
On the Geometrical Gyro-Kinetic Theory

Emmanuel Frénod
˚

Mathieu Lutz
:

Abstract - Considering a Hamiltonian Dynamical System describing the motion of charged

particle in a Tokamak or a Stellarator, we build a change of coordinates to reduce its dimension. This

change of coordinates is in fact an intricate succession of mappings that are built using Hyperbolic

Partial Differential Equations, Differential Geometry, Hamiltonian Dynamical System Theory and

Symplectic Geometry, Lie Transforms and a new tool which is here introduced : Partial Lie Sums.

Keywords - Tokamak; Stellarator; Gyro-Kinetic Approximation; Hyperbolic Partial Differen-

tial Equations; Differential Geometry; Hamiltonian Dynamical System Theory; Symplectic Geome-

try; Lie Transforms; Partial Lie Sums.

Notations

1. For a 2π-periodic set I# included in R, C8
per

`
I#

˘
stands of the space of functions being

in C8pI#q and 2π-periodic.

2. For a set M# included in Rm (where m P N and m ě 2) which is 2π-periodic with
respect to the l-th variable (l ď m) we denote by C8

#,l

`
M#̆ the space of functions

being in C8pM#q and 2π-periodic with respect to the l-th variable.

3. C8
#

`
M#̆ “ C8

#,pm´1q

`
M#̆ .

4. For m P N‹, C8
b pRmq stands of the space of functions being in C8pRmq and with their

derivatives at any order which are bounded.

5. O8
T,b stands for the algebra of functions spanned by the functions of the form

py, θq ÞÑ f1 pyq cos pθq ` f2 pyq sin pθq ,

where f1, f2 P C8
b

`
R2

˘
.

6. Q8
T,b stands for the space of functions
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Q8
T,b “

"
f P C8

`
R3 ˆ p0,`8q

˘
, f py, θ, kq “

ÿ

nPIf

cn py, θq
?
k
n

where If Ă Z is finite and @n P If , cn P O8
T,b

*
.

7. For an open subset U Ă Rp, we denote by A pUq the space of real analytic functions
on U .

8. For a formal power series S, we denote by ΣS its set of convergence.

9. b
npm0, R0q stands for the open euclidian ball of radius R0 and of center m0 in Rn.

10. b
#̀
m0, Rm0

˘
stands for

!
m P R4 s.t. pm1,m2,m4q P b

3̀
m0, Rm0

˘)

11. Cpa, bq stands for the open crown

Cpa, bq “
 
v P R2 s.t. |v| P pa, bq

(

12. COpm0, R0; a, bq stands for the subset of R4 defined by

COpm0, R0; a, bq “ b
2pm0, R0q ˆ R ˆ pa, bq .
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1 Introduction

At the end of the 70’, Littlejohn [22, 23, 24] shed new light on what is called the Guiding
Center Approximation. His approach incorporated high level mathematical concepts from
Hamiltonian Mechanics, Differential Geometry and Symplectic Geometry into a physical af-
fordable theory in order to clarify what has been done for years in the domain (see Kruskal
[21], Gardner [10], Northrop [25], Northrop & Rome [26]). This theory is a nice success.
It has been beeing widely used by physicists to deduce related models (Finite Larmor Ra-
dius Approximation, Drift-Kinetic Model, Quasi-Neutral Gyro-Kinetic Model, etc., see for
instance Brizard [1], Dubin et al. [3], Frieman & Chen [8], Hahm [15], Hahm, Lee & Brizard
[17], Parra & Catto [28, 29, 30]) making up the Gyro-Kinetic Approximation Theory, which
is the basis of all kinetic codes used to simulate Plasma Turbulence emergence and evolution
in Tokamaks and Stellarators (see for instance Brizard [1], Quin et al [31, 32], Kawamura
& Fukuyama [20], Hahm [16], Hahm, Wang & Madsen [18], Grandgirard et al. [13, 14], and
the review of Garbet et al. [9]).
Yet, the resulting Geometrical Gyro-Kinetic Approximation Theory remains a physical the-
ory which is formal from the mathematical point of view and not directly accessible for
mathematicians. The present paper is a first step towards providing a mathematical afford-
able theory, particularly for the analysis, the applied mathematics and computer sciences
communities.

Notice that, beside this Geometrical Gyro-Kinetic Approximation Theory, an alternative
approach, based on Asymptotic Analysis and Homogenization Methods was developed by
Frénod & Sonnendrücker [5, 6, 7], Frénod, Raviart & Sonnendrücker [4], Golse & Saint-
Raymond [12] and Ghendrih, Hauray & Nouri [11].

The purpose of this paper is to provide a mathematical framework for the formal Guiding-
Center reduction introduced in Littlejohn [22]. The domain of application of this theory is
that of a charged particle under the action of a strong magnetic field. Hence we will consider
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the following dynamical system :

BX
Bt “ V, Xp0q “ x0, (1.1)

BV
Bt “ 1

ε
B pXq K

V, Vp0q “ v0, (1.2)

where X “ pX1,X2q stands for the position, V “ pV1, V2q stands for the velocity, VK “
pV2,´V1q, x0 and v0 stand for the initial position and velocity, and ε is a small parameter.
We notice that equations (1.1)-(1.2) can be obtained from the six dimensional system by
taking a magnetic field in the x3-direction that only depends on x1 and x2.
When the magnetic field is constant, the trajectory associated with (1.1)-(1.2) is a circle
of center c0 “ x0 ` εv0 and of radius ε |v0|. Otherwise, the dynamical system (1.1)-(1.2)
can be viewed as a perturbation of the system obtained when the magnetic field is constant.
Hence, in the general case of a magnetic field depending on position, the evolution of a given
particle’s position is a combination of two disparate in time motions: a slow evolution of
what is the center of the circle in the case when B is constant, usually called the Guiding
Center, and a fast rotation with a small radius about it. The Guiding-Center reduction
consists in replacing the trajectory of the particle by the trajectory of a quantity close to
the guiding-center and free of fast oscillations.

This purpose can easily be translated within a geometric formalism. In any system
of coordinates on a manifold M, a Hamiltonian dynamical system whose solution is R “
Rpt; r0q can be written in the following form

BR
Bt “ PpRq∇rHpRq, Rp0, r0q “ r0, (1.3)

where Pprq is a matrix called the matrix of the Poisson Bracket (or Poisson Matrix in short),
and Hprq is called the Hamiltonian function. The Poisson Matrix is a skew-symmetric
matrix satisfying the Jacobi identity and the Hamiltonian function is a smooth function (see
Appendix A). It is obvious to show that dynamical system (1.1)-(1.2) is Hamiltonian and to
find its related Poisson Matrix P̀εpx,vq and Hamiltonian function H̀εpx,vq (see Section 2.1).
Within this geometrical framework, the goal of the Guiding-Center reduction is to make a
succession of changes of coordinates in order to satisfy the assumptions of the following
theorem.

Theorem 1.1. If, in a given coordinate system r “ pr1, r2, r3, r4q, the Poisson Matrix has
the following form:

Pprq “

¨
˚̊
˝
Mprq 0

0
0
0

0 0 0 P3,4

0 0 ´P3,4 0

˛
‹‹‚, (1.4)

where P3,4 is a non-zero constant, and if the Hamiltonian function does not depend on the
penultimate variable, i.e.

BH
Br3

“ 0, (1.5)
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then, submatrix M does not depend on the two last variables, i.e.

BM
Br3

“ 0 and
BM
Br4

“ 0. (1.6)

Consequently, the time-evolution of the two first components R1,R2 is independent of the
penultimate component R3; and, the last component R4 of the trajectory is not time-evolving,
i.e.

BR4

Bt “ 0. (1.7)

Theorem 1.1 is the Key Result that brings the understanding of the Guiding-Center
reduction: the Guiding-Center reduction consists in writing dynamical system (1.1)-(1.2)
within a system of coordinates, called the Guiding-Center Coordinate System, that satisfies
the assumptions of Theorem 1.1 and which is close to the Historic Guiding-Center Coordinate
System, usually defined by:

y
hgc
1 “ x1 ´ ε

v

Bpxq cos pθq , (1.8)

y
hgc
2 “ x2 ` ε

v

Bpxq sin pθq , (1.9)

θhgc “ θ, (1.10)

khgc “ v2

2Bpxq , (1.11)

where v “ |v| and where θ is the angle between the x1-axis and the gyro-radius vector
ρεpx,vq “ ´ ε

Bpxqv
K measured in a clockwise sense.

Once this done, if we are just interested in the motion of the particle in the physical
space, i.e. just in the evolution of the two first components, solving the dynamical system
in the new system of coordinates, reduces to find a trajectory in R2, in place of a trajectory
in R4 when it is solved in the original system of coordinates.

In [22], Littlejohn proposed a construction of the Guiding-Center Coordinates based on
formal series expansion in power of ε. This approach cannot be made mathematically rig-
orous because no argument can insure the validity of the series expansion.
In the present paper we adopt a different strategy. We will derive for each positive integer
N a coordinate system, the so-called Guiding-Center Coordinates of order N , whose expan-
sion in power of ε, up to any order N , coincides with the Guiding-Center coordinates given
in [22]. Moreover, for each integer N we will construct a Hamiltonian dynamical system
satisfying Theorem 1.1 and approximating uniformly in time, with accuracy in proportion
to εN´1, the Hamiltonian dynamical system (1.1)-(1.2) written within the Guiding-Center
Coordinates of order N .

The Guiding-Center reduction consists essentially in a succession of three change of co-
ordinates: a polar in velocity change of coordinates px,vq ÞÑ px, θ, vq with θ and v defined
above, a second change of coordinates called the Darboux change of coordinates, and a
last change of coordinates called the Lie change of coordinates. The objective of the first
change of coordinates is to concentrate the fast oscillations on the θ variable. The second
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one, consists in finding a coordinate system in which the Poisson Matrix has the required
form to apply Theorem 1.1, and eventually the last change of coordinates (which is in fact
the succession of N changes of coordinates) consists in removing the oscillations from the
Hamiltonian function while keeping the same expression of the Poisson Matrix.

All along this paper we will assume that the magnetic field B is analytic, that all its
derivatives are bounded, and that B is nowhere close to 0, i.e. that inf B ą 1.

The three main results of this paper are the following. The first one concerns the Darboux
change of coordinates.

Theorem 1.2. There exists a C8-diffeomorphism Υε : px, θ, vq ÞÑ py, θ, kq one to one from
R2ˆRˆp0,`8q onto itself, smooth with respect to ε, such that the Poisson Matrix expressed
in the py, θ, kq coordinate system reads:

P̄ε py, θ, kq “

¨
˚̊
˚̋

0 ´ ε
Bpyq 0 0

ε
Bpyq 0 0 0

0 0 0 1
ε

0 0 ´1
ε

0

˛
‹‹‹‚. (1.12)

Moreover, the reciprocal map κε “ Υ´1
ε is smooth with respect to ε P R`, and for any

positive real numbers aD and bD (with aD ă bD) and for any t P r0,`8q, the trajectory
associated with (1.1)-(1.2), with initial condition px0,v0q P R2 ˆ CpaD, bDq (see Notation

11) and expressed in the Darboux coordinates, belongs to R3 ˆ
”

a2
D

2}B}8
,
b2
D

2

ı
.

Subsections 3.4, 3.5, 3.6 and 3.7 constitute the proof of Theorem 1.2.

Theorem 1.3. For each positive integer N , for each compact set KL, and for each positive
real numbers cL and dL (with cL ă dL), there exists a diffeomorphism χNε : py, θ, kq ÞÑ pz, γ, jq
defined on KLˆRˆpcL, dLq and a positive real number ηKL such that, for any ε P r0, ηKL s, the
expansion in power of ε of the Hamiltonian function Ĥε of system (1.1)-(1.2) in the pz, γ, jq
coordinates does not depend to the oscillation variable γ up to order N , i.e.

Ĥεpz, γ, jq “ Ĥ0 pz, jq ` εĤ1 pz, jq ` . . . ` εN ĤN pz, jq ` εN`1ρN
H̄

pε; z, γ, jq , (1.13)

and such that the Poisson Matrix expressed in the pz, γ, jq coordinate system reads:

εP̂εpz, γ, jq “ εPεpz, γ, jq ` εN`2ρN
P̄

pε; z, γ, jq , (1.14)

where ρN
H̄

and ρN
P̄

are in C8
# pr0, ηKL

s ˆ KL ˆ R ˆ rcL, dLsq.

The proof of Theorem 1.3 is given in Subsection 4.7.

Remark 1.4. Theorem 1.3 is consistent with Theorem 1.2. Indeed, in Subsection 3.9 we will
show that for any T P r0,`8q, for any compact set KC, and for any positive real numbers cC
and dC (with cC ă dC), there exists a positive real number η, a compact set KL, and positive
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real numbers cL and dL (with cL ă dL) such that for any t P r0, T s and for any ε P r0, ηs the
trajectory associated with (1.1)-(1.2), with initial condition px0,v0q P KC ˆ CpaC , bCq (see
Notation 11) and expressed in the Darboux coordinates, belongs to KL ˆ R ˆ raL, bLs.

Theorem 1.5. With the same notations as in Theorem 1.3, we consider the function ĤN
ε

defined by:

ĤN
ε pz, jq “ Ĥ0 pz, jq ` εĤ1 pz, jq ` . . . ` εN ĤN pz, jq , (1.15)

where Ĥ0, . . . , ĤN are the N first terms in expansion (1.13) of Ĥε, and we denote by
pZ,Γ,J q “ pZ,Γ,J qpt; z0, γ0, j0q the trajectory of Hamiltonian system (1.1)-(1.2), expressed
in the pz, γ, jq coordinate system, associated with initial condition z0, γ0, j0. Let

B
Bt

¨
˝

ZT

ΓT

J T

˛
‚“ Pε

`
ZT

˘
∇ĤN

ε

`
ZT ,J T

˘
, (1.16)

be the Hamiltonian dynamical system associated with the Hamiltonian function ĤN
ε and

with the Poisson Matrix Pε defined by (1.12). Then, this system satisfies the assumptions of
Theorem 1.1. Moreover, for any T P r0,`8q, for any compact set KC, and for any positive
real numbers cC and dC (with cC ă dC), there exists a real number ηKC

and a constant CC,
independant of ε, such that for any t P r0, T s and for any ε P r0, ηKC

s
sup

 ˇ̌
pZ,J qpt; z0, γ0, j0q ´ pZT ,J T qpt; z0, j0q

ˇ̌
, t P r0, T s, pz0, γ0, j0q P UC

(
ď CεN´1,

(1.17)

where UC is the range of KC ˆ CpcC , dCq in the Guiding-Center coordinates of order N i.e.
by diffeomorphism χNε .

The proof of Theorem 1.5 is led in Subsection 4.8.

