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NUMERICAL SIMULATIONS OF DEGENERATE
TRANSPORT PROBLEMS

FLORIAN DE VUYST AND FRANCESCO SALVARANI

ABSTRACT. We consider in this article the monokinetic linear Boltz-
mann equation in two space dimensions with degenerate cross section
and produce, by means of a finite-volume method, numerical simulations
of the large-time asymptotics of the solution.

The numerical computations are performed in the 2Dx — 1Dv phase
space on Cartesian grids of size 256° and deal with both cross sections
satisfying the geometrical condition and cross sections that do not satisfy
it.

The numerical simulations confirm the theoretical results on the long-
time behaviour of degenerate kinetic equations for cross sections satisfy-
ing the geometrical condition. Moreover, they suggest that, for general
non-trivial degenerate cross sections whose support contains a ball, the
theoretical upper bound of order t='/2 for the time decay rate (in L3
sense) can actually be reached.

1. INTRODUCTION

This paper aims to give some numerical experiments in order to clarify an
open question concerning the mathematical theory of the linear Boltzmann
equation.

The linear Boltzmann equation is a model, whose explicit form will be
presented in the next section, that describes at the simplest possible level
the dynamics of an ensemble of particles (for example, neutrons or photons)
at the mesoscopic scale, by taking into account the effects of an host medium
on the particle population. The interactions between particles and medium
are represented by a non-negative function — the cross section — which takes
into account all the absorption, emission or scattering phenomena.

The linear Boltzmann equation is widely used in reactor physics and radi-
ation hydrodynamics and many textbooks are devoted to explain the main
properties of the equation (see, for example, [4, 9, 10]).

However, at the mathematical level, the linear Boltzmann equation is not
yet completely understood, although many properties are already known and
a wide quantity of papers prove the interest in the subject.

In particular, the long-time behaviour of the solution of the linear Boltz-
mann equation is well known only when the cross sections are bounded from
below by a strictly positive constant: in such a situation the solution expo-
nentially decays in time to the unique equilibrium state of the system [14]
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and an explicit upper bound on the spectral gap has been obtained, by means
of the hypocoercivity method, by Mouhot and Neumann in [11].

The aforementioned results have, however, no obvious extension in the
case of cross sections vanishing in a portion of the domain. Indeed, in the
regions where the cross section is zero, the problem is reduced to the free
transport equation, which does not admit any equilibrium state, unless the
initial datum is an absolute constant.

Such a transport problem is said to be degenerate, and the complete char-
acterization of the convergence to equilibrium is still an open problem, even
if partial answers have been recently provided.

In particular, Desvillettes and Salvarani studied a special situation, by
considering cross sections that vanish at a finite number of points [6], and
proved an (at least) polynomial speed of convergence to equilibrium, with
explicit rates.

Subsequently, Bernard and Salvarani considered in [1| a situation when
the cross section vanishes on a set of non-zero measure, and gave a coun-
terexample showing that the L? distance to equilibrium cannot decay faster
than t~1/2.

The same authors succeeded, some time later, in characterizing the condi-
tion on the cross sections that allows an exponential time decay to the equi-
librium state, by means of a non constructive argument and hence without
indicating any quantitative estimate of the spectral gap [2|. Such condition
has been called the geometrical condition. Physically, a cross section satisfies
the geometrical condition if and only if there exists a positive constant Ty
such that, for any point (z,v) of the phase space, the characteristic curve
t — x + tv intersects the support of the cross section before the time instant
t="1Tp.

The quantitative estimate of the spectral gap is very hard to obtain in the
case of degenerate problems. Up to now, the only result, which allows to
obtain an optimal convergence rate for degenerate cross sections, has been
obtained in [3] for the two-velocity one-dimensional caricature of the linear
Boltzmann equation, also known as the Goldstein-Taylor model |7, 13].

It is therefore natural to investigate from a numerical point of view the
long-time behaviour of the degenerate linear Boltzmann equation.

In particular, in this article we will quantify:

(1) the spectral gap for a cross section satisfying the geometrical condi-
tion given in [2|, and

(2) the exponent of the polynomial convergence rate for degenerate cross
sections that do not satisfy the geometrical condition.

The numerical method adopted in the article, whose precise description is
given in Section 3, is based on a finite-volume strategy in the phase space.

The choice of the numerical algorithm is very delicate. Indeed, since the
theoretical behaviour of the equation is partially unknown and the numerical
simulations should suggest a mathematical property of the equation, the
guarantee that the numerical procedure is adequate to the problem is of
paramount importance.
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In particular, we need a procedure which is exempted from numerical dif-
fusion effects, since we need to capture a long-time relaxation to equilibrium
which is not necessarily exponential.

