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Abstract

The focus of this paper is the spacecraft formation flying problem where the formation
switches successively among multiple shapes, the number and the composition of spacecraft in
the group may change among these shapes, and some spacecraft may be faulty. The whole
flying process is modeled as a state-varying switched system. The formation stability and fault
tolerability are analyzed by using new results on state-varying switched systems.
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1 Introduction

The development of a reliable, autonomous and highly accurate formation keeping strategy for

multiple spacecraft is a prerequisite for future space missions such as large space interferometer

or large synthetic aperture radar, etc [1]. The formation control problem of spacecraft has been a

research topic for many years [2]-[8]. Existing techniques can be divided into three architectures [1]:

1) Leader-follower, where one spacecraft is regarded as the leader and is tracked by other following

spacecraft; 2) Virtual structure, in which the spacecraft are treated as rigid bodies embedded in an

overall virtual rigid body; 3) Behavioral, where several desired behaviors are prescribed for each

spacecraft, whose individual controllers are designed to achieve these behaviors.
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The formation shape for a group is not always fixed, which may change according to different

mission requirements. Various optimal approaches have also been developed to achieve the forma-

tion reconfiguration from one shape to another one with considering the path planning, collision

avoidance, fuel optimality, etc [9]-[10].

On the other hand, Fault-Tolerant Control (FTC) aims at retaining acceptable performance

under the system faults [11]. FTC is highly required for spacecraft control systems. Formation

flying performances would be seriously degraded due to actuators, sensors, controllers or internal

components failures [12, 13, 14]. Only a few results are devoted to the FTC of spacecraft formation,

we refer to [15] where a multiple level framework that comprehensively adjusts individual controllers

of the faulty spacecraft and formation configurations is proposed.

In this work, we focus on a class of spacecraft formation flying processes with three behaviors:

b1. the formation shape switches successively among several shapes; b2. the number and the

composition of spacecraft in the group may change among different shapes due to four phenomena:

docking, undocking, departure, and participation (formal definitions will be given later); b3. Some

spacecraft may be faulty. The above three behaviors reveal important characteristics and the com-

plexities of spacecraft formation flying process in the real situation. Although these three behaviors

have been investigated respectively, few literatures consider b1, b2 and b3 simultaneously.

We model the whole flying process by a state-varying switched nonlinear system with each mode

related to one shape and the states representing the formation errors of spacecraft in the group.

This allows us to analyze the formation stability and fault tolerability by using switched system

theory [17]-[21]. Unfortunately, most of existing results on switched systems deal with one single

state space and are hard to apply to the state-varying case because the states of each mode are no

longer the same as others.

The considered state variation covers two cases:

Case 1. some states in different modes are closely related;

Case 2. some states in different modes are completely independent.

For Case 1, Ref.[16] introduces a concatenation operator which represents the relations between

states of different modes. Another similar idea is to consider a “large” state vector that can be

used for all modes, and model the state variation by using reset maps (or impulsive effects) [22, 23].

These modeling methods however can not be applied to Case 2 since no relation can be established

between independent states, the independent states’ values of the mode to be activated at next

switching time can not be determined by the states’ values in the current mode.

In this work, we effectively analyze the effect of state variations resulting from b2 on the system.

Our contributions are two-fold:
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1. We extend switched system stability results to the case of varying states, and propose a new

formation stability criterion that relies on the switching law, the individual controllers of each

spacecraft, and the trade-off among the values of the new spacecraft’ formation errors when

they just join the group.

2. We transfer the fault tolerance problem into a stability problem of switched system with

unstable modes. According to state variation behaviors, we show a special way of fault

tolerance that relies on switching law and does not reconfigure the individual controllers.

This can be combined with other FTC approaches to make the FTC scheme more flexible.

The obtained results can not only be used to design spacecraft formation flying process a priori,

but also to check the fault tolerability without control reconfiguration in real time.

In the rest of the paper: Section 2 addresses the modeling issue and gives the problem formu-

lation. Section 3 discusses the formation keeping problem as well as the FTC strategy. Simulation

results are shown in Section 4, followed by conclusions in Section 5.

2 Formation modeling and problem formulation

In this section, we first model the specified spacecraft formation process by a state-varying switched

system, then formulate the formation control problem.

2.1 Interconnection architecture

The formation configuration with its leader-following interconnection architecture are shown in

Fig. 1. The group consists of a main spacecraft (square) and several subordinate ones (round).

