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Considering a Hamiltonian Dynamical System describing the motion of charged particle in a Tokamak or a Stellarator, we build a change of coordinates to reduce its dimension. This change of coordinates is in fact an intricate succession of mappings that are built using Hyperbolic Partial Differential Equations, Differential Geometry, Hamiltonian Dynamical System Theory and Symplectic Geometry, Lie Transforms and a new tool which is here introduced : Partial Lie Sums.

Notations

1. For a 2π-periodic set I # included in R, C 8 per `I# ˘stands of the space of functions being in C 8 pI # q and 2π-periodic.

2.

For a set M # included in R m (where m P N and m ě 2) which is 2π-periodic with respect to the l-th variable (l ď m) we denote by C 8

#,l

`M# ˘the space of functions being in C 8 pM # q and 2π-periodic with respect to the l-th variable.

3.

C 8 # `M# ˘" C 8 #,pm´1q
`M# ˘.

4. For m P N ‹ , C 8 b pR m q stands of the space of functions being in C 8 pR m q and with their derivatives at any order which are bounded. 

7.

For an open subset U Ă R p , we denote by A pU q the space of real analytic functions on U .

8. For a formal power series S, we denote by Σ S its set of convergence.

9. b n pm 0 , R 0 q stands for the open euclidian ball of radius R 0 and of center m 0 in R n . 

12. COpm 0 , R 0 ; a, bq stands for the subset of R 4 defined by COpm 0 , R 0 ; a, bq " b 2 pm 0 , R 0 q ˆR ˆpa, bq . 

Introduction

At the end of the 70', Littlejohn [START_REF] Littlejohn | A guiding center Hamiltonian: A new approach[END_REF][START_REF] Littlejohn | Hamiltonian formulation of guiding center motion[END_REF][START_REF] Littlejohn | Hamiltonian perturbation theory in noncanonical coordinates[END_REF] shed new light on what is called the Guiding Center Approximation. His approach incorporated high level mathematical concepts from Hamiltonian Mechanics, Differential Geometry and Symplectic Geometry into a physical affordable theory in order to clarify what has been done for years in the domain (see Kruskal [START_REF]Plasma Physics, chapter Elementary Orbit and Drift Theory[END_REF], Gardner [START_REF] Gardner | Adiabatic invariants of periodic classical systems[END_REF], Northrop [START_REF] Northrop | The guiding center approximation to charged particle motion[END_REF], Northrop & Rome [START_REF] Northrop | Extensions of guiding center motion to higher order[END_REF]). This theory is a nice success. It has been beeing widely used by physicists to deduce related models (Finite Larmor Radius Approximation, Drift-Kinetic Model, Quasi-Neutral Gyro-Kinetic Model, etc., see for instance Brizard [START_REF] Brizard | Nonlinear gyrokinetic Vlasov equation for toroidally rotating axisymmetric tokamaks[END_REF], Dubin et al. [START_REF] Dubin | Nonlinear gyrokinetic equations[END_REF], Frieman & Chen [START_REF] Frieman | Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria[END_REF], Hahm [START_REF] Hahm | Nonlinear gyrokinetic equations for tokamak microturbulence[END_REF], Hahm, Lee & Brizard [START_REF] Hahm | Nonlinear gyrokinetic theory for finite-beta plasmas[END_REF], Parra & Catto [START_REF] Parra | Limitations of gyrokinetics on transport time scales[END_REF][START_REF] Parra | Gyrokinetic equivalence[END_REF][START_REF] Parra | Turbulent transport of toroidal angular momentum in low flow gyrokinetics[END_REF]) making up the Gyro-Kinetic Approximation Theory, which is the basis of all kinetic codes used to simulate Plasma Turbulence emergence and evolution in Tokamaks and Stellarators (see for instance Brizard [START_REF] Brizard | Nonlinear gyrokinetic Vlasov equation for toroidally rotating axisymmetric tokamaks[END_REF], Quin et al [START_REF] Qin | General gyrokinetic equations for edge plasmas[END_REF][START_REF] Qin | Geometric gyrokinetic theory for edge plasmas[END_REF], Kawamura & Fukuyama [START_REF] Kawamura | Refinement of the gyrokinetic equations for edge plasmas with large flow shears[END_REF], Hahm [START_REF] Hahm | Nonlinear gyrokinetic equations for turbulence in core transport barriers[END_REF], Hahm, Wang & Madsen [START_REF] Hahm | Fully electromagnetic nonlinear gyrokinetic equations for tokamak edge turbulence[END_REF], Grandgirard et al. [START_REF] Grandgirard | A driftkinetic semi-lagrangian 4d code for ion turbulence simulation[END_REF][START_REF] Grandgirard | Global full-f gyrokinetic simulations of plasma turbulence[END_REF], and the review of Garbet et al. [START_REF] Garbet | Gyrokinetic simulations of turbulent transport[END_REF]). Yet, the resulting Geometrical Gyro-Kinetic Approximation Theory remains a physical theory which is formal from the mathematical point of view and not directly accessible for mathematicians. The present paper is a first step towards providing a mathematical affordable theory, particularly for the analysis, the applied mathematics and computer sciences communities.

Notice that, beside this Geometrical Gyro-Kinetic Approximation Theory, an alternative approach, based on Asymptotic Analysis and Homogenization Methods was developed by Frénod & Sonnendrücker [START_REF] Frénod | Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field[END_REF][START_REF] Frénod | Long time behavior of the two dimensionnal Vlasov equation with a strong external magnetic field[END_REF][START_REF] Frénod | The Finite Larmor Radius Approximation[END_REF], Frénod, Raviart & Sonnendrücker [START_REF] Frénod | Asymptotic expansion of the Vlasov equation in a large external magnetic field[END_REF], Golse & Saint-Raymond [START_REF] Golse | The Vlasov-Poisson system with strong magnetic field[END_REF] and Ghendrih, Hauray & Nouri [START_REF] Ghendrih | Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions[END_REF].

The purpose of this paper is to provide a mathematical framework for the formal Guiding-Center reduction introduced in Littlejohn [START_REF] Littlejohn | A guiding center Hamiltonian: A new approach[END_REF]. The domain of application of this theory is that of a charged particle under the action of a strong magnetic field. Hence we will consider the following dynamical system : BX Bt " V, Xp0q " x 0 , (1.1)

BV Bt " 1 ε B pXq K V, Vp0q " v 0 , (1.2) 
where X " pX 1 , X 2 q stands for the position, V " pV 1 , V 2 q stands for the velocity, V K " pV 2 , ´V1 q, x 0 and v 0 stand for the initial position and velocity, and ε is a small parameter. We notice that equations (1.1)-(1.2) can be obtained from the six dimensional system by taking a magnetic field in the x 3 -direction that only depends on x 1 and x 2 .

When the magnetic field is constant, the trajectory associated with (1.1)-(1.2) is a circle of center c 0 " x 0 `εv 0 and of radius ε |v 0 |. Otherwise, the dynamical system (1.1)-(1.2) can be viewed as a perturbation of the system obtained when the magnetic field is constant. Hence, in the general case of a magnetic field depending on position, the evolution of a given particle's position is a combination of two disparate in time motions: a slow evolution of what is the center of the circle in the case when B is constant, usually called the Guiding Center, and a fast rotation with a small radius about it. The Guiding-Center reduction consists in replacing the trajectory of the particle by the trajectory of a quantity close to the guiding-center and free of fast oscillations. This purpose can easily be translated within a geometric formalism. In any system of coordinates on a manifold M, a Hamiltonian dynamical system whose solution is R " Rpt; r 0 q can be written in the following form BR Bt " PpRq∇ r HpRq, Rp0, r 0 q " r 0 ,

where Pprq is a matrix called the matrix of the Within this geometrical framework, the goal of the Guiding-Center reduction is to make a succession of changes of coordinates in order to satisfy the assumptions of the following theorem.

Theorem 1.1. If, in a given coordinate system r " pr 1 , r 2 , r 3 , r 4 q, the Poisson Matrix has the following form:

Pprq " ¨Mprq 0 0 0 0 0 0 0 P 3,4 0 0 ´P3,4 0 ‹ ‹ ' , (1.4) 
where P 3,4 is a non-zero constant, and if the Hamiltonian function does not depend on the penultimate variable, i.e.

BH Br

3 " 0, (1.5) 
then, submatrix M does not depend on the two last variables, i.e.

BM

Br 3 " 0 and BM Br 4 " 0.

(1.6)

Consequently, the time-evolution of the two first components R 1 , R 2 is independent of the penultimate component R 3 ; and, the last component R 4 of the trajectory is not time-evolving, i.e.

BR 4

Bt " 0.

(1.7)

Theorem 1.1 is the Key Result that brings the understanding of the Guiding-Center reduction: the Guiding-Center reduction consists in writing dynamical system (1.1)-(1.2) within a system of coordinates, called the Guiding-Center Coordinate System, that satisfies the assumptions of Theorem 1.1 and which is close to the Historic Guiding-Center Coordinate System, usually defined by:

y hgc 1 " x 1 ´ε v Bpxq cos pθq , (1.8) 
y hgc 2 " x 2 `ε v Bpxq sin pθq , (1.9) 
θ hgc " θ, (1.10) 
k hgc " v 2 2Bpxq , (1.11) 
where v " |v| and where θ is the angle between the x 1 -axis and the gyro-radius vector ρ ε px, vq " ´ε Bpxq v K measured in a clockwise sense. Once this done, if we are just interested in the motion of the particle in the physical space, i.e. just in the evolution of the two first components, solving the dynamical system in the new system of coordinates, reduces to find a trajectory in R 2 , in place of a trajectory in R 4 when it is solved in the original system of coordinates.

In [START_REF] Littlejohn | A guiding center Hamiltonian: A new approach[END_REF], Littlejohn proposed a construction of the Guiding-Center Coordinates based on formal series expansion in power of ε. This approach cannot be made mathematically rigorous because no argument can insure the validity of the series expansion. In the present paper we adopt a different strategy. We will derive for each positive integer N a coordinate system, the so-called Guiding-Center Coordinates of order N , whose expansion in power of ε, up to any order N , coincides with the Guiding-Center coordinates given in [START_REF] Littlejohn | A guiding center Hamiltonian: A new approach[END_REF]. Moreover, for each integer N we will construct a Hamiltonian dynamical system satisfying Theorem 1.1 and approximating uniformly in time, with accuracy in proportion to ε N ´1, the Hamiltonian dynamical system (1.1)-(1.2) written within the Guiding-Center Coordinates of order N .

The Guiding-Center reduction consists essentially in a succession of three change of coordinates: a polar in velocity change of coordinates px, vq Þ Ñ px, θ, vq with θ and v defined above, a second change of coordinates called the Darboux change of coordinates, and a last change of coordinates called the Lie change of coordinates. The objective of the first change of coordinates is to concentrate the fast oscillations on the θ variable. The second one, consists in finding a coordinate system in which the Poisson Matrix has the required form to apply Theorem 1.1, and eventually the last change of coordinates (which is in fact the succession of N changes of coordinates) consists in removing the oscillations from the Hamiltonian function while keeping the same expression of the Poisson Matrix.

All along this paper we will assume that the magnetic field B is analytic, that all its derivatives are bounded, and that B is nowhere close to 0, i.e. that inf B ą 1.

The three main results of this paper are the following. The first one concerns the Darboux change of coordinates.

Theorem 1.2. There exists a C 8 -diffeomorphism Υ ε : px, θ, vq Þ Ñ py, θ, kq one to one from R 2 ˆRˆp0, `8q onto itself, smooth with respect to ε, such that the Poisson Matrix expressed in the py, θ, kq coordinate system reads: Theorem 1.3. For each positive integer N , for each compact set K L , and for each positive real numbers c L and d L (with c L ă d L ), there exists a diffeomorphism χ N ε : py, θ, kq Þ Ñ pz, γ, jq defined on K L ˆRˆpc L , d L q and a positive real number η K L such that, for any ε P r0, η K L s, the expansion in power of ε of the Hamiltonian function Ĥε of system (1.1)-(1.2) in the pz, γ, jq coordinates does not depend to the oscillation variable γ up to order N , i.e.

Pε py, θ, kq " ¨0 ´ε Bpyq 0 0 ε Bpyq 0 0 0 0 0 0 1 ε 0 0 ´1 ε 0 ‹ ‹ ‹ ' . ( 1 
Ĥε pz, γ, jq " Ĥ0 pz, jq `ε Ĥ1 pz, jq `. . . `εN ĤN pz, jq `εN`1 ρ N H pε; z, γ, jq , (1.13) 
and such that the Poisson Matrix expressed in the pz, γ, jq coordinate system reads:

ε Pε pz, γ, jq " εP ε pz, γ, jq `εN`2 ρ N P pε; z, γ, jq ,

where ρ N H and ρ N P are in C 8 # pr0, η K L s ˆKL ˆR ˆrc L , d L sq. The proof of Theorem 1.3 is given in Subsection 4.7.

Remark 1.4. Theorem 1.3 is consistent with Theorem 1.2. Indeed, in Subsection 3.9 we will show that for any T P r0, `8q, for any compact set K C , and for any positive real numbers c C and d C (with c C ă d C ), there exists a positive real number η, a compact set K L , and positive real numbers c L and d L (with c L ă d L ) such that for any t P r0, T s and for any ε P r0, ηs the trajectory associated with (1.1)-(1.2), with initial condition px 0 , v 0 q P K C ˆCpa C , b C q (see Notation 11) and expressed in the Darboux coordinates, belongs to K L ˆR ˆra L , b L s. 