Other numerical strategies are, of course, possible. In a forthcoming paper
we will explore a particle method, in the same spirit as in [5] and [12].

The structure of the article is the following. In the next section we state
the problem and summarise the known features of the model. Then, in
Section 3 we describe the numerical algorithm and, in Section 4, we show
and analyse our numerical simulations. Finally, in a short Appendix, we will
give some details about the accuracy of the quadrature rule.

2. THE STATE-OF-THE-ART ON THE DEGENERATE LINEAR BOLTZMANN
EQUATION

Let f := f(t,x,v) be the solution of the linear Boltzmann equation with
isotropic scattering in a periodic box, that is
of - d
E%-U-me:o(a:)(f—f), (t,z,v) e Ry xT*x V
(2.1)

f(O,m,v):fO(:c,v) (CU,U)ETdX‘/,

where T¢ := R%/Z¢, (d € N, d > 2). The unknown f represents the density
of point particles (usually neutrons or photons) which at time ¢ € RT and
point € T% move at speed v € V.

Here V can denote either the unit sphere in R? (when dealing with a
monokinetic gas) or the spherical shell individuated by the two radii 0 <
Um < vy thatis V=S"1or V={veR?: v, <|v| <vyl}

Moreover,

_ 1
ft.a) = 57 /V F(t 2,0 dv,

where |V is the total measure of V.

In what concerns the initial conditions, we assume that fO € L>°(T? x V)
and that f0 >0 for a.e. (z,v) € T¢x V.

The nonnegative function o(z) designates the cross section. We will al-
ways suppose that

(1) o € L>®(T9) and o(z) > 0 for a.e. x € T%
(2) llollgrepay > 0.
It is easy to prove that constants are steady solutions of Equation (2.1)

and that
1

T = V] Jray
is the unique constant solution with the same total mass (i.e. particle num-
ber) as the initial data.

In what follows, we will often use a special family of cross sections, which
are well suitable when studying degenerate cross section. For this reason,
for all 7 € (0,1/2) we introduce the periodic open set

Z, = {x e R? : dist(z,Z%) > r}

together with the associated fundamental domain Y, = Z,./ Z4.

fO(z,v) dedv
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In |1] the exponential convergence in time to equilibrium — for general
cross sections satisfying the previous assumptions — has been excluded, as
stated in the following theorem:

Theorem 2.1. (Bernard, Salvarani). Let V = S9!, For allr € (0,1/2),
there exists an initial condition fO € L>®(T? x V) satisfying f°(x,v) > 0
for a.e. (z,v) € T? x V and such that, for each cross section o € L>(T4)
satisfying o(z) > 0 for a.e. x € T¢ and o(x) = 0 for a.e. © €Y, the
solution f of the Cauchy problem (2.1) satisfies

E(t):=|f- foo”m(qrdxv) 2

Sla

for each t > r'=? where C is a positive constant.

However, there exists a class of cross sections that have a nicer behaviour
in what concerns the relaxation to equilibrium.

The properties satisfied by o that lead to an exponential convergence rate
in time to the stationary solution have been individuated by Bernard and
Salvarani in [2].

Definition 2.2. The cross section o = o(x) is said to verify the geometrical
condition if and only if there exist Ty and C' > 0 such that

To
(2.2) / 0 (brw(s))ds > C ae. in (z,v) € T4 x V,
0

where ¢, designates the linear flow starting at x € T¢ in the direction
—veV:

Qg it =T —tv.

The main result of [2] is the proof that the exponential convergence is a
direct consequence of the geometrical condition:

Theorem 2.3. (Bernard, Salvarani). Let 0 € L™ (’]Td) be a non-negative
cross section satisfying the geometrical condition (2.2). Then there exist two
constants M > 0 and o > 0 such that the solution f of the Cauchy problem
(2.1) satisfies the inequality

(2.3) Hf — /wafo (z,v) drdv

S Mefat HfO

L1 (Taxv) HLl(dev)

for all t € Ry. Conversely, if the solution of the Cauchy problem (2.1)
converges uniformly in L' to its equilibrium state at an ezponential rate (i.e.
satisfies (2.3)), then o must satisfy the geometrical condition (2.2).