The main spacecraft has the capability of docking and undocking with subordinate ones. Each

subordinate spacecraft may leave/join the group over the time. The main spacecraft is the leader

of the group, each subordinate spacecraft is a follower which only receives the information from the

main one.

 
1F

 
0F

earth

spacecraft 1 

spacecraft 3 

spacecraft 2 

Figure 1: Interconnection architecture and coordinate frames
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Such architecture has two benefits 1) A main spacecraft needs to communicate with its subor-

dinate ones to complete the docking/undocking. This can be achieved conveniently by the leader-

following structure. 2) Each subordinate spacecraft may be docked with the main one or leave/join

the group over the time. The proposed architecture prevents each subordinate spacecraft from com-

municating with other subordinate ones. This makes the interconnection topology and formation

control design simpler.

2.2 Relative dynamics

Consider a group of n spacecraft, define a finite set N , {1, 2, ..., n}. Spacecraft 1 denotes the

main spacecraft, and spacecraft i, i ∈ N − {1} is the ith subordinate one. F0 denotes an inertial

reference frame fixed at the center of the earth; Fi denotes a body-fixed reference frame located at

the mass center of spacecraft i, i ∈ N ; Ai denotes the arbitrary vector measured w.r.t. the origin

of Fi.
−→
Ai denotes the related vector of Ai measured w.r.t. the origin of F0.

The translational dynamics of spacecraft i (i ∈ N ) is given by [25]:

{ −→
Ri

′
=

−→
Vi

Mi
−→
Vi

′
=

−→
fei +

−→
fi +

−→
di i ∈ N

(1)

where Mi denotes the mass of spacecraft i,
−→
Ri and

−→
Vi denote the position and velocity of its mass

center,
−→
fei , − µMi

|
−→
Ri|3

−→
R i represents the inverse-square gravitational force, where | · | is the Euclidean

norm, µ , Mg with M being the mass of the earth and g the universal gravitational constant,
−→
fi is the control force,

−→
di describes uncertainties including disturbances and noise. It is assumed

that |di| ≤ d̄ for a known constant d̄ > 0. The symbol ′ denotes the time derivative of the vector

measured in F0.

Define R̃i , C0
i

(−→
Ri −−→

R1

)

and Ṽi , C0
i

(−→
Vi −−→

V1

)

, where Cb
a is the rotational matrix (its

expression will be given later) that transforms the components of a vector expressed in Fb to the

components of the same vector expressed in Fa. Denote R̃d
i and Ṽ d

i as the desired relative position

and velocity. Define eRi
, R̃d

i − R̃i, eVi
, Ṽ d

i − Ṽi.

The relative translational dynamics between spacecraft i (i ∈ N − {1}) and 1 in frame Fi can

be further obtained [8]:







ėRi
= eVi

− ω×
i eRi

ėVi
= −ω×

i eVi
+ ˙̃V

d

i + ω×
i Ṽ d

i − C1
i
−→
Vi

′
+

µ

|−→Ri|3
Ri

︸ ︷︷ ︸

Φi

− 1
Mi

fi − 1
Mi

di (2)

where ωi represents the angular velocity of Fi, the symbol ˙ denotes the time derivative of the vector
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measured in Fi. The cross product of a vector a = [a1 a2 a3]
⊤ is defined as:

a× ,





0 −a3 a2

a3 0 −a1

−a2 a1 0



 (3)

The attitude dynamics of spacecraft i (i ∈ N ) in frame Fi is given by (see [25]):






Jiω̇i = −ω×
i Jiωi + τgi + τi + ιi

q̇i = 1
2(q4iωi − ω×

i qi)
q̇4i = −1

2ω⊤
i qi

(4)

where qi ∈ ℜ3 and q4i ∈ ℜ denote the quaternions, Ji = J⊤
i is the positive definite inertia ma-

trix, τgi ,
3µ

|
−→
Ri|5

R×
i JiRi denotes the gravity gradient torque, τi is the control torque, ιi describes

uncertainties, |ιi| ≤ ῑ for a known constraint ῑ ≥ 0.