The paper is organized as follows. In Section 2 we briefly recall the main steps of
the Guiding-Center reduction and we give a proof of Theorem 1.1. Then, Section 3 is
devoted to the construction of the Darboux change of coordinates. Especially, we will
introduce an intermediary PDE from which the Darboux coordinates can be deduced. We
will also perform a detailed analysis of the regularity of the change of coordinates and its
inverse, including the regularity with respect to the small parameter ε, and we will give
the expansions with respect to ε of the change of coordinates, of its inverse, and of the
Hamiltonian function. In Section 4, we introduce a partial Lie transform method leading to
the Guiding-Center coordinate system of order N . Eventually, in Sections 4.7 and 4.8 we
will prove Theorems 1.3 and 1.5.

2 Schematic description of the Guiding-Center reduction

2.1 Panorama

A schematic description of the Guiding-Center change of coordinates is summarized in Figure
2.1. The three main steps of the reduction was already discussed in the introduction. They
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Usual Coordinates
px,vq

BX

Bt
“ V

BV

Bt
“

1

ε
B pXqK V

Canonical Coordinates
pq,pq

H̆εpq,pq, P̆εpq,pq“S

s.t:¨
˚̊
˝

BQ

Bt

BP

Bt

˛
‹‹‚“ S∇q,pH̆ε

1: Hamiltonian?

Usual Coordinates
px,vq

H̀εpx,vq, P̀εpx,vq s.t:
¨
˚̊
˝

BX

Bt

BV

Bt

˛
‹‹‚“ P̀ε∇x,vH̀ε

2 Polar Coordinates
px, θ, vq

rHεpvq, rPεpx, θ, vq

3

Darboux Almost
Canonical Coordinates

py, θ, kq
Hεpy, θ, kq,Pεpyq

4: Darboux Algorithm

Lie Coordinates
pz, γ, jq

pHεpz, jq, pPεpzq

“ Pεpzq

5: Lie Transform

Figure 1: A schematic description of the method leading the Gyro-Kinetic Approximation.
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are symbolized by arrows 3, 4, and 5. The first step consists in finding an adequate symplectic
structure from which the expressions of the Poisson Matrix and the Hamiltonian function
are deduced. To achieve this goal we will introduce the canonical coordinates defined by:

q “ x and p “ BLε
Bv px,vq “ v ` 1

ε
A pxq , (2.1)

where

Lε px,vq “ |v|2
2

` 1

ε
v ¨ A pxq , (2.2)

is the dimensionless electromagnetic Lagrangian and A is the potential vector. Then, the
Symplectic Two-Form Ωε that is considered is the unique Two-Form whose expression in
the Canonical Coordinate chart is given by

ω̆ε “ dq ^ dp. (2.3)

Consequently, the Poisson matrix is given by:

P̆ε pq,pq “
´
K̆ε pq,pq

¯´T
“ S “

„
0 id

´id 0


, (2.4)

where K̆ε is the matrix associated with ω̆ε. Eventually it is obvious to show that dynamical
system (1.1)-(1.2) is Hamiltonian with Hamiltonian function H̆ε pq,pq “ 1

2

ˇ̌
p ´ 1

ε
A pqq

ˇ̌2

and Poisson Matrix P̆ε.

Using the usual change of coordinates rules for the Poisson Matrix and the Hamiltonian
function (see Appendix A) we obtain the following expressions of the Hamiltonian function
and of the Poisson Matrix, in the Cartesian Coordinates:

H̀ε px,vq “ |v|2
2
, P̀ε px,vq “

¨
˚̊
˚̋

0 0 1 0

0 0 0 1

´1 0 0
Bpxq
ε

0 ´1 ´Bpxq
ε

0

˛
‹‹‹‚, (2.5)

and, more interesting in the perspective of the next steps, in the Polar in velocity Coordi-
nates:

H̃ε px, θ, vq “ v2

2
, (2.6)

P̃ε px, θ, vq “

¨
˚̊
˚̋

0 0 ´ cospθq
v

´ sin pθq
0 0

sinpθq
v

´ cos pθq
cospθq
v

´ sinpθq
v

0
Bpxq
εv

sin pθq cos pθq ´Bpxq
εv

0

˛
‹‹‹‚. (2.7)

Before turning to the fourth step we give the proof of Theorem 1.1.

9



2.2 Proof of Theorem 1.1

When the Poisson Matrix has the form given by (1.4), the last line of (1.3) reads

BR4

Bt “ ´P3,4
BH
Br3

pRq .

Hence, if the Hamiltonian function does not depend on the penultimate variable, then, the
last component R4 of the trajectory is not time-evolving. Now, introducing the Poisson
Bracket of two functions f ” f prq and g ” g prq defined by

tf, gur prq “ r∇rf prqsT P prq∇rg prq , (2.8)

where Pprq is the Poisson Matrix, we have

Pi,j “ tri, rjur for i, j “ 1, 2, 3, 4, (2.9)

where ri is the i-th coordinate function r ÞÑ ri and a direct computation leads to

ttr1, r2ur , r3u
r

prq “ ´P3,4
BP1,2

Br4
prq and ttr1, r2ur , r4u

r
prq “ P3,4

BP1,2

Br3
prq . (2.10)

Using the Jacobi identity saying that for any regular function f, g, h,

ttf, gur , hu
r

` tth, fur , gu
r

` ttg, hur , fu
r

“ 0, (2.11)

and the facts that P3,1 “ P2,3 “ P4,1 “ P2,4 “ 0, we obtain

ttr1, r2ur , r3u
r

“ ´ ttr3, r1ur , r2u
r

´ ttr2, r3ur , r1u
r

“ 0, (2.12)

ttr1, r2ur , r4u
r

“ ´ ttr4, r1ur , r2u
r

´ ttr2, r4ur , r1u
r

“ 0. (2.13)

and consequently, since P1,1 “ P2,2 “ 0, (2.10) brings (1.6), ending the proof of the theorem.

3 The Darboux algorithm

3.1 Objectives

At this stage, the three first steps of the reduction are already done. The fourth step (see
Figure 2.1) on the way to build the Guiding-Center Approximation is the application of
the mathematical algorithm, so called the Darboux Algorithm, to build a global Coordinate
System py1, y2, θ, kq close to the Historic Guiding-Center Coordinate System (1.8)–(1.11),
and in which the Poisson Matrix has the required form (1.4) to apply the Key Result
(Theorem 1.1). In order to manage the small parameter ε, we will build the Coordinate
System py1, y2, θ, kq in order to have P̄ε py, θ, kq with the following form:

P̄ε py, θ, kq “

¨
˚̊
˝
Mε pyq 0

0
0
0

0 0 0 1
ε

0 0 ´1
ε

0

˛
‹‹‚. (3.1)
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Using the usual change of coordinates rule for the Poisson Matrix, finding this coordinate
system remains to find a diffeomorphism

Υ px, θ, vq “ pΥ1 px, θ, vq ,Υ2 px, θ, vq ,Υ3 px, θ, vq ,Υ4 px, θ, vqq , (3.2)

whose components satisfy the following non-linear hyperbolic system of PDE:

tΥ1,Υ3ux,θ,v “ 0, tΥ1,Υ4ux,θ,v “ 0, (3.3)

tΥ2,Υ3ux,θ,v “ 0, tΥ2,Υ4ux,θ,v “ 0, (3.4)

tΥ3,Υ4ux,θ,v “ 1

ε
. (3.5)

The resolution of this set of PDE constitutes the Darboux method.

The first stage of the method consists in setting

Υ3 “ θ. (3.6)

Consequently, the non-linear nature of (3.3)-(3.5) is balanced by the fact that θ is left
unchanged. With the aim of being close to the Historical Guiding-Center coordinates (see
(1.8)-(1.11)), the boundary conditions are fixed at v “ 0 as follows:

Υ1 px, θ, 0q “ x1,

Υ2 px, θ, 0q “ x2,

Υ4 px, θ, 0q “ 0.

(3.7)

Since the Poisson Matrix P̃ε given by (2.7) has a singularity at v “ 0, this choice leads to
a small difficulty. Nevertheless, it is not a difficult task to fix it. Let ωε be the function
defined by:

ωεpx, vq “ Bpxq
εv

, (3.8)

and let Q̃ε be the matrix related with the Poisson Matrix by:

P̃ε px, θ, vq “ ωε px, vq Q̃ε px, θ, vq . (3.9)

Then, the system of PDE (3.3)-(3.5) is equivalent, for v ‰ 0, to equations involving Q̃ε:

p∇Υ1q ¨ pQ̃εp∇Υ3qq “ 0, p∇Υ1q ¨ pQ̃εp∇Υ4qq “ 0, (3.10)

p∇Υ2q ¨ pQ̃εp∇Υ3qq “ 0, p∇Υ2q ¨ pQ̃εp∇Υ4qq “ 0, (3.11)

p∇Υ4q ¨ pQ̃εp∇Υ3qq “ ´ v

B pxq , (3.12)

that have no singularity in v “ 0. Consequently in place of solving (3.3)-(3.5) we will solve
(3.10)-(3.12) provided with the set of boundary conditions (3.7).

In this Section, we will not follow the method given in [22]. We will base the resolution
of (3.10)-(3.12) on an intermediary PDE from which the solutions of (3.10)-(3.12) will be
deduced. Afterwards, we will construct for any fixed ε map Υ. Then, we will show that
Υ is well a change of coordinates and study its regularity with respect to ε. Finally, we
will prove Theorem 1.2 and in view of the last Section we will give estimates related to the
expression of the characteristics expressed in the Darboux Coordinate System.

11



3.2 An intermediary equation

The intermediary equation that we consider in this Section is the following:
$
&
%

Bϕ
Bv ` εΛ ¨ ϕ “ 0,

ϕ px, θ, v “ 0q “ ϕ0 px, θq ,
(3.13)

where

ϕ0 px, θq “ 1

B pxq , (3.14)

and where Λ is the vector field defined by:

Λ px, θq “ cos pθq
B pxq

B
Bx1

´ sin pθq
B pxq

B
Bx2

. (3.15)

We denote by Gλ its flow and by Λn¨ its iterated application acting on regular functions f
as

Λ0 ¨ f “ f, Λ1 ¨ f “ cos pθq
B pxq

Bf
Bx1

´ sin pθq
B pxq

Bf
Bx2

, (3.16)

Λn ¨ f “ Λ ¨
`
Λn´1 ¨ f

˘
, @n ě 2. (3.17)

In a first place, we give the regularity property of Gλ.

Lemma 3.1. Flow Gλ “ Gλpx, θq of vector field Λ is complete, in C8pR3q,
`
G1
λ,G

2
λ

˘
is in

C8
#,3pR3q (see Notation 2), and G3

λpx, θq “ θ.

Then, using this lemma, which proof is straightforward, we obtain the following Theorem.

Theorem 3.2. The unique solution ϕ to (3.13) is given by

ϕpx, θ, vq “ 1

B
`
G1

´εv px, θq ,G2
´εv px, θq

˘ . (3.18)

Moreover, ϕ is in C8
# pR4q and is bounded.

Proof. The proof of Theorem 3.2 is performed with the usual characteristics’ method. Let
F pv, s,x, θq be the characteristic associated with (3.13), i.e. the solution of

$
’’’’’’&
’’’’’’%

BF1

Bv “ ε
cos pF3q
B pF1,F2q ,

BF2

Bv “ ´ε sin pF3q
B pF1,F2q , F ps, s,x, θq “ px, θq .

BF3

Bv “ 0,

(3.19)
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By definition the flow Gλ of Λ satisfies:
$
’’’’’’’’&
’’’’’’’’%

BG1
λ

Bλ “ cos
`
G3
λ

˘

B
`
G1
λ,G

3
λ

˘ ,

BG2
λ

Bλ “ ´ sin
`
G3
λ

˘

B
`
G1
λ,G

3
λ

˘ , G0 px, θq “ px, θq .

BG3
λ

Bλ “ 0,

(3.20)

Then, we deduce that F pv, s,x, θq “ Gεpv´sq px, θq. Eventually Duhamel’s formula yields:

ϕ px, θ, vq “ ϕ0 pF p0, v,x, θqq “ 1

B
`
G1

´εv px, θq ,G2
´εv px, θq

˘ . (3.21)

This ends the proof of Theorem.

We will end this Section by giving a Taylor expansion, with respect to ε, of the solution
ϕ to (3.13). Such kind of Taylor expansions are usually referred in the literature (see Olver
[27]) as Lie expansions.

Definition 3.3. If Λ is a vector field of R3 with coefficients which are in C8
b

`
R3

˘
, then we

define the Lie Series S8
L pΛq ¨ associated with Λ by

S8
L pΛq ¨ “

ÿ

lě0

pΛql ¨
l!

, (3.22)

where pΛql is defined by (3.16) and (3.17), and the partial Lie Sum of order n:

SnL pΛq ¨ “
nÿ

l“0

pΛql ¨
l!

. (3.23)

It is known that, formally, the flow Gλ associated with Λ may be expressed in terms of
the Lie Series of Λ:

Gλ “ S8
L pλΛq ¨ “

ÿ

lě0

pλΛql ¨
l!

. (3.24)

More rigorously, as the flow is complete, using its partial Lie Sum we have

f ˝ Gλ “
nÿ

l“0

λl pΛql ¨
l!

f `
ż λ

0

pλ´ uqn
n!

`
Λn`1 ¨ f

˘
˝ Gudu, (3.25)

for any function f : R3 Ñ R being C8pR3q.

Taking now 1
B

as function f and ´εv as parameter λ in (3.25), we obtain

ϕ px, θ, vq “
nÿ

l“0

p´εvql
l!

ˆ
Λl ¨ 1

B

˙
px, θq `

ż ´εv

0

p´εv ´ uqn
n!

ˆ
Λn`1 ¨ 1

B

˙
˝ Gu px, θq du.

(3.26)

Hence we have proven the following lemma.
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Lemma 3.4. Function ϕ, solution to PDE (3.13), admits for any n P N, for any ε P R and
for any px, θ, vq P R4 the following expansion in power of ε

ϕ px, θ, vq “
nÿ

l“0

p´εvql
l!

ˆ
Λl ¨ 1

B

˙
px, θq

` p´εqn`1

n!

ż v

0

pv ´ uqn
n!

ˆ
Λn`1 ¨ 1

B

˙
˝ G´εu px, θq du.

(3.27)

Moreover, for any l P N,
`
Λl ¨ 1

B

˘
is in C8

#,3pR3q X C8
b

`
R3

˘
; for any n P N, pε,x, θ, vq ÞÑ

şv
0

pv´uqn

n!

`
Λn`1 ¨ 1

B

˘
˝ G´εu px, θq du is in C8

# pR5q; and for any v P R and any n P N,

pε,x, θq ÞÑ
şv
0

pv´uqn

n!

`
Λn`1 ¨ 1

B

˘
˝ G´εu px, θq du is bounded by Cϕn pvq “ |v|n`1

pn`1q!

››Λn`1 ¨ 1
B

››
8
.

3.3 The other equations

In the following Theorem, we will deduce from Theorem 3.2 the solutions Υ1, Υ2, and Υ4

of the PDEs that are in the left in equalities (3.10)-(3.12).