3. THE NUMERICAL DISCRETIZATION

In what follows, we will restrict ourselves to the 2D (in space) monokinetic
case, i.e. we will suppose that z € T? = (0,1)?, v € S! and that f satisfies
the equation
(3.1)

af 2 dw

ZL . - - 2
at+v Vaof a(x)[o f(t,x,w)27r fl zeT* wel0,2m), t>0,
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where v = v(w) = (cosw,sinw). Initially, the distribution is known: f =
fO € L>®(T? x S'), periodic in the phase space, with || fO|| 12451y = 1.
We will assume periodic boundary conditions for both spatial and angle
variables. Denoting by

2

plx,t) = flt,z,w)dw

2r Jo
the marginal probability density function for the space variable, the following
conservative equation holds

27
Op+ V- [i flt, z,w)v(w) dw] =0.
2 0
Then it is expected that |[f(, -, )| L1 (r2xs1) = 1 for all time ¢.

We first consider the time discretization. Let us denote f™(z,w) an ap-
proximate value of f(t = t",z,w). Consider a constant time step At > 0
and let t"*1 = ¢" + At. For time advance, it is convenient to consider here
a fractional step approach, by handling transport and reaction separately
and sequentially. We shall use the well-known second-order Strang splitting
scheme.

Let %~ denote the operator such that the distribution f = 22t f0 is the
exact solution at time At of the pure reaction problem with f9 as initial
data:

87‘]0_ 27

(3.2) =o(x) [ f(t,x,w)d—w—f xeT? wel0,2m), t >0,
6t 0 2w

(33)  f(t=0,2,0) = fzw)
Let 74 the transport operator over a time step At:
FTAO (2, w) = Oz + v(w)At,w).

Then a second order accurate solution (in At) of the solution of the whole
scattering problem is given by the Strang splitting approximation:

(3.4) F(AL, - )~ A2 FA gght/2 §0.
This leads to the discrete time advance scheme
(3.5) f”+1 — @AL2 gt %At/an‘

For recovering the full discretization, we now have to approximate both
transport and reaction operators.
In what follows, we will need working with the components of the vectors x
and v. We will hence denote x = (7,7) € T2.
Moreover, we will denote by [, (or ik
approximate value of f(t",Z;,y;,ws) considering a Cartesian spatial grid of
constant mesh size h,

_ . _ ) 21 1
z; =th, y; = jh, wk:?< —5), ke{l,...,K}.

for readability purposes) an

We will also use the notations

xij = (T4,95), o0 =0(xi5), v =v(wg) = (cos(wg), sin(wg)).



6 F. DE VUYST AND F. SALVARANI

3.1. Reaction step. For the full discretization of the pure reaction problem,
we have to consider a quadrature formula of the integral term and a second
order accurate time advance scheme. It has been shown by Kurganov and
Rauch [8] that the trapezoidal rule actually provides spectral accuracy. For
the interested reader, in the short Appendix A we recall some of the results
proved in [8]. The trapezoidal rule on periodic functions gives

1

(3.6) o

K
1
f(tnaxijaw) dw = ? ;f(tnaxljvwk)

This quadrature formula is then used into the second order predictor-corrector
time advance scheme:

/ At 1 &
+1/2%
(3.7) fige " = Fije+ 0w | 7 2o Fie fz;-k] ,
(=1
n+1/2 n+1/2,% n+1/2,*

(3'8) fz’jk - £k+ [K Zf,]é o zgk ] :
We naturally fulfil the conservation property at the discrete level

K K

+1/2

(3.9) DS =3 Fie

k=1 k=1

3.2. Transport step. We propose a simple second order accurate (in both
space and time) conservative Eulerian solver for the K pure transport prob-
lems

(3.10) O fr +vp - Vo fi =0,
(3.11) filt =0) = fi.

We have to take care of possible spurious oscillations for low-regularity
solutions adding numerical viscosity and, at the same time, to avoid artificial
diffusive effects in the large-time behaviour. We propose to use a conservative
finite-volume scheme combining a Lax-Wendroff second-order viscosity term
(for second-order time accuracy) and an artificial viscosity term involving
slope reconstructions and slope limiters.