ĤN ε pz, jq " Ĥ0 pz, jq `ε Ĥ1 pz, jq `. . . `εN ĤN pz, jq , (1.15) 
where Ĥ0 , . . . , ĤN are the N first terms in expansion (1.13) of Ĥε , and we denote by pZ, Γ, J q " pZ, Γ, J qpt; z 0 , γ 0 , j 0 q the trajectory of Hamiltonian system (1.1)-(1.2), expressed in the pz, γ, jq coordinate system, associated with initial condition z 0 , γ 0 , j 0 . Let

B Bt ¨ZT Γ T J T '" P ε `ZT ˘∇ ĤN ε `ZT , J T ˘, (1.16) 
be the Hamiltonian dynamical system associated with the Hamiltonian function ĤN ε and with the Poisson Matrix P ε defined by (1.12). Then, this system satisfies the assumptions of Theorem 1.1. Moreover, for any T P r0, `8q, for any compact set K C , and for any positive real numbers c C and d C (with c C ă d C ), there exists a real number η K C and a constant C C , independant of ε, such that for any t P r0, T s and for any ε P r0, η K C s sup ˇˇpZ, J qpt; z 0 , γ 0 , j 0 q ´pZ T , J T qpt; z 0 , j 0 q ˇˇ, t P r0, T s, pz 0 , γ 0 , j 0 q P U C ( ď Cε N ´1, (1.17) where U C is the range of K C ˆCpc C , d C q in the Guiding-Center coordinates of order N i.e. by diffeomorphism χ N ε . The proof of Theorem 1.5 is led in Subsection 4.8.

The paper is organized as follows. In Section 2 we briefly recall the main steps of the Guiding-Center reduction and we give a proof of Theorem 1.1. Then, Section 3 is devoted to the construction of the Darboux change of coordinates. Especially, we will introduce an intermediary PDE from which the Darboux coordinates can be deduced. We will also perform a detailed analysis of the regularity of the change of coordinates and its inverse, including the regularity with respect to the small parameter ε, and we will give the expansions with respect to ε of the change of coordinates, of its inverse, and of the Hamiltonian function. In Section 4, we introduce a partial Lie transform method leading to the Guiding-Center coordinate system of order N . Eventually, in Sections 4.7 and 4.8 we will prove Theorems 1.3 and 1.5.

2 Schematic description of the Guiding-Center reduction

Panorama

A schematic description of the Guiding-Center change of coordinates is summarized in Figure 2 are symbolized by arrows 3, 4, and 5. The first step consists in finding an adequate symplectic structure from which the expressions of the Poisson Matrix and the Hamiltonian function are deduced. To achieve this goal we will introduce the canonical coordinates defined by:

q " x and p " BL ε Bv px, vq " v `1 ε A pxq , (2.1) 
where

L ε px, vq " |v| 2 2 `1 ε v ¨A pxq , (2.2) 
is the dimensionless electromagnetic Lagrangian and A is the potential vector. Then, the Symplectic Two-Form Ω ε that is considered is the unique Two-Form whose expression in the Canonical Coordinate chart is given by ωε " dq ^dp.

(2.3)

Consequently, the Poisson matrix is given by:

Pε pq, pq " ´K ε pq, pq ¯´T " S " " 0 id ´id 0  , (2.4) 
where Kε is the matrix associated with ωε . Eventually it is obvious to show that dynamical system (1. 

¨0 0 1 0 0 0 0 1 ´1 0 0 Bpxq ε 0 ´1 ´Bpxq ε 0 ‹ ‹ ‹ ' , (2.5) 
and, more interesting in the perspective of the next steps, in the Polar in velocity Coordinates: (2.7)

Hε px, θ, vq " v 2 2 , ( 2 
Before turning to the fourth step we give the proof of Theorem 1.1.

Proof of Theorem 1.1

When the Poisson Matrix has the form given by (1.4), the last line of ( Using the Jacobi identity saying that for any regular function f, g, h, ttf, gu r , hu r `tth, f u r , gu r `ttg, hu r , f u r " 0,

and the facts that P 3,1 " P 2,3 " P 4,1 " P 2,4 " 0, we obtain ttr 1 , r 2 u r , r 3 u r " ´ttr 3 , r 1 u r , r 2 u r ´ttr 2 , r 3 u r , r 1 u r " 0, (2.12) ttr 1 , r 2 u r , r 4 u r " ´ttr 4 , r 1 u r , r 2 u r ´ttr 2 , r 4 u r , r 1 u r " 0.

(2.13) and consequently, since P 1,1 " P 2,2 " 0, (2.10) brings (1.6), ending the proof of the theorem.

3 The Darboux algorithm

Objectives

At this stage, the three first steps of the reduction are already done. The fourth step (see Figure 2.1) on the way to build the Guiding-Center Approximation is the application of the mathematical algorithm, so called the Darboux Algorithm, to build a global Coordinate System py 1 , y 2 , θ, kq close to the Historic Guiding-Center Coordinate System (1.8)- (1.11), and in which the Poisson Matrix has the required form (1.4) to apply the Key Result (Theorem 1.1). In order to manage the small parameter ε, we will build the Coordinate System py 1 , y 2 , θ, kq in order to have Pε py, θ, kq with the following form:

Pε py, θ, kq " ¨Mε pyq 0 0 0 0 0 0 0

1 ε 0 0 ´1 ε 0 ‹ ‹ ' . (3.1)
Using the usual change of coordinates rule for the Poisson Matrix, finding this coordinate system remains to find a diffeomorphism Υ px, θ, vq " pΥ 1 px, θ, vq , Υ 2 px, θ, vq , Υ 3 px, θ, vq , Υ 4 px, θ, vqq ,

whose components satisfy the following non-linear hyperbolic system of PDE:

tΥ 1 , Υ 3 u x,θ,v " 0, tΥ 1 , Υ 4 u x,θ,v " 0, (3.3 
)

tΥ 2 , Υ 3 u x,θ,v " 0, tΥ 2 , Υ 4 u x,θ,v " 0, (3.4 
)

tΥ 3 , Υ 4 u x,θ,v " 1 ε . (3.5)
The resolution of this set of PDE constitutes the Darboux method.

The first stage of the method consists in setting

Υ 3 " θ. (3.6)
Consequently, the non-linear nature of (3.3)-(3.5) is balanced by the fact that θ is left unchanged. With the aim of being close to the Historical Guiding-Center coordinates (see (1.8)-(1.11)), the boundary conditions are fixed at v " 0 as follows:

Υ 1 px, θ, 0q " x 1 , Υ 2 px, θ, 0q " x 2 , Υ 4 px, θ, 0q " 0. (3.7) 
Since the Poisson Matrix Pε given by (2.7) has a singularity at v " 0, this choice leads to a small difficulty. Nevertheless, it is not a difficult task to fix it. Let ω ε be the function defined by:

ω ε px, vq " Bpxq εv , (3.8) 
and let Qε be the matrix related with the Poisson Matrix by: Pε px, θ, vq " ω ε px, vq Qε px, θ, vq .

(3.9) Then, the system of PDE (3.3)-(3.5) is equivalent, for v ‰ 0, to equations involving Qε :

p∇Υ 1 q ¨p Qε p∇Υ 3 qq " 0, p∇Υ 1 q ¨p Qε p∇Υ 4 qq " 0, (3.10) 
p∇Υ 2 q ¨p Qε p∇Υ 3 qq " 0, p∇Υ 2 q ¨p Qε p∇Υ 4 qq " 0, (3.11)

p∇Υ 4 q ¨p Qε p∇Υ 3 qq " ´v B pxq , (3.12) 
that have no singularity in v " 0. Consequently in place of solving (3.3)-(3.5) we will solve (3.10)-(3.12) provided with the set of boundary conditions (3.7).

In this Section, we will not follow the method given in [START_REF] Littlejohn | A guiding center Hamiltonian: A new approach[END_REF]. We will base the resolution of (3.10)-(3.12) on an intermediary PDE from which the solutions of (3.10)-(3.12) will be deduced. Afterwards, we will construct for any fixed ε map Υ. Then, we will show that Υ is well a change of coordinates and study its regularity with respect to ε. Finally, we will prove Theorem 1.2 and in view of the last Section we will give estimates related to the expression of the characteristics expressed in the Darboux Coordinate System.

An intermediary equation

The intermediary equation that we consider in this Section is the following:

$ & % Bϕ Bv `εΛ ¨ϕ " 0, ϕ px, θ, v " 0q " ϕ 0 px, θq , (3.13) 
where

ϕ 0 px, θq " 1 B pxq , (3.14) 
and where Λ is the vector field defined by:

Λ px, θq " cos pθq B pxq B Bx 1 ´sin pθq B pxq B Bx 2 . (3.15)
We denote by G λ its flow and by Λ n ¨its iterated application acting on regular functions f as

Λ 0 ¨f " f, Λ 1 ¨f " cos pθq B pxq Bf Bx 1 ´sin pθq B pxq Bf Bx 2 , (3.16) 
Λ n ¨f " Λ ¨`Λ n´1 ¨f ˘, @n ě 2. (3.17) 
In a first place, we give the regularity property of G λ .

Lemma 3.1. Flow G λ " G λ px, θq of vector field Λ is complete, in C 8 pR 3 q, `G1 λ , G 2 λ ˘is in C 8
#,3 pR 3 q (see Notation 2), and G 3 λ px, θq " θ. Then, using this lemma, which proof is straightforward, we obtain the following Theorem.

Theorem 3.2. The unique solution ϕ to (3.13) is given by

ϕpx, θ, vq " 1 B `G1 ´εv px, θq , G 2 ´εv px, θq ˘. (3.18)
Moreover, ϕ is in C 8 # pR 4 q and is bounded.

Proof. The proof of Theorem 3.2 is performed with the usual characteristics' method. Let F pv, s, x, θq be the characteristic associated with (3.13), i.e. the solution of

$ ' ' ' ' ' ' & ' ' ' ' ' ' % BF 1 Bv " ε cos pF 3 q B pF 1 , F 2 q , BF 2 Bv " ´ε sin pF 3 q B pF 1 , F 2 q , F ps, s, x, θq " px, θq . BF 3 Bv " 0, (3.19) 
By definition the flow G λ of Λ satisfies:

$ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % BG 1 λ Bλ " cos `G3 λ B `G1 λ , G 3 λ ˘, BG 2 λ Bλ " ´sin `G3 λ B `G1 λ , G 3 λ ˘, G 0 px, θq " px, θq . BG 3 λ Bλ " 0, (3.20) 
Then, we deduce that F pv, s, x, θq " G εpv´sq px, θq. Eventually Duhamel's formula yields:

ϕ px, θ, vq " ϕ 0 pF p0, v, x, θqq " 1 B `G1 ´εv px, θq , G 2 ´εv px, θq ˘. (3.21)
This ends the proof of Theorem.

We will end this Section by giving a Taylor expansion, with respect to ε, of the solution ϕ to (3.13). Such kind of Taylor expansions are usually referred in the literature (see Olver [START_REF] Olver | Applications of Lie groups to differential equations[END_REF]) as Lie expansions.

Definition 3.3. If Λ is a vector field of R 3 with coefficients which are in C 8 b `R3 ˘, then we define the Lie Series S 8
L pΛq ¨associated with Λ by

S 8 L pΛq ¨" ÿ lě0 pΛq l l! , (3.22) 
where pΛq l is defined by (3.16) and (3.17), and the partial Lie Sum of order n:

S n L pΛq ¨" n ÿ l"0 pΛq l l! . (3.23)
It is known that, formally, the flow G λ associated with Λ may be expressed in terms of the Lie Series of Λ:

G λ " S 8 L pλΛq ¨" ÿ lě0 pλΛq l l! . (3.24)
More rigorously, as the flow is complete, using its partial Lie Sum we have

f ˝Gλ " n ÿ l"0 λ l pΛq l l! f `ż λ 0 pλ ´uq n n! `Λn`1 ¨f ˘˝G u du, (3.25) 
for any function f : R 3 Ñ R being C 8 pR 3 q.

Taking now 1 B as function f and ´εv as parameter λ in (3.25), we obtain

ϕ px, θ, vq " n ÿ l"0 p´εvq l l! ˆΛl ¨1 B ˙px, θq `ż ´εv 0 p´εv ´uq n n! ˆΛn`1 ¨1 B ˙˝G u px, θq du. (3.26)
Hence we have proven the following lemma.

Lemma 3.4. Function ϕ, solution to PDE (3.13), admits for any n P N, for any ε P R and for any px, θ, vq P R 4 the following expansion in power of ε ϕ px, θ, vq "

n ÿ l"0 p´εvq l l! ˆΛl ¨1 B ˙px, θq `p´εq n`1 n! ż v 0 pv ´uq n n! ˆΛn`1 ¨1 B ˙˝G ´εu px, θq du. (3.27)
Moreover, for any l P N,

`Λl ¨1 B ˘is in C 8 #,3 pR 3 q X C 8 b `R3 ˘; for any n P N, pε, x, θ, vq Þ Ñ ş v 0 pv´uq n n! `Λn`1 ¨1 B ˘˝G ´εu px, θq du is in C 8 # pR 5 q;
and for any v P R and any

n P N, pε, x, θq Þ Ñ ş v 0 pv´uq n n! `Λn`1 ¨1 B ˘˝G ´εu px, θq du is bounded by C ϕ n pvq " |v| n`1 pn`1q! › › Λ n`1 ¨1 B › › 8 .