Theorem 3.5. The unique solutions Υ1, Υ2, and Υ4 of

p∇Υ1q ¨ pQ̃εp∇Υ3qq “ 0, Υ1 px, θ, 0q “ x1, (3.28)

p∇Υ2q ¨ pQ̃εp∇Υ3qq “ 0, Υ2 px, θ, 0q “ x2, (3.29)

p∇Υ4q ¨ pQ̃εp∇Υ3qq “ ´ v

B pxq , Υ4 px, θ, 0q “ 0, (3.30)

are given by

Υ1 px, θ, vq “ x1 ´ ε cos pθqψ px, θ, vq , (3.31)

Υ2 px, θ, vq “ x2 ` ε sin pθqψ px, θ, vq , (3.32)

Υ4 px, θ, vq “
ż v

0

ψ px, θ, sq ds, (3.33)

where ψ is defined by:

ψ px, θ, vq “
ż v

0

ϕ px, θ, sq ds, (3.34)

with ϕ given by (3.18).

Proof. We will only prove Formula (3.31). The others ((3.32) and (3.33)) are easily obtained
with similar arguments. Firstly, we notice that (3.28) can be rewritten as

$
&
%

BΥ1

Bv ` ε
cos pθq
B pxq

BΥ1

Bx1
´ ε

sin pθq
B pxq

BΥ1

Bx2
“ 0,

Υ1 px, θ, 0q “ x1.

(3.35)

Secondly, integrating (3.13) between 0 and v we obtain
$
&
%

Bψ
Bv ` ε

cos pθq
B pxq

Bψ
Bx1

´ ε
sin pθq
B pxq

Bψ
Bx2

“ 1

B pxq ,

ψ px, θ, 0q “ 0.

(3.36)

Hence by linearity, Υ1 given by (3.31) is solution of (3.35). The unicity is obvious.
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To end the resolution of (3.10)-(3.12) we only have to check that Υ1 and Υ2 given by
(3.31) and (3.32) are also solutions to the additional equations that are in the right in
(3.10)-(3.12).

Theorem 3.6. Functions Υ1 and Υ2, defined by (3.31) and (3.32), and solutions of (3.28)
and (3.29), are also solutions to

p∇Υ1q ¨ pQ̃εp∇Υ4qq “ 0, (3.37)

p∇Υ2q ¨ pQ̃εp∇Υ4qq “ 0, (3.38)

where Υ4 is defined by (3.33) and is solution of (3.30).

Proof. Firstly, we show that tΥ1,Υ4u, which is defined for v ‰ 0 because of the singularity
of P̃ε, can be extended smoothly by 0 in v “ 0. Integrating expansion (3.27) (with n “ 1)
between 0 and v, we obtain

Υ1 px, θ, vq “ x1 ´ ε cos pθq v
B pxq ` ε2 cos pθq

ż v

0

pv ´ uq
ˆ
Λ ¨ 1

B

˙
pG´εu px, θqq du. (3.39)

In the same way, integrating twice (3.27) (with n “ 0) we obtain:

Υ4 px, θ, vq “ v2

2B pxq ´ ε

2

ż v

0

pv ´ uq
ˆ
Λ ¨ 1

B

˙
pG´εu px, θqq du. (3.40)

Differentiating (3.39) with respect to x1 yields

BΥ1

Bx1
px, θ, vq “ 1 ´ ε cos pθq v

ˆ B
Bx1

ˆ
1

B

˙˙
pxq

` ε2 cos pθq
ż v

0

pv ´ uq
„ˆ B

Bx1

ˆ
Λ ¨ 1

B

˙˙
pG´εu px, θqq BG1

´εu

Bx1
px, θq

`
ˆ B

Bx2

ˆ
Λ ¨ 1

B

˙˙
pG´εu px, θqq BG2

´εu

Bx1
px, θq


du. (3.41)

As 1
B

and all its derivatives are bounded and as
BG1

λ

Bx1
and

BG2

λ

Bx1
are continuous with respect to

λ we obtain the following estimate:
ˇ̌
ˇ̌BΥ1

Bx1
px, θ, vq

ˇ̌
ˇ̌ ď 1 ` ε |v|

››››
B

Bx1
1

B

››››
8

`
ε2 |v|2

2
ˆ

«››››
B

Bx1

ˆ
Λ ¨

1

B

˙››››
8

sup
uPr´|v|,|v|s

ˇ̌
ˇ̌
ˇ
BG1

´εu

Bx1

ˇ̌
ˇ̌
ˇ px, θq `

››››
B

Bx2

ˆ
Λ ¨

1

B

˙››››
8

sup
uPr´|v|,|v|s

ˇ̌
ˇ̌
ˇ
BG2

´εu

Bx1

ˇ̌
ˇ̌
ˇ px, θq

ff
.

Hence BΥ1

Bx1
px, θ, vq “ ǫx1y1 px, θ, vq with ǫx1y1 px, θ, vq such that for any px, θq , v ÞÑ ǫx1y1 px, θ, vq

is smooth, and is bounded in the neighborhood of v “ 0. In the same way, we can show that

BΥ1

Bx2
px, θ, vq “ vǫx2y1 px, θ, vq , BΥ1

Bθ px, θ, vq “ vǫθy1 px, θ, vq ,

BΥ1

Bv px, θ, vq “ ǫvy1 px, θ, vq , BΥ4

Bx1
px, θ, vq “ v2ǫx1k px, θ, vq ,

BΥ4

Bx2
px, θ, vq “ v2ǫx2k px, θ, vq , BΥ4

Bθ px, θ, vq “ v3ǫθk px, θ, vq ,

BΥ4

Bv px, θ, vq “ vǫvk px, θ, vq .

(3.42)
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with ǫx2y1 px, θ, vq , ǫθy1 px, θ, vq , ǫvy1 px, θ, vq , ǫx1k px, θ, vq , ǫx2k px, θ, vq , ǫθk px, θ, vq , ǫvk px, θ, vq
such that for any px, θq, the functions v ÞÑ ǫ‚

‚ px, θ, vq are smooth, and are bounded in the

neighborhood of v “ 0. Injecting these expressions in tΥ1,Υ4u px, θ, vq “ p∇Υ1q ¨
´
P̃ε∇Υ4

¯

we obtain tΥ1,Υ4u px, θ, vq “ vǫy1,k px, θ, vq with ǫy1,k px, θ, vq such that v ÞÑ ǫy1,k px, θ, vq is
smooth, and is bounded in the neighborhood of v “ 0 leading that tΥ1,Υ4u can be smoothly
extended by 0 in v “ 0.

As the last step of this proof, because of the Jacobi identity we have

@v ‰ 0, ttΥ1,Υ4u ,Υ3u ` ttΥ3,Υ1u ,Υ4u ` ttΥ4,Υ3u ,Υ1u “ 0, (3.43)

which reads, because the gradient of a constant is zero, because, according to (3.33),
tΥ4,Υ3u “ 1

ε
and, as we just saw, because Υ1 given by (3.31) satisfies tΥ3,Υ1u “ 0,

ttΥ1,Υ4u ,Υ3u “ 0. (3.44)

Dividing (3.44) by ωε px, θq defined by (3.8), we obtain that for v ‰ 0, tΥ1,Υ4u is solution
to

p∇ tΥ1,Υ4uq ¨
´
Q̃ε p∇Υ3q

¯
“ 0. (3.45)

By continuity of the left hand side of (3.45) on R4, we deduce that equality (3.45) is valid
on R4. As tΥ1,Υ4u may be smoothly extended by 0 in v “ 0, and as the unique solution
of (3.45) satisfying the boundary condition tΥ1,Υ4u px, θ, 0q “ 0 is zero, we deduce that Υ1

given by (3.31) satisfies tΥ1,Υ4u “ 0 for all px, θ, vq. Hence (3.37) follows.
The proof that Υ2, defined by (3.32) and solution of (3.29), is solutions of (3.38) is very

similar. This ends the proof of Theorem 3.6.

3.4 The Darboux coordinate system

In subsection 3.3 we solved equations (3.10)-(3.12), with initial conditions (3.7), on R4. Now,
we need to check that the restriction of Υ to R2 ˆ R ˆ p0,`8q, also denoted by Υ, is a
diffeomorphism (onto R2 ˆ R ˆ p0,`8q) and hence that py, θ, kq makes a true coordinate
system on R2 ˆ R ˆ p0,`8q.

Firstly, using expressions (3.31) and (3.32) of Υ1 and Υ2, formula (3.18) that gives the
expression of ϕ “ Bψ

Bv , expression (3.15) of Λ, and by definition of its flow Gλ (see (3.20)),
we deduce that

BΥ1

Bv px, θ, vq “ B
BvG

1
´εv px, θq , (3.46)

BΥ2

Bv px, θ, vq “ B
BvG

2
´εv px, θq , (3.47)

BΥ3

Bv px, θ, vq “ B
BvG

3
´εv px, θq . (3.48)

Hence, since Υ1 px, θ, 0q “ x1, Υ2 px, θ, 0q “ x2 and Υ3 px, θ, 0q “ θ we obtain that

pΥ1 px, θ, vq ,Υ2 px, θ, vq ,Υ3 px, θ, vqq “ G´εv px, θq . (3.49)
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From this, it is clear that py, θ, vq makes a coordinate system and that the reciprocal change
of coordinates is given by px, θ, vq “ pGεv py, θq , vq.

In order to show that py, θ, kq makes also a coordinate system we will proceed as follows:
we will express Υ4 in the py, θ, vq-coordinate system and using this expression, we will
express v in terms of y and θ and the yielding expression of Υ4 in the py, θ, vq-coordinate
system.

Lemma 3.7. The representative of Υ4 in the py, θ, vq-coordinate system is given by

Υ̃4 py, θ, vq “
ż v

0

u

B pG1
εu py, θq ,G2

εu py, θqqdu. (3.50)

Proof. Using function ϕ involved in the expression of Υ4 (see (3.33) and (3.34)), we obtain:

Υ4 px, θ, vq “
ż v

0

ˆż s

0

ϕ px, θ, uq du
˙
ds

“
ż v

0

ˆż v

u

ϕ px, θ, uq ds
˙
du

“
ż v

0

pv ´ uqϕ px, θ, uq du.

(3.51)

Now, using expressions (3.18) of ϕ and (3.49) of pΥ1,Υ2,Υ3q, we obtain

Υ4 px, θ, vq “
ż v

0

pv ´ uq
B
`
G1

´εu px, θq ,G2
´εu px, θq

˘du

“
ż v

0

pv ´ uq
B
´
G1
εpv´uq pG´εv px, θqq ,G2

εpv´uq pG´εv px, θqq
¯du

“
ż v

0

pv ´ uq ϕpG´εv px, θq , u ´ vq du,

“
ż v

0

uϕ pΥ1 px, θ, vq ,Υ2 px, θ, vq ,Υ3 px, θ, vq ,´uq du,

(3.52)

implying, using again (3.18) and that Υ1 px, θ, vq, Υ2 px, θ, vq and Υ3 px, θ, vq are the expres-
sion of y1, y2 and θ, (3.50) and consequently proving the lemma.

Having expression (3.50) of Υ̃4 on hand, for all py, θq P R3 we can define the parametrized
smooth function η “ rη py, θqs of v by

rη py, θqs pvq “ Υ̃4 py, θ, vq . (3.53)

Lemma 3.8. For any py, θq P R2 ˆ R, function rη py, θqs is a C8-diffeomorphism from
p0,`8q onto itself and function η̃ “ η̃ py, θ, kq defined by:

η̃ py, θ, kq “ rη py, θqs´1 pkq (3.54)

which gives the expression of v, is in C8
# pR2 ˆ R ˆ p0,`8qq.
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Proof. As
„
drη py, θqs

dv


pvq “ v

B pG1
εv py, θq ,G2

εv py, θqq ą 0,

rη py, θqs is a C8-diffeomorphism from p0,`8q onto
ˆ
lim
vÑ0

rη py, θqs pvq , lim
vÑ`8

rη py, θqs pvq
˙

(3.55)

for all py, θq. Moreover, according to formula (3.50) we have for any v ą 0 the following
estimates:

v2

2 }B}8

ď rη py, θqs pvq ď v2

2
, (3.56)

and consequently for any py, θq P R3

rη py, θqs pp0,`8qq “ p0,`8q . (3.57)

Particularly, for any v P p0,`8q there exists k P p0,`8q such that

v “ rη py, θqs´1 pkq . (3.58)

The regularity of η̃ with respect to k is easily obtained from the fact that rη py, θqs is a C8-
diffeomorphism. The C8-nature of η̃ with respect to y and θ is obtained by computing the
successive derivatives of rη py, θqs ˝ rη py, θqs´1 “ id and using the regularity of η that comes
from the regularity of Υ̃4, itself coming from the regularity of B and flow Gλ. Moreover,
the periodicity of η̃ with respect to θ comes from the fact that θ ÞÑ

`
G1
λpx, θq,G2

λpx, θq
˘

is in
C8

perpRq (see Notation 1) for any x P R2 as set out in Lemma 3.1.

Hence we have proven the following theorem.

Theorem 3.9. py, θ, kq makes a coordinate system on R2 ˆ R ˆ p0,`8q and function κ “
Υ´1 is given by

κ py, θ, kq “
`
Gεη̃py,θ,kq py, θq , η̃ py, θ, kq

˘
, (3.59)

where η̃ is defined by (3.54).

3.5 Regularity with respect to ε of the change of coordinates

In this Subection, we will focus on the ε-dependency of κ. According to Formula (3.59)
and since λ ÞÑ Gλ is smooth (see Lemma 3.1) we only have to study the regularity with
respect to ε of the fourth component κv of κ. To this aim, we will introduce for any
py, θ, kq P R3 ˆ p0,`8q the parametrized functions α “ rα py, θqspvq, which is defined for
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v P R`, β “ rβ py, θ, kqspεq, which is defined for ε P p0,`8q, and γ “ rγ py, θ, kqspεq, which
is defined for ε P R`, by

rα py, θqs pvq “
ż v

0

s

B pG1
s py, θq ,G2

s py, θqqds, (3.60)

rβ py, θ, kqs pεq “ rα py, θqs´1
`
ε2k

˘
, (3.61)

rγ py, θ, kqs pεq “
c

rα py, θqs pεq
k

. (3.62)

Thus, by construction (see Formula (3.50)) we have

Υ̃4 py, θ, vq “ 1

ε2
rα py, θqs pεvq or εv “ rα py, θqs´1pε2Υ̃4py, θ, vqq, (3.63)

and in view of (3.61)

@ε ą 0, κv py, θ, kq “ 1

ε
rβ py, θ, kqs pεq . (3.64)

With their help, we can state the following lemma.

Lemma 3.10. For any py, θ, kq P R3ˆp0,`8q, function β defined by formula (3.61) admits
a smooth continuation to R` such that

rβ py, θ, kqs p0q “ 0, (3.65)

Moreover, for any ε ą 0 we have

rβ py, θ, kqs1pεq “ 1

rγ py, θ, kqs1 prβ py, θ, kqspεqq
, (3.66)

where γ is defined by (3.62).

