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Comparison and aggregation of max-plus linear
systems

James Ledoux∗and Laurent Truffet†

31 may 2003

Abstract
We study linear systems in the max-plus algebra, where the basic operations are

maximum and addition. We define a preorder to compare the state vectors of max-
plus linear systems with the same dimension. We provide two algebraic methods
to get bounds (with respect to this preorder) on the state vectors of a lumped max-
plus linear system. The first method is based on the strong lumpability. The second
method is based on the coherency property, which also allowsone to provide bounds
on the state vectors of the original linear system from thosefor the lumped system.
We provide the algorithms to compute all the proposed bounds. We show that they
can be used for models with a large state index set by means of atime and space
complexity analysis.

KEYWORD: lumpability
2000 MSC:15A45; 16Y60; 39B72; 93C65

1 Introduction

A finite dimensional dynamical system is said to be linear if its state vectorsx(n) n ≥ 1,
are given by the following autonomous difference (or state)equation

x(0) ∈ R
η×1,

x(n + 1) = A x(n) ⇐⇒ xi(n + 1) =

η∑

j=1

ai,j xj(n) i = 1, . . . , η (1)
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for some matrixA = [ai,j ] ∈ Rη×η. In this paper, we consider the counterpart of such a
description of a dynamical system when we replace the setR byRmax

def
= R ∪ {−∞} and

the usual operations(+,×) by the operations denoted by(⊕,⊗):

a⊕ b
def
= max(a, b) a⊗ b

def
= a + b a, b ∈ Rmax.

A max-plus linear system is a system where the state vectorx(n) satisfies an equation
as Equation (1) with the new operations(⊕,⊗). Max-plus linear systems cover a large
variety of problems occurring when analyzing the behavior of discrete event systems [1],
[3], [4], [2]. Let us consider a naive example to give some insight into the different con-
cepts introduced here. We have an activity network represented by the weighted directed
graph in Figure 1. Entryai,j corresponds to the arc from nodej to nodei. This arc can be
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Figure 1: Activity network

interpreted as an output channel for nodej, and simultaneously, as an input channel for
nodei. Suppose that the nodei starts its activity as soon as all preceding nodes have sent
their results to nodei. Then, the following equation

n ≥ 0 : i = 1, 2, 3 xi(n + 1) = max
j=1,2,3

(
ai,j + xj(n)

)
(2)

describes when activities take place. The interpretation of the quantities involved in the
above equation is:

– xi(n) is the earliest epoch at which nodei becomes active for thenth time;

– ai,j is the sum of the activity time of nodej and the traveling time from nodej to
nodei.

The fact that we writeai,j for a quantity connected to the arc from nodej to nodei has to
do with matrix equations which will be written with column vectors.
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The core of this paper is thecomparison of the dynamicsof such max-plus linear
systems. Usually, the comparison between two state vectorsis made component by com-
ponent [3]. We will introduce a preorder onRη

max, denoted by≤K, and defined by

x, y ∈ R
η×1, x ≤K y iff ⊕η

j=i xj ≤ ⊕η
j=iyj i = 1, . . . , η. (3)

It is clear that the preorder≤K is weaker than the component-wise preorder. Indeed, if the
vectorsx andy are such thatx ≤ y component-wise, thenx ≤K y. The converse is false
in general. We can also compare two matricesA andB, with A ≤K B if Inequality (3)
holds column by column. The preorder≤K is the analogue of the strong stochastic order
for non-negative vectors/matrices [5]. Comparison between two dynamics with respect to
the preorder≤K, means that we are interested in inequalities as

n ≥ 1, x1(n) ≤K x2(n)

where{x1(n), n ≥ 1} and{x2(n), n ≥ 1} are the state vectors associated with two linear
max-plus systems. Let us turn back to our example. Consider the two different initial data
x1(0) andx2(0). We get two families of state vectors{x1(n), n ≥ 1} and{x2(n),≥ 1}
from the difference equation (2). Then, we havex1(n) ≤K x2(n) if and only if

for everyi = 1, 2, 3, the earliest epoch at which the nodesi, . . . , 3 have
all become active for thenth time for the first dynamics is less than the
corresponding quantity for the second dynamics.

We will define the concept of monotonicity for a matrix with respect to≤K (see [5] for
a stochastic matrix). In fact, dealing with aK-monotone matrixA ensures that anyK-
inequality between two vectors is preserved by⊗-multiplication to the left by matrixA

x ≤K y =⇒ A⊗ x ≤K A⊗ y.

Firstly, we will show that any square matrixA is bounded from above (resp. below)
by aK-monotone matrixU (resp.L). These bounds are optimal in a sense to be specified
later. The main interest in these results is to assert that wecan alwaysK-majorize the state
vectors of a linear max-plus system through the construction ofK-monotone bounds of
the matrix governing the linear system. Indeed, if the initial data are such thatl(0) ≤K
x(0) ≤K u(0), then

l(n)
def
= L⊗n ⊗ l(0) ≤K x(n) ≤K u(n)

def
= U⊗n ⊗ u(0) n ≥ 1.

Secondly, we consider the dynamics of a lumped system. Indeed, let us define a
surjective mapφ from the state index set, sayS = {1, . . . , η}, of the linear system into
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the setΣ = {1, . . . , N} with 1 ≤ N < η. Such a map will called be alumping map. We
assume thatφ is non-decreasing for notational convenience. We associate with the mapφ
a lumping matrixV ∈ RN×η

max defined by

∀I ∈ Σ, ∀j ∈ S vI,j = δ{φ(j)=I}, (4)

where the{−∞, 0}-valued functionδ{·} is 0 if the logical assertion{·} is true, and−∞
otherwise. Then, we deal with the following system of state equations

x(0) ∈ Rη×1
max

(I) x(n + 1) = A⊗ x(n)
(II) y(n) = V ⊗ x(n)



 (5)

whereA ∈ Rη×η
max. In general, the vectors{y(n), n ≥ 1} do not verify a difference equation

as Equation (5,(I)). A condition under which there exists some matrixÂ ∈ RN×N
max such

that
y(n+ 1) = Â⊗ y(n) n ≥ 1,

is called alumpability condition[8]. These lumpability conditions are the counterparts of
those existing for Markov chains [6]. For our activity network, considering the lumping
mapφ1 from {1, 2, 3} into {1, 2} defined byφ1(1) = φ1(2) = 1, φ1(3) = 2, means that
the behavior of the system is observed through the couple of valuesy1(n) = max

(
x1(n), x2(n)

)

andy2(n) = x3(n). In other words, the output of the system is only the earliestepoch at
which the nodes1 and2 (resp. node3) are active for thenth time. Roughly speaking, the
activity network in Figure 1 will be lumpable with respect toφ1 if the vectorsy(n), n ≥ 1,
satisfy a difference equation. Therefore, the network withthree nodes can be replaced by
a2-nodes network (lumping nodes1 and2) without loss of the linear characteristic of the
corresponding dynamical system.

Thirdly, our goal is still to computeK-bounds on the aggregated state vectory(n)
(n ≥ 1) defined by Equation (5,(II)). This kind of issue arises whenthe state index setS
is (very) large and

1. we can only consider the dynamics of an aggregated system from the computational
point of view;

2. or we are only interested in assessing the state vectory(n) of the system. For
instance, when concerned with the computation of a performance or cost measure
which only depends on the state vectory(n). In the aforementioned network, one
could consider scheduling a monitoring task of the simultaneous activity of nodes
1 and2.
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The proposed bounds come from combining

• the construction of monotone bounds of the matrix governingthe dynamics of the
system as described in the first step

• and the use of lumpability conditions.