Define ω̃i , ωi − C1
i ω1, q̃i , qi − C1

i q1, and q̃4i , q4i − C1
i q4j . Denote ω̃d

i , q̃d
i and q̃d

4i as the

desired relative angular velocity and quaternions. Define eωi
, ω̃d

i −ω̃i, eqi
, q̃d

i − q̃i, eq4i
, q̃d

4i− q̃4i.

The relative attitude dynamics between spacecraft i (i ∈ N − {1}) and 1 can be obtained [8]:






Jiėωi
= −ω×

i Jiωi +
3µ

|−→Ri|5
R×

i JiRi − Ji(C
0
i ωi)

×ω̃i + Jiω
×
i ω̃d

i − Ji
˙̃ω
d

i − JiC
1
i J−1

1 J1ω̇1

︸ ︷︷ ︸

Υi

+τi + ιi

ėqi
= 1

2(eq4i
eωi

− e×ωi
eqi

)
ėq4i

= −1
2e⊤ωi

eqi

(5)

where the rotational matrix is defined as Cb
a , (q2

4a − q⊤a qa)I3 + 2qaq
⊤
a + 2q4aq

×
a .

The main spacecraft 1 follows the given reference dynamics taking the following form






−→
Rr

′
=

−→
Vr

Mr
−→
Vr

′
=

−→
fer +

−→
fr

Jrω̇r = −ω×
r Jrωr + τgr + τr

q̇r = 1
2(q4rωr + ω×

r qr)
q̇4r = −1

2ω⊤
r qr

(6)

The relative dynamics of spacecraft 1 can also be obtained as (2) (with 1 = r, i = 1, dr = 0)

and (5) (with 1 = r, i = 1, ιr = 0).

Denote the state and the individual controller of spacecraft i (i ∈ N ) as

xi , ℜ13 = [e⊤Ri
e⊤Vi

e⊤ωi
e⊤qi

eq4i
]⊤, ui ∈ ℜ6 , [f⊤

i τ⊤
i ]⊤ (7)

Define X ∈ ℜ13×n , [x⊤
1 , ...x⊤

n ]⊤, d , [d⊤1 , ...d⊤n ]⊤, ι , [ι⊤1 , ...ι⊤n ]⊤. Under the connection

architecture in Section 2.1, we can write the relative translational and attitude dynamics of all

spacecraft with some state-feedback controllers ui(xi) [3] as

Ẋ = f(X, d, ι) (8)

where the function f is determined from (2), (5), and the form of ui(xi).
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2.3 Switched system model

Suppose that in the whole flying process, the spacecraft formation switches among m known and

fixed shapes. Since there is a formation reconfiguration process from one fixed shape to another

one, we regard each reconfiguration process as a varying transition shape. Suppose that there exist

p possible varying shapes in the sequence.

Define M = {1, 2, . . . , m+p}. The flying process is modeled by a state varying switched system

Ẋσ = fσ(Xσ, dσ, lσ) (9)

where σ(t) : [0,∞) → M denotes the switching signal, which is assumed to be a piecewise constant

function continuous from the right. Mode j (when σ = j) represents the relative dynamics (8) in

formation shape j. Xj ∈ ℜ13×nj with nj being the number of spacecraft in mode j.

In any desired fixed shape, the desired relative states R̃d
i , Ṽ d

i , ω̃d
i , q̃d

i and q̃d
4i among spacecraft

are prescribed and time-invariant, they are time-variant in varying shapes. All desired relative

states are designed to be continuous throughout the whole process.

2.4 State variation among formation shapes

Now we formally describe the state variation among formation shapes. Suppose that at t = tk,

the formation switches from mode i to mode j. Denote xq(t
−
k ) and xq(tk) respectively the states

of spacecraft q in mode i and mode j, where t− denotes the left limit time instant of t. The states

vary due to 4 reasons:

1) Docking. Several subordinate spacecraft (each has one docking port) move to a main space-

craft (which has multiple docking ports installed symmetrically1) and are docked with it to

form a new main spacecraft. Note that all relative states are continuous. Therefore the states

value of the new main spacecraft is the same as that of the previous main spacecraft. The

docking rule is:

x1(tk) = x1(t
−
k )

2) Undocking. The main spacecraft 1 in mode i are separated from s subordinate ones in mode

j with states x̺+1, ...x̺+s, ̺ ≥ 1. It is natural that just after docking, the state value of each

new spacecraft is the same as that of the original main one. The undocking rule is:

x̺+υ(tk) = x1(tk) = x1(t
−
k ), for 1 ≤ υ ≤ s

1This makes the spacecraft’s mass distribution nearly symmetric about a certain axis before and after docking so
as to reduce the burden of its attitude control system [24].
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3) Departure. Some subordinate spacecraft in mode i depart from the group at tk, they are

not involved in the formation and do not affect the formation flying performance, therefore

their states are not considered in mode j.