The other equations

In the following Theorem, we will deduce from Theorem 3.2 the solutions Υ 1 , Υ 2 , and Υ 4 of the PDEs that are in the left in equalities (3.10)-(3.12).

Theorem 3.5. The unique solutions Υ 1 , Υ 2 , and Υ 4 of

p∇Υ 1 q ¨p Qε p∇Υ 3 qq " 0, Υ 1 px, θ, 0q " x 1 , (3.28) 
p∇Υ 2 q ¨p Qε p∇Υ 3 qq " 0, Υ 2 px, θ, 0q " x 2 , (3.29) 
p∇Υ 4 q ¨p Qε p∇Υ 3 qq " ´v B pxq , Υ 4 px, θ, 0q " 0, (3.30) 
are given by

Υ 1 px, θ, vq " x 1 ´ε cos pθq ψ px, θ, vq , (3.31) 
Υ 2 px, θ, vq " x 2 `ε sin pθq ψ px, θ, vq , (3.32) 
Υ 4 px, θ, vq "

ż v 0 ψ px, θ, sq ds, (3.33) 
where ψ is defined by:

ψ px, θ, vq " ż v 0 ϕ px, θ, sq ds, (3.34) 
with ϕ given by (3.18).

Proof. We will only prove Formula (3.31). The others ((3.32) and (3.33)) are easily obtained with similar arguments. Firstly, we notice that (3.28) can be rewritten as To end the resolution of (3.10)-(3.12) we only have to check that Υ 1 and Υ 2 given by (3.31) and (3.32) are also solutions to the additional equations that are in the right in (3.10)-(3.12). Theorem 3.6. Functions Υ 1 and Υ 2 , defined by (3.31) and (3.32), and solutions of (3.28) and (3.29), are also solutions to p∇Υ 1 q ¨p Qε p∇Υ 4 qq " 0, (3.37)

$ & % BΥ 1 Bv `ε cos pθq B pxq BΥ 1 Bx 1 ´ε sin pθq B pxq BΥ 1 Bx 2 " 0, Υ 1 px, θ, 0q " x 1 . ( 3 
p∇Υ 2 q ¨p Qε p∇Υ 4 qq " 0, (3.38) 
where Υ 4 is defined by (3.33) and is solution of (3.30).

Proof. Firstly, we show that tΥ 1 , Υ 4 u, which is defined for v ‰ 0 because of the singularity of Pε , can be extended smoothly by 0 in v " 0. Integrating expansion (3.27) (with n " 1) between 0 and v, we obtain

Υ 1 px, θ, vq " x 1 ´ε cos pθq v B pxq `ε2 cos pθq ż v 0 pv ´uq ˆΛ ¨1 B ˙pG ´εu px, θqq du. (3.39)
In the same way, integrating twice (3.27) (with n " 0) we obtain: Bx 1 are continuous with respect to λ we obtain the following estimate:

Υ 4 px, θ, vq " v 2 2B pxq ´ε 2 ż v 0 pv ´uq ˆΛ ¨1 B ˙pG ´εu px,
ˇˇˇB Υ 1 Bx 1 px, θ, vq ˇˇˇď 1 `ε |v| › › › › B Bx 1 1 B › › › › 8 `ε2 |v| 2 2 ˆ«› › › › B Bx 1 ˆΛ ¨1 B ˙› › › › 8 sup uPr´|v|,|v|s ˇˇˇˇB G 1 ´εu Bx 1 ˇˇˇˇp x, θq `› › › › B Bx 2 ˆΛ ¨1 B ˙› › › › 8 sup uPr´|v|,|v|s ˇˇˇˇB G 2 ´εu Bx 1 ˇˇˇˇp x, θq ff .
Hence BΥ 1 Bx 1 px, θ, vq " ǫ x 1 y 1 px, θ, vq with ǫ x 1 y 1 px, θ, vq such that for any px, θq , v Þ Ñ ǫ x 1 y 1 px, θ, vq is smooth, and is bounded in the neighborhood of v " 0. In the same way, we can show that

BΥ 1 Bx 2 px, θ, vq " vǫ x 2 y 1 px, θ, vq , BΥ 1 Bθ px, θ, vq " vǫ θ y 1 px, θ, vq , BΥ 1 Bv px, θ, vq " ǫ v y 1 px, θ, vq , BΥ 4 Bx 1 px, θ, vq " v 2 ǫ x 1 k px, θ, vq , BΥ 4 Bx 2 px, θ, vq " v 2 ǫ x 2 k px, θ, vq , BΥ 4 Bθ px, θ, vq " v 3 ǫ θ k px, θ, vq , BΥ 4 Bv px, θ, vq " vǫ v k px, θ, vq .
(3.42) with ǫ x 2 y 1 px, θ, vq , ǫ θ y 1 px, θ, vq , ǫ v y 1 px, θ, vq , ǫ x 1 k px, θ, vq , ǫ x 2 k px, θ, vq , ǫ θ k px, θ, vq , ǫ v k px, θ, vq such that for any px, θq, the functions v Þ Ñ ǫ ' ' px, θ, vq are smooth, and are bounded in the neighborhood of v " 0. Injecting these expressions in tΥ 1 , Υ 4 u px, θ, vq " p∇Υ 1 q ¨´P ε ∇Υ 4 we obtain tΥ 1 , Υ 4 u px, θ, vq " vǫ y 1 ,k px, θ, vq with ǫ y 1 ,k px, θ, vq such that v Þ Ñ ǫ y 1 ,k px, θ, vq is smooth, and is bounded in the neighborhood of v " 0 leading that tΥ 1 , Υ 4 u can be smoothly extended by 0 in v " 0.

As the last step of this proof, because of the Jacobi identity we have

@v ‰ 0, ttΥ 1 , Υ 4 u , Υ 3 u `ttΥ 3 , Υ 1 u , Υ 4 u `ttΥ 4 , Υ 3 u , Υ 1 u " 0, (3.43) 
which reads, because the gradient of a constant is zero, because, according to (3.33), tΥ 4 , Υ 3 u " 1 ε and, as we just saw, because Υ 1 given by (3.31) satisfies tΥ 3 , Υ 1 u " 0,

ttΥ 1 , Υ 4 u , Υ 3 u " 0. (3.44)
Dividing (3.44) by ω ε px, θq defined by (3.8), we obtain that for v ‰ 0, tΥ 1 , Υ 4 u is solution to

p∇ tΥ 1 , Υ 4 uq ¨´Q ε p∇Υ 3 q ¯" 0. (3.45)
By continuity of the left hand side of (3.45) on R 4 , we deduce that equality (3.45) is valid on R 4 . As tΥ 1 , Υ 4 u may be smoothly extended by 0 in v " 0, and as the unique solution of (3.45) satisfying the boundary condition tΥ 1 , Υ 4 u px, θ, 0q " 0 is zero, we deduce that Υ 1 given by (3.31) satisfies tΥ 1 , Υ 4 u " 0 for all px, θ, vq. Hence (3.37) follows.

The proof that Υ 2 , defined by (3.32) and solution of (3.29), is solutions of (3.38) is very similar. This ends the proof of Theorem 3.6.

The Darboux coordinate system

In subsection 3.3 we solved equations (3.10)-(3.12), with initial conditions (3.7), on R 4 . Now, we need to check that the restriction of Υ to R 2 ˆR ˆp0, `8q, also denoted by Υ, is a diffeomorphism (onto R 2 ˆR ˆp0, `8q) and hence that py, θ, kq makes a true coordinate system on R 2 ˆR ˆp0, `8q.

Firstly, using expressions (3.31) From this, it is clear that py, θ, vq makes a coordinate system and that the reciprocal change of coordinates is given by px, θ, vq " pG εv py, θq , vq.

In order to show that py, θ, kq makes also a coordinate system we will proceed as follows: we will express Υ 4 in the py, θ, vq-coordinate system and using this expression, we will express v in terms of y and θ and the yielding expression of Υ 4 in the py, θ, vq-coordinate system.

Lemma 3.7. The representative of Υ 4 in the py, θ, vq-coordinate system is given by Particularly, for any v P p0, `8q there exists k P p0, `8q such that v " rη py, θqs ´1 pkq .

Υ4 py, θ, vq " ż v 0 u B
The regularity of η with respect to k is easily obtained from the fact that rη py, θqs is a C 8diffeomorphism. The C 8 -nature of η with respect to y and θ is obtained by computing the successive derivatives of rη py, θqs ˝rη py, θqs ´1 " id and using the regularity of η that comes from the regularity of Υ4 , itself coming from the regularity of B and flow G λ . Moreover, the periodicity of η with respect to θ comes from the fact that θ Þ Ñ `G1 λ px, θq, G 2 λ px, θq ˘is in C 8 per pRq (see Notation 1) for any x P R 2 as set out in Lemma 3.1.

Hence we have proven the following theorem.

Theorem 3.9. py, θ, kq makes a coordinate system on R 2 ˆR ˆp0, `8q and function κ " Υ ´1 is given by κ py, θ, kq " `Gεηpy,θ,kq py, θq , η py, θ, kq ˘,

where η is defined by (3.54).

Regularity with respect to ε of the change of coordinates

In this Subection, we will focus on the ε-dependency of κ. According to Formula (3.59) and since λ Þ Ñ G λ is smooth (see Lemma 3.1) we only have to study the regularity with respect to ε of the fourth component κ v of κ. To this aim, we will introduce for any py, θ, kq P R 3 ˆp0, `8q the parametrized functions α " rα py, θqspvq, which is defined for v P R `, β " rβ py, θ, kqspεq, which is defined for ε P p0, `8q, and γ " rγ py, θ, kqspεq, which is defined for ε P R `, by rα py, θqs pvq " 

ż v 0 s B
Moreover, for any ε ą 0 we have rβ py, θ, kqs 1 pεq " 1 rγ py, θ, kqs 1 prβ py, θ, kqspεqq ,

where γ is defined by (3.62).

Proof. By definition, function ε Þ Ñ rβpy, θ, kqspεq is in C 8 pR ‹ `q for every py, θ, kq P R 2 ˆR p0, `8q. Moreover, function γ is such that @ε ą 0, rγ py, θ, kqspεq " rβ py, θ, kqs ´1pεq .

(3.67)

Hence, in order to show that β admits a smooth continuation on R `we just have to show that γ admits a smooth inverse function in the neighborhood of 0 in R `. And yet, for all ε ě 0, we have rγ py, θ, kqspεq " ε

d 1 k ż 1 0 u B pG 1 εu py, θq , G 2 εu py, θqq du. (3.68)
This function is in C 8 pR `q and " dγ py, θ, kq dε

 p0q " 1 a 2kB pyq ‰ 0. (3.69)
Hence, there exists a neighborhood I of 0 and a smooth function δ " rδ py, θ, kqs pεq defined on J " rγ py, θ, kqs pI X R `q such that rγ py, θ, kqs ˝rδ py, θ, kqs " id. Hence we have shown that the smooth function β defined on R ‹ `admits a smooth continuation to R `. Then, since (3.66) follows directly (3.67), Lemma 3.10 is proven. `R2 ˆR ˆp0, `8q ˆR`˘.

The proof of the periodicity with respect to the third variable is similar to the one of Lemma 3.8.

We will now use Formula (3.64), Lemmas 3.10 and 3.11 to deduce an expression of the expansion with respect to ε of the v-component of κ " Υ ´1.

Lemma 3.12. For any n P N ‹ , there exists P n P R n´1 rX 1 , . . . , X n s (where R n´1 rX 1 , . . . , X n s stands for the space of the homogeneous polynomial of degree n ´1 in n variables) such that rβ py, θ, kqs pnq pεq " P n ´rγ py, θ, kqs p1q pβ pεqq , . . . , rγ py, θ, kqs pnq pβ pεqq rγ py, θ, kqs p1q pβ pεqq ¯2n´1 .

(3.71)

Moreover, thanks to formula (3.72), the P n can easily be computed by induction.

Proof. Proof of Lemma 3.12 is easily done by induction. Notice that the inductive formula for P n is given by: P n`1 pX 1 , . . . , X n`1 q " ´p2n ´1q X 2 P n pX 1 , . . . , X n q ǹ ÿ k"1

X 1 X k`1 BP n BX k pX 1 , . . . , X n q . (3.72)
Hence finding an expansion of κ v remains to find the successive derivatives of " γ py, θ, kq ‰ evaluated at ε " 0. The following lemma and its proof constitute a constructive way to compute them. (3.76)

Expanding formula (3.76) with respect to ε, up to order n, by using the usual expansion of s Þ Ñ ? 1 `s, and identifying with formula (3.74) yields that for any l P t0, . . . , nu , ?

k rγ py, θ, kqs plq p0q P O 8 T,b . Finally, using formula (3.71) we obtain formula (3.73). This ends the proof of Lemma 3.13.

The two previous Lemmas and Formula (3.64) lead to the following Theorem. Theorem 3.14. For any py, θ, kq P R ˆR2 ˆp0, `8q, the v-component κ v of κ " Υ ´1 admits the following expansion in power of ε:

κ v py, θ, kq " n ÿ i"0 ? k i`1 a i`1 py, θq ε i pi `1q! `εn`1 pn `1q! ż 1 0 p1 ´uq n`1 rβ py, θ, kqs pn`2q pεuq du, (3.77) 
where the terms a i of the expansion are defined in Lemma 3.13. Moreover, py, θ, k, εq Þ Ñ ż 1 0 p1 ´uq n`1 rβ py, θ, kqs pn`2q pεuq du P C 8 #,3 pR 2 ˆR ˆp0, `8q ˆR`q .