The results are as follows. For each selected lumpability condition, we show that for any
matrix A and any lumping mapφ, there always existK-boundsL andU of A that are
lumpable with respect toφ. Additionally, if l(0) ≤K y(0) ≤K u(0), then we will have

l̂(n)
def
= L̂⊗n ⊗ l̂(0) ≤K y(n) ≤K û(n)

def
= Û⊗n ⊗ û(0), n ≥ 1

for someN × N-matricesL̂ andÛ (wherel̂(0) = V ⊗ l(0) andû(0) = V ⊗ u(0)). We
mainly use the so-called coherency property (see [8] and references cited therein). It also
allows one to deriveK-bounds on the original state vectorx(n) from computation with
the lumped linear system.

Each existence theorem provided in this paper is supported by a constructive proof.
This allows one to develop algorithms. Their complexity shows that they are efficient
when the state index setS is large.

The paper is organized as follows. In Section 2, we report themain notation of the
paper while introducing the framework of linear (dynamical) systems in the max-plus
algebra. In Section 3, we present the results for the comparison of the state vectors of
systems with the same state space. These results are based ona pioneering paper [9].
In Section 4, we provide the methods to compute monotone bounds on a given matrix.
In Section 5, we provide the methodology for bounding the state vectors of aggregated
systems. All results will be illustrated by a simple example. In Section 6, we give the
algorithms to compute the various bounds. Their complexityis analyzed. We conclude in
Section 7.

2 Notation and definitions

In this Section we follow Baccelli et al. [1, Chap 3] excepting some notation changes
which are motivated by the setting of this paper.
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2.1 Max-plus algebra

(Rmax,⊕,⊗) has a zero denoted byO (hereO = −∞) and an unit element denoted by1
(here1 = 0) 1. The law⊕ is idempotent, i.e.a⊕ a = a for anya ∈ Rmax. The elementO
is absorbing for⊗. “Max-plus algebra” is the common name of the idempotent semiring
(Rmax,⊕,⊗).

The usual order relation onRmax can be defined using⊕ by:

a, b ∈ Rmax, (a ≤ b ⇐⇒ a⊕ b = b).

In this paper, the inverse of any reala w.r.t. the⊗-operation is denoted by−a (let us note
that we do not use the one or two-dimensional display notation of [1, p105]). Thus,b− a

stands forb⊗ (−a). Note thatO − a = O for anya ∈ R.
The vectors are column-vectors except special mention.(·)⊤ denotes the transpose

operator.1n (resp.On) denotes then-dimensional column-vector having all components equal
to 1 (resp.O).

We recall that the{O,1}-valued functionδ{·} is 1 if logical assertion{·} is true andO
otherwise.

For any matrixA = [ai,j] ∈ R
n×p
max, ai,· anda·,j denote itsith row andjth column

respectively. To avoid a heavy use of the transpose operatorin the formulae,ai,· will be
considered as a row-vector, i.e.ai,· ∈ R1×p

max. We need define operations on the matrices
with entries inRmax. Let us define the external multiplication by

λ ∈ Rmax, A = [ai,j ] ∈ R
n×p
max, λ⊗A

def
= [λ⊗ ai,j = λ+ ai,j ]i=1,...,n;j=1,...,p

If A ∈ Rn×p
max andB ∈ Rp×q

max, the productA⊗B is defined by

A⊗ B
def
=

[
p

⊕
k=1

ai,k ⊗ bk,j = max
k=1,...,p

(ai,k + bk,j)

]

i=1,...,n;j=1,...,q

.

The sumA⊕ B of two matricesA ∈ Rn×p
max andB ∈ Rn×p

max, is defined by

A⊕B
def
=

[
ai,j ⊕ bi,j = max(ai,j , bi,j)

]
i=1,...n;j=1,...,p

1We use this notation to do the parallel with results in the usual algebra. In [1],O (resp.1) is denoted
by ǫ (resp.e).
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2.2 Autonomous dynamics and aggregated dynamics

Let us consider a lumping mapφ from S = {1, . . . , η} into Σ = {1, . . . , N} with
1 ≤ N < η. Matrix V is the corresponding lumping matrix defined by Equation (4).
In this paper, we study systems for which the dynamical behavior is determined by Sys-
tem (5) of autonomous difference (or state) equations. The series< x(n) >+∞

n=0 defined
by Equation (5, (I)) will be called an autonomous (linear) dynamics. It is specified by the
2-tuple(x(0), A). The series< y(n) >+∞

n=0 defined by Equation (5,(I),(II)), will be called
the aggregated dynamics.

3 Comparison of the state vectors of linear systems with
the same state space

The aim of this section is to present some results for comparing (w.r.t. the≤K preorder)
the two autonomous dynamics(z(0), A) and(t(0), B) with z(0), t(0) ∈ Rη×1

max andA,B ∈
Rη×η

max. They are based on the property ofK-monotonicity of a matrix, which ensures that
anyK-inequality between two vectors, will be preserved under the multiplication to the
left by the matrix. The main result (Theorem 3.2) gives a condition under which the two
dynamics(z(0), A) and(t(0), B) may be compared. This section is a slight extension of
the work in the pioneering paper [9] dealing with Bellman-Maslov chains. All statements
are inspired by results on monotone Markov chains [5].

Definition 3.1 (Kn-comparison) Letx, y be two elements ofRn×1
max. We say thatx isKn-

smaller thany iff Kn ⊗ x ≤ Kn ⊗ y (component-wise), (6)

whereKn is the(n× n)-dimensional matrix defined byKn
def
= [δ{i≤j}]1≤i,j≤n =




1 · · · · · · 1
O

. . .
...

...
. . . . . .

...
O · · · O 1


 . (7)

If Condition(6) is fulfilled, then we writex ≤Kn
y. Sometimes, the dimensional argument,

i.e. n, will be omitted.

TheKn-comparison of two matricesA,B ∈ Rp×n
max is naturally defined by

A ≤Kn
B ⇐⇒ Kn ⊗ A ≤ Kn ⊗ B (coefficient-wise)

⇐⇒ a·,j ≤Kn
b·,j j = 1, . . . , n.
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It is easily seen that relation≤Kn
is reflexive and transitive onRn

max, that is,≤Kn
defines

a preorder onRn
max.

Another important concept for comparison is monotonicity,which is defined as fol-
lows.

Definition 3.2 (K-monotone matrix) LetA be an element ofRn×n
max . Matrix A is said to

beKn-monotone iff

∀x, y ∈ R
n×1
max,

(
(x ≤Kn

y) =⇒ (A⊗ x ≤Kn
A⊗ y)

)
. (8)

The next theorem provides a tractable criterion forK-monotonicity.

Theorem 3.1 (Criterion for K-monotonicity) LetA be an element ofRn×n
max . A is said

to beKn-monotone iff

j = 1, . . . , n− 1, a·,j ≤Kn
a·,j+1, (9)

recalling thata·,j denotes thejth column ofA.

Proof. (Only If). Let us note thate(j) ≤Kn
e(j + 1), j = 1, . . . n− 1, if e(j) denotes the

n-dimensional vector where thejth component is1 and the others areO. Thus,A⊗e(j) =
a·,j ≤Kn

A⊗ e(j + 1) = a·,j+1 sinceA isK-monotone.
(If). Let us considerx, y ∈ R

n×1
max such thatx ≤Kn

y. We writeKn ⊗ A⊗ y = ⊕n
j=1Kn ⊗ a·,j ⊗ yj. (10)

It follows from (9) and the transitivity of≤ thatKn ⊗ a·,1 ≤ Kn ⊗ a·,2 ≤ · · · ≤ Kn ⊗ a·,n.