4) Participation. Some spacecraft that do not exist in mode i join the group at tk, they are

involved in the formation flying after tk, their states can be regarded as new states and are

considered in mode j. The spacecraft that departed before may come back which is also

considered as a new spacecraft.

Based on above four phenomena, a state variation model between modes i and j is given

Xj(tk) =
[(

SijXi(t
−
k )

)⊤
X⋆⊤

ji (tk)
]⊤

(10)

where Sij is a nj × ni non-zero constant variation matrix. This excludes an unpractical situation

where all spacecraft depart from the formation simultaneously (in this case, the formation flying is

ended). Therefore |Sij | ≥ 1. X⋆
ji denotes the new states of mode j w.r.t. mode i.

2.5 Problem formulation

To this end, we provide the formation stability definition as follows:

Definition 1: The formation flying is said to be practically stable if for the corresponding switched

system (9), there exist a switching function σ(t) and individual controllers ui such that for any

ǫ > 0, there exist δ > 0 and ς > 0 such that

∣
∣Xσ(0)(0)

∣
∣ ≤ δ =⇒ |Xσ(t)(t)| ≤ ǫ + ςD, ∀t ≥ 0 (11)

where D , |[d̄ ῑ]⊤|. 2

The control goal of this paper is to guarantee that (11) holds for any given ǫ in the healthy and

some faulty situations. The disturbance bound D is often much less than the magnitude of the

desired relative states, thus the precision of formation flying can be guaranteed under Definition 1.

3 Formation stabilization analysis

3.1 Formation control in the healthy situation

A simple state-feedback controller ui, i ∈ N originated from [25] is provided as

fi = Mi

(

Φi + (K1 + 1)eRi
+ K2eVi

)

(12)

τi = −Υi − Ji

(

K3eωi
+ eqi

+
eωi

2(e⊤ωi
eωi

+ κ)
(K4e

⊤
qi

eqi
+ K5eq4i

⊤eq4i
)
)

(13)
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where Φi is defined in (2), Υi is defined in (5), K1,K2,K3,K4,K5 are negative constants repre-

senting feedback gains, κ > 0 is an arbitrarily small constant.

Choose a Lyapunov candidate Vi = 1
2x⊤

i xi where xi is given in (7). The time derivative of Vi

along (2) and (5) under controllers (12) and (13) satisfies

V̇i = −K1|eRi
|2 − K2|eVi

|2 −
e⊤Vi

di

Mi
− K3|eωi

|2 − K4|eqi
|2 − K5|eq4i

|2 − e⊤ωi
eqi

+ e⊤ωi
ιi (14)

Pick three constants ν1 > 0 and ν2 > 0 such that

−
e⊤Vi

di

Mi
≤ ν1|eVi

|2 +
|di|2
ν1M2

i

(15)

e⊤ωi
ιi ≤ ν2|eωi

|2 +
|ιi|2
ν2

(16)

−e⊤ωi
eqi

≤ ν3|eωi
|2 +

|eqi
|2

ν3
(17)

Substituting (15)-(17) into (14) with selecting K2 > ν1, K3 > ν2 + ν3, K4 > 1
ν3

leads to

V̇i ≤ −ηVi + ε(d̄2 + ῑ2) (18)

where η > 0 , 2min
[

K1,K2 − ν1,K3 − ν2 − ν3,K4 − 1
ν3

,K5

]

, ε , maxi∈N

[
1

ν1M2

i

, 1
ν2

]

.

Define W ,
∑n

i=1 Vi, note that W can be written as W = X⊤X, one has from (18)

Ẇ ≤ −ηW + nεD2 (19)

Note that κ in (13) is a positive constant that can be chosen arbitrarily small. Inequality

(18) holds except when eωi
→ 0 (in this case τi = −Υi − JiK3eωi

− Jieqi
, V̇i ≤ 0). Due to the

uncertainties, eωi
will finally only converge to a small neighboring region of origin with respect to

D and can not converge to zero. Therefore, inequality (18) always holds except when eωi
→ 0

temporarily in some possible short periods that can be neglected in practical situations.