(3.78)

Remark 3.15. The terms a i of expansion (3.77) can be obtained by an inductive process. More precisely, expanding formula (3.76) with respect to ε, up to order n, by using the usual expansion of s Þ Ñ ? 1 `s, leads to the n-th first derivatives of rγ py, θ, kqs evaluated at ε " 0. Applying inductively formula (3.72) yields easily the expression of P n involved in Formula (3.71). Thus, evaluating P n at the n first derivatives of rγ py, θ, kqs evaluated at ε " 0, we obtain the expression of the coefficient a n involved in Formula (3.77). and where H B is the Hessian Matrix of B.

Remark 3.16. Formula (3.79) can already be found in Littlejohn [START_REF] Littlejohn | A guiding center Hamiltonian: A new approach[END_REF] but without estimation of the rest. In the present paper formula (3.79) gives an expansion in power of ε of a well defined diffeomorphism even though it is obtained in Littlejohn [START_REF] Littlejohn | A guiding center Hamiltonian: A new approach[END_REF] by truncating a formal Hilbert expansion.

Expression of the Hamiltonian function and the Darboux Matrix

Theorem 3.17. The Poisson Matrix in the Darboux Coordinate System is given by Pε py, θ, kq "

¨0 ´ε Bpyq 0 0 ε Bpyq 0 0 0 0 0 0 1 ε 0 0 ´1 ε 0 ‹ ‹ ‹ ' . ( 3 

.81)

Proof. By construction, from formula (2.9), we know all the Poisson Matrix entries, except its entry number p1, 2q: tΥ 1 , Υ 2 u x,θ,v pκ py, θ, kqq. Hence, the proof of Theorem 3.17 reduces to show that: On another hand as for any v ‰ 0, tΥ 3 , Υ 1 u x,θ,v " 0 and tΥ 2 , Υ 3 u x,θ,v " 0, the Jacobi identity ensures that @v ‰ 0, ttΥ 1 , Υ 2 u , Υ 3 u x,θ,v " 0.

tΥ 1 , Υ 2 u x,θ,v px, θ, vq " ´ε B pΥ 1 px, θ,
(3.85) Hence, dividing (3.85) by ω ε px, vq, we obtain that for v ‰ 0, tΥ 1 , Υ 2 u is solution of (3.83).

Using now the same method as when proving Theorem 3.6, we obtain

tΥ 1 , Υ 2 u x,θ,v px, θ, vq " ´ε B pxq `vǫ y 1 ,y 2 px, θ, vq , (3.86) 
with ǫ y 1 ,y 2 px, θ, vq such that for any px, θq , v Þ Ñ ǫ y 1 ,y 2 px, θ, vq is bounded in the neighborhood of v " 0 and consequently that tΥ 1 , Υ 2 u x,θ,v px, θ, 0q " ´ε Bpxq .

As a conclusion, tΥ 1 , Υ 2 u x,θ,v " u, and u is given by (3.82). Hence the Theorem is proven.

In the sequel, we will denote by tf, gu D the Poisson bracket expressed in the Darboux coordinate system, i.e. for any smooth functions f " f py, θ, kq and g " gpy, θ, kq : tf, gu D " `∇py,θ,kq f ˘¨`P ε ∇ py,θ,kq g ˘.

(3.87)

In the Darboux Coordinate System, the Hamiltonian function is given by Hε py, θ, kq " Hε pκ py, θ, kqq. Since Hε px, θ, vq " v 2 2 , we have where â is defined by (3.80), function ι 3 is in C 8 #,3 pR 2 ˆR ˆp0, `8q ˆR`q , and where H B stands for the Hessian matrix associated with B.

Remark 3.21. In expression (3.89), there is an important fact for the setting out of the to come Lie Transform based Method: the first term is independent of θ.

Remark 3.22. Formula (3.91) can also be found in a formal way in Littlejohn [START_REF] Littlejohn | A guiding center Hamiltonian: A new approach[END_REF].

Trajectory localization in the Darboux Coordinate System

Subsequently, we will denote by pY ε 1 , Y ε 2 , Θ ε Dar , K ε Dar qpt; y, θ, kq the trajectories of the dynamical system expressed in the Darboux Coordinates and by pX ε Pol , Θ ε , V ε qpt; x, θ, vq their expressions in the Polar in velocity Coordinate System. Lemma 3.23. Let ra, bs be an interval such that ra, bs Ă p0, `8q. Then, for any py, θq P R 3 and for any v P ra, bs, Υ 4 px, θ, vq P "

a 2 2}B} 8 , b 2 2 ı
. Moreover, for any initial condition py, θ, kq P Υ `R3 ˆra, bs ˘, for any ε P p0, `8q , and for any t P R, K ε Dar pt; y, θ, kq P "

a 2 2}B} 8 , b 2 2 ı .
Lemma 3.24. Let ra, bs be an interval such that ra, bs Ă p0, `8q and T be a positive real number. Then, for any initial condition px, θ, vq P R 3 ˆra, bs and for any t P r0, T s, we have

# Υ 1 `Xε Pol pt, x, θ, vq , Θ ε pt, x, θ, vq , v ˘" Υ 1 px, θ, vq `ρ1 pt; ε; x, θ, vq , Υ 2 `Xε Pol pt, x, θ, vq , Θ ε pt, x, θ, vq , v ˘" Υ 2 px, θ, vq `ρ2 pt; ε; x, θ, vq , (3.92) 
where ρ 1 and ρ 2 satisfy B pxq ě 1, we obtain ψ px, θ, sq ď s, and consequently for any v P ra, bs and for any px, θq , we obtain

|ρ i pt; ε; x, θ, vq| ď T |ε| b 2 sup px,θqPR 3 ˇˇˇĉ pθq ¨∇x B pxq B pxq ˇˇˇ`ε 2 b 2 › › › › Λ ¨1 B › › › › 8 . ( 3 
Υ 4 px, θ, vq ď v 2 2 ď b 2 2 . (3.98)
Since for any px, θ, vq P R 2 ˆR ˆp0, `8q and for any t P R,

BV ε Bt pt, x, θ, vq " 0, (3.99) 
we obtain V ε pt; x, θ, vq " v, and consequently for any py, θ, kq P R 2 ˆR ˆp0, `8q and for any t P R, we have: For any px, θq P R 2 ˆR, for any v P ra, bs and for any ε P R we have:

K ε
ˇˇΥ b 1 px, θ, vq ˇˇď ε 2 b 2 2 › › › › Λ ¨1 B › › › › 8 , (3.103) 
and consequently for any px, θq P R 2 ˆR, for any v P ra, bs , for any ε P R ‹ and for any

t P R ˇˇΥ b 1 `Xε Pol pt; x, θ, vq , Θ ε pt, x, θ, vq , v ˘ˇˇď ε 2 b 2 2 › › › › Λ ¨1 B › › › › 8 . (3.104)
On another hand, evaluating Υ s 1 in ´Xε Pol pt; x, θ, vq , Θ ε pt; x, θ, vq , v ¯and differentiating with respect to t yields: 3.9 Proof of Theorem 1.2 and Remark 1.4

B Bt `Υs 1 `Xε Pol , Θ ε , v ˘˘" εv 2 cos pΘ ε q ĉ pΘ ε q ¨∇x B ´Xε Pol B ´Xε Pol ¯2 , ( 3 
Theorem 1.2 and remark 1.4 are a synthesis of Theorems 3.9 and 3.17 and of Lemmas 3.23, 3.24 and 3.25.

The Partial Lie Transform Method

The last step on the way to build the Guiding-Center Coordinates of order N is to build a coordinate system pz, γ, jq close to the Historical Guiding-Center coordinate system in which the Poisson Matrix and the Hamiltonian function are given by (1.13) and (1.14). To this aim we will construct a new algorithm, the so-called Partial Lie Transform Method.

Remark 4.1. In [START_REF] Littlejohn | A guiding center Hamiltonian: A new approach[END_REF], to build the Guiding-Center coordinate system, Littlejohn construct a normal form theory based on formal Lie series using Hamiltonian vector fields. The drawback of using such a formal Lie Series method is that its convergence is neither ensured nor controlled.

The Partial Lie Change of Coordinates of order N

We start this Section by defining the partial Lie sums. Let N P N ˚. For i P v1, N w, we define the positive integer α i,N by

α i,N " E ˆN i ˙`1, (4.1) 
where E stands for the integer part.

Definition 4.2. For any ḡ " ḡ py, θ, kq in C 8 # pR 2 ˆRˆp0, `8qq (see Notation 3), let ϑ

α i,N ,i ε,´ḡ
be the differential operator acting on functions f " f py, θ, kq of C 8 # pR 2 ˆR ˆp0, `8qq in the following way:

ϑ α i,N ,i ε,´ḡ ¨f " α i,N ÿ k"0 ε ik k! `Xε ´εḡ ˘k ¨f , (4.2)
where X ε ´εḡ is the Hamiltonian vector field associated with ´εḡ. From operator ϑ α i,N ,i ε,´ḡ we define, with the same notation, function ϑ

α i,N ,i ε,´ḡ " ϑ α i,N ,i ε,´ḡ py, θ, kq from R 2 ˆR ˆp0, `8q to R 4 by ϑ α i,N ,i ε,´ḡ " ´´ϑ α i,N ,i ε,´ḡ ¨y1 ¯, . . . , ´ϑα i,N ,i ε,´ḡ ¨k¯¯, (4.3) 
where y 1 , y 2 , θ, k stand for y 1 : py, θ, kq Þ Ñ y 1 , . . ., k : py, θ, kq Þ Ñ k. Then there exists η ą 0 such that for any ε P r´η, ηs, χ N ε , defined by

χ N ε " ϑ α 1,N ,1 ε,´ḡ 1 ˝ϑα 2,N ,2 ε,´ḡ 2 ˝. . . ˝ϑα N,N ,N ε,´ḡ N , (4.4) 
is well defined on R 3 ˆpc, dq and is a diffeomorphism. Moreover, for any intervals pc ‹ , d ‹ q and pc ' , d ' q such that c ‹ ą 0 and rc ' , d ' s pc, dq rc, ds pc ‹ , d ‹ q (4.5)

there exists a real number η ',‹ ą 0 such that for any ε P r´η ',‹ , η ',‹ s:

R 3 ˆpc ' , d ' q Ă χ N ε `R3 ˆpc, dq ˘Ă R 3 ˆpc ‹ , d ‹ q. (4.6)
The proof of Theorem 4.4 is given in subsection 4.4. Remark 4.6. An immediate Corollary to Theorem 4.4 is that for ε small enough λ N ε is well defined on R 3 ˆpc ' , d ' q.

Main properties of the partial Lie change of coordinates of order N

The main properties of the partial Lie change of coordinates of order N are summarized in the following Theorem.

Theorem 4.7. With the same notations and under the same assumptions as in Theorem 4.4, assuming moreover that ḡ1 , . . . , ḡN P ApR 3 ˆp0, `8qq (see Notation 7), for any compact set K Ă R 2 and for any interval

" c ♦ , d ♦ ‰ such that " c ♦ , d ♦ ‰ Ă pc ' , d ' q
, there exists a real number η K ą 0 such that for any ε P r0, η K s and for any pz, γ, jq P K ˆR ˆ"c ♦ , d ♦ ‰ , the inverse function λ N ε of χ N ε has the following expression:

λ N ε pz, γ, jq " ϑ α 1,N ,1 ε,ḡ 1 ¨ϑα 2,N ,2 ε,ḡ 2 ¨. . . ¨ϑα N,N ,N ε,ḡ N pz, γ, jq `εN`1 ρ N λ pε; z, γ, jq . (4.7)
Moreover, on r0, η K sˆK ˆRˆ"c ♦ , d ♦ ‰ , we have the following expressions of the Hamiltonian function Ĥε and the Poisson Matrix Pε in the pz, γ, jq-coordinate system:

Ĥε pz, γ, jq " ϑ α 1,N ,1 ε,ḡ 1 ¨ϑα 2,N ,2 ε,ḡ 2 ¨. . . ¨ϑα N,N ,N ε,ḡ N ¨H ε pz, γ, jq `εN`1 ρ N H pε; z, γ, jq , (4.8) 
ε Pε pz, γ, jq " ε Pε pz, γ, jq `εN`2 ρ N P pε; z, γ, jq , (

where Hε is given by (3.88) or (3.89), Pε by (3.81) and where ρ N λ , ρ N H , and ρ N P are in

C 8 # pr0, η K s ˆK ˆR ˆ"c ♦ , d ♦ ‰ q.
The proof of Theorem 4.7 is given in subsection 4.5.

The Partial Lie Change of Coordinates Algorithm

In this Section, we will deduce from Formula (4.8) the Partial Lie Change of Coordinates Algorithm. 

with ρ N H in C 8 # pr0, η K s ˆK ˆR ˆ"c ♦ , d ♦ ‰ q and Ĥ0 pz, jq " H0 pz, jq , (4.11) 
Ĥ1 pz, γ, jq " ´B pzq Bḡ 1 Bθ pz, γ, jq ´H 1 pz, γ, jq , (

Ĥ2 pz, γ, jq " ´B pzq Bḡ 2 Bθ pz, γ, jq ´V2 pḡ 1 q pz, γ, jq , (

. . .