This could be rewritten using idempotency of⊕

j = 2, . . . , n Kn ⊗ a·,j =
j

⊕
k=1
Kn ⊗ a·,k (11)

Using Equation (11), the associativity of⊕ and the distributivity of⊕ over⊗, we getKn ⊗ A⊗ y =
n

⊕
k=1
Kn ⊗ a·,k ⊗ (⊕n

j=kyj)

Sincex ≤K y, i.e. for everyk, (⊕n
j=kxj)⊕ (⊕n

j=kyj) = ⊕n
j=kyj, we obtainKn ⊗ A⊗ y = Kn ⊗ A⊗ x⊕Kn ⊗ A⊗ y (component-wise),

orA⊗ x ≤Kn
A⊗ y.

We state now the main result of this section. It is an extension of [9, Th 3.2].
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Theorem 3.2 (K-comparison of autonomous dynamics)Let(z(0), A) and(t(0), B) be
twoη-dimensional autonomous dynamics. If the following conditions hold

(i) z(0) ≤Kη
t(0),

(ii) A ≤Kη
B

(iii) A or B isKη-monotone
then

∀n ≥ 0, z(n) = A⊗n ⊗ z(0) ≤Kη
t(n) = B⊗n ⊗ t(0).

Proof. Suppose thatA isKη-monotone. We have from Inequality (ii)Kη ⊗ A⊗ t(0) ≤ Kη ⊗ B ⊗ t(0).

Since Inequality (i) holds, we can apply Relation (8) tox = z(0), y = t(0) and the matrix
A. We get Kη ⊗ A⊗ z(0) ≤ Kη ⊗ A⊗ t(0).

By the transitivity of≤, we obtainKη ⊗ A⊗ z(0) ≤ Kη ⊗ B ⊗ t(0).

Thus, we prove that, ifz(0) ≤Kη
t(0), thenz(1) ≤Kη

t(1). Now, the proof is easily
completed by induction onn.

4 Construction of aK-monotone bound

We assume in Theorem 3.2 that at least one of the two autonomous dynamics is governed
by a monotone matrix, but it does not always hold. However, itwill follow from Theo-
rems 4.1 and 4.3 that the matrix governing any given autonomous dynamics is bounded
from above and from below by aK-monotone matrix. Specifically, for any squared matrix
A, there existsK-monotone matricesA− andA+ such that

A− ≤K A ≤K A+.

Hence, Theorem 3.2 ensures that, ifl(0) ≤K x(0) ≤K u(0), then

l(n) = A−⊗n
⊗ l(0) ≤K x(n) = A⊗n ⊗ x(0) ≤K u(n) = A+⊗n

⊗ u(0) n ≥ 1.

TheK-boundsA− andA+ are also shown to be optimal w.r.t. preorder≤K.
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4.1 Upper bound

Given a matrixA ∈ R
n×n
max , we show in Theorem 4.1 that there always exists aK-monotone

matrixA+ such that

(a) A ≤K A+

(b) for any monotoneC such thatA ≤K C, we haveA+ ≤K C.

So,A+ is said to be a monotone upper bound onA w.r.t. the preorder≤K Construction
of such a matrixA+ is based on the following lemma.

Lemma 4.1 Leta, b, c be three elements ofRmax. Let us consider the system of inequali-
tiesU

(
a, b, c

)
defined by {

a⊕ b ≤ x⊕ c

b ≤ c.
(12)

The solution set of systemU
(
a, b, c

)
overRmax is [x−(a, b, c),+∞[ wherex−(a, b, c) =

a⊗ δ{c<a}.

Proof. It is easily checked thatx−(a, b, c) is a solution of Inequalities (12). Let us show
thatx−(a, b, c) is the smallest solution. Lety be another solution of Inequalities (12). If
c < a then we havex−(a, b, c) = a = a ⊕ b ≤ y ⊕ c. This implies thatx−(a, b, c) ≤ y.
The casec ≥ a is obvious, sinceO is the minimal element ofRmax. Sincemax(·, c)
is a non-decreasing function, it is clear that anyx ≥ x−(a, b, c) is also a solution of
Inequalities (12).

Now, we state the main result of this subsection.

Theorem 4.1 (optimalK-monotone upper bound) LetA be an element ofRη×η
max. Then,

there exists a matrixA+ ∈ R
η×η
max such that

(a) A ≤K A+

(b) A+ isK-monotone
(c) for any monotoneC such thatA ≤K C, we haveA+ ≤K C.



 (13)

Proof. System (13) may be rewritten as (see Theorem 3.1 for (b))

(a) for j = 1, . . . , η, K⊗ a·,j ≤ K⊗ a+·,j
(b) for j = 2, . . . , η K⊗ a+·,j−1 ≤ K⊗ a+·,j
(c) for any monotoneC verifyingA ≤K C, we haveK⊗ a+·,j ≤ K⊗ c·,j,

j = 1, . . . , η.

10



The construction ofA+ is by induction on the column numberj ∈ S.
First, we seta+·,1 = a·,1.
Assume now the construction ofa+·,k, k = 1, . . . , j−1 with j > 1 to be done. Thejth row
of A+, a+·,j, will be defined by a backward induction on the component number i. With
convention thatkη+1,· = Oη, we have to solve

U
(
ai,j , ki+1,· ⊗ a·,j , ki+1,· ⊗ a+·,j

)
and U

(
a+i,j−1 , ki+1,· ⊗ a+·,j−1 , ki+1,· ⊗ a+·,j

)
.

From Lemma 4.1, a minimal solution is given by

a+i,j = x−
(
ai,j , ki+1,· ⊗ a·,j , ki+1,· ⊗ a+·,j

)
⊕x−

(
a+i,j−1 , ki+1,· ⊗ a+·,j−1 , ki+1,· ⊗ a+·,j

)
.

Or, equivalently

a+i,j = ai,j ⊗ δ{ai,j>ki+1,·⊗a+
·,j}

⊕ a+i,j−1 ⊗ δ{a+i,j−1>ki+1,·⊗a+
·,j}

. (14)

LetC be aK-monotone matrix such thatA ≤K C. The inequalityA+ ≤K C is proved
by induction on the column number. Sincea+·,1 = a·,1, we obviously havea+·,1 ≤K c·,1.
Now, assume that for somej ≥ 2,

(
a+·,1 · · · a+·,j−1

)
≤K (

c·,1 · · · c·,j−1

)
.

Thejth column ofC satisfies

i = 1, . . . , η : ki,· ⊗ a·,j ≤ ki,· ⊗ c·,j and ki,· ⊗ c·,j−1 ≤ ki,· ⊗ c·,j.

This is equivalent to

i = 1, . . . , η ki,· ⊗ c·,j ≥ ki,· ⊗ a·,j ⊕ ki,· ⊗ c·,j−1.

Sincea+·,j−1 ≤K c·,j−1 by the induction assumption, we have

i = 1, . . . , η ki,· ⊗ c·,j ≥ ki,· ⊗ a·,j ⊕ ki,· ⊗ a+·,j−1.

But, we show now that the right hand side member of the last inequality iski,· ⊗ a+·,j.
Thus, the induction will be complete.