Remark 1: Various state-feedback control approaches besides (12)-(13) can be designed to achieve

(19). In the absence of full state measurement (especially the acceleration measurements), observer-

based controller can also be applied. In this case, the right side of inequality (19) may include the

observation error terms. The detailed controller design is not the focus of this paper and thus is

not discussed.

For the shape j, j ∈ M, inequality (19) is rewritten as

Ẇ ≤ −ηW + njεD
2, j ∈ M (20)

Define ζ , maxj∈M
√

njε, S , maxi,j∈M |Sij |.
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For the switched system (9), denote by ti, i = 1, 2, ... the ith switching instant, t0 = 0. It

follows that mode σ(ti) is activated in the interval [ti, ti+1). It is required that infi(ti+1 − ti) ≥ τ

where τ > 0 is called “dwell-time” [17]. Let tjk, j ∈ M, k = 1, 2, ... be the kth time when mode j

is switched on.

Theorem 1: For any ǫ, the formation flying can be stabilized by σ and controllers (12)-(13) if

∆t ≥ max

[
2

η
ln

(
ǫ + (S + 2)ζD

ǫ1

)

, τ

]

(21)

|X⋆
iσ(t−

ik
)
(tik)| ≤ ǫ2 + ζD (22)

where 0 ≤ ǫ2 < ǫ and ǫ1 > 0 such that Sǫ1 + ǫ2 ≤ ǫ. ∆t denotes the minimal activating time of all

modes.

Before proving Theorem 1, we provide some insight into the conditions (21)-(22).

- Condition (21) reveals the relation between the decay rate (related to the individual con-

trollers) and the activating time of each mode. Given a fixed ǫ and ǫ2, a large (small) η allows

for a short (long) ∆t. This implies that for a group whose states converge fast (slow) un-

der individual controllers in each formation shape, the minimal activating time of all shapes

would be chosen short (long).

- For a state-varying switched system, not all states appear from the beginning, some states

may also disappear in some modes and appear again in other modes. Condition (22) imposes

an upper bound ǫ2 + ζD w.r.t uncertainties on the new states X⋆
iσ(t−

ik
)

when they appear

at tik. Such bound is reasonable since the new arrival spacecraft will be considered as a

member of the group only after it approaches its desired trajectories and fits into the formation

shape. A bounded X⋆
iσ(t−

ik
)
(tik) can be achieved by the controllers of the new arrival spacecraft

according to the prescribed switching formation shape. Note that a large (small) ǫ2 implies

a small (large) ǫ1, combining (21) and (22) one finds that relaxing (restricting) the bound of

|X⋆
iσ(t−

ik
)
(tik)| leads to restriction (relaxation) on activating time ∆t.

Proof of Theorem 1: Consider the time t ∈ [0, t1). It follows from (20) that

|Xσ(0)(t)|2 ≤ e−ηt|Xσ(0)(0)|2 +

∫ t

0
e−η(t−s)ζ2D2ds

≤ e−ηt|Xσ(0)(0)|2 + ζ2D2

One further has

|Xσ(0)(t)| ≤ e−
η
2
t|Xσ(0)(0)| + ζD (23)

Choose initial states such that

|Xσ(0)(0)| ≤ ǫ + (S + 1)ζD (24)

9



Substituting (24) and (21) into (23) yields |Xσ(0)(t)| ≤ ǫ + (S + 2)ζD, ∀t ≥ 0, and |Xσ(0)(t
−
1 )| ≤

ǫ1 + ζD.

At switching instant t1, according to state variation model (10) we further have

|Xσ(t1)(t1)|2 = |Sσ(t1)σ(0)Xσ(0)(t
−
1 )|2 + |X⋆

σ(t1)σ(0)(t1)|2

≤ S2|Xσ(0)(t
−
1 )|2 + |X⋆

σ(t1)σ(0)(t1)|2

≤
(

S|Xσ(0)(t
−
1 )| + |X⋆

σ(t1)σ(0)(t1)|
)2

(25)

It follows from condition (22) that

|Xσ(t1)(t1)| ≤ S|Xσ(0)(t
−
1 )| + |X⋆

σ(t1)σ(0)(t1)|

≤ S(ǫ1 + ζD) + ǫ2 + ζD

≤ ǫ + (S + 1)ζD (26)

Now consider t ∈ [t1, t2), similar to (23), one has

|Xσ(t1)(t)| ≤ e−
η
2
(t−t1)|Xσ(t1)(t1)| + ζD (27)

Substituting (26) and (21) into (27) yields |Xσ(t1)(t)| ≤ ǫ + (S + 2)ζD, ∀t ≥ t1, and |Xσ(t1)(t
−
2 )| ≤

ǫ1 + ζD.