ĤN pz, γ, jq " ´B pzq Bḡ N Bθ pz, γ, jq ´VN pḡ 1 , . . . , ḡN´1 q pz, γ, jq , (4.14) 
where for each i P v1, N w, V i pḡ 1 , . . . , ḡi´1 q only depends on ḡ1 , . . . , ḡi´1 , H0 , . . . , Hi and their derivatives.

The proof of Theorem 4.8 is given in subsection 4.6.

From Theorem 4.8 we construct the following inductive Algorithm to determine ḡ1 , . . . , ḡN , Ĥ1 , . . . , ĤN and consequently the partial Lie change of coordinates of order N . ḡ1 pz, 0, jq " 0.

(4.16)

Then for i P v1, N w, set Ĥi pz, γ, jq " ´1 2π 
ż 2π 0 rV i pḡ 1 , . . . , ḡi´1 qspz, γ, jq dγ, (4.17) 
and get ḡi and by solving:

$ ' & ' % ´B pzq Bḡ i Bγ pz, γ, jq " V i pḡ 1 , . . . , ḡi´1 q pz, γ, jq ´1 2π ż 2π 0 rV i pḡ 1 , . . . , ḡi´1 qspz, γ, jq dγ.
ḡi pz, 0, jq " 0.

By construction functions ḡ1 , . . . , ḡN and Ĥ1 , . . . , ĤN obtained by applying Algorithm 4.9 satisfy the following Theorem. Theorem 4.10. Let ḡ1 , . . . , ḡN and Ĥ1 , . . . , ĤN be constructed by applying Algorithm 4.9. Then, ḡ1 , . . . , ḡN P ApR 3 ˆp0, `8qq X Q 8

T,b , Ĥ1 , . . . , ĤN P C 8 # `R3 ˆp0, `8q ˘, and for each i P v1, N w, Ĥi does not depend on γ.

Proof of Theorem 4.4

The first step to prove Theorem 4.4 consists in proving that the partial Lie sums are diffeomorphisms and to localize their ranges.

Theorem 4.11. Let i P v1, N w, ḡi P Q 8 T,b and c and d be positive real numbers (with c ă d). Then there exists η ą 0 such that for any ε P r´η, ηs, function ϑ α i,N ,i ε,´ḡ i , defined by (4.3), is a diffeomorphism from R 3 ˆpc, dq onto its range. Moreover, for any interval pc ‹ , d ‹ q and pc ' , d ' q such that c ‹ ą 0 and

rc ' , d ' s pc, dq rc, ds pc ‹ , d ‹ q (4.19)
there exists a real number η ',‹ ą 0 such that for any ε P r´η ',‹ , η ',‹ s:

R 3 ˆpc ' , d ' q Ă ϑ α i,N ,i ε,´ḡ i `R3 ˆpc, dq ˘Ă R 3 ˆpc ‹ , d ‹ q. ( 4.20) 
Subsequently we will denote by

Ξ α i,N ,i ε,´ḡ i the inverse function of ϑ α i,N ,i ε,´ḡ i . (4.21) 
Proof. In a first place, we will show that ϑ α i,N ,i ε,´ḡ i is a diffeomorphism from R 3 ˆpc, dq onto its range. To this aim, we will check that there exists a real number η1 such that for any ε P r´η 1 , η1 s , the map ϑ α i,N ,i ε,´ḡ i satisfies the assumptions of the classical global inversion Theorem.

Remark 4.12. This theorem claims that if A is a continuous homeomorphism from a Banach space onto a normed vector space and if φ is Lipschitz-continuous from the same Banach space onto the same normed vector space with a Lipschitz constant smaller than }A ´1} ´1, then A `φ is invertible and its inverse map is Lipschitz-continuous.

Function ν α i,N ,i ε,´ḡ i , defined as being such that ϑ α i,N ,i ε,´ḡ i " id `εν α i,N ,i ε,´ḡ i (4.22)
and whose expression, because of (4.2), is given by

ν α i,N ,i ε,´ḡ i " ˜αi,N ÿ j"1 ε ij´1 j! `Xε ´εḡ i ˘j ¨y1 , . . . , α i,N ÿ j"1 ε ij´1 j! `Xε ´εḡ i ˘j ¨k¸, (4.23) 
is differentiable and its differential is bounded on

R 3 ˆrc, ds. Moreover, ε Þ Ñ ν α i,N ,i
ε,´ḡ i py, θ, kq is clearly in C 8 pRq for any py, θ, kq P R 3 ˆp0, `8q. Hence, we can define

› › ›ν α i,N ,i ε,´ḡ i › › › 1,8
" sup py,θ,kqPR 3 ˆrc,ds ˇˇˇ´d ν

α i,N ,i ε,´ḡ i ¯py,θ,kq ˇˇˇ, (4.24) 
where function ε Þ Ñ

› › ›ν α i,N ,i ε,´ḡ i › › › 1,8 is clearly in C 8 pRq. Now, since ε › › ›ν α i,N ,i ε,´ḡ i › › › 1,8
Ñ 0 when ε Ñ 0, there exists a real number η 1 ą 0 such that

@ε P " ´η1 , η 1 ‰ , ˇˇˇε › › ›ν α i,N ,i ε,´ḡ i › › › 1,8 ˇˇˇă 1. (4.25) 
Hence, we deduce that for ε small enough εν α i,N ,i ε,´ḡ i is Lipschitz continuous on R 3 ˆrc, ds and that its Lipschitz constant is smaller than

› › id ´1› › ´1 8 " 1. Consequently (4.22
) and the global inversion Theorem imply that ϑ α i,N ,i ε,´ḡ i is invertible and Lipschitz continuous. The second step consists in checking that for any py, θ, kq P R 3 ˆrc, ds the differential ´dϑ

α i,N ,i ε,´ḡ i ¯py,θ,kq is an isomorphism. As ´dϑ α i,N ,i ε,´ḡ i ¯py,θ,kq " id `ε ´dν α i,N ,i ε,´ḡ i ¯py,θ,kq , (4.26) 
the Jacobian Matrix of ϑ α i,N ,i ε,´ḡ i in py, θ, kq P R 3 ˆrc, ds can be rewritten as Jacpϑ α i,N ,i ε,´ḡ i q py, θ, kq " 1 `εχpε, y, θ, kq , (

where χ is bounded with respect to py, θ, kq P R 3 ˆrc, ds and ε Þ Ñ χpε, y, θ, kq is in C 8 pRq for any py, θ, kq P R 3 ˆrc, ds. Hence, denoting }χ pε, ¨q } 8,R 3 ˆrc,ds " sup py,θ,kqPR 3 ˆrc,ds |χ pε, ¨q |, there exists a real number η 2 ą 0 such that for any ε P r´η 2 , η 2 s, ˇˇε }χ pε, ¨q} 8,R 3 ˆrc,ds ˇˇă 1.

Consequently, py, θ, kq Þ Ñ pdϑ α i,N ,i ε,´ḡ i q py,θ,kq is invertible and Lipschitz continuous. Hence for |ε| ă η1 , where η1 " min pη 1 , η 2 q , we can conclude that ϑ

α i,N ,i ε,´ḡ i is a diffeomor- phism on R 3 ˆrc, ds.
The second part of the proof concerns inclusions (4.20). Using Formula (4.22) we obtain easily the second inclusion. Hence, we will focus on the first one. Its proof is based on the Brouwer Theorem (see Brouwer [START_REF] Brouwer | Über abbildung von mannigfaltigkeiten[END_REF] or Istratescu [START_REF] Istratescu | Fixed Point Theory an Introduction[END_REF]).

We fix two positive real numbers R 1 0 and R ' 0 such that R ' 0 ă R 1 0 . Then we will fix m 0 P R 2 and we will show that there exists a positive real number η, that does not depend on m 0 , such that for any ε P r´η, ηs

b 2 pm 0 , R ' 0 q ˆR ˆpc ' , d ' q Ă ϑ α i,N ,i ε,´ḡ i `b2 `m0 , R 1 0 ˘ˆR ˆpc, dq ˘, (4.28) 
or according to Notation 12,

COpm 0 , R ' 0 ; c ' , d ' q Ă ϑ α i,N ,i ε,´ḡ i `COpm 0 , R 1 0 ; c, dq ˘. (4.29) 
Consequently, since η does not depend on m 0 we will obtain (4. ¯Ă " c p3q , d p3q ı Ă pc, dq , l be an integer, and let K l 2 and K l 3 be the compact and convex subsets of R 2 ˆR ˆp0, `8q defined by

K l 2 " b 2 pm 0 , R p2q 0 q ˆ"pl ´1q π ´αp2q 0 , pl `1q π `αp2q 0 ı ˆ"c p2q , d p2q ı (4.30)
and

K l 3 " b 2 pm 0 , R p3q 0 q ˆ"pl ´1q π ´αp3q 0 , pl `1q π `αp3q 0 ı ˆ"c p3q , d p3q ı . (4.31) Since ε › › ›ν α i,N ,i ε,´ḡ i › › › 8,R 3 ˆpc,dq
Ñ 0 when ε Ñ 0, we can define η ą 0 (that depends neither on l nor m 0 ) such that for any ε P r´η, ηs, for any l P Z, and for any py 1 , θ 1 , k

1 q P K l 2 , ˇˇy 1 ´m0 ˇˇ`|ε| › › ›ν α i,N ,i ε,´ḡ i › › › 8,R 3 ˆpc,dq ď R p3q 0 , ˇˇθ 1 ´lπ ˇˇ`|ε| › › ›ν α i,N ,i ε,´ḡ i › › › 8,R 3 ˆpc,dq ď α p3q 0 , k 1 ˘|ε| › › ›ν α i,N ,i ε,´ḡ i › › › 8,R 3 ˆpc,dq P " c p3q , d p3q ‰ . (4.32)
Now, for all py 1 , θ 1 , k 1 q P K l 2 , we define the function F ε py 1 ,θ 1 ,k 1 q by

F ε py 1 ,θ 1 ,k 1 q : K l 3 Ñ R 4 ; py, θ, kq Þ Ñ `y1 , θ 1 , k 1 ˘´εν α i,N ,i ε,´ḡ i py, θ, kq . (4.33) 
By construction and because of the properties of ν α i,N ,i ε,´ḡ i , F ε py 1 ,θ 1 ,k 1 q is continuous on K l 3 and for any ε P r´η, ηs and any py, θ, kq P K l 3 , ˇˇˇ´F ε py 1 ,θ 1 ,k 1 q py, θ, kq ¯1,2 ´m0 ˇˇˇď ˇˇy 1 ´m0 ˇˇ`|ε| ˇˇˇ´ν α i,N ,i ε,´ḡ i py, θ, kq `Kl 3 ˘Ă K l 3 . Hence, invoking the Brouwer Theorem and more precisely its convex compact version, function F ε py 1 ,θ 1 ,k 1 q has a fixed point in K l 3 . So we have proven that Dη ą 0, @ε, |ε| ă η, @l P Z, @ `y1 , θ 1 , k 1 ˘P K l 2 , D py, θ, kq

¯1,2 ˇˇˇď R p3q 0 , ˇˇ´F ε py 1 ,θ 1 ,k 1 q py, θ,
P K l 3 , ϑ α i,N ,i ε,´ḡ i py, θ, kq " `y1 , θ 1 , k 1 ˘, meaning that ϑ α i,N ,i ε,´ḡ i `Kl 3 ˘Ą K l 2
and consequently, since η does not depend on l, that (4.36) can be rewritten as ϑ We begin by giving and proving preliminary results that are needed for the proof of Theorem 4.7. Its proof is then led in the last part of this subsection.

ϑ α i,N ,i ε,´ḡ i ˆY lPZ K l 3 ˙Ą Y lPZ K l 2 . ( 4 
α i,N ,i ε,´ḡ i ˆCOpm 0 , R p3q 
0 ; c p3q , d p3q q ˙Ą COpm 0 , R p2q 
0 ; c p2q , d p2q q. Fi- nally, since COpm 0 , R ' 0 ; c ' , d ' q Ă COpm 0 , R p2q 
0 ; c p2q , d p2q q Ă COpm 0 , R p3q 
0 ; c p3q , d p3q q Ă COpm 0 , R 1 
Property 4.14. Let i P v1, N w and f , ḡi and h be three functions in C 8 # `R3 ˆp0, `8q ˘.