Proof. By definition, function ε ÞÑrβpy, θ, kqspεq is in C8pR‹
`q for every py, θ, kq P R2 ˆRˆ

p0,`8q. Moreover, function γ is such that

@ε ą 0, rγ py, θ, kqspεq “ rβ py, θ, kqs´1pεq . (3.67)

Hence, in order to show that β admits a smooth continuation on R` we just have to show
that γ admits a smooth inverse function in the neighborhood of 0 in R`. And yet, for all
ε ě 0, we have

rγ py, θ, kqspεq “ ε

d
1

k

ż 1

0

u

B pG1
εu py, θq ,G2

εu py, θqqdu. (3.68)

This function is in C8pR`q and
„
dγ py, θ, kq

dε


p0q “ 1a

2kB pyq
‰ 0. (3.69)

Hence, there exists a neighborhood I of 0 and a smooth function δ “ rδ py, θ, kqs pεq defined
on J “ rγ py, θ, kqs pI X R`q such that rγ py, θ, kqs ˝ rδ py, θ, kqs “ id. Hence we have shown
that the smooth function β defined on R‹

` admits a smooth continuation to R`. Then, since
(3.66) follows directly (3.67), Lemma 3.10 is proven.
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Lemma 3.11. Function

py, θ, k, εq ÞÑ rβ py, θ, kqspεq , (3.70)

is in C8
#,3

`
R2 ˆ R ˆ p0,`8q ˆ R`

˘
.

The proof of the periodicity with respect to the third variable is similar to the one of
Lemma 3.8.

We will now use Formula (3.64), Lemmas 3.10 and 3.11 to deduce an expression of the
expansion with respect to ε of the v-component of κ “ Υ´1.

Lemma 3.12. For any n P N‹, there exists Pn P Rn´1rX1, . . . ,Xns (where Rn´1rX1, . . . ,Xns
stands for the space of the homogeneous polynomial of degree n´ 1 in n variables) such that

rβ py, θ, kqspnq pεq “
Pn

´
rγ py, θ, kqsp1q pβ pεqq , . . . , rγ py, θ, kqspnq pβ pεqq

¯

´
rγ py, θ, kqsp1q pβ pεqq

¯2n´1
. (3.71)

Moreover, thanks to formula (3.72), the Pn can easily be computed by induction.

Proof. Proof of Lemma 3.12 is easily done by induction. Notice that the inductive formula
for Pn is given by:

Pn`1 pX1, . . . ,Xn`1q “ ´ p2n´ 1qX2Pn pX1, . . . ,Xnq `
nÿ

k“1

X1Xk`1

BPn
BXk

pX1, . . . ,Xnq . (3.72)

Hence finding an expansion of κv remains to find the successive derivatives of
“
γ py, θ, kq

‰

evaluated at ε “ 0. The following lemma and its proof constitute a constructive way to
compute them.

Lemma 3.13. For any l P N‹, there exists al P O8
T,b (see Notation 5) such that

rβ py, θ, kqsplq p0q “
?
k
l
alpy, θq . (3.73)

Proof. On the one hand, for any py, θ, kq and for any n P N, rγ py, θ, kqs admits a Taylor-
MacLaurin expansion of order n.

rγ py, θ, kqs pεq “ rγ py, θ, kqs p0q ` ε rγ py, θ, kqsp1q p0q ` . . . ` εn

n!
rγ py, θ, kqspnq p0q

`
ż ε

0

rγ py, θ, kqspn`1q ptq
n!

pt´ εqn dt.
(3.74)
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On the other hand, applying formula (3.25) with 1
B
, multiplying by λ and integrating

between 0 and ε yields:

rα py, θqs pεq “ ε2
´ nÿ

l“0

εl

pl ` 2q l!

ˆ
Λl ¨ 1

B

˙
py, θq

` εn`1

pn` 1q!

ż 1

0

p1 ´ uqn`1 pn` 1 ` uq
ˆ
Λn`1 ¨ 1

B

˙
˝ Gεudu

¯
.

(3.75)

Injecting formula (3.75) in (3.62) yields:

rγ py, θ, kqs pεq “

ε?
k

gffe
˜

nÿ

l“0

εl

pl ` 2q l!

ˆ
Λl ¨ 1

B

˙
py, θq ` εn`1

pn` 1q!

ż
1

0

p1 ´ uqn`1 pn` 1 ` uq
ˆ
Λn`1 ¨ 1

B

˙
˝ Gεudu

¸
.

(3.76)

Expanding formula (3.76) with respect to ε, up to order n, by using the usual expansion
of s ÞÑ

?
1 ` s, and identifying with formula (3.74) yields that for any l P t0, . . . , nu ,?

k rγ py, θ, kqsplq p0q P O8
T,b.

Finally, using formula (3.71) we obtain formula (3.73). This ends the proof of Lemma
3.13.

The two previous Lemmas and Formula (3.64) lead to the following Theorem.

Theorem 3.14. For any py, θ, kq P R ˆ R2 ˆ p0,`8q, the v-component κv of κ “ Υ´1

admits the following expansion in power of ε:

κv py, θ, kq “
nÿ

i“0

?
k
i`1

ai`1 py, θq εi

pi ` 1q!

` εn`1

pn` 1q!

ż 1

0

p1 ´ uqn`1 rβ py, θ, kqspn`2qpεuq du,
(3.77)

where the terms ai of the expansion are defined in Lemma 3.13. Moreover,

py, θ, k, εq ÞÑ
ż 1

0

p1 ´ uqn`1 rβ py, θ, kqspn`2qpεuq du P C8
#,3pR2 ˆ R ˆ p0,`8q ˆ R`q.

(3.78)

Remark 3.15. The terms ai of expansion (3.77) can be obtained by an inductive process.
More precisely, expanding formula (3.76) with respect to ε, up to order n, by using the usual
expansion of s ÞÑ

?
1 ` s, leads to the n-th first derivatives of rγ py, θ, kqs evaluated at ε “ 0.

Applying inductively formula (3.72) yields easily the expression of Pn involved in Formula
(3.71). Thus, evaluating Pn at the n first derivatives of rγ py, θ, kqs evaluated at ε “ 0, we
obtain the expression of the coefficient an involved in Formula (3.77).
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Applying Theorem 3.14, up to order 2, we obtain

κv py, θ, kq “
a

2kB pyq ` ε
2kB pyq

3
â pθq ¨ ∇xB pyq

´ ε2k

c
kB pyq

2

«
7

18B pyq3
pâ pθq ¨ ∇xB pyqq2 ´ â pθqT HB pyq â pθq

2B pyq2

ff

` ε3

3!

ż 1

0

p1 ´ uq3 rβ py, θ, kqsp4q pεuq du

(3.79)

where â “ â pθq is defined by

â pθq “
ˆ

cos pθq
´ sin pθq

˙
(3.80)

and where HB is the Hessian Matrix of B.

Remark 3.16. Formula (3.79) can already be found in Littlejohn [22] but without estimation
of the rest. In the present paper formula (3.79) gives an expansion in power of ε of a well
defined diffeomorphism even though it is obtained in Littlejohn [22] by truncating a formal
Hilbert expansion.

3.6 Expression of the Hamiltonian function and the Darboux Matrix

Theorem 3.17. The Poisson Matrix in the Darboux Coordinate System is given by

P̄ε py, θ, kq “

¨
˚̊
˚̋

0 ´ ε
Bpyq 0 0

ε
Bpyq 0 0 0

0 0 0 1
ε

0 0 ´1
ε

0

˛
‹‹‹‚. (3.81)

Proof. By construction, from formula (2.9), we know all the Poisson Matrix entries, except
its entry number p1, 2q: tΥ1,Υ2ux,θ,v pκ py, θ, kqq. Hence, the proof of Theorem 3.17 reduces
to show that:

tΥ1,Υ2ux,θ,v px, θ, vq “ ´ ε

B pΥ1 px, θ, vq ,Υ2 px, θ, vqq . (3.82)

For that purpose, we will identify the Poisson Bracket between Υ1 and Υ2 as the unique
solution of the PDE of unknown u

$
’&
’%

´ εΛ1 ¨ u´ Bu
Bv “ 0,

u px, θ, 0q “ ´ε
B pxq .

(3.83)

In a first place, as function ϕ defined by (3.18) is the unique solution of (3.13), the unique
solution of (3.83) is given by

u px, θ, vq “ ´εϕ px, θ, vq ; (3.84)
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i.e. by (3.82).
On another hand as for any v ‰ 0, tΥ3,Υ1ux,θ,v “ 0 and tΥ2,Υ3ux,θ,v “ 0, the Jacobi

identity ensures that

@v ‰ 0, ttΥ1,Υ2u ,Υ3ux,θ,v “ 0. (3.85)

Hence, dividing (3.85) by ωεpx, vq, we obtain that for v ‰ 0, tΥ1,Υ2u is solution of (3.83).
Using now the same method as when proving Theorem 3.6, we obtain

tΥ1,Υ2ux,θ,v px, θ, vq “ ´ ε

B pxq ` vǫy1,y2 px, θ, vq , (3.86)

with ǫy1,y2 px, θ, vq such that for any px, θq , v ÞÑ ǫy1,y2 px, θ, vq is bounded in the neighbor-
hood of v “ 0 and consequently that tΥ1,Υ2ux,θ,v px, θ, 0q “ ´ε

Bpxq .

As a conclusion, tΥ1,Υ2ux,θ,v “ u, and u is given by (3.82). Hence the Theorem is
proven.

In the sequel, we will denote by tf, guD the Poisson bracket expressed in the Darboux
coordinate system, i.e. for any smooth functions f “ fpy, θ, kq and g “ gpy, θ, kq :

tf, guD “
`
∇py,θ,kqf

˘
¨
`
P̄ε∇py,θ,kqg

˘
. (3.87)

In the Darboux Coordinate System, the Hamiltonian function is given by H̄ε py, θ, kq “
H̃ε pκ py, θ, kqq. Since H̃ε px, θ, vq “ v2

2
, we have

H̄ε py, θ, kq “ κ2
v py, θ, kq

2
. (3.88)

Hence, according to Theorem 3.14, Hamiltonian function H̄ε is regular with respect to ε on
R` and it admits an expansion in power of ε. More precisely, using expansion (3.77), we
obtain the following corollaries.

Corollary 3.18. The Hamiltonian function in the Darboux Coordinate System admits the
following expansion in power of ε:

H̄ε py, θ, kq “ H̄0 py, kq `
Nÿ

n“1

εnH̄n py, θ, kq ` εN`1ιN`1 pε,y, θ, kq , (3.89)

where function ιN`1 is in C8
# pR` ˆ R2 ˆ R ˆ p0,`8qq. Moreover, for any n P t1, . . . , Nu

there exists a function bn P O8
T,b such that

H̄n py, θ, kq “
?
k
n`2

bn py, θq . (3.90)

Remark 3.19. Notice that expansion (3.77), where the coefficients ai are computed by using
the algorithm given in Remark 3.15, and Formula (3.88) give a constructive way to compute
the bn and consequently the H̄n.

For instance up to order 2 we obtain:
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Corollary 3.20. The Hamiltonian function in the Darboux Coordinate System admits, up
to order 2, the following expansion in power of ε:

H̄ε py, θ, kq “ B pyq k ` ε
â pθq ¨ ∇xB pyq

3B pyq2
p2B pyq kq

3

2

` ε2
p2B pyq kq2
24B pyq 2

”
´â pθq ¨ ∇xB pyq ` 3B pyq â pθqT HB pyq â pθq

ı

` ε3ι3 py, θ, k, εq ,

(3.91)

where â is defined by (3.80), function ι3 is in C8
#,3pR2 ˆ R ˆ p0,`8q ˆ R`q, and where HB

stands for the Hessian matrix associated with B.

Remark 3.21. In expression (3.89), there is an important fact for the setting out of the to
come Lie Transform based Method: the first term is independent of θ.

Remark 3.22. Formula (3.91) can also be found in a formal way in Littlejohn [22].

3.7 Trajectory localization in the Darboux Coordinate System

Subsequently, we will denote by pY ε
1 , Y

ε
2 ,Θ

ε
Dar,K

ε
Darqpt;y, θ, kq the trajectories of the dy-

namical system expressed in the Darboux Coordinates and by pXε
Pol,Θ

ε,Vεqpt;x, θ, vq their
expressions in the Polar in velocity Coordinate System.

Lemma 3.23. Let ra, bs be an interval such that ra, bs Ă p0,`8q. Then, for any py, θq P R3

and for any v P ra, bs, Υ4px, θ, vq P
”

a2

2}B}8
, b

2

2

ı
. Moreover, for any initial condition py, θ, kq P

Υ
`
R3 ˆ ra, bs

˘
, for any ε P p0,`8q , and for any t P R, Kε

Dar pt;y, θ, kq P
”

a2

2}B}8
, b

2

2

ı
.

Lemma 3.24. Let ra, bs be an interval such that ra, bs Ă p0,`8q and T be a positive real
number. Then, for any initial condition px, θ, vq P R3 ˆ ra, bs and for any t P r0, T s, we have

#
Υ1

`
Xε

Pol pt,x, θ, vq ,Θε pt,x, θ, vq , v
˘

“ Υ1 px, θ, vq ` ρ1 pt; ε;x, θ, vq ,
Υ2

`
Xε

Pol pt,x, θ, vq ,Θε pt,x, θ, vq , v
˘

“ Υ2 px, θ, vq ` ρ2 pt; ε;x, θ, vq ,
(3.92)

where ρ1 and ρ2 satisfy

|ρi pt; ε;x, θ, vq| ď T |ε| b2 sup
px,θqPR3

ˇ̌
ˇ̌ ĉ pθq ¨ ∇xB pxq

B pxq

ˇ̌
ˇ̌ ` ε2b2

››››Λ ¨ 1

B

››››
8

. (3.93)

Lemma 3.25. Let ra, bs be an interval such that ra, bs Ă p0,`8q. Then, for any px, θ, vq P
R3 ˆ ra, bs we have

#
Υ1px, θ, vq “ x1 ` ρ3 pε;x, θ, vq ,
Υ2px, θ, vq “ x2 ` ρ4 pε;x, θ, vq ,

(3.94)

where ρ3 and ρ4 satisfy

|ρi pε;x, θ, vq| ď εb. (3.95)

We will prove Lemmas 3.23, 3.24 and 3.25 in Subsection 3.8.
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3.8 Proof of Lemmas 3.23, 3.24 and 3.25

By definition Υ4px, θ, vq “
şv
0
ψ px, θ, sq ds, where ψ is defined by (3.34) with ϕ given by

Theorem 3.2. Hence,

ψ px, θ, sq “
ż s

0

ϕ px, θ, uq du “
ż s

0

1

B
`
G1

´εu px, θq ,G2
´εu px, θq

˘du ě s

}B}8

, (3.96)

and consequently, for any v P ra, bs and for any px, θq P R2 ˆ R, we obtain

Υ4px, θ, vq “
ż v

0

ψ px, θ, sq ds ě v2

2 }B}8

ě a2

2 }B}8

. (3.97)

On another hand, since inf
xPR2

B pxq ě 1, we obtain ψ px, θ, sq ď s, and consequently for any

v P ra, bs and for any px, θq , we obtain

Υ4px, θ, vq ď v2

2
ď b2

2
. (3.98)

Since for any px, θ, vq P R2 ˆ R ˆ p0,`8q and for any t P R,

BVε
Bt pt,x, θ, vq “ 0, (3.99)

we obtain Vε pt;x, θ, vq “ v, and consequently for any py, θ, kq P R2 ˆ R ˆ p0,`8q and for
any t P R, we have:

K
ε
Dar pt;y, θ, kq “ Υ4

`
Xε

Pol pt;κ py, θ, kqq ,Θε pt;κ py, θ, kqq ,Vε pt;κ py, θ, kqq
˘

“ Υ4

`
Xε

Pol pt;κ py, θ, kqq ,Θε pt;κ py, θ, kqq ,κv py, θ, kq
˘
.