By induction, we can conclude that under conditions (21)-(22)

|Xσ(t)(t)| ≤ ǫ + (S + 2)ζD, ∀t ≥ 0

This completes the proof. 2

3.2 Fault tolerant formation control

Fault tolerant control (FTC) methods have been widely investigated for spacecraft [11]-[15]. A

general FTC idea is to reconfigure the individual controllers of each faulty spacecraft, such that

it still plays its desired role in the formation flying. Such FTC strategy obviously takes time and

control cost [11], and is limited for controller faults since it is hard to reconfigure the controller to

accommodate the fault in itself. Therefore, it is meaningful to look for an economical and simple

FTC solution without reconfiguring the individual controllers. It will be shown that such solution

exists for state-varying switched systems under some conditions.

Consider the fault that may occur in each subordinate spacecraft’s internal equipments, actua-

tors or even controllers, and changes inequality (14) into

V̇ ≤ η1V + ε(d̄2 + ῑ2), for η1, ε > 0 (28)
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which is a general inequality describing the instability of the relative dynamics in the faulty case.

This means that the faulty subordinate spacecraft may deviate from its desired translational and

attitude dynamics, and can not follow the main spacecraft expectedly.

Consequently, inequalities (20) of the whole group becomes

Ẇ ≤ η1W + njεD
2, j ∈ M

What we are interested in is whether the FTC goal can be achieved by the switching law without

reconfiguring any individual controller.

Consider two faulty cases:

Case 1. The faulty spacecraft will depart at next switching time.

Case 2. The faulty spacecraft will merge with a main spacecraft at next switching time.

Rewrite X = [(Xh)⊤, (Xf )⊤], where Xh (Xf ) is the state vector of the healthy (faulty) space-

craft. Divide ∆t = ∆t1 + ∆t2, where ∆t1 is the period when there is no fault, while in ∆t2 the

system is faulty. We do not discuss the detailed fault diagnosis (FD) procedure, which can be done

by various diagnosis methods [11]. However, the well-known fault diagnosis delay (Such delay, or

a bound of it, can generally be estimated a priori) is considered and included in ∆t2.

Theorem 2: For any ǫ, the formation flying in cases 1 and 2 can be stabilized by σ without

reconfiguring controllers (12)-(13) if (21)-(22) hold, and

η

2
∆t1 −

η1

2
∆t2 ≥ 0 (29)

Proof : Suppose that a fault occurs in mode σ(ti) that is activated in [ti, ti+1), denote tf as the

time after which the fault appears, i.e., ∆t1 = tf − ti, ∆t2 = ti+1 − tf .

We first consider the state behaviors of the healthy spacecraft. Under conditions (21)-(22), one

has from the proof of Theorem 1 that

|Xh
σ(ti)

(t)| ≤ e−
η
2
(t−ti)|Xh

σ(ti)
(ti)| + ζD

≤ e−
η
2
(t−ti)(ǫ + (S + 1)ζD) + ζD, ∀t ∈ [ti, ti+1) (30)

and |Xh
σ(ti)

(t−i+1)| ≤ ǫ1 + ζD.

Now consider the behavior of whole state vector that satisfies

|Xσ(ti)(t)| ≤ e−
η
2
(t−ti)(ǫ + (S + 1)ζD) + ζD, ∀t ∈ [ti, tf )

|Xσ(ti)(t)| ≤ e
η1

2
(t−tf )

(

e−
η
2
∆t1(ǫ + (S + 1)ζD) + ζD

)

+
e

η1

2
(t−tf )

√
η1

ζD, ∀t ∈ [tf , ti+1) (31)

11



Substituting (29) into (31) one obtains that

|Xσ(ti)(t)| ≤ ǫ + (S + 1)ζD + e
η1

2
(t−tf )ζD +

e
η1

2
(t−tf )

√
η1

ζD, ∀t ∈ [ti, ti+1) (32)