Let us show that, for anyi, j ∈ S, ki,· ⊗ a+·,j = ki,· ⊗ a·,j ⊕ ki,· ⊗ a+·,j−1.
The proof is by induction on the row number. From the definition ofA+, we havea+η,j =
aη,j ⊕a+η,j−1, so that the result is true fori = η. Suppose thatki+1,·⊗a+·,j = ki+1,·⊗a·,j ⊕ki+1,· ⊗ a+·,j−1 for somei < η. Noticing thatki,· ⊗ a+·,j ≥ ki,· ⊗ a·,j ⊕ ki,· ⊗ a+·,j−1,
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we just have to justify thatki,· ⊗ a+·,j ≤ ki,· ⊗ a·,j ⊕ ki,· ⊗ a+·,j−1. Let us develop the
following computationki,· ⊗ a+·,j = a+i,j ⊕ ki+1,· ⊗ a+·,j (by definition ofki,·)

=
(
ai,j ⊗ δ{ai,j>ki+1,·⊗a+

·,j}
⊕ a+i,j−1 ⊗ δ{a+i,j−1>ki+1,·⊗a+

·,j}

)
⊕ki+1,· ⊗ a+·,j

(from Definition (14) ofa+i,j)

=
(
ai,j ⊗ δ{ai,j>ki+1,·⊗a+

·,j}
⊕ ki+1,· ⊗ a·,j

)

⊕
(
a+i,j−1 ⊗ δ{a+i,j−1>ki+1,·⊗a+

·,j}
⊕ ki+1,· ⊗ a+·,j−1

)

(by assumption onki+1,· ⊗ a+·,j).

We get fromδ{·} ≤ 1, ki,· ⊗ a+·,j ≤ ki,· ⊗ a·,j ⊕ ki,· ⊗ a+·,j−1. This last inequality ends the
proof.

Example 4.2
To illustrate the previous results, we consider an(⊕,⊗)-linear system with state index set
S = {1, 2, 3, 4, 5}, where the dynamics is governed by the matrix

A =




2 4 1 3 O

−10 15 −8 O 20
O O −1 −9 11 4 O 7 2
−7 4 2 −10 8




(15)

The monotone upper boundA+ onA is obtained following the lines of the proof of The-
orem 4.1

A+ =




2 O O O O

−10 15 15 15 20
O O O O O1 O O 7 O

−7 4 4 4 8




(16)

4.2 Lower bound

The result for the monotone lower bound is based on the following lemma. Its proof
follows that of Lemma 4.1 and is left to the reader.
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Lemma 4.2 Leta, b, c be three elements ofRmax. Let us consider the system of inequali-
tiesL

(
a, b, c

)
defined by {

y ⊕ c ≤ a⊕ b

c ≤ b.
(17)

Then the solution set ofL
(
a, b, c

)
is
[
O, y+(a, b, c)

]
wherey+(a, b, c) = a⊕ b.

Theorem 4.3 (optimalK-monotone lower bound) LetA be an element ofRη×η
max. Then

there exists a matrixA− ∈ R
η×η
max such that

(a) A− ≤K A

(b) A− isK-monotone
(c) for any monotoneC such thatC ≤K A, we haveC ≤K A−.

(18)

Proof. System (18) may be rewritten as (see Theorem 3.2 for (b))

(a) for j = 1, . . . , η, K⊗ a−·,j ≤ K⊗ a·,j
(b) for j = 1, . . . , η − 1 K⊗ a−·,j ≤ K⊗ a−·,j+1

(c) for any monotoneC verifyingC ≤K A, we haveK⊗ c·,j ≤ K⊗ a−·,j,

j = 1, . . . , η.

Once again, the construction of matrixA− is by induction on the column numberj ∈ S,
starting witha−·,η = a·,η.
For every columnj, we have to solve the following constraints

i = 1, . . . , η : ki,· ⊗ a−·,j ≤ ki,· ⊗ a·,j and ki,· ⊗ a−·,j ≤ ki,· ⊗ a−·,j+1.

If we assume thatki+1,· ⊗ a−·,j, a
−
i,j+1 andki+1,· ⊗ a−·,j+1 are known, then we have to find

a solutiona−i,j of

L(ai,j , ki+1,· ⊗ a·,j , ki+1,· ⊗ a−·,j) and L(a−i,j+1 , ki+1,· ⊗ a−·,j+1 , ki+1,· ⊗ a−·,j).

From Lemma 4.2, a maximal solution is given by

a−i,j = min
(
y+(ai,j , ki+1,· ⊗ a·,j , ki+1,· ⊗ a−·,j) , y

+(a−i,j+1 , ki+1,· ⊗ a−·,j+1 , ki+1,· ⊗ a−·,j)
)

= min
(ki,· ⊗ a·,j , ki,· ⊗ a−·,j+1

)
.

The optimality of the solution could be proved as for Theorem4.1.
Without loss of generality, we can assume thatA is aK-monotone matrix till the end

of the paper.
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Example 4.4 (Example 4.2 continued)
Construction of a monotone lower bound for the matrixA is as in the proof of Theo-
rem 4.3. This gives the following matrixA−

A− =




2 2 2 7 O1 2 2 7 201 2 2 7 11 2 2 7 2
−10 −10 −10 −10 8




(19)

5 Bounding the aggregated dynamics

Let us consider a lumping mapφ fromS intoΣ, andV the corresponding lumping matrix
(see Relation (4)). We can define a partition ofS into N aggregatesφ−1(J) = [mJ ,MJ ]
such thatcardinal(φ−1(J)) = ηJ , J ∈ Σ. Additional notations are needed. For a matrix
X ∈ Rη×η

max, setXI,J = [xi,j]i∈φ−1(I),j∈φ−1(J) andX ·,J = [xi,j]i∈S,j∈φ−1(J). x
I,J
i,· , xI,J

·,k , x·,J
l,· ,

x
·,J
·,j , denote theith row of matrixXI,J , thekth column of matrixXI,J , the lth row of

matrixX ·,J , thejth column of matrixX ·,J respectively. We recall thatxI,J
i,· andx·,J

l,· are

considered as row-vectors. The scalarx
I,J
l,k refers to the entryxmI−1+l,mJ−1+k of matrix

X = [xi,j ]i,j∈S.
The aim of this section is to findK-bounds on the series< y(n) >+∞

n=0, which is
defined by the following system

{
x(n + 1) = A⊗ x(n)

y(n) = V ⊗ x(n).

wherex(n) ∈ R
η×1
max, y(n) ∈ R

N×1
max andA ∈ R

η×η
max.

The series< x(n) >+∞
n=0 with given initial datax(0), is said to belumpableif the

aggregated series< y(n) >+∞
n=0 satisfy the reduced equation

y(n+ 1) = Â⊗ y(n) (20)

for some(N×N)-dimensional matrix̂A. In such a case,< y(n) >+∞
n=0 may be considered

as an autonomous dynamics onR
N
max governed by matrix̂A.

If there exist matricesL andU such that

L ≤K A ≤K U

14



andl(0) ≤K x(0) ≤K u(0), then we have from Theorem 3.2

∀n ≥ 0, l(n)
def
= L⊗n ⊗ l(0) ≤K x(n) ≤K u(n)

def
= U⊗n ⊗ u(0). (21)

Additionally, assume thatL, U are lumpable with corresponding matricesL̂ and Û re-
spectively. The aggregated dynamics< V ⊗ l(n) >+∞

n=0 and< V ⊗ u(n) >+∞
n=0 are

lower and upperK-bounds for the aggregated series< y(n) >+∞
n=0. Indeed, sinceφ is

non-decreasing, it follows from Inequalities (21) that

V ⊗ l(n) ≤K y(n) ≤K V ⊗ u(n).

