
n−r
2

⌉
r − 1

)
+ (1− δ0)

(
n− 1

r − 2

)
=

(
n

r − 1

)
−
(
n+ 1

r − 1

)
+

(
n− 1

r − 2

)

= −
(

n

r − 2

)
+

(
n− 1

r − 2

)

= −
(
n− 1

r − 3

)
.

It follows that

D =

dn−r
2 e∑

i=0

(
r − 2 + 2i

r − 3

)
+ (δ0 − 1)

(
n− 1

r − 3

)
+ δ0 (C(n− 2, r − 2)− C(n, r − 2))

=

bn−r
2 c∑

i=0

(
r − 2 + 2i

r − 3

)
+ δ0 (C(n− 2, r − 2)− C(n, r − 2)) .

Now, with the induction hypothesis, we obtain

S(n+2, r)−N(n+2, r) = (S(n, r)− N(n, r)) +D

=

bn−r
2 c−1∑
i=0

(⌊
n− r

2

⌋
− i
)(

r − 2 + 2i

r − 3

)
+ δ0 (1− C(n− 2, r − 2))

+

bn−r
2 c∑

i=0

(
r − 2 + 2i

r − 3

)
+ δ0 (C(n− 2, r − 2)− C(n, r − 2))

=

bn−r
2 c∑

i=0

(⌊
n− r

2

⌋
+ 1− i

)(
r − 2 + 2i

r − 3

)
+ δ0 (1− C(n, r − 2)) .

�

Proposition 4.9. Let n and r be positive integers such that n > r + 3 > 5. Then,

C(n, r) 6

(
n− 2

r − 1

)
+ C(n− 2, r).

Proof. Let S1 = {A1, . . . , As} be a (n−2, r+1, r)-covering such that s = C(n−2, r+1, r)
and let Un−2,r−1 be the set of all the (r − 1)-subsets of {1, . . . , n − 2}. We denote by
Un−2,r−1 = {B1, . . . , Bt} where t =

(
n−2
r−1

)
these elements. We will prove that the collection

S2 = {A1, . . . , As, B1 ∪ {n− 1, n}, . . . , Bt ∪ {n− 1, n}}
is a (n, r + 1, r)-covering. Obviously, all the blocks of the form Ai or Bi ∪ {n− 1, n} are
(r+1)-subsets of {1, . . . , n}. Let C be an r-subset of {1, . . . , n}. First, if C∩{n−1, n} = ∅,
by definition of S1, there exists at least one block Ai containing C. Now, if C∩{n−1, n} =
{x}, with either x = n− 1 or x = n, then C \ {x} is an (r − 1)-subset of {1, . . . , n− 2},
thus C \ {x} = Bi for a certain 1 6 i 6 t. It follows that the r-subset C is contained
in Bi ∪ {n − 1, n}. Finally, if {n − 1, n} ⊂ C, then C \ {n − 1, n} is an (r − 2)-subset
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of {1, . . . , n − 2} and thus there exist exactly n − r blocks Bi of Un−2,r−1 containing
C \ {n − 1, n}. It follows that there exist n − r blocks of the form Bi ∪ {n − 1, n}
containing C. Therefore S2 is a (n, r + 1, r)-covering and

C(n, r) 6 |S2| = |S1|+ |Un−2,r−1| = C(n− 2, r) +

(
n− 2

r − 1

)
.

�

Theorem 4.10. Let r and n be positive integers such that n − r is an even number.
Then,

S(n, r) > N(n, r) +

n−r
2
−2∑

i=0

(
n− r

2
− i− 1

)(
r − 2 + 2i

r − 3

)
.

Proof. By applying repeatedly Proposition 4.9, we have

C(n− 2, r − 2) 6

n−r
2
−1∑

i=0

(
r − 2 + 2i

r − 3

)
+ 1.

Then, we deduce from Theorem 4.8 that

S(n, r) = N(n, r) +

n−r
2
−1∑

i=0

(
n− r

2
− i
)(

r − 2 + 2i

r − 3

)
+ 1− C(n− 2, r − 2)

> N(n, r) +

n−r
2
−1∑

i=0

(
n− r

2
− i
)(

r − 2 + 2i

r − 3

)
−

n−r
2
−1∑

i=0

(
r − 2 + 2i

r − 3

)

= N(n, r) +

n−r
2
−2∑

i=0

(
n− r

2
− i− 1

)(
r − 2 + 2i

r − 3

)
.

�

5. Asymptotics

In [19] Rödl uses the probabilistic method to show the existence of asymptotically good
coverings. Restricted to our case this means that

C(n, r)(
n
r

) → 1

r + 1
as n→∞.

Since CC(n, r) 6 2C(n, r) (see [5]) we immediately obtain:

CC(n, r)(
n
r

) → 2

r + 1
as n→∞.

This is asymptotically, i.e. for large n compared to r, better than the results of the
previous section: In [5] it was shown that

S(n, r)(
n
r

) → 1

2
as n→∞

and since by Theorem 4.10 the difference N(n, r)−S(n, r) is in O(nr−1) we have the same
asymptotic behavior for N(n, r).
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It is however still a topic of research to find explicit constructions witnessing the bound
of Rödl, see [15].

Acknowledgments. Much of this work in particular for the construction of the connected
covering designs in Figures 1, 3, 4 strongly benefited from the La Jolla Covering Reposi-
tory (http://www.ccrwest.org/cover.html) maintained by Dan Gordon.
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Appendix - Proof of Proposition 1.2

For basic notions of oriented matroids we refer the reader to [2].
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Let S be a set of circuits of Ur,n with with |S| < C(n, r), that is, a set of circuits not
covering all the bases, and let B be a base not covered by S, that is, B is not contained
in any circuit of S.
Let us consider U∗r,n = Un−r,n the dual of Ur,n. By the well-known Topological Repre-
sentation Theorem due to Folkman and Lawrence [4], there is a correspondence between
oriented matroids whose adjacent non-oriented matroid is U∗r,n and (n−r)-dimensional ori-
ented simple pseudo-sphere arrangements. Moreover, we can choose an oriented matroid
M such that the elements of B correspond to pseudo-spheres not bounding a simplicial
region of A corresponding to M. Let us call the simplex R.

By duality, the circuits of Ur,n correspond to the cocircuits of Un−r,n. Their orientations
in M in turn are in bijection with the vertices of the arrangement A. We notice that
among the circuits of Ur,n containing B, there are those corresponding to the vertices of
simplex R.
Now, we apply a mutation to simplex R obtaining fromM another oriented matroidM′

adjacent to U∗r,n. All cocircuits of M′ have the same orientation as those of M except
for the cocircuits corresponding to vertices of R that have changed after the mutation.
Since none of the cocircuits corresponding to the vertices of R belong to S (that does not
cover B) S does not determine uniquelyM of U∗r,n and dualizing back neither determines
uniquely the dual M∗ which is adjacent to Ur,n. ut
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