Since ∆t2 is bounded, it can be seen from (32) that formation stability is guaranteed in [ti, ti+1)

In both Case 1 and Case 2, once the switching occurs, Xf

σ(ti)
(t−i+1) disappears. Therefore

|Xσ(ti)(t
−
i+1)| = |Xh

σ(ti)
(t−i+1))| ≤ ǫ1 + ζD

The rest of the proof follows the same way as in Theorem 1. 2

The main idea behind Theorem 2 is to transfer the fault tolerance problem into the stability

problem of switched system with unstable modes. Condition (29) implies that if the faulty period

is not very long meaning that before the faulty spacecraft departs from the group or merges with

a main spacecraft, then the norm of the whole states value is always bounded.

Theorem 2 provides a special FTC clue for formation flying that is to eliminate the effect of the

faulty spacecraft on the formation stability by letting it leave the group. This idea can be combined

with other FTC approaches that rely on control reconfiguration to make the FTC scheme more

flexible in real time.

3.3 Control architecture

Fig. 2 shows the control architecture of each spacecraft. For spacecraft i (i ∈ N ), all possible

relative dynamics together with its related individual controllers can be designed a priori off-line

(based on previous analysis) and then saved and marked in supervisor i. The switching sequence

and switching times are often prescribed a priori according to certain mission requirements. These

information are also saved and marked in supervisor i. Supervisor i is inherently a discrete event

system under which spacecraft i applies its individual controllers to achieve the switching formation

flying. Once the fault occurs, the supervisor takes the information of the fault and determines

whether the fault is tolerable by switching law (if it is not available, then control reconfiguration

scheme will be applied).

It can be seen that the proposed architecture is distributed, each spacecraft only receives the

information from its neighbors (in the considered formation of this paper, the main spacecraft is

the unique neighbor of all subordinate spacecraft). Such architecture combines leader-following

and behavioral approaches.

Remark 2: The proposed switched system model can be extended to the case that the leader-

following structure is applied among subordinate spacecraft. In this case, each subordinate space-

craft may have multiple neighbors, the state dimension of xi may be more than 13. However,
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once the reference subordinate spacecraft is docked with the main one or leaves the group, some

spacecraft have to find another reference, their relative dynamics need to be recalculated, and their

states are completely different from previous ones (the state transformation may be done by some

geometrical methods). This makes the formation stabilization and fault tolerance analysis more

complicated.

4 Simulation results

Consider a formation flying process with three desired and fixed shapes as shown in Fig. 3. In the

transition from formation 1 to 2, the main spacecraft 1 disassembles into main spacecraft 1 and

subordinate spacecraft 4, 5. In the transition from formation 2 to 3, spacecraft 4, 5 are docked

with main spacecraft 1 again; spacecraft 2 departs from the group and a new spacecraft 6 joins it

in formation 3. The whole process is modeled by a switched system with five modes (modes 1, 3,

5 are related to 3 desired shapes, while modes 2 and 4 represent varying transition shapes).

Denote ϑ̃d
i , [q̃d

i )⊤, q̃d
4i]

⊤, x̃d
i , [(R̃d

i )
⊤, (Ṽ d

i )⊤, (ω̃d
i )⊤, (ϑ̃d

i )
⊤]⊤.

In mode 1, R̃d
2 = [0 500 0]⊤m3, R̃d

3 = [0 − 500 0]⊤m3, Ṽ d
2 = Ṽ d

3 = [0 0 0]⊤(m/s)3, ω̃d
2 =

ω̃d
3 = [0 0 0]⊤(deg/s)3, ϑ̃d

2 = ϑ̃d
3 = [0 0 0 0]⊤. In mode 3, R̃d

4 = [−400 0 0]⊤, R̃d
5 = [400 0 0]⊤,

Ṽ d
4 = Ṽ d

5 = [0 0 0]⊤(m/s)3, ω̃d
4 = ω̃d

5 = [0 0 0]⊤(deg/s)3, ϑ̃d
4 = ϑ̃d

5 = [0 0 0 0]⊤. In mode 5,

R̃d
6 = [0 700 0]⊤m3, Ṽ d

6 = [0 0 0]⊤(m/s)3, ω̃d
6 = [0 0 0]⊤(deg/s)3, ϑ̃d

2 = [0 0 0 0]⊤. x̃d
3 is the same

in modes 1-5, x̃d
2 is the same in modes 1-4.