(3.100)

Now, for any py, θ, kq P Υ
`
R2 ˆ R ˆ ra, bs

˘
, κv py, θ, kq P ra, bs and estimates (3.97) and

(3.98) yield that K
ε
Dar pt;y, θ, kq P

”
a2

2}B}8
, b

2

2

ı
. This ends the proof of Lemma 3.23. �

Concerning Lemma 3.24, for any px, θq P R2 ˆ R and for any v P ra, bs , function ψ

satisfies |ψ px, θ, vq| ď b. Applying formula (3.39) yields:

Υ1 px, θ, vq “ Υs
1 px, θ, vq ` Υb

1 px, θ, vq , (3.101)

where

Υs
1 px, θ, vq “ x1 ´ εv

cos pθq
B pxq ,

Υb
1 px, θ, vq “ ´ε2 cos pθq

ż v

0

pv ´ uq
ˆ
Λ ¨ 1

B

˙
pG´εu px, θqq du.

(3.102)

For any px, θq P R2 ˆ R, for any v P ra, bs and for any ε P R we have:

ˇ̌
ˇΥb

1 px, θ, vq
ˇ̌
ˇ ď ε2b2

2

››››Λ ¨ 1

B

››››
8

, (3.103)
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and consequently for any px, θq P R2 ˆR, for any v P ra, bs , for any ε P R‹ and for any t P R

ˇ̌
ˇΥb

1

`
Xε

Pol pt;x, θ, vq ,Θε pt,x, θ, vq , v
˘ˇ̌
ˇ ď ε2b2

2

››››Λ ¨ 1

B

››››
8

. (3.104)

On another hand, evaluating Υs
1 in

´
Xε

Pol pt;x, θ, vq ,Θε pt;x, θ, vq , v
¯

and differentiat-

ing with respect to t yields:

B
Bt

`
Υs

1

`
Xε

Pol,Θ
ε, v

˘˘
“ εv2 cos pΘεq

ĉ pΘεq ¨ ∇xB
´
Xε

Pol

¯

B
´
Xε

Pol

¯2
, (3.105)

where

ĉpθq “
ˆ

´ sinpθq
´ cospθq

˙
, (3.106)

and consequently
ˇ̌
ˇ̌ B
Bt

`
Υs

1

`
Xε

Pol,Θ
ε, v

˘˘ˇ̌ˇ̌ ď |ε| b2 sup
px,θqPR3

ˇ̌
ˇ̌ ĉ pθq ¨ ∇xB pxq

B pxq2
ˇ̌
ˇ̌ . (3.107)

This ends the proof of Lemma 3.24. �

The proof of Lemma 3.25 is obvious.

3.9 Proof of Theorem 1.2 and Remark 1.4

Theorem 1.2 and remark 1.4 are a synthesis of Theorems 3.9 and 3.17 and of Lemmas 3.23,
3.24 and 3.25. �

4 The Partial Lie Transform Method

The last step on the way to build the Guiding-Center Coordinates of order N is to build
a coordinate system pz, γ, jq close to the Historical Guiding-Center coordinate system in
which the Poisson Matrix and the Hamiltonian function are given by (1.13) and (1.14). To
this aim we will construct a new algorithm, the so-called Partial Lie Transform Method.

Remark 4.1. In [22], to build the Guiding-Center coordinate system, Littlejohn construct a
normal form theory based on formal Lie series using Hamiltonian vector fields. The drawback
of using such a formal Lie Series method is that its convergence is neither ensured nor
controlled.

4.1 The Partial Lie Change of Coordinates of order N

We start this Section by defining the partial Lie sums. Let N P N˚. For i P v1, Nw, we define
the positive integer αi,N by

αi,N “ E

ˆ
N

i

˙
` 1, (4.1)

where E stands for the integer part.
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Definition 4.2. For any ḡ “ ḡ py, θ, kq in C8
# pR2ˆRˆp0,`8qq (see Notation 3), let ϑ

αi,N ,i
ε,´ḡ

be the differential operator acting on functions f̄ “ f̄ py, θ, kq of C8
# pR2 ˆ R ˆ p0,`8qq in

the following way:

ϑ
αi,N ,i
ε,´ḡ ¨ f̄ “

αi,Nÿ

k“0

εik

k!

`
X
ε

´εḡ

˘k ¨ f̄ , (4.2)

where X
ε

´εḡ is the Hamiltonian vector field associated with ´εḡ. From operator ϑ
αi,N ,i
ε,´ḡ we

define, with the same notation, function ϑ
αi,N ,i
ε,´ḡ “ ϑ

αi,N ,i
ε,´ḡ py, θ, kq from R2 ˆ R ˆ p0,`8q to

R4 by

ϑ
αi,N ,i
ε,´ḡ “

´´
ϑ
αi,N ,i
ε,´ḡ ¨ y1

¯
, . . . ,

´
ϑ
αi,N ,i
ε,´ḡ ¨ k

¯¯
, (4.3)

where y1, y2, θ, k stand for y1 : py, θ, kq ÞÑ y1, . . ., k : py, θ, kq ÞÑ k.

Definition 4.3. ϑ
αi,N ,i
ε,´ḡ is called the Partial Lie Sum of order pi,Nq generated by ḡ.

Theorem 4.4. Let ḡ1, . . . , ḡN P Q8
T,b (see Notation 6) and c and d be positive real numbers

(with c ă d). Then there exists η ą 0 such that for any ε P r´η, ηs, χNε , defined by

χNε “ ϑ
α1,N ,1
ε,´ḡ1 ˝ ϑ

α2,N ,2
ε,´ḡ2 ˝ . . . ˝ ϑ

αN,N ,N
ε,´ḡN

, (4.4)

is well defined on R3 ˆ pc, dq and is a diffeomorphism. Moreover, for any intervals pc‹, d‹q
and pc‚, d‚q such that c‹ ą 0 and

rc‚, d‚s ( pc, dq ( rc, ds ( pc‹, d‹q (4.5)

there exists a real number η‚,‹ ą 0 such that for any ε P r´η‚,‹, η‚,‹s:

R3 ˆ pc‚, d‚q Ă χNε
`
R3 ˆ pc, dq

˘
Ă R3 ˆ pc‹, d‹q. (4.6)

The proof of Theorem 4.4 is given in subsection 4.4.

Definition 4.5. With assumptions of Theorem 4.4 on the ḡi, χNε is called the partial Lie
change of coordinates of order N . We denote by λNε the inverse function of χNε .

Remark 4.6. An immediate Corollary to Theorem 4.4 is that for ε small enough λNε is well
defined on R3 ˆ pc‚, d‚q.

4.2 Main properties of the partial Lie change of coordinates of order N

The main properties of the partial Lie change of coordinates of order N are summarized in
the following Theorem.

Theorem 4.7. With the same notations and under the same assumptions as in Theorem
4.4, assuming moreover that ḡ1, . . . , ḡN P ApR3ˆp0,`8qq (see Notation 7), for any compact
set K Ă R2 and for any interval

“
c♦, d♦

‰
such that

“
c♦, d♦

‰
Ă pc‚, d‚q, there exists a real
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number ηK ą 0 such that for any ε P r0, ηK s and for any pz, γ, jq P K ˆ R ˆ
“
c♦, d♦

‰
, the

inverse function λNε of χNε has the following expression:

λNε pz, γ, jq “ ϑ
α1,N ,1
ε,ḡ1

¨ ϑα2,N ,2
ε,ḡ2

¨ . . . ¨ ϑαN,N ,N
ε,ḡN

pz, γ, jq ` εN`1ρN
λ

pε; z, γ, jq . (4.7)

Moreover, on r0, ηK sˆKˆRˆ
“
c♦, d♦

‰
, we have the following expressions of the Hamiltonian

function Ĥε and the Poisson Matrix P̂ε in the pz, γ, jq-coordinate system:

Ĥεpz, γ, jq “ ϑ
α1,N ,1
ε,ḡ1 ¨ ϑα2,N ,2

ε,ḡ2 ¨ . . . ¨ ϑαN,N ,N
ε,ḡN

¨ H̄εpz, γ, jq ` εN`1ρN
H̄

pε; z, γ, jq , (4.8)

εP̂ε pz, γ, jq “ εP̄ε pz, γ, jq ` εN`2ρN
P̄

pε; z, γ, jq , (4.9)

where H̄ε is given by (3.88) or (3.89), P̄ε by (3.81) and where ρN
λ

, ρN
H̄

, and ρN
P̄

are in

C8
# pr0, ηK s ˆ K ˆ R ˆ

“
c♦, d♦

‰
q.

The proof of Theorem 4.7 is given in subsection 4.5.

4.3 The Partial Lie Change of Coordinates Algorithm

In this Section, we will deduce from Formula (4.8) the Partial Lie Change of Coordinates
Algorithm.

Theorem 4.8. With the same notations and under the same assumptions as in Theorems
4.4 and 4.7, from formula (4.8) we have

Ĥεpz, γ, jq “ Ĥ0 pz, jq ` εĤ1 pz, γ, jq ` . . . ` εN ĤN pz, γ, jq ` εN`1ρN
H̄

pε; z, γ, jq , (4.10)

with ρN
H̄

in C8
# pr0, ηK s ˆ K ˆ R ˆ

“
c♦, d♦

‰
q and

Ĥ0 pz, jq “ H̄0 pz, jq , (4.11)

Ĥ1 pz, γ, jq “ ´B pzqBḡ1
Bθ pz, γ, jq ´ H̄1 pz, γ, jq , (4.12)

Ĥ2 pz, γ, jq “ ´B pzq Bḡ2
Bθ pz, γ, jq ´ V2pḡ1q pz, γ, jq , (4.13)

...

ĤN pz, γ, jq “ ´B pzq BḡN
Bθ pz, γ, jq ´ VN pḡ1, . . . , ḡN´1q pz, γ, jq , (4.14)

where for each i P v1, Nw, Vipḡ1, . . . , ḡi´1q only depends on ḡ1, . . . , ḡi´1, H̄0, . . . , H̄i and their
derivatives.

The proof of Theorem 4.8 is given in subsection 4.6.

From Theorem 4.8 we construct the following inductive Algorithm to determine ḡ1, . . . , ḡN ,
Ĥ1, . . . , ĤN and consequently the partial Lie change of coordinates of order N .
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Algorithm 4.9. Set

Ĥ1 pz, γ, jq “ ´ 1

2π

ż 2π

0

H̄1 pz, γ, jq dγ, (4.15)

and get ḡ1 by solving
$
’&
’%

´B pzqBḡ1
Bγ pz, γ, jq “ H̄1 pz, γ, jq ´ 1

2π

ż 2π

0

H̄1 pz, γ, jq dγ.

ḡ1 pz, 0, jq “ 0.

(4.16)

Then for i P v1, Nw, set

Ĥi pz, γ, jq “ ´ 1

2π

ż 2π

0

rVi pḡ1, . . . , ḡi´1qspz, γ, jq dγ, (4.17)

and get ḡi and by solving:
$
’&
’%

´B pzq Bḡi
Bγ pz, γ, jq “ Vipḡ1, . . . , ḡi´1q pz, γ, jq ´ 1

2π

ż 2π

0

rVi pḡ1, . . . , ḡi´1qspz, γ, jq dγ.

ḡi pz, 0, jq “ 0.

(4.18)

By construction functions ḡ1, . . . , ḡN and Ĥ1, . . . , ĤN obtained by applying Algorithm
4.9 satisfy the following Theorem.

Theorem 4.10. Let ḡ1, . . . , ḡN and Ĥ1, . . . , ĤN be constructed by applying Algorithm 4.9.
Then, ḡ1, . . . , ḡN P ApR3 ˆ p0,`8qq X Q8

T,b, Ĥ1, . . . , ĤN P C8
#

`
R3 ˆ p0,`8q

˘
, and for each

i P v1, Nw, Ĥi does not depend on γ.

4.4 Proof of Theorem 4.4

The first step to prove Theorem 4.4 consists in proving that the partial Lie sums are diffeo-
morphisms and to localize their ranges.

Theorem 4.11. Let i P v1, Nw, ḡi P Q8
T,b and c and d be positive real numbers (with c ă d).

Then there exists η ą 0 such that for any ε P r´η, ηs, function ϑ
αi,N ,i
ε,´ḡi , defined by (4.3), is

a diffeomorphism from R3 ˆ pc, dq onto its range. Moreover, for any interval pc‹, d‹q and
pc‚, d‚q such that c‹ ą 0 and

rc‚, d‚s ( pc, dq ( rc, ds ( pc‹, d‹q (4.19)

there exists a real number η‚,‹ ą 0 such that for any ε P r´η‚,‹, η‚,‹s:

R3 ˆ pc‚, d‚q Ă ϑ
αi,N ,i
ε,´ḡi

`
R3 ˆ pc, dq

˘
Ă R3 ˆ pc‹, d‹q. (4.20)

Subsequently we will denote by

Ξ
αi,N ,i
ε,´ḡi the inverse function of ϑ

αi,N ,i
ε,´ḡi . (4.21)
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Proof. In a first place, we will show that ϑ
αi,N ,i
ε,´ḡi is a diffeomorphism from R3 ˆ pc, dq onto

its range. To this aim, we will check that there exists a real number η̄1 such that for any
ε P r´η̄1, η̄1s , the map ϑ

αi,N ,i
ε,´ḡi satisfies the assumptions of the classical global inversion

Theorem.

Remark 4.12. This theorem claims that if A is a continuous homeomorphism from a Ba-
nach space onto a normed vector space and if φ is Lipschitz-continuous from the same Banach
space onto the same normed vector space with a Lipschitz constant smaller than }A´1}´1,
then A` φ is invertible and its inverse map is Lipschitz-continuous.