The conservative scheme reads

n+l _ rn At <I>"+1/2 q;”“/? At n+1/2 (I)n+1/2
fzjk: T gk T o [Ti1/20k T Ti1/25k] T | dd+L/2k T Tij—1/2,k
n+1/2 n+1/2
i+1/2,j,k and (I)z J+1/2.k
respectively. The numerical flux in the Z-direction is given by
(3.12)

o2 T+ i

i+1/2,5,k T 2

with convective fluxes ® in the z and y directions,

cos(wg)

1 At . 1 o
—5 7, | cos(i)l(fikajn = Filjm) — gleos(wr)(Fin k0 — fi)
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FIGURE 1. Cross sections oy (left), oo (centre) and o3 (right).
The white region shows the points of T? where the cross sec-
tions vanish.

with the interpolated states at the Z-interfaces

rtn r .
(313)  fijh = fiypE g minmod(fy s — fle Sl — fin),

where the last term in the right-hand-side of (3.13) is the classical minmod
slope limiter function:

minmod(a, b) = sign (a) 1 (4~0) min(|al, [b]).

The numerical fluxes in the 7 direction are constructed in the same way.
Because of its explicit feature, the finite-volume scheme is conditionally
stable, subject to a Courant-Friedrichs-Lewy (CFL) condition. Since the dis-
crete velocities vy are all unit vectors, we will use the time step corresponding
to CFL number “one-half”
At 1
(3.14) =5

setting the time step value. By construction, the whole numerical scheme is
second-order accurate on both space and time. The quadrature formula used
for the angle integrals into the scattering term has the spectral accuracy (see
appendix A) and so it will be accurate for sufficiently smooth solutions.

4. NUMERICAL EVIDENCE OF LARGE-TIME BEHAVIOUR

Consider the problem on the unit spatial square domain T? = [0, 1]?, with
periodic spatial boundary conditions and with initial condition f° such that
HfOHLl(TQXgl) = 1. By the mass conservation, we have that the steady state
is foo = 1. We will evaluate the time evolution for the squared L?-norm of
the deviation to the steady state f., i.e. the time evolution of the quantity

(4.1) E2(t) == (¢, -, ) — foollZacra sy,

for different types of cross sections.

For the numerical discretization, we consider a h-uniform Cartesian spatial
grid composed of 256 x 256 points. For the angle variable discretization, we
also use a uniform grid wy, =27 (k—1/2)/K, k=1,..., K with K = 256. So
this discrete problem is composed of 2563 = 16, 777,216 grid points. We use
a fixed time step, as prescribed by (3.14). The computational time window
ist € [0,T] with T = 12.
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4.1. A circular degenerate cross section. We consider here the specific

cross section o : T? — R defined, in the fundamental domain T2, by
o=o01:=20 X ]sz\yl/4,

(see Figure 1, left), and the initial condition is

1 1=Tpy,,

= _— Vz € T?, w € [0, 2x].
2 1 = Tg2\y, , [l

f(w,w)

By construction, ||f0”L1(']1'2><Sl) = 1. Note that the cross section (which does
not satisfy the geometrical condition) and the initial condition are, up to a
normalization factor, the same used for proving Theorem 2.1 in [1|. Hence,
we can compare the numerical simulations to a theoretical result that gives
an upper bound on the L?-distance between the solution at time ¢ and the
equilibrium.

1200

1000 1

800 : B

EA )]
(2]
S

400+ ‘ E

FIGURE 2. Time evolution of 1/E?(t), with cross section o7.
The behaviour is linear in time.

Our numerical experiments show that 1/FE?(t) increases in time like t
faithfully. At first instants, between the initial time and roughly time ¢t = 3,
the discrepancy decreases at a lower rate, then the linear fit becomes almost
perfect after time ¢t = 3. It is observed on Figure 2 that

E*t)~—, t>3

for a constant C' > 0.
Moreover, for information purposes, we also plot on Figures 3 and 4 the
contour of the discrete marginal distribution
2w
x ft" z,w) dw.
0

at t” = 0 and at different discrete instants t” respectively.
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F1GURE 3. Contour of the marginal spatial distribution (with
cross section o7): initial condition.

We note that the discrete solution does not lead to strong changes of
gradient and that the slope limiter of the transport solver does not generate
first-order numerical diffusion and O(h) errors.

Our numerical simulations hence suggest that the theoretical large-time
lower bound behaviour on E of order t~1/2 is the exact decay rate.

4.2. A squared degenerate cross section. Let (Z,7) € T2. We consider
here the specific cross section ¢ : T? — R defined, in the fundamental
domain T2, by

(20 01<7<09and0.1<7<09
7792790 0 otherwise

(see Figure 1, centre). This cross section does not satisfy either the geo-
metrical condition, hence we cannot expect, by Theorem 2.3, an exponential
convergence to equilibrium. Moreover, it does not exist any ball of radius
r < 1/2 such that the support of o9 is embedded into the ball. Hence, the
estimate of Theorem 2.1  based on the geometrical properties of a circular
support of the scattering region — cannot be applied here.