Finally, the lumpability property will give that the aggregated dynamics< V ⊗ l(n) >+∞
n=0

and< V ⊗ u(n) >+∞
n=0 are governed by the matriceŝL andÛ respectively, i.e.

∀n ≥ 0, V ⊗ l(n) = V ⊗ L̂⊗n ⊗ l(0) V ⊗ u(n) = V ⊗ Û⊗n ⊗ u(0).

In the following subsections, we focus on two conditions to identify a lumpable ma-
trix. For each condition, we show that anyK-monotone matrixA may be bounded from
above and from below by a lumpable matrix. Thus, we getK-bounds on the aggregated
dynamics< y(n) >+∞

n=0. Similar methods were used for Markov chains in [7].

5.1 Strongly lumpable matrix

Definition 5.1 A ∈ Rη×η
max is said to be strongly lumpable byV , or simplyV -lumpable

[8], if there existsÂ ∈ RN×N
max such thatV ⊗ A = Â⊗ V . Equivalently, this means

∀I ∈ Σ, ∀J ∈ Σ, ∀j ∈ φ−1(J) ⊕
i∈φ−1(I)

ai,j = âI,J .

The lumped matrix̂A is thenV ⊗ A⊗ V ⊤.

When the autonomous dynamics< x(n) >+∞
n=0 is governed by a strongly lumpable matrix

A, the aggregated variablesy(n) = V ⊗ x(n) satisfy the autonomous difference equa-
tion (20). Indeed, we have

y(n+ 1) = V ⊗ x(n + 1) = V ⊗ A⊗ x(n)

= Â⊗ V ⊗ x(n) (using Definition 5.1)

= Â⊗ y(n).
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Theorem 5.1 There always existV -lumpable matricesU andL such that

L ≤K A ≤K U. (22)

Proof. SinceA isK-monotone, Inequality (22) holds for the following matricesL = [li,j]
andU = [ui,j]

∀I ∈ Σ, ∀J ∈ Σ : u
I,J
i,j = a

I,J
i,ηJ

, l
I,J
i,j = a

I,J
i,1 i = 1, . . . ηI , j = 1, . . . , ηJ . (23)

It is easily seen from their definition thatL andU areV -lumpable.

Example 5.2 (Example 4.2 continued)
The lumping map isφ : S → Σ = {1, 2} whereφ(1) = φ(2) = 1 et φ(3) = φ(4) =
φ(5) = 2. The corresponding matrixV is

V =

( 1 1 O O O

O O 1 1 1 )

U , L denote the strongly lumpable upper and lower bounds forA+ andA− respectively.
The method of construction of these matrices is given in the previous proof.

U =




O O O O O

15 15 20 20 20
O O O O O

O O O O O

4 4 8 8 8




L =




2 2 2 2 21 1 2 2 21 1 2 2 21 1 2 2 2
−10 −10 −10 −10 −10




. (24)

The corresponding aggregated(⊕,⊗)-systems, are governed by the matrices

Û = V ⊗ U ⊗ V ⊤ =

(
15 20
4 8

)
andL̂ = V ⊗ L⊗ V ⊤ =

(
2 21 2

)

respectively.

5.2 Coherency

Let us consider the(η×N)-dimensional matrixC = diag(cJ), where, forJ = 1, . . . , N ,
vectorcJ ∈ RηJ×1 is a normalized positive vector in the following sense

j = 1, . . . , ηJ cJj > O and 1⊤ηJ ⊗ cJ = 1.
In particular, we haveV ⊗ C = IN whereIN

def
= (δ{I=J})I,J=1,...,N .
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Definition 5.2 A matrixA ∈ Rη×η
max is C-coherent [8] w.r.t. the lumping mapφ if there

exists a matrixÂ ∈ RN×N
max such thatA⊗ C = C ⊗ Â or

∀I, J ∈ Σ, AI,J ⊗ cJ = âI,J ⊗ cI . (25)

In this case, the matrix̂A is V ⊗ A⊗ C.

When the autonomous dynamics< x(n) >+∞
n=0 is governed by aC-coherent matrixA,

we have for anyx(0) ∈ ImC
def
= {C ⊗ u | u ∈ RN×1

max }

n ≥ 1, x(n) = A⊗n ⊗ C ⊗ u = C ⊗ Â⊗n ⊗ u.

Hence, the dynamics of the original model may be derived fromthat of the aggregated

system. It also follows that the aggregated dynamics< y(n)
def
= V ⊗ x(n) >+∞

n=0 is an
autonomous dynamics

y(n+ 1) = V ⊗ C ⊗ Â⊗(n+1) ⊗ u = Â⊗(n+1) ⊗ u (sinceV ⊗ C = IN )

= Â⊗ V ⊗ C ⊗ Â⊗n ⊗ u

= Â⊗ y(n).

Remark 5.1 Considering a normalized vectorcJ in matrixC of Definition 5.2 is not a
major restriction. Indeed,C-coherency may be defined from any set of positive vectors
cJ(J = 1, . . . , N), i.e. cJ ∈ RηJ×1. Thus, we choose matrixC such thatV ⊗ C = IN for
writing convenience.

Example 5.3 (Example 5.2 continued)
We consider the matrixC = diag(c1, c2) wherec1 = 12

⊤ andc2 = 13
⊤. The following

matrixW+ denotes one of the upperC-coherent bounds onA+

W+ =




15 2 O 20 O

−10 15 15 15 20
O 4 O O 81 4 O 7 8
−7 4 4 4 8




. (26)

The dynamics of the aggregated(⊕,⊗)-system obtained from matrixW+ is governed by
the matrix

Ŵ+ = V ⊗W+ ⊗ C =

(
15 20
4 8

)

Note that, even if̂W+ = Û (see Example 5.2),W+ is not strongly lumpable.
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We will show that there is a counterpart to Theorem 5.1 in the context of coherency.
We need the next lemma, which follows from [1, p 112].

Lemma 5.1 Leta = (a1, . . . , an)
⊤ ∈ Rn×1 andd ∈ Rmax be fixed. Then,

(
x ∈ R

n×1
max and x⊤ ⊗ a ≤ d

)
⇐⇒ x ≤ (d− ai)

⊤
i=1,...,n (27)

and we always have
(d− ai)

⊤
i=1,...,n ⊗ a = d. (28)

Moreover, for anyb, d ∈ Rmax andc ∈ R

(b− c)⊕ (d− c) = (b⊕ d)− c. (29)

The next theorem states that, for any monotone matrixA, there always exists aC-
coherent upper bound. We emphasize that an explicitC-coherent upper bound will be
given in the proof (see Formula (36)).

Theorem 5.4 For anyK-monotone matrixA, there always exists aC-coherent matrixU
such that

A ≤K U. (30)

The corresponding aggregated matrix̂U = [ûI,J ] ∈ RN×N
max has entries that are a solution

of system

I, J = 1, . . . , N :(KηI ⊗ AI,J ⊕ 1ηI ⊗ [⊕N
K=I+11⊤ηK ⊗ AK,J ]

)
⊗ cJ ≤

ûI,J ⊗KηI ⊗ cI ⊕ (⊕N
K=I+1ûK,J)⊗ 1ηI (component-wise).

(31)

Proof.
Firstly, assume that there exists aC-coherent matrixU such that Inequality (30) holds.
Let Û be the matrix associated with theC-coherent matrixU (see (25)). It is easily seen
thatA ≤K U iff

∀J ∈ {1, . . . , N} Kη ⊗ A·,J ≤ Kη ⊗ U ·,J . (32)

⊗-right-multiplying this last inequality by the normalizedvectorcJ and using Relation (25),
we obtain that the entries of̂U satisfy System (31).