Function ν
αi,N ,i
ε,´ḡi , defined as being such that

ϑ
αi,N ,i
ε,´ḡi “ id` εν

αi,N ,i
ε,´ḡi (4.22)

and whose expression, because of (4.2), is given by

ν
αi,N ,i
ε,´ḡi “

˜
αi,Nÿ

j“1

εij´1

j!

`
X
ε
´εḡi

˘j ¨ y1, . . . ,

αi,Nÿ

j“1

εij´1

j!

`
X
ε
´εḡi

˘j ¨ k
¸
, (4.23)

is differentiable and its differential is bounded on R3 ˆ rc, ds. Moreover, ε ÞÑ ν
αi,N ,i
ε,´ḡi py, θ, kq

is clearly in C8pRq for any py, θ, kq P R3 ˆ p0,`8q. Hence, we can define

›››ναi,N ,i
ε,´ḡi

›››
1,8

“ sup
py,θ,kqPR3ˆrc,ds

ˇ̌
ˇ̌
´
dν

αi,N ,i
ε,´ḡi

¯
py,θ,kq

ˇ̌
ˇ̌, (4.24)

where function ε ÞÑ
›››ναi,N ,i

ε,´ḡi

›››
1,8

is clearly in C8pRq. Now, since ε
›››ναi,N ,i

ε,´ḡi

›››
1,8

Ñ 0 when

ε Ñ 0, there exists a real number η1 ą 0 such that

@ε P
“
´η1, η1

‰
,

ˇ̌
ˇ̌ε
›››ναi,N ,i

ε,´ḡi

›››
1,8

ˇ̌
ˇ̌ ă 1. (4.25)

Hence, we deduce that for ε small enough εν
αi,N ,i
ε,´ḡi is Lipschitz continuous on R3 ˆ rc, ds and

that its Lipschitz constant is smaller than
››id´1

››´1

8
“ 1. Consequently (4.22) and the global

inversion Theorem imply that ϑ
αi,N ,i
ε,´ḡi is invertible and Lipschitz continuous.

The second step consists in checking that for any py, θ, kq P R3 ˆ rc, ds the differential
´
dϑ

αi,N ,i
ε,´ḡi

¯
py,θ,kq

is an isomorphism. As
´
dϑ

αi,N ,i
ε,´ḡi

¯
py,θ,kq

“ id ` ε
´
dν

αi,N ,i
ε,´ḡi

¯
py,θ,kq

, (4.26)

the Jacobian Matrix of ϑ
αi,N ,i
ε,´ḡi in py, θ, kq P R3 ˆ rc, ds can be rewritten as

Jacpϑαi,N ,i
ε,´ḡi q py, θ, kq “ 1 ` εχpε,y, θ, kq , (4.27)

30



where χ is bounded with respect to py, θ, kq P R3ˆrc, ds and ε ÞÑ χpε,y, θ, kq is in C8pRq for
any py, θ, kq P R3 ˆ rc, ds. Hence, denoting }χ pε, ¨q }8,R3ˆrc,ds “ suppy,θ,kqPR3ˆrc,ds |χ pε, ¨q |,
there exists a real number η2 ą 0 such that for any ε P r´η2, η2s,

ˇ̌
ˇε }χ pε, ¨q}8,R3ˆrc,ds

ˇ̌
ˇ ă 1.

Consequently, py, θ, kq ÞÑ pdϑαi,N ,i
ε,´ḡi qpy,θ,kq is invertible and Lipschitz continuous.

Hence for |ε| ă η̄1, where η̄1 “ min pη1, η2q , we can conclude that ϑ
αi,N ,i
ε,´ḡi is a diffeomor-

phism on R3 ˆ rc, ds.

The second part of the proof concerns inclusions (4.20). Using Formula (4.22) we obtain
easily the second inclusion. Hence, we will focus on the first one. Its proof is based on the
Brouwer Theorem (see Brouwer [2] or Istratescu [19]).

We fix two positive real numbers R1
0 and R‚

0 such that R‚
0 ă R1

0. Then we will fix
m0 P R2 and we will show that there exists a positive real number η, that does not depend
on m0, such that for any ε P r´η, ηs

b
2 pm0, R

‚
0q ˆ R ˆ pc‚, d‚q Ă ϑ

αi,N ,i
ε,´ḡi

`
b
2
`
m0, R

1
0

˘
ˆ R ˆ pc, dq

˘
, (4.28)

or according to Notation 12,

COpm0, R
‚
0; c

‚, d‚q Ă ϑ
αi,N ,i
ε,´ḡi

`
COpm0, R

1
0; c, dq

˘
. (4.29)

Consequently, since η does not depend on m0 we will obtain (4.20).

Let Rp2q
0 , R

p3q
0 , α

p2q
0 , αp3q

0 , cp2q, cp3q, dp2q and dp3q be real numbers satisfying

R‚
0 ă R

p2q
0 ă R

p3q
0 ă R1

0, 0 ă α
p2q
0 ă α

p3q
0 , and

rc‚, d‚s Ă
´
cp2q, dp2q

¯
Ă
”
cp2q, dp2q

ı
Ă

´
cp3q, dp3q

¯
Ă
”
cp3q, dp3q

ı
Ă pc, dq ,

l be an integer, and let Kl
2 and Kl

3 be the compact and convex subsets of R2 ˆ R ˆ p0,`8q
defined by

Kl
2 “ b

2pm0, R
p2q
0 q ˆ

”
pl ´ 1q π ´ α

p2q
0 , pl ` 1q π ` α

p2q
0

ı
ˆ
”
cp2q, dp2q

ı
(4.30)

and

Kl
3 “ b

2pm0, R
p3q
0 q ˆ

”
pl ´ 1q π ´ α

p3q
0 , pl ` 1q π ` α

p3q
0

ı
ˆ
”
cp3q, dp3q

ı
. (4.31)

Since ε
›››ναi,N ,i

ε,´ḡi

›››
8,R3ˆpc,dq

Ñ 0 when ε Ñ 0, we can define η ą 0 (that depends neither on l

nor m0) such that for any ε P r´η, ηs, for any l P Z, and for any py1, θ1, k1q P Kl
2,

ˇ̌
y1 ´ m0

ˇ̌
` |ε|

›››ναi,N ,i
ε,´ḡi

›››
8,R3ˆpc,dq

ď R
p3q
0 ,

ˇ̌
θ1 ´ lπ

ˇ̌
` |ε|

›››ναi,N ,i
ε,´ḡi

›››
8,R3ˆpc,dq

ď α
p3q
0 ,

k1 ˘ |ε|
›››ναi,N ,i

ε,´ḡi

›››
8,R3ˆpc,dq

P
“
cp3q, dp3q

‰
.

(4.32)
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Now, for all py1, θ1, k1q P Kl
2, we define the function F εpy1,θ1,k1q by

F εpy1,θ1,k1q : Kl
3 Ñ R4; py, θ, kq ÞÑ

`
y1, θ1, k1

˘
´ εν

αi,N ,i
ε,´ḡi py, θ, kq . (4.33)

By construction and because of the properties of ν
αi,N ,i
ε,´ḡi , F εpy1,θ1,k1q is continuous on Kl

3 and

for any ε P r´η, ηs and any py, θ, kq P Kl
3,

ˇ̌
ˇ̌
´
F εpy1,θ1,k1qpy, θ, kq

¯
1,2

´ m0

ˇ̌
ˇ̌ ď

ˇ̌
y1 ´ m0

ˇ̌
` |ε|

ˇ̌
ˇ̌
´
ν
αi,N ,i
ε,´ḡi py, θ, kq

¯
1,2

ˇ̌
ˇ̌ ď R

p3q
0 ,

ˇ̌
ˇ
´
F εpy1,θ1,k1qpy, θ, kq

¯
3

´ lπ
ˇ̌
ˇ ď

ˇ̌
θ1 ´ lπ

ˇ̌
` |ε|

ˇ̌
ˇ
´
ν
αi,N ,i
ε,´ḡi py, θ, kq

¯
3

ˇ̌
ˇ ď α

p3q
0 ,

(4.34)

and

k1 ´
´
εν

αi,N ,i
ε,´ḡi py, θ, kq

¯
4

P
”
cp3q, dp3q

ı
, (4.35)

meaning F εpy1,θ1,k1q

`
Kl

3

˘
Ă Kl

3. Hence, invoking the Brouwer Theorem and more precisely its

convex compact version, function F εpy1,θ1,k1q has a fixed point in Kl
3. So we have proven that

Dη ą 0, @ε, |ε| ă η, @l P Z, @
`
y1, θ1, k1

˘
P Kl

2, D py, θ, kq P Kl
3, ϑ

αi,N ,i
ε,´ḡi py, θ, kq “

`
y1, θ1, k1

˘
,

meaning that ϑ
αi,N ,i
ε,´ḡi

`
Kl

3

˘
Ą Kl

2 and consequently, since η does not depend on l, that

ϑ
αi,N ,i
ε,´ḡi

ˆ
Y
lPZ

Kl
3

˙
Ą Y

lPZ
Kl

2. (4.36)

Since (see Notation 12) COpm0, R
p3q
0 ; cp3q, dp3qq “ Y

lPZ
Kl

3 and COpm0, R
p2q
0 ; cp2q, dp2qq “ Y

lPZ
Kl

2,

(4.36) can be rewritten as ϑ
αi,N ,i
ε,´ḡi

ˆ
COpm0, R

p3q
0 ; cp3q, dp3qq

˙
Ą COpm0, R

p2q
0 ; cp2q, dp2qq. Fi-

nally, since

COpm0, R
‚
0; c

‚, d‚q Ă COpm0, R
p2q
0 ; cp2q, dp2qq Ă COpm0, R

p3q
0 ; cp3q, dp3qq Ă COpm0, R

1
0; c, dq

we obtain the inclusion in (4.28).
Eventually, since η does not depend on m0 we obtain the first inclusion of (4.20), ending

the proof of the theorem

Proof of Theorem 4.4. Eventually, a straightforward induction using essentially Theorem
4.11, leads to Theorem 4.4.

Remark 4.13. Notice that λNε is given by

λNε “ Ξ
αN,N ,N
ε,´ḡN

˝ . . . ˝ Ξ
α1,N ,1
ε,´ḡ1 . (4.37)
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4.5 Proof of Theorem 4.7

We begin by giving and proving preliminary results that are needed for the proof of Theorem
4.7. Its proof is then led in the last part of this subsection.

Property 4.14. Let i P v1, Nw and f , ḡi and h be three functions in C8
#

`
R3 ˆ p0,`8q

˘
.

Then, the following equalities hold true on R3 ˆ p0,`8q:
´
ϑ
αi,N ,i
ε,´ḡi ¨ pfhq

¯
“
´
ϑ
αi,N ,i
ε,´ḡ ¨ f

¯´
ϑ
αi,N ,i
ε,´ḡ ¨ h

¯
` εN`1ρN,iFP pε; ¨ q , (4.38)

´
ϑ
αi,N ,i
ε,´ḡi ¨ tf, huD

¯
“

!
ϑ
αi,N ,i
ε,´ḡi ¨ f,ϑαi,N ,i

ε,´ḡi ¨ h
)
D

` εN`1ρN,iPCpε, ¨ q , (4.39)

where ρN,iFP and ρN,iPC are in C8
#

`
R ˆ R3 ˆ p0,`8q

˘
.

Proof. The proofs of Formulas (4.38) and (4.39) are very similar. Consequently, we will only
give the proof of Formula (4.39).

In a first place, starting from is the following equality

X
ε

´εḡi ¨tf, huD “
 
X
ε

´εḡi ¨ f, h
(
D

`
 
f,X

ε

´εḡi ¨ h
(
D
, (4.40)

which is a direct consequence of the Jacobi identity, it is obvious to show by induction that

`
X
ε

´εḡi

˘n¨tf, huD “
nÿ

k“0

Ckn

!`
X
ε

´εḡi

˘k ¨ f,
`
X
ε

´εḡi

˘n´k ¨ h
)
D
. (4.41)

Secondly, we will define on R3 ˆ p0,`8q the function tf, huT̄ε “ tf, huT̄εpy, θ, kq by

tf, huT̄εpy, θ, kq “
`
T̄εpy, θ, kq∇hpy, θ, kq

˘
¨ p∇fpy, θ, kqq , (4.42)

where

T̄ε “ εP̄ε, (4.43)

and notice that ε ÞÑ tf, huT̄εpy, θ, kq is in C8pRq for any py, θ, kq P R3 ˆ p0,`8q.
Hence, expanding ϑ

αi,N ,i
ε,´ḡi ¨ tf, hu using Formula (4.41), expanding

!
ϑ
αi,N ,i
ε,´ḡi ¨ f,ϑαi,N ,i

ε,´ḡi ¨ h
)
,

and making the difference between these two expansions yields (4.39) with

ρN,iPC pε, ¨ q “

´
2αi,Nÿ

k“αi,N`1

εik´pN`2q
ÿ

pm,pqPv1,Nw2 s.t. m`p“k

1

m!p!

!`
X
ε

´εḡi

˘m ¨ f,
`
X
ε

´εḡi

˘p ¨ h
)̄Tε

.
(4.44)

As iαi,N ě N ` 1, all k ě αi,N ` 1 satisfy ik ě N ` 2. Consequently, ε ÞÑ ρN,iPCpε;y, θ, kq is

in C8pRq for any py, θ, kq P R3 ˆ p0,`8q. In addition, py, θ, kq ÞÑ ρN,i,jPC pε,y, θ, kq is clearly
in C8

#

`
R3 ˆ p0,`8q

˘
for any ε P R.
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Remark 4.15. The expression of the rest in Formula (4.39) is given by

ρN,iFP pε, ¨ q “

´ε
2αi,Nÿ

k“αi,N`1

εik´pN`2q
ÿ

pm,pqPv1,Nw2 s.t. m`p“k

1

m!p!

´`
X
ε

´εḡi

˘m ¨ f
¯´`

X
ε

´εḡi

˘p ¨ h
¯
.

(4.45)

Theorem 4.16. With the same notations and under the same assumptions as in Theorem
4.7, let i P v1, Nw and hε be in Q8

T,b X A
`
R2 ˆ R ˆ p0,`8q

˘
for every ε in some interval I

containing 0 and such that ε ÞÑ hεpr̄q is in C8pIq for any r̄ P R3 ˆ p0,`8q. Then, there
exists a real number ηK ą 0 such that for any ε P r´ηK , ηK s X I and for any py, θ, kq P
K ˆ R ˆ

“
c♦, d♦

‰
, we have

hε

´
ϑ
αi,N ,i
ε,´ḡi

py, θ, kq
¯

“ ϑ
αi,N ,i
ε,´ḡi

¨ hεpy, θ, kq ` εN`1ρN
h pε;y, θ, kq , (4.46)

where ρN
h is in C8

#

`
pI X r´ηK , ηK sq ˆ K ˆ R ˆ

“
c♦, d♦

‰˘
.