The initial condition here is given by

fo(wi) -

21 |1 — Ly(z9)e12, 0.1<5<0.9 and 0.1<5<0.9} |11

1 1—=Tzger2, 0.1<2<0.9 and 0.1<5<0.9}

z € T?, w € [0,2n]. By construction || fO| ;1 (p2xs1) = 1.

Our numerical experiment shows that 1/E?(t) increases in time like ¢ up
to t = 10, and then the convergence speed to equilibrium slightly degrades
for 10 <t < 12 (see Figure 5).

A further theoretical analysis on the distribution of forward exit time
is hence necessary in order to better understand the numerical behaviour
obtained in this case.

4.3. A degenerate cross section satisfying the geometrical condi-
tion. We finally tested the situation of a cross section that satisfies the ge-
ometrical condition. In this case, Theorem 2.3 gives a result of convergence
to equilibrium of exponential type with respect to the L'-norm.
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F1GURE 4. Contours of the marginal spatial distribution,
with cross section oy, for six different instants: a) ¢ = 0.08,
b) t = 0.62, ¢) t = 1.00, d) t = 1.50, e) t = 1.80 and f)
t = 3.50.

Let (z,7) € T?. We consider the cross sections o3 : T2 — R defined as

(4.2) ] 20 045<x<0.55 or0.45<7y<0.55
' 7979710 otherwise
(see Figure 1, right).

The initial condition here is given by

fo(x’w) =

1 1 =Tz ger2, 045<2<0.55 or 0.45<5<0.55}

o 5
27 Hl - ]1{(5:,37)6'11'2, 0.45<z<0.55 or 0.45<7<0.55} HLl

r € T?, w € [0,27]. By construction HfOHLl(Tngl) =1

The numerical simulation agrees with the theoretical result, and an expo-
nential convergence in L'-norm has been numerically observed (see Figure
6).
We finally show, in Figure 7, the time decay of E. Indeed, we are in-
terested in comparing, with respect to the same metrics, the different time
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FiGURE 5. Time history of 1/E?(t), with cross section og.

JoollLr (s

logyo (I f

FIGURE 6. Time evolution of logyg (||f — foollz1(rxst)) With
cross section 3. The behaviour is exponential in time.

decays obtained with different cross sections. Again in this case, we obtain
exponential convergence to equilibrium.

This result confirms that the geometrical condition is necessary and suffi-
cient for obtaining an exponential decay to equilibrium.

APPENDIX A. QUADRATURE FORMULA FOR PERIODIC FUNCTIONS

We give here some comments about the choice of the quadrature formula
for the angle variable integration and we mainly refer to a note by Kurganov
and Rauch [8]. Denote by Wy the Banach space of periodic functions on R
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log10(E2(t))

F1Gure 7. Time evolution of 2log,o(E(t)) with cross section
o3. The behaviour of E(t) is exponential in time.

whose derivatives up to order r belongs to Lb..(R). The trapezoidal rule

2

K 2

2 27 1
0 f(w)dw%TK(f):?Zf(wk)v (./Jk;:—(k'——), k=1,..., K,
k=1

appears to be relevant because of the periodicity and the invariance by trans-
lation. The quadrature error is equal to

2w

En(f) =Tn(f) - f(w) dw.

0

Since f is periodic in w, it can be written as a Fourier series:

flx) = chei”“, Cp = 1 v flw)e ™ dw.

2
neZ 0

Let P(m) be the set of all trigonometric polynomials of degree at most m.
Summing finite geometric series shows that Ty (™) = 0 for 0 < |n| < K:
hence T is an exact quadrature formula for trigonometric polynomials of
degree K — 1. For any P € P(K — 1), we then have

2m
Bx(f) = Bic(f = P) = Tw(f = P) = [ (@) = P(w)) do
and we get the estimate

[Ex(f)| <4r  inf ||f — Plpe~.
PeP(K-1)
The trapezoidal rule thus provides spectral accuracy because of the rapid
decay of the Fourier coefficients for infinitely smooth functions f. Kurganov
and Rauch [8] were able to show that, for f € Wy and 1 < r, the error of
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the trapezoidal quadrature rule satisfies

1]
2]
3]
[4]
(5]

[6]
7]
18]

Bl

[10]

[11]

[12]
[13]

[14]

C =1
|EK(f>| < ﬁ”f( )HLl([O,Qﬂ'])? C:2Zﬁ
k=1
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