Secondly, let us show that System (31) has always a solution.This system may be
rewritten as, for anyI, J ∈ {1, . . . , N}

∀i ∈ {1, . . . ηI}
(kI,I

i,· ⊗ AI,J ⊕
N

⊕
K=I+1

1⊤ηK ⊗AK,J
)
⊗ cJ ≤ ûI,J ⊗ kI,I

i,· ⊗ cI ⊕ [
N

⊕
K=I+1

ûK,J ]. (33)
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Now, let us fixJ ∈ {1, . . . , N}. ForI = N , we can set

ûN,J =
ηN
⊕
i=1

(kN,N
i,· ⊗ AN,J ⊗ cJ − kN,N

i,· ⊗ cN
)

(34)

Assume that we have obtained̂uK,J for K = I + 1, . . . , N (I < N). ûI,J will be a
solution of System (33) if̂uI,J satisfies the following system

∀i ∈ {1, . . . , ηI} ûI,J ≥
(kI,I

i,· ⊗ AI,J ⊕
N

⊕
K=I+1

1⊤ηK ⊗AK,J
)
⊗ cJ − kI,I

i,· ⊗ cI .

Note that the right hand side member in the above inequalities is well defined, sincekI,I
i,· ⊗ cI > O (cI > O). Finally, we just have to set

ûI,J =
ηI
⊕
i=1

(
(kI,I

i,· ⊗AI,J ⊕
N

⊕
K=I+1

1⊤ηK ⊗ AK,J)⊗ cJ − kI,I
i,· ⊗ cI

)
. (35)

Finally, let us give aC-coherent matrixU satisfying (30) from the matrix̂U previously
defined. FixJ ∈ Σ. For everyI = 1, . . . , N , set

u
I,J
i,· =

(
ûI,J ⊗ cIi − cJj

)⊤
j=1,...,ηJ

i = 1, . . . , ηI . (36)

Let us check thatU is aC-coherent matrix. We have to prove Relation (25), i.e.

∀I, J ∈ Σ, ∀i ∈ {1, . . . , ηI} u
I,J
i,· ⊗ cJ = ûI,J ⊗ cIi .

This is clear from Definition (36) of vectoruI,J
i,· and from Relation (28) (withd = ûI,J⊗cIi

anda = cJ ).
It remains to show thatA·,J ≤K U ·,J , i.e.

∀i ∈ {1, . . . , η} m(i)
def
=

η

⊕
k=i

a
·,J
k,· ≤

η

⊕
k=i

u
·,J
k,· . (37)

Let us define scalarri as follows

ri = ûφ(i),J ⊗
[
e⊤ηφ(i)(i− aφ(i) + 1)⊗Kηφ(i) ⊗ cφ(i)

]
⊕

N

⊕
K=φ(i)+1

ûK,J (38)

whereeηφ(i)(j) is the vector(δ{k=j})k=1,...,ηφ(i) .
It is easily checked that System (31) for fixedJ , is

i = 1, . . . , η m(i)⊗ cJ ≤ ri. (39)
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Moreover, we have from Definition (36) ofU I,J and Equality (29)

i = 1, . . . , η
η

⊕
k=i

u
·,J
k,· =

(
ri − cJj

)⊤
j=1,...,ηJ

. (40)

Applying Relation (27) to solve Inequality (39) witha = cJ , x⊤ = m(i) andd = ri for
eachi = 1, . . . , η, we get

j = 1, . . . , ηJ mj(i) ≤ ri − cJj =
(40)

η

⊕
k=i

u
·,J
k,j.

The proof is complete.

Remark 5.2 We can derive another solution̂uI,J of system (33). Indeed, Formula (35)
(1 ≤ I < N) can be replaced by

ûI,J =





⊕
i∈GI,J

((kI,I
i,· ⊗AI,J ⊕

N

⊕
K=I+1

1⊤ηK ⊗ AK,J
)
⊗ cJ − kI,I

i,· ⊗ cI
)

if GI,J 6= ∅

O if GI,J = ∅
(41)

whereGI,J =
{
i ∈ {1, . . . , ηI} | ⊕N

K=I+1ûK,J <
(kI,I

i,· ⊗ AI,J ⊕⊕N
K=I+11⊤ηK ⊗AK,J

)
⊗

cJ
}

.

Remark 5.3 We emphasize that we get aC-coherent upper bound, whatever the choice
of matrixC. Thus, the problem of the selection of an appropriate matrixC for having
such aC-coherent bound does not arise. The same remark holds for thelower bounds.

Example 5.5 (Example 5.3 continued)
Consider the matrixC = diag(c1, c2), wherec1 = (1 , −3)⊤, c2 = (−12 , 1 , −4)⊤, andK2 ⊗ c1 = (1 , −3)⊤, K3 ⊗ c2 = (1 , 1 , −4)⊤.

Using Formulae (34), (35), we obtain as matrixÛ

Û =

(
15 19
5 8

)
. (42)

We get from (36) the followingC-coherent matrixU such thatA ≤K A+ ≤K U

U =




15 18 31 19 23
12 15 28 16 20
−7 −4 8 −4 1
5 8 20 8 12
1 4 16 4 8




.
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Let us choosex(0) = (2 , −3 ; 2 , 4 , −15)⊤ for the (⊕,⊗)-linear system governed by
the matrixA in Example 4.2. In Table 1, we report the dynamics of< x(n) >3

n=0 and
that of the corresponding reduced series< y(n) >3

n=0.

step y(n) = V ⊗ x(n) x(n) = A⊗ n ⊗ x(0)
0 (2 ; 4)⊤ (2 , −3 ; 2 , 4 , −15)⊤

1 (12 ; 11)⊤ (7 , 12 ; 1 , 11 , 4)⊤

2 (27 ; 18)⊤ (16 , 27 ; 5 , 18 , 16)⊤

3 (42 ; 31)⊤ (31 , 42 ; 17 , 31 , 31)⊤

Table1: The dynamics of the system(x(0), A).

If û(0) = (1, 4), then we have

x(0) ≤K u(0) = C ⊗ û(0) =
(
(c1)⊤ ; 4⊗ (c2)⊤

)⊤
.

FromÛ defined by Equation (42), we deduce the dynamics of the aggregated and original
systems associated with the upper boundU of A. This gives upperK-bounds on series
< y(n) >+∞

n=0 and< x(n) >+∞
n=0 respectively.

step û(n) = Û⊗ n ⊗ û(0) u(n) = U⊗ n ⊗ u(0) = C ⊗ û(n)
0 (1 ; 4)⊤ (1 , −3 ; −8 , 4 , 1)⊤
1 (23 ; 12)⊤ (23 , 20 ; 1 , 12 , 8)⊤
2 (38 ; 28)⊤ (38 , 35 ; 16 , 28 , 24)⊤

3 (53 ; 43)⊤ (53 , 50 ; 31 , 43 , 39)⊤

Table2: The dynamics of systems(û(0), Û) and(C ⊗ û(0), U).