Proof. Since hε P Q8
T,b, and by linearity, the proof of the theorem reduces to prove formula

(4.46) with function hε of the form

hεpy, θ, kq “ coslpθq sinmpθq dεpyq
?
k
n
, (4.47)

where dε “ dεpyq P A
`
R2

˘
X C8

b

`
R2

˘
.

Let r̄0 “ py0, θ0, k0q P K ˆ R ˆ
“
c♦, d♦

‰
. As dε P A

`
R2

˘
, and as

´
k ÞÑ

?
k
n
¯

P
App0,`8qq, there exists a real number Rr̄0

ą 0 and a formal power series Tr̄0
of three

variables whose set of convergence contains the closure of b3̀ 0, Rr̄0

˘
, which are such that

b
3ppy0, k0q , Rr̄0

q Ă R2 ˆ pc‚, d‚q and such that for any py, kq P b
3ppy0, k0q , Rr̄0

q,

dε pyq
?
k
n “ Tr̄0

ppy, θq ´ py0, θ0qq “
ÿ

lPN3

al,r̄0

ε ppy, kq ´ py0, θ0qql . (4.48)

In addition, since
`
θ ÞÑ coslpθq sinmpθq

˘
is a power series of convergence radius `8 with

respect to θ, there exists a formal power series Sr̄0
such that b#p0, Rr̄0

q Ă ΣSr̄0
and such

that

@r̄ “ py, θ, kq P b
#pr̄0, Rr̄0

q , hεpr̄q “ Sr̄0
pr̄ ´ r̄0q “

ÿ

lPN4

hl,r̄0ε pr̄ ´ r̄0ql . (4.49)

Let R1
r̄0

P p0, Rr̄0
q. Then, using similar arguments as in the proof of Theorem 4.4 we easily

obtain that there exists a real number ηRr̄0
,R1

r̄0

ą 0 such that for any ε P
“
´ηRr̄0

,R1

r̄0

, ηRr̄0
,R1

r̄0

‰
,

ϑ
αi,N ,i
ε,´ḡi

´
b
#
`
r̄0, R

1
r̄0

˘¯
Ă b

#pr̄0, Rr̄0
q . Hence, for any r̄ “ py, θ, kq P b

#
`
r̄0, R

1
r̄0

˘
, we have

hε

´
ϑ
αi,N ,i
ε,´ḡi pr̄q

¯
“

ÿ

lPN4

hl,r̄0ε

´
ϑ
αi,N ,i
ε,´ḡi pr̄q ´ r̄0

¯l

. (4.50)
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On another hand, let Θε “ Θεpr̄q “ pΘε,mpr̄qq
mPN4 s.t. |m|ďi be the smooth function that

are such that, for all smooth functions fε,
´
ϑ
αi,N ,i
ε,´ḡi ¨ fε

¯
pr̄q “

ÿ

|m|ďi

Θε,mpr̄q Bfε
Br̄m pr̄q . (4.51)

We have, for any r̄ P b
#pr̄0, Rr̄0

q,

´
ϑ
αi,N ,i
ε,´ḡi ¨ hε

¯
pr̄q “

ÿ

|m|ďi

Θε,m pr̄q Bhε
Br̄m pr̄q “

¨
˝ ÿ

|m|ďi

Θε,mpr̄q B
Br̄m

˛
‚
˜
ÿ

lPN4

hl,r̄0

ε r
l
r̄0

¸
pr̄q ,

(4.52)

where rlr̄0
stand for the function r̄ ÞÑ pr̄1 ´ pr̄0q1ql1 pr̄2 ´ pr̄0q2ql2 pr̄3 ´ pr̄0q3ql3 pr̄4 ´ pr̄0q4ql4 .

Since b
#p0, Rr̄0

q Ă ΣSr̄0
, we can permute summation and derivations and we obtain:

´
ϑ
αi,N ,i
ε,´ḡi ¨ hε

¯
pr̄q “

ÿ

|m|ďi

Θε,mpr̄q
ÿ

lPN4

hl,r̄0

ε

Brlr̄0

Br̄m prq “
ÿ

lPN4

hl,r̄0ε

´
ϑ
αi,N ,i
ε,´ḡi ¨ rlr̄0

¯
pr̄q . (4.53)

Besides, using Property 4.14 and the link (4.3) between function ϑ
αi,N ,i
ε,´ḡi and operator ϑ

αi,N ,i
ε,´ḡi ,

we obtain that, for any l P N4,
´
ϑ
αi,N ,i
ε,´ḡi ¨ rlr̄0

¯
pr̄q “

´
ϑ
αi,N ,i
ε,´ḡi ¨ pr̄1 ´ pr̄0q1q, . . . ,ϑαi,N ,i

ε,´ḡi ¨ pr̄4 ´ pr̄0q4q
l̄

pr̄q ` εN`1ρN,i,jl,r̄0
pε, r̄q

“
´´

ϑ
αi,N ,i
ε,´ḡi ¨ r̄1, . . . ,ϑαi,N ,i

ε,´ḡi ¨ r̄4
¯

pr̄q ´ r̄0
l̄

` εN`1ρN,i,j
l,r̄0

pε, r̄q

“
´´

ϑ
αi,N ,i
ε,´ḡi

¯
pr̄q ´ r̄0

l̄

` εN`1ρN,i,jl,r̄0
pε, r̄q ,

(4.54)

with r̄ ÞÑ ρN,i,jl,r̄0
p ¨ , r̄q in Q8

T,b and ε ÞÑ ρN,i,jl,r̄0
pε, ¨ q in C8pRq.

As both
ř
lPN4

h
l,r̄0

ε

´
ϑ
αi,N ,i
ε,´ḡi pr̄q ´ r̄0

¯l

and
ř
lPN4

h
l,r̄0
ε

´
ϑ
αi,N ,i
ε,´ḡi ¨ rlr̄0

¯
pr̄q converge normally on

b
#
`
r̄0, R

1
r̄0

˘
, their difference

εN`1

˜
´
ÿ

lPN4

hl,r̄0ε ρN,i,jl,r̄0
pε, r̄q

¸
(4.55)

also converges normally on this subset and we can deduce that, for any r̄ P b
#
`
r̄0, R

1
r̄0

˘
,

´
hε ˝ ϑ

αi,N ,i
ε,´ḡi

¯
pr̄q “

´
ϑ
αi,N ,i
ε,´ḡi ¨ hε

¯
pr̄q ` εN`1

˜
´
ÿ

lPN4

hl,r̄0

ε ρN,i,j
l,r̄0

pε, r̄q
¸
. (4.56)

Finally, as

K ˆ
”
c♦, d♦

ı
Ă Y

py0,k0qPKˆrc♦,d♦s
b
3
`
py0, k0q , R1

r̄0

˘
(4.57)
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and as K ˆ
“
c♦, d♦

‰
is compact, there exists

`
y1
0, k

1
0

˘
, . . . , pyp0, k

p
0q such that

K ˆ rc♦, d♦s Ă pY
i“1

b
3
´`

yi0, k
i
0

˘
, R1

r̄i
0

¯
. (4.58)

Setting η̄5 “ min
i“1,...,p

ηR
r̄
i
0

,R1
r̄
i
0

, we obtain equality (4.46) for all py, θ, kq P K ˆ R ˆ
“
c♦, d♦

‰

and for all ε P I X r´η̄5, η̄5s, for any function of the form (4.47).
Consequently, as seen in the beginning of the proof, equality (4.46) is true for any hε in

Q8
T,b X A

`
R2 ˆ R ˆ p0,`8q

˘
, proving the Theorem.

Remark 4.17. Formulas (4.38), (4.39) and (4.46) are also valid if we replace ϑ
αi,N ,i
ε,´ḡi

by

ϑ
α1,N ,1
ε,ḡ1 ¨ ϑα2,N ,2

ε,ḡ2 ¨ . . . ¨ ϑαN,N ,N
ε,ḡN or by ϑ

αN,N ,N

ε,´ḡN
¨ ϑαN´1,N ,N´1

ε,´ḡN´1
¨ . . . ¨ ϑα1,N ,1

ε,´ḡ1
.The extensions of (4.38)

and (4.39) are easily obtained by induction. The extensions of Formula (4.46) are obtained
by replacing ϑ

αi,N ,i
ε,´ḡi

by ϑ
α1,N ,1
ε,ḡ1 ¨ ϑα2,N ,2

ε,ḡ2 ¨ . . . ¨ ϑαN,N ,N
ε,ḡN or by ϑ

αN,N ,N
ε,´ḡN

¨ ϑαN´1,N ,N´1

ε,´ḡN´1
¨ . . . ¨ ϑα1,N ,1

ε,´ḡ1
in

the proof of Theorem 4.16.

Property 4.14, Theorem 4.16, and Remark 4.17 are the main tools we need to prove
Theorem 4.7.

Proof of Theorem 4.7. Since function ν
αi,N ,i
ε,´ḡi of equality (4.22) satisfies the assumptions of

Theorem 4.16, formula (4.46) is valid with ϑ
αi,N ,i
ε,´ḡi in the role of hε. Hence, for any i P v1, Nw,

we deduce

ϑ
αi,N ,i
ε,´ḡi ˝ ϑ

αi,N ,i
ε,ḡi

py, θ, kq “ ϑ
αi,N ,i
ε,ḡi

¨ ϑαi,N ,i
ε,´ḡi py, θ, kq ` εN`1ρ

N,i
FC pε;y, θ, kq , (4.59)

with ρ
N,i
FC in C8

#

`
pI X r´ηK , ηK sq ˆ K ˆ R ˆ

“
c♦, d♦

‰˘
. And, an easy computation leads to

ϑ
αi,N ,i
ε,ḡi

¨ ϑαi,N ,i
ε,´ḡi “

˜
αi,Nÿ

l“0

`
εi
˘l

l!

`
X̄ε
εḡi

˘l ¨
¸˜

αi,Nÿ

k“0

`
´εi

˘k

k!

`
X̄ε
εḡi

˘k ¨
¸

“ id` εN`1ρN,ic pε, ¨q ,

(4.60)

with py, θ, kq ÞÑ ρ
N,i
c p ¨ ,y, θ, kq in Q8

T,b and ε ÞÑ ρ
N,i
c pε, ¨ q in C8pRq. Injecting (4.60) in

(4.59), applying Ξ
αi,N ,i
ε,´ḡi (see (4.21)) to both sides, and using a Taylor expansion to expand

Ξ
αi,N ,i
ε,´ḡi

`
id` εN`1ρ

N,i
c ` εN`1ρ

N,i
FC

˘
(which is possible since Theorem 4.4 implies that Ξ

αi,N ,i
ε,´ḡi

is well defined on R3 ˆ pc, dq), we obtain that

Ξ
αi,N ,i
ε,´ḡi py, θ, kq “ ϑ

αi,N ,i
ε,ḡi

py, θ, kq ` εN`1ρ
N,i
Ξ pε;y, θ, kq , (4.61)

with ρ
N,i
Ξ in C8

#

`
pI X r´ηK , ηK sq ˆ K ˆ R ˆ

“
c♦, d♦

‰˘
.

Then, a straightforward induction, using essentially the extension of Formula (4.46) given
in Remark 4.17, we obtain Formula (4.7).

By definition, the expression of the Hamiltonian function in the Partial Lie Coordinate
System of order N is given by

Ĥεpz, γ, jq “ H̄ε

`
λNε pz, γ, jq

˘
. (4.62)
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Hence, using Formula (4.7), making a Taylor expansion, and using the extension of Theorem
4.16 and formula (4.46) given in Remark 4.17, we obtain Formula (4.8). According to the
regularity property of H̄ε with respect to ε we can take interval I of Theorem 4.16 as being
r0,`8q.

By definition, entry pl,mq of the Poisson Matrix, expressed in the Partial Lie Coordinate
System of order N induced by χNε , is given by

´
P̂ε

¯
l,m

pz, γ, jq “
 `
χNε

˘
l
,
`
χNε

˘
m

(
D

`
λNε pz, γ, jq

˘
. (4.63)

Using the extension of Formula (4.46) given in Remark 4.17, it is an easy task to show by
induction that the l-th component of χNε is given by

`
χNε

˘
l

“ ϑ
αN,N ,N
ε,´ḡN

¨ . . . ¨ ϑα1,N ,1
ε,´ḡ1 ¨ r̄l ` εN`1ρN1 , (4.64)

where r̄1 “ y1, r̄2 “ y2, r̄3 “ θ, and r̄4 “ k (see Definition 4.2), and with ρN1 in
C8
#

`
pI X r´ηK , ηK sq ˆ K ˆ R ˆ

“
c♦, d♦

‰˘
.

Injecting Formula (4.64) in the right hand side of (4.63), using the bi-linearity of the Poisson
Bracket, and the extension of Formula (4.39) given in Remark 4.17 we obtain

 `
χNε

˘
l
,
`
χNε

˘
m

(
D

py, θ, kq “ ϑ
αN,N ,N
ε,´ḡN

¨ . . . ¨ ϑα1,N ,1
ε,´ḡ1 ¨ tr̄l, r̄muDpy, θ, kq ` εN`1ρN2 pε;y, θ, kq ,

(4.65)

with ρN2 in C8
#

`
pI X r´ηK , ηK sq ˆ K ˆ R ˆ

“
c♦, d♦

‰˘
.

On another hand, using formula (4.64) and the extension of Formula (4.46) given in Remark
4.17 we obtain

tr̄l, r̄muD
`
χNε py, θ, kq

˘
“ ϑ

αNN ,N
ε,´ḡN

¨ . . . ¨ ϑα1,N ,1
ε,´ḡ1 ¨ tr̄l, r̄muD py, θ, kq ` εN`1ρN3 pε;y, θ, kq ,

(4.66)

with ρN3 in C8
#

`
pI X r´ηK , ηK sq ˆ K ˆ R ˆ

“
c♦, d♦

‰˘
.

Eventually, combining the two previous Formulas yields Formula (4.9). This ends the proof
of Theorem 4.7

4.6 Proof of Theorem 4.8

Having expansion (3.89) in mind, the proof of Theorem 4.8 consists essentially in ordering
the terms in Formula (4.8) with respect to their power of ε. More precisely, we will focus
on expanding

ϑ
α1,N ,1
ε,ḡ1

¨ ϑα2,N ,2
ε,ḡ2

¨ . . . ¨ ϑαN,N ,N
ε,ḡN

¨ H̄N
ε pz, γ, jq , (4.67)

where

H̄N
ε py, θ, kq “ H̄0 py, kq ` εH̄1 py, θ, kq ` . . . ` εN H̄N py, θ, kq . (4.68)
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We easily obtain that Formula (4.67) can be rewritten as

Nÿ

n“0

εn

˜
nÿ

k“0

V
ε

n´k ¨ H̄k pz, γ, jq
¸

` εN`1ι
N,‚
H̄

pε; z, γ, jq , (4.69)

with ιN,‚
H̄

in C8
#

`
pI X r´ηK , ηK sq ˆ K ˆ R ˆ

“
c♦, d♦

‰˘
, where

V
ε

l “
ÿ

pm1,...,mlqPUl

`
X
ε

εḡ1

˘m1 ¨ . . . ¨
`
X
ε

εḡl

˘ml ¨
m1! . . . ml!