For two transition formations, in mode 2, R̃d
4 = [

∫ 2000
1000 Ṽ d

4 (t)dt 0 0]⊤, R̃d
5 = [

∫ 2000
1000 Ṽ d

5 (t)dt 0 0]⊤

with

Ṽ d
4 (t) =

{
[−0.0016(t − 1000) 0 0]⊤, 1000 ≤ t < 1500(s)
[−0.0016(2000 − t) 0 0]⊤, 1500 ≤ t < 2000(s)
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Ṽ d
5 (t) =

{
[0.0016(t − 1000) 0 0]⊤, 1000 ≤ t < 1500(s)
[0.0016(2000 − t) 0 0]⊤, 1500 ≤ t < 2000(s)

It can be seen that R̃d
4, Ṽ d

4 , R̃d
5 and Ṽ d

5 are continuous throughout modes 1, 2, 3. In mode 4, these

four variables are chosen similarly as in mode 2.

x̃d
1 = 0 for all modes. The reference dynamics which the main spacecraft 1 follows always

satisfies
−→
Rr = [0 0 0]⊤m3,

−→
Vr(t) = [0 0 0]⊤(m/s)3, ωr = [0 0 0]⊤(deg/s)3, qr = [0 0 0]⊤, q4r = 1.

It is clear that the variation matrices are

S12 =









1 0 0
0 1 0
0 0 1
1 0 0
1 0 0









, S45 =





1 0 0 0 0
0 0 0 0 0
0 0 1 0 0





Therefore S =
√

5. For all spacecraft, Mi = 150kg Ji = 25I3×3kgm2. Mc = 1kg, Jc =

I3×3kgm2. The dwell-time is τ = 80s. Appropriate design of individual controllers of each space-

craft yields ζ = 5, η = 0.01. Suppose that d̄ = 0.06, ῑ = 0.08, this results in D = 0.1. Choose

ǫ = 0.9, ǫ1 = 0.2, ǫ2 = 0.4 which means that spacecraft 6 joins the formation after its state norm

is no more than 0.9.

We first consider the healthy situation. According to conditions (21)-(22), choose ∆t = 1000s,

the initial state norm is 1.5. Fig. 4 shows the trajectories of Xσ(t)(t) where spacecraft 6 joins the

formation at t = 4000s when its state norm is 0.2. We can see that |Xσ(t)(t)| is always bounded

within the prescribed region.

Now consider an individual controller fault of spacecraft 2 occurred in mode 4, that is

fi = Mi

(

Φi + (K1 + 1)eRi
+ K2feVi

)

which implies that in the control unit the channel that receives signals eVi
is faulty that makes

the feedback gain K2 change into K2f . Inequality (28) follows with η1 = 0.01. Such phenomenon

14



are commonly seen in the controller of the spacecraft that would be influenced by the radiation

or magnetic field in the space environment. According to condition (29), the formation stability

is still guaranteed if ∆t1 ≥ ∆t2. At t = 4000s, the departure of spacecraft 2 is completed, the

formation switches to mode 5. Suppose that the fault occurs at t = 3800s. Fig. 4 also shows that

the stability is maintained even if |x2| increases in the interval [3800, 4000)(s).
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Figure 4: Trajectories of |Xσ(t)(t)|

To evaluate the individual controllers’ performance, we illustrate the input norm trajectories of

spacecraft 2 in [0, 4000)s until it leaves as shown in Fig. 5 where the system is healthy in [0, 3800)s

and faulty after t = 3800s. We can see that the input converges to a small region in modes 1-3

since spacecraft 2 is not influenced by the formation change. After t = 3800s, the fault appears

and makes the input magnitude become large. The input norm trajectories of other spacecraft are

similar and thus are not shown here.

5 Conclusion

This paper investigates the spacecraft formation stabilization and fault tolerance from switched

system point of view. Four phenomena of docking, undocking, departure and participation are

incorporated with formation flying.

In the presence of obstacles that appear randomly, some obstacle avoidance actions have to be

taken in the spacecraft level or the formation level [9]. This avoidance process can be regarded as
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Figure 5: Trajectories of |u2(t)|

a new mode of the original switched system, the proposed control architecture is potentially usable

with some modifications of the switching law. This will be the focus of our future work.
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