Then, the following equalities hold true on R 3 ˆp0, `8q:

´ϑα i,N ,i ε,´ḡ i ¨pf hq ¯" ´ϑα i,N ,i ε,´ḡ ¨f ¯´ϑ α i,N ,i ε,´ḡ ¨h¯`ε N `1ρ N,i F P pε; ¨q , (4.38) ´ϑα i,N ,i ε,´ḡ i ¨tf, hu D ¯" ! ϑ α i,N ,i ε,´ḡ i ¨f, ϑ α i,N ,i ε,´ḡ i ¨h) D `εN`1 ρ N,i P C pε, ¨q , (4.39) 
where ρ N,i F P and ρ N,i

P C are in C 8 # `R ˆR3 ˆp0, `8q ˘.
Proof. The proofs of Formulas (4.38) and (4.39) are very similar. Consequently, we will only give the proof of Formula (4.39). In a first place, starting from is the following equality

X ε ´εḡ i ¨tf, hu D " X ε ´εḡ i ¨f, h ( D ` f, X ε ´εḡ i ¨h( D , (4.40) 
which is a direct consequence of the Jacobi identity, it is obvious to show by induction that

`Xε ´εḡ i ˘n¨tf, hu D " n ÿ k"0 C k n ! `Xε ´εḡ i ˘k ¨f, `Xε ´εḡ i ˘n´k ¨h) D . (4.41) 
Secondly, we will define on R 3 ˆp0, `8q the function tf, hu Tε " tf, hu Tε py, θ, kq by tf, hu Tε py, θ, kq " `T ε py, θ, kq ∇hpy, θ, kq ˘¨p∇f py, θ, kqq ,

where

Tε " ε Pε , (4.43) 
and notice that ε Þ Ñ tf, hu Tε py, θ, kq is in C 8 pRq for any py, θ, kq P R 3 ˆp0, `8q. Hence, expanding ϑ α i,N ,i ε,´ḡ i ¨tf, hu using Formula (4.41), expanding

! ϑ α i,N ,i ε,´ḡ i ¨f, ϑ α i,N ,i ε,´ḡ i ¨h)
, and making the difference between these two expansions yields (4.39) with ρ T,b X A `R2 ˆR ˆp0, `8q ˘for every ε in some interval I containing 0 and such that ε Þ Ñ h ε prq is in C 8 pIq for any r P R 3 ˆp0, `8q. Then, there exists a real number η K ą 0 such that for any ε P r´η K , η K s X I and for any py, θ, kq P K ˆR ˆ"c ♦ , d ♦ ‰ , we have

h ε ´ϑα i,N ,i
ε,´ḡ i py, θ, kq ¯" ϑ α i,N ,i ε,´ḡ i ¨hε py, θ, kq `εN`1 ρ N h pε; y, θ, kq , (4.46)

where ρ N h is in C 8 # `pI X r´η K , η K sq ˆK ˆR ˆ"c ♦ , d ♦ ‰˘.
Proof. Since h ε P Q 8 T,b , and by linearity, the proof of the theorem reduces to prove formula (4.46) with function h ε of the form h ε py, θ, kq " cos l pθq sin m pθq d ε pyq ?

k n , (4.47) 
where

d ε " d ε pyq P A `R2 ˘X C 8 b `R2 ˘.
Let r0 " py 0 , θ 0 , k 0 q P K ˆR ˆ"c ♦ , d ♦ ‰ . As d ε P A `R2 ˘, and as ´k Þ Ñ ? k n ¯P App0, `8qq, there exists a real number R r0 ą 0 and a formal power series T r0 of three variables whose set of convergence contains the closure of b 3 `0, R r0 ˘, which are such that b 3 ppy 0 , k 0 q , R r0 q Ă R 2 ˆpc ' , d ' q and such that for any py, kq P b 3 ppy 0 , k 0 q , R r0 q, d ε pyq ? k n " T r0 ppy, θq ´py 0 , θ 0 qq " ÿ lPN 3 a l,r 0 ε ppy, kq ´py 0 , θ 0 qq l . (4.48)

In addition, since `θ Þ Ñ cos l pθq sin m pθq ˘is a power series of convergence radius `8 with respect to θ, there exists a formal power series S r0 such that b # p0, R r0 q Ă Σ Sr 0 and such that @r " py, θ, kq P b # pr 0 , R r0 q , h ε prq " S r0 pr ´r 0 q " ÿ lPN 4

h l,r 0 ε pr ´r 0 q l . (4.49)

Let R 1 r0 P p0, R r0 q. Then, using similar arguments as in the proof of Theorem 4.4 we easily obtain that there exists a real number η Rr 0 ,R 1 r0 ą 0 such that for any ε P "

´ηRr 0 ,R 1 r0 , η Rr 0 ,R 1 r0 ‰ , ϑ α i,N ,i ε,´ḡ i ´b# `r 0 , R 1 
r0 ˘¯Ă b # pr 0 , R r0 q . Hence, for any r " py, θ, kq P b # `r 0 , R 1 r0 ˘, we have We have, for any r P b # pr 0 , R r0 q, ´ϑα i,N ,i ε,´ḡ i ¨hε ¯prq "

h ε ´ϑα i,N ,i ε,´ḡ i prq ¯" ÿ lPN 4 h l,r 0 ε ´ϑα i,N ,i
ÿ |m|ďi Θ ε,m prq Bh ε Br m prq " ¨ÿ |m|ďi Θ ε,m prq B Br m '˜ÿ lPN 4 h l,r 0 ε r l r0 ¸prq , (4.52)
where r l r0 stand for the function r Þ Ñ pr 1 ´pr 0 q 1 q l 1 pr 2 ´pr 0 q 2 q l 2 pr 3 ´pr 0 q 3 q l 3 pr 4 ´pr 0 q 4 q l 4 . Since b # p0, R r0 q Ă Σ Sr 0 , we can permute summation and derivations and we obtain:

´ϑα i,N ,i ε,´ḡ i ¨hε ¯prq " ÿ |m|ďi Θ ε,m prq ÿ lPN 4 h l,r 0 ε Br l r0 Br m prq " ÿ lPN 4 h l,r 0 ε ´ϑα i,N ,i ε,´ḡ i ¨rl r0 ¯prq . (4.53)
Besides, using Property 4.14 and the link (4.3) between function ϑ α i,N ,i ε,´ḡ i and operator ϑ α i,N ,i ε,´ḡ i , we obtain that, for any l P N 4 , ´ϑα i,N ,i ε,´ḡ i ¨rl r0 ¯prq " ´ϑα i,N ,i ε,´ḡ i ¨pr 1 ´pr 0 q 1 q, . . . , ϑ α i,N ,i ε,´ḡ i ¨pr 4 ´pr 0 q 4 q ¯l prq `εN`1 ρ N,i,j l,r 0 pε, rq " ´´ϑ α i,N ,i ε,´ḡ i ¨r 1 , . . . , ϑ α i,N ,i ε,´ḡ i ¨r 4 ¯prq ´r 0 ¯l `εN`1 ρ N,i,j l,r 0 pε, rq " ´´ϑ α i,N ,i ε,´ḡ i ¯prq ´r 0 ¯l `εN`1 ρ N,i,j l,r 0 pε, rq ,

with r Þ Ñ ρ N,i,j l,r 0 p ¨, rq in Q 8

T,b and ε Þ Ñ ρ N,i,j l,r 0 pε, ¨q in C 8 pRq.

As both ř lPN 4

h l,r 0 ε ´ϑα i,N ,i ε,´ḡ i prq ´r 0 ¯l and

ř lPN 4 h l,r 0 ε ´ϑα i,N ,i ε,´ḡ i ¨rl r0 ¯prq converge normally on b # `r 0 , R 1 r0 ˘, their difference ε N `1 ˜´ÿ lPN 4 h l,r 0 ε ρ N,i,j
l,r 0 pε, rq ¸(4.55) also converges normally on this subset and we can deduce that, for any r P b # `r 0 , R h l,r 0 ε ρ N,i,j l,r 0 pε, rq ¸. (4.56) Finally, as

K ˆ"c ♦ , d ♦ ı Ă Y py 0 ,k 0 qPKˆrc ♦ ,d ♦ s b 3 `py 0 , k 0 q , R 1 r0 ˘(4.57)
and as K ˆ"c ♦ , d ♦ ‰ is compact, there exists `y1 0 , k 1 0 ˘, . . . , py p 0 , k p 0 q such that 

K ˆrc ♦ , d ♦ s Ă p Y i"1 b 3 ´`y i 0 , k i 0 ˘, R 1 ri 0 ¯. ( 4 
ϑ α i,N ,i ε,ḡ i ¨ϑα i,N ,i ε,´ḡ i " ˜αi,N ÿ l"0 `εi ˘l l! `X ε εḡ i ˘l ¨¸˜α i,N ÿ k"0 `´ε i ˘k k! `X ε εḡ i ˘k ¨¸" id `εN`1 ρ N,i c pε, ¨q , (4.60) 
with py, θ, kq Þ Ñ ρ N,i c p ¨, y, θ, kq in Q 8 T,b and ε Þ Ñ ρ N,i c pε, ¨q in C 8 pRq. Injecting (4.60) in (4.59), applying Ξ α i,N ,i ε,´ḡ i (see (4.21)) to both sides, and using a Taylor expansion to expand Ξ

α i,N ,i ε,´ḡ i `id `εN`1 ρ N,i c `εN`1 ρ N,i F C ˘(which is possible since Theorem 4.4 implies that Ξ α i,N ,i ε,´ḡ i is well defined on R 3 ˆpc, dq), we obtain that Ξ α i,N ,i ε,´ḡ i py, θ, kq " ϑ α i,N ,i ε,ḡ i py, θ, kq `εN`1 ρ N,i Ξ pε; y, θ, kq , (4.61) with ρ N,i Ξ in C 8 # `pI X r´η K , η K sq ˆK ˆR ˆ"c ♦ , d ♦ ‰˘.
Then, a straightforward induction, using essentially the extension of Formula (4.46) given in Remark 4.17, we obtain Formula (4.7). where r1 " y 1 , r2 " y 2 , r3 " θ, and r4 " k (see Definition 4.2), and with ρ N 1 in C 8 # `pI X r´η K , η K sq ˆK ˆR ˆ"c ♦ , d ♦ ‰˘. Injecting Formula (4.64) in the right hand side of (4.63), using the bi-linearity of the Poisson Bracket, and the extension of Formula (4.39) given in Remark 4.17 

By definition, the expression of the

with ρ N 2 in C 8 # `pI X r´η K , η K sq ˆK ˆR ˆ"c ♦ , d ♦ ‰˘. On another hand, using formula (4.64) and the extension of Formula (4.46) given in Remark 4.17 we obtain tr l , rm u D `χN ε py, θ, kq ˘" ϑ α NN ,N ε,´ḡ N ¨. . . ¨ϑα 1,N ,1 ε,´ḡ 1 ¨tr l , rm u D py, θ, kq `εN`1 ρ N 3 pε; y, θ, kq , (4.66) with ρ N 3 in C 8 # `pI X r´η K , η K sq ˆK ˆR ˆ"c ♦ , d ♦ ‰˘. Eventually, combining the two previous Formulas yields Formula (4.9). This ends the proof of Theorem 4. )), it is clear that there exists a compact set K L , positive real numbers c L and d L , and a positive real number η K L such that for any ε P r0, η K L s, for any t P r0, T s, and for any px 0 , v 0 q P K C ˆCpc C , d C q, the characteristic pZ, Γ, J q associated with the Hamiltonian system (1.1)-(1.2) and expressed in the pz, γ, jq coordinate system stays in K L ˆR ˆpc L , d L q. Consequently, we can apply Theorem 4.7.

To end this proof we will prove estimate (1.17 Now, we will check that pZ, J q is in C N ´1pr0, η K L sq. In order to check this, we define for any ε P p0, η K L s , for any t P r0, T s, and for any pz, γ, jq P U C , p r Z, r Γ, r J q by ¨r Zpt; z, γ, jq r Γpt; z, γ, jq r J pt; z, γ, jq ‹ '" ¨Zpεt; z, γ, jq Γpεt; z, γ, jq J pεt; z, γ, jq '. Since ε Þ Ñ ε Pε is in C 8 pr0, η K L sq, the solution of (4.81) depends smoothly on the parameter ε. In particular function p r Z, r Γ, r J q, defined by (4.80), is smoothly extensible at ε " 0. On another hand, for any ε P p0, η K L s , and for any t P r0, T s , pZ, J q is solution to are 2π-periodic and smooth, and consequently C 8 b pRq with respect to the third variable γ. Hence, computing the successive derivatives of (4.82) with respect to ε, we obtain that ε Þ Ñ pZptq, J ptqq is C N ´1 in the neighborhood of ε " 0.

Remark 4.18. The only obstruction to show that ε Þ Ñ pZptq, J ptqq is C N is the last term of Formula (4.85).

Moreover, as `ZT , J T ˘is solution to

BZ T Bt " ε B pZ T q ˜´B ĤN ε Bz 2 B ĤN ε Bz 1 ¸`Z T , J T BJ T Bt " 0, (4.86) 
`ZT , J T ˘is smooth with respect to ε, for any t P r0, T s. Now, we will show that L ε defined for ε P p0, η K L s by

L ε " ¨Lε 1 L ε 2 L ε 3 '" 1 ε N ´1 ˆˆZ J ˙´ˆZ T J T ˙˙(4.87)
is extensible to r0, η K L s and that the yielding extension is continuous with respect to ε. By definition for any ε P p0, η K L s, for any t P r0, T s, ε Þ Ñ L ε is C N ´1pp0, η K L sq. So, we just have to show that ε Þ Ñ L ε is extensible as a continuous function on r0, η K L s, i.e. that ε " 0 is not a singularity. In a first place, for any ε P p0, η K L s, we will explicit the dynamical system L ε satisfies. Injecting ˆZ J ˙" ˆZT

J T ˙`ε N ´1L ε , (4.88) 
in (4.82) gives 

B ˆZT 1 `εN´1 L ε 1 Z T 2 `εN´1 L ε 2 Ḃt " M ε `ZT 1 `εN´1 L ε 1 , Z T 2 `εN´1 L ε 2 ˘˜B ĤN ε Bz 1 B ĤN ε Bz 2 ¸``Z T , J T ˘`ε N ´1L ε εN
M ε `ZT 1 `εN´1 L ε 1 , Z T 2 `εN´1 L ε 2 ˘˜B ĤN ε Bz 1 B ĤN ε Bz 2 ¸``Z T , J T ˘`ε N ´1L ε

5. O 8 T 1 Q 8 T,b " " f P C 8 `

 8188 ,b stands for the algebra of functions spanned by the functions of the form py, θq Þ Ñ f 1 pyq cos pθq `f2 pyq sin pθq , where f 1 , f 2 P C 8 stands for the space of functions ˚Universite de Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes, France & Inria Nancy-Grand Est, Tonus Project. : Université de Strasbourg, IRMA, 7 rue René Descartes, F-67084 Strasbourg Cedex, France & Projet INRIA Calvi. R3 ˆp0, `8q ˘, f py, θ, kq " ÿ nPI f c n py, θq ? k n where I f Ă Z is finite and @n P I f , c n P O 8 T,b * .