It is easily checked that there always exists aC-coherent lower boundL for a K-
monotone matrixA. Indeed, setL = (O). However, we can obtain another (non-trivial)
lower bound. We need the properties reported in the next lemma. Its proof is similar to
that of [1, Th 3.21]. For anya, b ∈ Rmax, a ∧ b stands formin(a, b). The operator∧
is assumed to have the same priority than⊕ w.r.t. ⊗. If A ∈ Rn×p

max andB ∈ Rp×q
max, the

productA ∧B is defined by

A ∧ B
def
=

[
p

∧
k=1

ai,k ⊗ bk,j = min
k=1,...,p

(ai,k + bk,j)

]

i=1,...,n;j=1,...,q

Lemma 5.2 Leta = (a1, . . . , an)
⊤ ∈ Rn×1 andd ∈ Rmax be fixed. Then,

(
x ∈ R

n×1
max and x⊤ ∧ a ≥ d

)
⇐⇒ x ≥ (d− ai)

⊤
i=1,...,n . (43)

We also have
(d− ai)

⊤
i=1,...,n ∧ a = d. (44)
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Now, we present our result for the lower bound.

Theorem 5.6 For anyK-monotone matrixA, there always exists aC-coherent matrixL
such that

L ≤K A. (45)

The corresponding aggregated matrixL̂ = [l̂I,J ] ∈ RN×N
max has entries that are a solution

of system

I, J = 1, . . . , N :

l̂I,J ⊗KηI ⊗ cI ⊕ [⊕N
K=I+1l̂K,J ]⊗ 1ηI ≤(KηI ⊗AI,J ⊕ 1ηI ⊗ [⊕N

K=I+11⊤ηK ⊗ AK,J ]
)
∧ cJ (component-wise).

(46)

Proof.
Firstly, let us show that System (46) has always a solution. For I = N , we have to solve

i = 1, . . . , ηN , l̂N,J ⊗ kN,N
i,· ⊗ cN ≤ (kN,N

i,· ⊗ AN,J) ∧ cJ .

So, we can set

l̂N,J =
ηN
∧
i=1

(
(kN,N

i,· ⊗ AN,J) ∧ cJ − kN,N
i,· ⊗ cN

)
. (47)

Note that we have (withi = 1), l̂N,J ≤ (1⊤ηN ⊗ AN,J) ∧ cJ since1⊤ηN ⊗ cN = 1. Suppose

now that we have obtained̂lK,J for K = I + 1, . . . , N (I < N) and

N

⊕
K=I+1

l̂K,J ≤
( N

⊕
K=I+1

1⊤ηK ⊗ AK,J
)
∧ cJ (48)

We must derivêlI,J from (46), i.e.

i = 1, . . . , ηI ,

l̂I,J ⊗ kI,I
i,· ⊗ cI ⊕

N

⊕
K=I+1

l̂K,J ≤
(kI,I

i,· ⊗ AI,J ⊕
N

⊕
K=I+1

1⊤ηK ⊗ AK,J
)
∧ cJ (49)

It follows from ⊕N
K=I+11⊤ηK ⊗ AK,J ≤ kI,I

i,· ⊗AI,J ⊕⊕N
K=I+11⊤ηK ⊗ AK,J , that

(kI,I
i,· ⊗ AI,J ⊕⊕N

K=I+11⊤ηK ⊗ AK,J
)
∧ cJ ≥

( N

⊕
K=I+1

1⊤ηK ⊗ AK,J
)
∧ cJ

≥
N

⊕
K=I+1

l̂K,J from (48).
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Hence, solving system (49) is equivalent to solve

i = 1, . . . , ηI ,

l̂I,J ⊗ kI,I
i,· ⊗ cI ≤

(kI,I
i,· ⊗AI,J ⊕

N

⊕
K=I+1

1⊤
ηK

⊗ AK,J
)
∧ cJ .

We set

l̂I,J =
ηN
∧
i=1

((kI,I
i,· ⊗ AI,J ⊕

N

⊕
K=I+1

1⊤
ηK

⊗AK,J
)
∧ cJ − kI,I

i,· ⊗ cI
)
. (50)

In particular, we havêlI,J ≤
( N

⊕
K=I

1⊤
ηK

⊗AK,J
)
∧ cJ since1⊤

ηI
⊗ cI = 1. We deduce from

(48) that

N

⊕
K=I+1

l̂K,J ≤
( N

⊕
K=I+1

1⊤
ηK

⊗ AK,J
)
∧ cJ ≤

( N

⊕
K=I

1⊤
ηK

⊗AK,J
)
∧ cJ

Therefore, we obtain that

N

⊕
K=I

l̂K,J ≤
( N

⊕
K=I

1⊤
ηK

⊗ AK,J
)
∧ cJ .

Secondly, from̂lI,J I, J = 1, . . . , N satisfying System (46), we define aC-coherent
matrixL such that Inequality (45) holds as follows. FixJ ∈ Σ. For everyI = 1, . . . , N ,
set

l
I,J
i,· =

(
l̂I,J ⊗ cIi − cJj

)⊤

j=1,...,ηJ
i = 1, . . . , ηI . (51)

First, it is easily seen from the definition (51) of matrixL and Equation (28) that, for each
I ∈ Σ and for alli ∈ {1, . . . , ηI}

l
I,J
i,· ⊗ cJ = l̂I,J ⊗ cIi .

Thus, matrixL is C-coherent. Note that we also have from Equality (44)

l
I,J
i,· ∧ cJ = l̂I,J ⊗ cIi = l

I,J
i,· ⊗ cJ

Second, we must show thatL·,J ≤K A·,J , i.e.

i = 1, . . . , η
η

⊕
k=i

l
·,J
k,· ≤ m(i)

def
=

η

⊕
k=i

a
·,J
k,· . (52)
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We make the following remarks. System (46) could also be written

i = 1, . . . , η si ≤ m(i) ∧ cJ , (53)

wheresi ∈ Rmax is defined by (i = 1, . . . , η)

si =
[
e⊤ηφ(i)(i− aφ(i) + 1)⊗Kηφ(i) ⊗ cφ(i)

]
⊗ l̂φ(i),J ⊕

N

⊕
K=φ(i)+1

l̂K,J , (54)

andeηφ(i)(j) is the vector(δ{k=j})k=1,...,ηφ(i).
From the definition ofL and Equality (29), we have

i = 1, . . . , η
η

⊕
k=i

l
·,J
k,· =

(
si − cJj

)⊤
j=1,...,ηJ

. (55)

From these results, we just have to apply Formula (43) witha = cJ , x⊤ = m(i) and
d = si for eachi = 1, . . . , η, to Inequality (53). Thus, we get

j = 1, . . . , ηJ mj(i) ≥ si − cJj =
(55)

η

⊕
k=i

l
·,J
k,j,

and the proof is complete.

Remark 5.4 We emphasize that an explicitC-coherent lower boundL is given by For-
mula (51)). Note that this definition provides aC-lumpable matrix in the max-plus alge-
bra, which is alsoC-lumpable in the min-plus algebra.

Example 5.7 (Example 5.5 continued)
Matrix C and vectorx(0) are as in Example 5.5. We get from Formulae (47) and (50)

L̂ =

(
−1 −10
−9 −18

)
.

The expanded matrixL of L̂ such thatL ≤K A− ≤K A, is from Formula (51)

L =




−1 2 2 −10 −6
−4 −1 −1 −13 −9
−21 −18 −18 −30 −26
−9 −6 −6 −18 −14
−13 −10 −10 −22 −18




.
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If l̂(0) = (O,−11)⊤, then

l(0) = C ⊗ l̂(0) =
(
(c1)⊤ ⊗ O ; (c2)⊤ ⊗−11

)⊤
≤K x(0).