, (4.70)

with

Up “
 

pm1, . . . ,mpq P Np s.t.
pÿ

k“1

kmk “ p
(
. (4.71)

The only possible values that ml can have in formula (4.70) are 0 and 1. If ml “ 1, then
m1 “ m2 “ . . . “ ml´1 “ 0. Hence, the only term in the sum of the right hand side of
(4.70) that involves function ḡl is X

ε

εḡl
. Consequently the only term in

nÿ

k“0

V
ε

n´k ¨ H̄k, (4.72)

that involves function ḡn is

X
ε
εḡn ¨ H̄0 “ Bḡn

Bk
BH̄0

Bθ ´ Bḡn
Bθ

BH̄0

Bk ´ ε2

B pyq

ˆBḡn
By2

BH̄0

By1
´ Bḡn

By1
BH̄0

By2

˙

“ ´Bḡn
Bθ

BH̄0

Bk ´ ε2

B pyq

ˆBḡn
By2

BH̄0

By1
´ Bḡn

By1
BH̄0

By2

˙
.

(4.73)

Consequently, gathering terms having the same power of ε we obtain

ĤN
ε pz, γ, jq “ H̄0pz, γ, jq ` εĤ1pz, γ, jq ` . . . ` εNĤN pz, γ, jq , (4.74)

where

Ĥ1 “ H̄1 ´ Bḡ1
Bθ

BH̄0

Bk , (4.75)

and, for any i P t2, . . . , Nu

Ĥi “ ´Bḡi
Bθ

BH̄0

Bk ´ V pḡ1, . . . , ḡi´1q , (4.76)

with V pḡ1, . . . , ḡi´1q depending only on ḡ1, . . . , ḡi´1 and their derivatives. Since

BH̄0

Bk pz, γ, jq “ B pzq , (4.77)

we obtain Formulas (4.11)-(4.14).
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4.7 Proof of Theorem 1.3

Theorem 1.3 is a direct consequence of Theorems 4.4, 4.7, 4.8, Algorithm 4.9, and Theorem
4.10. �

4.8 Proof of Theorem 1.5

Applying Lemmas 3.23, 3.24 and 3.25 and because the Lie change of coordinates is close to
the identity (see formula (4.22)), it is clear that there exists a compact set KL, positive real
numbers cL and dL, and a positive real number ηKL

such that for any ε P r0, ηKL
s, for any

t P r0, T s, and for any px0,v0q P KC ˆCpcC , dCq, the characteristic pZ,Γ,J q associated with
the Hamiltonian system (1.1)-(1.2) and expressed in the pz, γ, jq coordinate system stays in
KL ˆ R ˆ pcL, dLq. Consequently, we can apply Theorem 4.7.

To end this proof we will prove estimate (1.17). Setting

ρN
P pε; z, γ, jq “

ˆ `
ρN

P pε; z, γ, jq
˘

TL
`
ρN

P pε; z, γ, jq
˘

TR

`
ρN

P pε; z, γ, jq
˘

BL
`
ρN

P pε; z, γ, jq
˘

BR

˙
“
´`
ρN

P pε; z, γ, jq
˘i,j¯

i,j“1,...4
,

(4.78)

and using the skew-symmetry of P̂ε in (4.9) yields:

P̂εpz, γ, jq “
¨
˚̊
˚̊
˝

0 ´ ε
Bpzq ` εN`1

`
ρN

P

1̆,2
εN`1

`
ρN

P

1̆,3
εN`1

`
ρN

P

1̆,4

´ ε
Bpzq ´ εN`1

`
ρN

P

1̆,2
0 εN`1

`
ρN

P

2̆,3
εN`1

`
ρN

P

2̆,4

´εN`1
`
ρN

P

1̆,3 ´εN`1
`
ρN

P

2̆,3
0 1

ε
` εN`1

`
ρN

P

3̆,4

´εN`1
`
ρN

P

1̆,4 ´εN`1
`
ρN

P

2̆,4 ´1
ε

´ εN`1
`
ρN

P

3̆,4
0

˛
‹‹‹‹‚
.

(4.79)

Now, we will check that pZ,J q is in CN´1pr0, ηKL
sq. In order to check this, we define

for any ε P p0, ηKL
s , for any t P r0, T s, and for any pz, γ, jq P UC , prZ, rΓ, rJ q by

¨
˚̋

rZpt; z, γ, jq
rΓpt; z, γ, jq
rJ pt; z, γ, jq

˛
‹‚“

¨
˝

Zpεt; z, γ, jq
Γpεt; z, γ, jq
J pεt; z, γ, jq

˛
‚. (4.80)

It satisfies

B
Bt

¨
˚̋

rZ
rΓ
rJ

˛
‹‚ptq “ εP̂ε

´
rZ ptq , rΓptq, rJ ptq

¯
∇Ĥε

´
rZ ptq , rΓptq, rJ ptq

¯
, (4.81)

Since ε ÞÑ εP̂ε is in C8 pr0, ηKL
sq, the solution of (4.81) depends smoothly on the parameter

ε. In particular function prZ, rΓ, rJ q, defined by (4.80), is smoothly extensible at ε “ 0. On
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another hand, for any ε P p0, ηKL
s , and for any t P r0, T s , pZ,J q is solution to

BZ
Bt “ MεpZq

˜
BĤN

ε

Bz1
BĤN

ε

Bz2

¸
pZ ptq ,J ptqq `

εN`1

»
–Mε

¨
˝

BρN

H

Bz1
BρN

H

Bz2

˛
‚̀ `

ρN
P pε, .q

˘
TL

˜
BĤε

Bz1
BĤε

Bz2

¸
`
`
ρN

P pε, .q
˘

TR

˜
BĤε

Bγ
BĤε

Bj

fi̧
fl
ˆ
Z, rΓ

ˆ
t

ε

˙
,J

˙
,

BJ
Bt “ ´εN

«
ε
`
ρN

P pε, .q 1̆,4 BĤε

Bz1
` ε

`
ρN

P pε, .q 2̆,4 BĤε

Bz2
` ε

`
ρN

P pε, .q 3̆,4 BĤε

Bγ ` BρNH
Bγ pε, .q

ff

ˆ
Z, rΓ

ˆ
t

ε

˙
,J

˙
,

(4.82)

where

Mεpzq “

¨
˚̋ 0 ´ ε

B pzq
ε

B pzq 0

˛
‹‚. (4.83)

Notice that, in this system, rΓ is known and then considered as given. Besides,

Mε

¨
˝

BρN

H

Bz1
BρN

H

Bz2

˛
‚̀ `

ρN
P pε, .q

˘
TL

˜
BĤε

Bz1
BĤε

Bz2

¸
`
`
ρN

P pε, .q
˘

TR

˜
BĤε

Bz1
BĤε

Bz2

¸
(4.84)

and

ε
`
ρN

P pε, .q 1̆,4 BĤε

Bz1
` ε

`
ρN

P pε, .q 2̆,4 BĤε

Bz2
` ε

`
ρN

P pε, .q 3̆,4 BĤε

Bγ ` BρNH
Bγ pε, .q (4.85)

are 2π-periodic and smooth, and consequently C8
b pRq with respect to the third variable

γ. Hence, computing the successive derivatives of (4.82) with respect to ε, we obtain that
ε ÞÑ pZptq,J ptqq is CN´1 in the neighborhood of ε “ 0.

Remark 4.18. The only obstruction to show that ε ÞÑ pZptq,J ptqq is CN is the last term
of Formula (4.85).

Moreover, as
`
ZT ,J T

˘
is solution to

BZT
Bt “ ε

B pZT q

˜
´ BĤN

ε

Bz2
BĤN

ε

Bz1

¸
`
ZT ,J T

˘

BJ T

Bt “ 0,

(4.86)

`
ZT ,J T

˘
is smooth with respect to ε, for any t P r0, T s.
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Now, we will show that Lε defined for ε P p0, ηKL
s by

Lε “

¨
˝

Lε1
Lε2
Lε3

˛
‚“ 1

εN´1

ˆˆ
Z

J

˙
´
ˆ

ZT

J T

˙˙
(4.87)

is extensible to r0, ηKL
s and that the yielding extension is continuous with respect to ε. By

definition for any ε P p0, ηKL
s, for any t P r0, T s, ε ÞÑ Lε is CN´1pp0, ηKL

sq. So, we just have
to show that ε ÞÑ Lε is extensible as a continuous function on r0, ηKL

s, i.e. that ε “ 0 is
not a singularity.
In a first place, for any ε P p0, ηKL

s, we will explicit the dynamical system Lε satisfies.
Injecting

ˆ
Z

J

˙
“

ˆ
ZT

J T

˙
` εN´1Lε, (4.88)

in (4.82) gives

B
ˆ

ZT1 ` εN´1Lε1
ZT2 ` εN´1Lε2

˙

Bt

“ Mε

`
ZT1 ` εN´1Lε1,Z

T
2 ` εN´1Lε2

˘
˜

BĤN
ε

Bz1
BĤN

ε

Bz2

¸
``
ZT ,J T

˘
` εN´1Lε

˘

` εN`1

»
–Mε

¨
˝

BρN

H

Bz1
BρN

H

Bz2

˛
‚̀ `

ρN
P pε, .q

˘
TL

˜
BĤε

Bz1
BĤε

Bz2

¸
`
`
ρN

P pε, .q
˘

TR

˜
BĤε

Bγ
BĤε

Bj

fi̧
fl

ˆ
ZT1 ` εN´1Lε1,Z

T
2 ` εN´1Lε2,

rΓ
ˆ
t

ε

˙
,J ` εN´1Lε3

˙
,

BJ T

Bt ` εN´1 BLε3
Bt

“ ´εN
„
ε
`
ρN

P pε, .q 1̆,4 BHε

Bz1
` ε

`
ρN

P pε, .q 2̆,4 BHε

Bz2
` ε

`
ρN

P pε, .q 3̆,4 BHε

Bγ ` BρH
Bγ pε, .q



ˆ
ZT1 ` εN´1Lε1,Z

T
2 ` εN´1Lε2,

rΓ
ˆ
t

ε

˙
,J ` εN´1Lε3

˙
.

(4.89)

Making a Taylor expansion in

Mε

`
ZT1 ` εN´1Lε1,Z

T
2 ` εN´1Lε2

˘
˜

BĤN
ε

Bz1
BĤN

ε

Bz2

¸
``
ZT ,J T

˘
` εN´1Lε

˘
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we obtain

Mε

`
ZT1 ` εN´1Lε1,Z

T
2 ` εN´1Lε2

˘
˜

BĤN
ε

Bz1
BĤN

ε

Bz2

¸
``
ZT ,J T

˘
` εN´1Lε

˘

“ Mε

`
ZT

˘
¨
˚̊
˝

BHN
ε

Bz1
BHN

ε

Bz2

˛
‹‹‚
`
ZT ,J T

˘
` εN´1β1

`
ε,ZT ,J T ,Lε

˘
,

(4.90)

where β1 is smooth and periodic of period 2π with respect to γ. Injecting (4.90) in (4.89)
and using (4.86) yields

B
ˆ

Lε1
Lε2

˙

Bt “ β1
`
ε,Lε,ZT ,J T

˘
` εβ2

ˆ
ε,Lε,ZT ,J T , rΓ

ˆ
t

ε

˙˙
, (4.91)

and

BLε3
Bt “ εβ3

ˆ
ε,Lε,ZT ,J T , rΓ

ˆ
t

ε

˙˙
, (4.92)

where β2 and β3 are smooth and 2π-periodic with respect to γ. Besides, the solutions of
this dynamical system are continuous with respect to ε. Clearly the initial data for Lε is
Lεp0q “ 0. Hence, Lε is continuous with respect to ε. Since pZ,J q ´

`
ZT ,J T

˘
“ εN´1Lε,

estimate (1.17) follows. This ends the proof of Theorem 1.5. �

A Appendix : Change of coordinates rules for the Poisson

Matrix and the Hamiltonian Function

A Poisson Matrix P on an open subset of R4 is a skew-symmetric matrix satisfying:

@i, j, k P t1, . . . , 4u , ttri, rju , rku ` ttrk, riu , rju ` ttrj, rku , riu “ 0, (A.1)

where ri is the i-th coordinate function r ÞÑ ri and the Poisson Bracket tf, gu between
smooth functions f and g is defined by (2.8).
In the case of a symplectic manifold, the Poisson Matrix in a given coordinate system is
defined as follow: it is the inverse of the transpose of the matrix of the expression of the
Symplectic Two-Form in this coordinate system. Notice that the Jacoby identities (A.1) are
direct consequences of the closure of the Symplectic Two-Form.

We now turn to the change-of-coordinates rule for the Poisson Matrix. Firstly, if in a
given coordinate chart m, the matrix associated with the Symplectic Two-Form reads K,
then, according to the previous definition, the Poisson Matrix is given by

P pmq “ pK pmqq´T . (A.2)
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If we make the change of coordinates σ : m ÞÑ r, then the usual change-of-coordinates rule
for the expression of the Symplectic Two-Form leads to the following change of coordinates
rule for the Poisson Matrix

P 1 prq “ ∇mσ
`
σ´1 prq

˘
P
`
σ´1 prq

˘ “
∇mσ

`
σ´1 prq

˘‰T
. (A.3)

Using the Poisson Bracket defined in formula (2.8), the change-of-coordinates rule for the
Poisson Matrix reads

P 1
i,jprq “ tσi, σjum

`
σ´1 prq

˘
. (A.4)

A Hamiltonian function on a symplectic manifold pM,Ωq is a smooth function on M

and the Hamiltonian vector field associated with Hamiltonian function G is the unique vector
field X G satisfying

iXG
dΩ “ dG, (A.5)

where iXG
dΩ is the interior product of differential two-form dΩ by vector field X G .

The expression of the Hamiltonian vector field associated with the Hamiltonian function G,

in the coordinate system m, is the vector field which reads:

XG pmq “ P pmq∇mG pmq , (A.6)

where G is the representative of G in this coordinate system. In fact, we can consider
Hamiltonian vector fields on M, which requires that the Hamiltonian functions are smooth
functions on M, or just Hamiltonian vector fields on an open subset of M, which requires
that the Hamiltonian functions are defined on this open subset.

The Hamiltonian dynamical system associated with Hamiltonian function G on M is the
dynamical system which reads

BR
Bt ptq “ X G pR ptqq , (A.7)

or equivalently as said in the introduction, the dynamical system whose expression in every
coordinate system r is given by

BR
Bt “ P 1pRq∇rG

1pRq . (A.8)

where G1 is the representative of G in this coordinate system, and P 1 the expression of the
Poisson Matrix in this coordinate system. In particular, if we check that on a global coordi-
nate chart, a dynamical system is Hamiltonian, then the dynamical system is Hamiltonian
on M and its expression in every coordinate chart r is given by (A.8).
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