11 .

 11 10. b # `m0 , R m 0 ˘stands for ! m P R 4 s.t. pm 1 , m 2 , m 4 q P b 3 `m0 , R m 0 ˘) Cpa,bq stands for the open crown Cpa, bq " v P R 2 s.t. |v| P pa, bq
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 1228 Moreover, the reciprocal map κ ε " Υ ´1 ε is smooth with respect to ε P R `, and for any positive real numbers a D and b D (with a D ă b D ) and for any t P r0, `8q, the trajectory associated with (1.1)-(1.2), with initial condition px 0 , v 0 q P R 2 ˆCpa D , b D q (see Notation 11) and expressed in the Darboux coordinates, belongs to R 3 ˆ" a 2}B} 3.7 constitute the proof of Theorem 1.2.

Theorem 1 . 5 .

 15 With the same notations as in Theorem 1.3, we consider the function ĤN ε defined by:

Figure 1 :

 1 Figure 1: A schematic description of the method leading the Gyro-Kinetic Approximation.

. 6 )

 6 Pε px, θ, vq "

Lemma 3 .

 3 11. Function py, θ, k, εq Þ Ñ rβ py, θ, kqspεq ,

Applying Theorem 3 .2kB pyq `ε 2kB pyq 3 â pθq ¨∇x B pyq ´ε2 k c kB pyq 2 « 7 18B pyq 3 p1 ´uq 3

 32733 14, up to order 2, we obtain κ v py, θ, kq " a pâ pθq ¨∇x B pyqq 2 ´â pθq T H B pyq â pθq 2B pyq 2 rβ py, θ, kqs p4q pεuq du (3.79) where â " â pθq is defined by

  Pol , Θ ε , v ˘˘ˇˇˇˇď |ε| b 2 sup px,θqPR 3 ˇˇˇĉ pθq ¨∇x B pxq B pxq 2 ˇˇˇ. (3.107) This ends the proof of Lemma 3.24. The proof of Lemma 3.25 is obvious.
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 444 3. ϑ α i,N ,i ε,´ḡ is called the Partial Lie Sum of order pi, N q generated by ḡ. Let ḡ1 , . . . , ḡN P Q 8 T,b (see Notation 6) and c and d be positive real numbers (with c ă d).

Definition 4 . 5 .

 45 With assumptions of Theorem 4.4 on the ḡi , χ N ε is called the partial Lie change of coordinates of order N . We denote by λ N ε the inverse function of χ N ε .

Theorem 4 . 8 .

 48 With the same notations and under the same assumptions as in Theorems 4.4 and 4.7, from formula (4.8) we have Ĥε pz, γ, jq " Ĥ0 pz, jq `ε Ĥ1 pz, γ, jq `. . . `εN ĤN pz, γ, jq `εN`1 ρ N H pε; z, γ, jq , (4.10)

1 2π ż 2π 0 H1

 10 Bγ pz, γ, jq " H1 pz, γ, jq ´1 pz, γ, jq dγ.

0

  , c p2q , c p3q , d p2q and d p3q be real numbers satisfying rc ' , d ' s Ă ´cp2q , d p2q ¯Ă " c p2q , d p2q ı Ă ´cp3q , d p3q

l 3 and

 3 .36) Since (see Notation 12) COpm 0 , R p3q 0 ; c p3q , d p3q q " Y lPZ K COpm 0 , R p2q 0 ; c p2q , d p2q q " Y lPZ K l 2 ,

  0 ; c, dq we obtain the inclusion in (4.28).Eventually, since η does not depend on m 0 we obtain the first inclusion of (4.20), ending the proof of the theorem Proof of Theorem 4.4. Eventually, a straightforward induction using essentially Theorem 4.11, leads to Theorem 4.4.

Remark 4 . 13 .

 413 Notice that λ N ε is given byλ N ε " Ξ α N,N ,N ε,´ḡ N ˝. . . ˝Ξα 1,N ,1 ε,´ḡ 1 . (4.37)4.5 Proof of Theorem 4.7

  , kq " ϑ α N,N ,N ε,´ḡ N ¨. . . ¨ϑα 1,N ,1 ε,´ḡ 1 ¨tr l , rm u D py, θ, kq `εN`1 ρ N 2 pε; y, θ, kq ,
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 7 
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 631310485 Proof of Theorem 4.8 Having expansion (3.89) in mind, the proof of Theorem 4.8 consists essentially in ordering the terms in Formula (4.8) with respect to their power of ε. More precisely, we will focus on HN ε py, θ, kq " H0 py, kq `ε H1 py, θ, kq `. . . `εN HN py, θ, kq . (4.68) 4.7 Proof of Theorem 1.is a direct consequence of Theorems 4.4, 4.7, 4.8, Algorithm 4.9, and Theorem 4.Proof of Theorem 1.Lemmas 3.23, 3.24 and 3.25 and because the Lie change of coordinates is close to the identity (see formula (4.22

  Pε ´r Z ptq , r Γptq, r J ptq ¯∇ Ĥε ´r Z ptq , r Γptq, r J ptq ¯, (4.81)

  .1. The three main steps of the reduction was already discussed in the introduction. They

	Usual Coordinates px, vq BX Bt " V BV Bt " 1 ε B pXq K V	Usual Coordinates Bt px, vq Hεpx, vq, Pεpx, vq s.t: ¨BX Bt BV ‹ ‹ ' " Pε∇x,v Hε
	1: Hamiltonian? Canonical Coordinates pq, pq Hεpq, pq, Pεpq, pq"S	3 Polar Coordinates px, θ, vq r Hεpvq, r Pεpx, θ, vq 4: Darboux Algorithm 2
	s.t: ¨BQ Bt BP Bt	‹ ‹ ' " S∇q,p Hε	Darboux Almost Canonical Coordinates py, θ, kq Hεpy, θ, kq, Pεpyq
			5: Lie Transform
			Lie Coordinates
			pz, γ, jq Hεpz, jq, p p Pεpzq
			" Pεpzq

  and (3.32) of Υ 1 and Υ 2 , formula (3.18) that gives the expression of ϕ " Bψ Bv , expression (3.15) of Λ, and by definition of its flow G λ (see (3.20)),

	we deduce that				
	BΥ 1 Bv BΥ 2 Bv BΥ 3 Bv	px, θ, vq " px, θ, vq " px, θ, vq "	B Bv B Bv B Bv	G 1 ´εv px, θq , G 2 ´εv px, θq , G 3 ´εv px, θq .	(3.46) (3.47) (3.48)

Hence, since Υ 1 px, θ, 0q " x 1 , Υ 2 px, θ, 0q " x 2 and Υ 3 px, θ, 0q " θ we obtain that pΥ 1 px, θ, vq , Υ 2 px, θ, vq , Υ 3 px, θ, vqq " G ´εv px, θq .

(3.49)

  Having expression (3.50) of Υ4 on hand, for all py, θq P R 3 we can define the parametrized smooth function η " rη py, θqs of v by rη py, θqs pvq " Υ4 py, θ, vq . For any py, θq P R 2 ˆR, function rη py, θqs is a C 8 -diffeomorphism from p0, `8q onto itself and function η " η py, θ, kq defined by:

	pG 1 εu py, θq , G 2 εu py, θqq ˆż s 0 ϕ px, θ, uq du ˙ds du. ˆż v pv ´uq ż v 0 ż v 0 ´εu px, θq , G 2 " B `G1 ´εu px, θq ˘du pv ´uq B ´G1 drη py, θqs ż v 0 " ż v 0 dv  pvq " v B pG 1 εv py, θq , G 2 εv py, θqq ą 0, rη py, θqs is a C 8 -diffeomorphism from p0, `8q onto " ˆlim vÑ0 rη py, θqs pvq , lim vÑ`8 rη py, θqs pvq ˙(3.55) (3.50) (3.53) for all py, θq. Moreover, according to formula (3.50) we have for any v ą 0 the following estimates: v 2 2 }B} 8 ď rη py, θqs pvq ď v 2 2 , (3.56) and consequently for any py, θq P R 3 Lemma 3.8. Proof. As rη py, θqs pp0, `8qq " p0, `8q . (3.57)

Proof. Using function ϕ involved in the expression of Υ 4 (see

(3.33) 

and (3.34)), we obtain: Υ 4 px, θ, vq " u ϕ px, θ, uq ds ˙du " ż v 0 pv ´uq ϕ px, θ, uq du. (3.51) Now, using expressions (3.18) of ϕ and (3.49) of pΥ 1 , Υ 2 , Υ 3 q, we obtain Υ 4 px, θ, vq " εpv´uq pG ´εv px, θqq , G 2 εpv´uq pG ´εv px, θqq ¯du " ż v 0 pv ´uq ϕpG ´εv px, θq , u ´vq du, " ż v 0 uϕ pΥ 1 px, θ, vq , Υ 2 px, θ, vq , Υ 3 px, θ, vq , ´uq du, (3.52) implying, using again (3.18) and that Υ 1 px, θ, vq, Υ 2 px, θ, vq and Υ 3 px, θ, vq are the expression of y 1 , y 2 and θ, (3.50) and consequently proving the lemma. η py, θ, kq " rη py, θqs ´1 pkq (3.54) which gives the expression of v, is in C 8 # pR 2 ˆR ˆp0, `8qq.

  Lemma 3.13. For any l P N ‹ , there exists a l P O 8T,b (see Notation 5) such thatProof. On the one hand, for any py, θ, kq and for any n P N, rγ py, θ, kqs admits a Taylor-MacLaurin expansion of order n.rγ py, θ, kqs pεq " rγ py, θ, kqs p0q `ε rγ py, θ, kqs p1q p0q `. . .

	On the other hand, applying formula (3.25) with 1 B , multiplying by λ and integrating between 0 and ε yields:
	rα py, θqs pεq " ε 2 `εn`1 ´n ÿ l"0 pn `1q! pl `2q l! ε l ż 1 0 p1 ´uq n`1 pn `1 `uq ˆΛn`1 ¨1 B ˙py, θq ˆΛl ¨1 B	˙˝G εu du ¯.	(3.75)
	Injecting formula (3.75) in (3.62) yields:			
	rγ py, θ, kqs pεq " ε ? k g f f e ˜n ÿ l"0 ε l pl `2q l!	ˆΛl ¨1 B	˙py, θq	`εn`1 pn `1q!	ż 1 0	p1 ´uq n`1 pn `1 `uq ˆΛn`1 ¨1 B	˙˝G εu du	¸.
				rβ py, θ, kqs plq p0q "	?	k	l a l py, θq .	(3.73)
	`ż ε 0	n! rγ py, θ, kqs pn`1q ptq	pt ´εq n dt.	`εn n!	rγ py, θ, kqs pnq p0q	(3.74)

  Corollary 3.20. The Hamiltonian function in the Darboux Coordinate System admits, up to order 2, the following expansion in power of ε:

	Hε py, θ, kq " n"1 ε n Hn py, θ, kq `εN`1 ι N `1 pε, y, θ, kq , κ 2 v py, θ, kq 2 . # pR `ˆR 2 ˆR ˆp0, `8qq. Moreover, for any n P t1, . . . , N u (3.88) (3.89) where function ι N `1 is in C 8 there exists a function b n P O 8 T,b such that Hn py, θ, kq " ? k n`2 b n py, θq . (3.90) Remark 3.19. Notice that expansion (3.77), where the coefficients a Hε py, θ, kq " B pyq k `ε â pθq ¨∇x B pyq 3 2 p2B pyq kq 3B pyq 2 `ε2 p2B pyq kq 2 `ε3 ι 3 py, θ, k, εq , 24B pyq 2 " ´â pθq ¨∇x B pyq `3B pyq â pθq T H B pyq â pθq ı (3.91)

Hence, according to Theorem 3.14, Hamiltonian function Hε is regular with respect to ε on R `and it admits an expansion in power of ε. More precisely, using expansion (3.77), we obtain the following corollaries.

Corollary 3.18. The Hamiltonian function in the Darboux Coordinate System admits the following expansion in power of ε:

Hε py, θ, kq " H0 py, kq `N ÿ i are computed by using the algorithm given in Remark 3.15, and Formula (3.88) give a constructive way to compute the b n and consequently the Hn .

For instance up to order 2 we obtain:

  .93) Lemma 3.25. Let ra, bs be an interval such that ra, bs Ă p0, `8q. Then, for any px, θ, vq P R 3 ˆra, bs we have # Υ 1 px, θ, vq " x 1 `ρ3 pε; x, θ, vq , .8 Proof of Lemmas 3.23, 3.24 and 3.25By definition Υ 4 px, θ, vq " ş v 0 ψ px, θ, sq ds, where ψ is defined by (3.34) with ϕ given by Theorem 3.2. Hence,

	ψ px, θ, sq "	ż s 0	ϕ px, θ, uq du "	ż s 0	1 ´εu px, θq , G 2 B `G1 ´εu px, θq ˘du ě	s }B} 8	,	(3.96)
	and consequently, for any v P ra, bs and for any px, θq P R 2 ˆR, we obtain Υ 4 px, θ, vq " ż v 0 ψ px, θ, sq ds ě v 2 2 }B} 8 ě a 2 2 }B} 8 .		(3.97)
	On another hand, since inf xPR 2					
			Υ 2 px, θ, vq " x 2 `ρ4 pε; x, θ, vq ,			(3.94)

where ρ 3 and ρ 4 satisfy |ρ i pε; x, θ, vq| ď εb.