In Table 3, we report the dynamics of the aggregated and original systems associated with
the lower boundL of A. The dynamics of the original system is computed fromL̂. This
gives lowerK-bounds on< y(n) >3

n=0 and< x(n) >3
n=0.

step l̂(n) = L̂⊗ n ⊗ l̂(0) l(n) = L⊗ n ⊗ l(0) = C ⊗ l̂(n)
0 (O ; −11)⊤ (O , O ; −23 ; −11 , −15)⊤

1 (−21 ; −29)⊤ (−21 , −24 ; −41 , −29 , −33)⊤

2 (−22 ; −30)⊤ (−22 , −33 ; −42 , −30 , −34)⊤

3 (−23 ; −31)⊤ (−23 , −26 ; −43 , −31 , −35)⊤

Table3: The dynamics of systems(l̂(0), L̂) and(C ⊗ l̂(0), L).

6 Algorithms

In this section, we report the algorithms associated with the bounds provided by The-
orems 4.1, 5.1, 5.4. We only deal with the case of upper bounds. Lower bounds are
obtained in a similar way. Let us consider an autonomous dynamics governed by matrix
A. Algorithm UpOpt allows one to get aK-monotone upper boundA+ onA. Next, we
consider the aggregated dynamics w.r.t. some lumping map. Two algorithms that compute
bounds on this aggregated dynamics are presented. The first algorithm uses the construc-
tion of a strongly lumpable bound onA. The second algorithm provides a bound that is
derived from aC-lumpable upper bound onA. Finally, we address their complexity.

Let us recall thatφ−1(I) = [mI ,MI ], for I = 1, . . . , N andA = [ai,j]i,j∈S. UpOpt(a·,j)
is the function that returns the optimal (in the sense definedin Theorem 4.1) columna+.,j
from a columna·,j of A such that: (a)a+·,j−1 ≤K a+·,j and (b)a·,j ≤K a+·,j (with the con-
vention that property (a) holds whenj = 1). From Formula (14), and using the relationki,· ⊗ a+·,j = a+i,j ⊕ ki+1,· ⊗ a+·,j

we get

UpOpt(a·,j)
α := O

For i = η to 1
Begin
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a+i,j := ai,j ⊗ δ{ai,j>α} ⊕ a+i,j−1 ⊗ δ{a+i,j−1>α}

α := α⊕ a+i,j
End

Returna+·,j

Construction of a K-monotone upper bound on A

Let V be the matrix associated with the considered lumping map from S into Σ (see
(4)). Using Formula (23), we derive now an upper boundÛ on the aggregated dynamics
specified byV .

Strong(A, V )
ForJ = 1 to N

Begin
For j = mJ toMJ (* loop UP *)

Begin
Generate(a·,j)
If j = 1 thena+·,j := a·,j
elsea+·,j := UpOpt(a·,j)
Free(a+·,j−1, a·,j)

End
û·,J := V ⊗ a+·,MJ

End
ReturnÛ

Construction of an upper bound Û based on the strong lumpability
Under this form,UpOpt has a time complexity inO(η). Using the particular structure

of matrixV , the time spent to computeV ⊗ a+·,MJ
isO(η). Thus, the time complexity for

computing matrix̂U isO(η(T+η)+Nη), whereT denotes the time spent to generatea·,j.
Note also that we only need the storage ofa+·,MJ

(O(η) space complexity) for computing
û·,J . Hence, only a part of data are needed at each step of the algorithm. Parameters
of procedureFree clearly indicate which data are set free in memory at each step j =
MJ , . . . , mJ . Thus, the space complexity of the whole algorithm is onlyO(η), which
means that it is linear with the number of elements of the state index setS.

The generic functionCoherencyprovides another upper bound̂U on the aggregated
dynamics by using one of the Formulae (35) and (41). The specific computation of entries
of Û is carried out by functionCompute.

Coherency(A, V, C)
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ForJ = 1 to N

Begin
For j = mJ toMJ (* loop UP *)

Begin
Generate(a·,j)

If j = 1 thena+·,j := a·,j
elsea+·,j := UpOpt(a·,j)

End
û·,J := Compute(A+·,J

, C)
Free(a·,j , j = mJ , . . . ,MJ )
Free(a+·,j , j = mJ , . . . ,MJ − 1)

End
ReturnÛ

Construction of an upper bound Û based on the C-coherency
We list properties that are explicitly used for the computation of the entries of̂U .

SincekI,I
i,· is theith row of matrixKηI , we have forI, J = 1, . . . N :

i = 1, . . . , ηI kI,I
i,· ⊗ cI = cIi ⊕ kI,I

i+1,· ⊗ cI (56a)

i = 1, . . . , ηI kI,I
i,· ⊗ AI,J = A

I,J
i,· ⊕ kI,I

i+1,· ⊗ AI,J (56b)1⊤ηI ⊗ AI,J = kI,I
1,· ⊗AI,J . (56c)

We also have:

N

⊕
K=I

1⊤ηK ⊗ AK,J = 1⊤ηI ⊗ AI,J ⊕
N

⊕
K=I+1

1⊤ηK ⊗ AK,J (56d)

We present now the two versions of functionCompute.

Compute(A·,J , C)
β := OηJ

For I = N to 1
Begin

α := O; γ := OηJ ; u = O

For i = ηI to 1
Begin

α := α⊕ cIi from Relation (56a)
γ⊤ := γ⊤ ⊕ a

I,J
i,· from Relation (56b)
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x := (γ⊤ ⊕ β⊤)⊗ cJ

u := u⊕ (x− α) from Relation (35)
End

ûI,J := u

β := β ⊕ γ from Relation (56c)
End

Returnû·,J

Computation of û·,J from (35)

Compute(A·,J , C)
β := OηJ ; Σu := O

For I = N to 1
Begin

α := O; γ := OηJ ; u = O

For i = ηI to 1
Begin

α := α⊕ cIi from Relation (56a)
γ⊤ := γ⊤ ⊕ a

I,J
i,· from Relation (56b)

x := (γ⊤ ⊕ β⊤)⊗ cJ

if (Σu < x) thenu := u⊕ (x− α) from relation (41)
End

ûI,J := u

Σu := Σu ⊕ ûI,J

β := β ⊕ γ from Relation (56c)
End

Returnû·,J

Computation of û·,J from (41)
FunctionCoherencyhas with aO(ηJη)-time complexity, whichever the version of

function Compute that we use. It requires the storage of vectorsa·,j, j = mJ , . . . ,MJ

anda+·,j, j = mJ , . . . ,MJ − 1, i.e. the function has aO(ηηJ)-space complexity. The loop
UP has anO(ηJ(T + η))- time complexity and anO(η)-space complexity, recalling that
T is the time spent to generatea·,j. Thus, the time complexity of the whole algorithm is
O((T + η)η + η2) and its space complexity isO(ηmaxJ=1,...N ηJ).

7 Conclusion
In this paper, we define a new preorder≤K for comparing the state vectors of max-plus
linear systems. Then, we are interested in bounding the state vectors of lumped max-plus
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systems with respect to≤K. The originality of the proposed methodology consists in
combining bounds on the state vectors of the linear system and lumpability conditions to
have the linear feature for the lumped system. We emphasize that all results are explicit.
Hence, we develop algorithms. Their complexity shows that they can be efficient for ana-
lyzing large max-plus linear systems. Further investigations will concern the assessment
of the quality of bounds. Clearly, the quality should dependon the underlying lumpability
criterion and on the “distance” of the matrix governing the dynamics of the initial system
from a monotone matrix. Finally, it can be intended to generalize our approach to more
general algebraic structures.
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