(3.95)

We will prove Lemmas 3.23, 3.24 and 3.25 in Subsection 3.8.

3

  satisfies |ψ px, θ, vq| ď b. Applying formula (3.39) yields:

	"	a 2 2}B} 8	, b 2 2	ı . This ends the proof of Lemma 3.23.
	Υ 1 px, θ, vq " Υ s 1 px, θ, vq `Υb 1 px, θ, vq ,	(3.101)
	where				
	Υ s 1 px, θ, vq " x 1 ´εv Υ b 1 px, θ, vq " ´ε2 cos pθq cos pθq B pxq ż v 0	, pv ´uq ˆΛ	¨1 B	˙pG ´εu px, θqq du.	(3.102)

Dar pt; y, θ, kq " Υ 4 `Xε Pol pt; κ py, θ, kqq , Θ ε pt; κ py, θ, kqq , V ε pt; κ py, θ, kqq " Υ 4 `Xε Pol pt; κ py, θ, kqq , Θ ε pt; κ py, θ, kqq , κ v py, θ, kq ˘. (3.100) Now, for any py, θ, kq P Υ `R2 ˆR ˆra, bs ˘, κ v py, θ, kq P ra, bs and estimates (3.97) and (3.98) yield that K ε Dar pt; y, θ, kq P Concerning Lemma 3.24, for any px, θq P R 2 ˆR and for any v P ra, bs , function ψ

  kq ¯3 ´lπ ˇˇď ˇˇθ 1 ´lπ ˇˇ`|ε| ˇˇ´ν

		α i,N ,i ε,´ḡ i py, θ, kq	¯3ˇˇˇď	α 0 , p3q	(4.34)
	and					
	k 1 ´´εν	α i,N ,i ε,´ḡ i py, θ, kq ¯4 P	" c p3q , d p3q	ı	,	(4.35)
	meaning F ε py 1 ,θ 1 ,k 1 q					

  As iα i,N ě N `1, all k ě α i,N `1 satisfy ik ě N `2. Consequently, ε Þ Ñ ρ N,i P C pε; y, θ, kq is in C 8 pRq for any py, θ, kq P R 3 ˆp0, `8q. In addition, py, θ, kq Þ Ñ ρ N,i,j Remark 4.15. The expression of the rest in Formula (4.39) is given by Theorem 4.16. With the same notations and under the same assumptions as in Theorem 4.7, let i P v1, N w and h ε be in Q 8

	ρ N,i F P pε, ¨q " ´ε 2α i,N ÿ k"α i,N `1ε ik´pN `2q pm,pqPv1,N w 2 s.t. m`p"k ÿ	1 m!p!	´`X	ε ´εḡ i ˘m	¨f ¯´`X ε ´εḡ i ˘p	¨h¯.	(4.45)
		N,i P C pε, ¨q " ´2α i,N ÿ k"α i,N `1ε ik´pN `2q pm,pqPv1,N w 2 s.t. m`p"k ÿ	1 m!p!	! `Xε ´εḡ i ˘m ¨f,	`Xε ´εḡ i ˘p	¨h)T ε	.	(4.44)
	in C 8 #	`R3 ˆp0, `8q ˘for any ε P R.					P C pε, y, θ, kq is clearly

  On another hand, let Θ ε " Θ ε prq " pΘ ε,m prqq mPN 4 s.t. |m|ďi be the smooth function that are such that, for all smooth functions f ε ,

	´ϑα i,N ,i ε,´ḡ i ¨fε ¯prq "	ÿ |m|ďi	Θ ε,m prq	Bf ε Br m prq .	(4.51)

ε,´ḡ i prq ´r 0 ¯l .

(4.50)

  , we obtain equality (4.46) for all py, θ, kq P K ˆR ˆ"c ♦ , d ♦ ‰ and for all ε P I X r´η 5 , η5 s, for any function of the form (4.47).Consequently, as seen in the beginning of the proof, equality (4.46) is true for anyh ε in Q 8 T,b X A `R2 ˆR ˆp0, `8q ˘,proving the Theorem. Property 4.14, Theorem 4.16, and Remark 4.17 are the main tools we need to prove Theorem 4.7. Proof of Theorem 4.7. Since function ν α i,N ,i ε,´ḡ i of equality (4.22) satisfies the assumptions of Theorem 4.16, formula (4.46) is valid with ϑ α i,N ,i ε,´ḡ i in the role of h ε . Hence, for any i P v1, N w,

									.58)
	Setting η5 " min i"1,...,p	η R ri 0	,R 1 ri 0			
	Remark 4.17. Formulas (4.38), (4.39) and (4.46) are also valid if we replace ϑ αi,N ,i ε,´ḡi by
	ϑ α1,N ,1 ε,ḡ1 and (4.39) are easily obtained by induction. The extensions of Formula (4.46) are obtained ¨ϑα2,N ,2 ε,ḡ2 ¨. . . ¨ϑαN,N,N ε,ḡN or by ϑ αN,N ,N ε,´ḡN ¨ϑαN´1,N,N´1 ε,´ḡN´1 ¨. . . ε,´ḡ1 .The extensions of (4.38) ¨ϑα1,N ,1
	by replacing ϑ αi,N ,i ε,´ḡi by ϑ α1,N ,1 ε,ḡ1 the proof of Theorem 4.16.	¨ϑα2,N ,2 ε,ḡ2	¨. . .	¨ϑαN,N ,N ε,ḡN	or by ϑ αN,N ,N ε,´ḡN	¨ϑαN´1,N ,N ´1 ε,´ḡN´1	¨. . .	ε,´ḡ1 in ¨ϑα1,N ,1
	we deduce						
	ϑ	α i,N ,i ε,´ḡ i	˝ϑα i,N ,i ε,ḡ i py, θ, kq " ϑ	α i,N ,i ε,ḡ i	¨ϑα i,N ,i ε,´ḡ i py, θ, kq `εN`1 ρ N,i F C pε; y, θ, kq ,	(4.59)
	with ρ N,i F C in C 8					

# `pI X r´η K , η K sq ˆK ˆR ˆ"c ♦ , d ♦ ‰˘. And, an easy computation leads to

  Hamiltonian function in the Partial Lie CoordinateSystem of order N is given by Taylor expansion, and using the extension of Theorem 4.16 and formula (4.46) given in Remark 4.17, we obtain Formula (4.8). According to the regularity property of Hε with respect to ε we can take interval I of Theorem 4.16 as being r0, `8q.Using the extension of Formula (4.46) given in Remark 4.17, it is an easy task to show by induction that the l-th component of χ N ε is given by `χN ε ˘l " ϑ

	Hence, using Formula (4.7), making a By definition, entry pl, mq of the Poisson Matrix, expressed in the Partial Lie Coordinate System of order N induced by χ N ε , is given by
	´P ε	¯l,m pz, γ, jq " `χN ε ˘l , `χN ε	˘m(	D	`λN ε pz, γ, jq ˘.	(4.63)
		α N,N ,N ε,´ḡ N ¨. . .	¨ϑα 1,N ,1 ε,´ḡ 1 ¨r l	`εN`1 ρ N 1 ,	(4.64)
		Ĥε pz, γ, jq " Hε	`λN ε pz, γ, jq ˘.	(4.62)

  ). Setting

	ρ N P pε; z, γ, jq "	ˆ`ρ N P pε; z, γ, jq ˘TL `ρN P pε; z, γ, jq ˘TR `ρN P pε; z, γ, jq ˘BL `ρN ˘BR P pε; z, γ, jq	˙"	´`ρ N P pε; z, γ, jq ˘i,j	¯i,j"1,...4 (4.78) ,
	and using the skew-symmetry of Pε in (4.9) yields:			
	Pε pz, γ, jq " ¨0 ´ε Bpzq ´εN`1 `ρN P ´εN`1 `ρN P ˘1,3 ´εN`1 `ρN P ˘1,4	˘1,2	´ε Bpzq ´εN`1 `ρN `εN`1 `ρN P 0 P ˘2,3 ´εN`1 `ρN P ˘2,4	˘1,2	´1 ε	ε N `1`ρ N P ε N `1`ρ N P 0 ´εN`1 `ρN ˘1,3 ˘2,3 P ˘3,4	1 ε	ε N `1`ρ N P ε N `1`ρ N P `εN`1 `ρN ˘1,4 ˘2,4 P ˘3,4 0 (4.79) ‹ ‹ ‹ . ‹ '

  Notice that, in this system, r Γ is known and then considered as given. Besides,

	BZ Bt BJ Bt	" M ε pZq » -M ε ¨Bρ N ˜B ĤN ε Bz 1 B ĤN ε Bz 2 H Bz 1 Bρ N H Bz 2 '``ρ N ¸pZ ptq , J ptqq P pε, .q ˘TL ˜B Ĥε ὲN`1 Bz 1 B Ĥε Bz 2 ¸``ρ N P pε, .q ˘TR ˜B Ĥε Bγ B Ĥε f fl ˆZ, r Γ Bj " ´εN « ε `ρN P pε, .q ˘1,4 B Ĥε Bz 1 `ε `ρN P pε, .q ˘2,4 B Ĥε Bz 2 `ε `ρN P pε, .q ˘3,4 B Ĥε ˙, J ˆt ε Bγ `Bρ N ˙, H Bγ ˆZ, r Γ ˆt ε ˙, J ˙,	ff pε, .q
							(4.82)
	where				
					M ε pzq "	¨0 ε B pzq	´ε B pzq 0	‹ '.	(4.83)
		M ε	¨Bρ N H Bz 1 Bρ N H Bz 2	'``ρ N P pε, .q ˘TL ˜B Ĥε Bz 1 B Ĥε Bz 2	¸``ρ N P pε, .q ˘TR ˜B Ĥε Bz 2 B Ĥε Bz 1	¸(4.84)
	and					
		ε `ρN P pε, .q ˘1,4 B Ĥε Bz 1	`ε `ρN P pε, .q ˘2,4 B Ĥε Bz 2	`ε `ρN P pε, .q ˘3,4 B Ĥε Bγ	`Bρ N H Bγ	pε, .q	(4.85)

We easily obtain that Formula (4.67) can be rewritten as we obtain

where β 1 is smooth and periodic of period 2π with respect to γ. Injecting (4.90) in (4.89) and using (4.86) yields

and

where β 2 and β 3 are smooth and 2π-periodic with respect to γ. Besides, the solutions of this dynamical system are continuous with respect to ε. Clearly the initial data for L ε is L ε p0q " 0. Hence, L ε is continuous with respect to ε. Since pZ, J q ´`Z T , J T ˘" ε N ´1L ε , estimate (1.17) follows. This ends the proof of Theorem 1.5.

A Appendix : Change of coordinates rules for the Poisson Matrix and the Hamiltonian Function

A Poisson Matrix P on an open subset of R 4 is a skew-symmetric matrix satisfying: @i, j, k P t1, . . . , 4u , ttr i , r j u , r k u `ttr k , r i u , r j u `ttr j , r k u , r i u " 0, (A.1) where r i is the i-th coordinate function r Þ Ñ r i and the Poisson Bracket tf, gu between smooth functions f and g is defined by (2.8).

In the case of a symplectic manifold, the Poisson Matrix in a given coordinate system is defined as follow: it is the inverse of the transpose of the matrix of the expression of the Symplectic Two-Form in this coordinate system. Notice that the Jacoby identities (A.1) are direct consequences of the closure of the Symplectic Two-Form.

We now turn to the change-of-coordinates rule for the Poisson Matrix. Firstly, if in a given coordinate chart m, the matrix associated with the Symplectic Two-Form reads K, then, according to the previous definition, the Poisson Matrix is given by P pmq " pK pmqq ´T .

(A.2)

If we make the change of coordinates σ : m Þ Ñ r, then the usual change-of-coordinates rule for the expression of the Symplectic Two-Form leads to the following change of coordinates rule for the Poisson Matrix

Using the Poisson Bracket defined in formula (2.8), the change-of-coordinates rule for the Poisson Matrix reads

A Hamiltonian function on a symplectic manifold pM, Ωq is a smooth function on M and the Hamiltonian vector field associated with Hamiltonian function G is the unique vector field X G satisfying i X G dΩ " dG, (A.5)

where i X G dΩ is the interior product of differential two-form dΩ by vector field X G . The expression of the Hamiltonian vector field associated with the Hamiltonian function G, in the coordinate system m, is the vector field which reads:

where G is the representative of G in this coordinate system. In fact, we can consider Hamiltonian vector fields on M, which requires that the Hamiltonian functions are smooth functions on M, or just Hamiltonian vector fields on an open subset of M, which requires that the Hamiltonian functions are defined on this open subset. The Hamiltonian dynamical system associated with Hamiltonian function G on M is the dynamical system which reads BR Bt ptq " X G pR ptqq , (A.7)

or equivalently as said in the introduction, the dynamical system whose expression in every coordinate system r is given by

where G 1 is the representative of G in this coordinate system, and P 1 the expression of the Poisson Matrix in this coordinate system. In particular, if we check that on a global coordinate chart, a dynamical system is Hamiltonian, then the dynamical system is Hamiltonian on M and its expression in every coordinate chart r is given by (A.8).