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Comparison and aggregation of max-plus linear
systems

James Ledouyand Laurent Trufféet
31 may 2003

Abstract

We study linear systems in the max-plus algebra, where thie bperations are
maximum and addition. We define a preorder to compare the géators of max-
plus linear systems with the same dimension. We provide tgebaaic methods
to get bounds (with respect to this preorder) on the stattokeof a lumped max-
plus linear system. The first method is based on the strongabitity. The second
method is based on the coherency property, which also abbo@go provide bounds
on the state vectors of the original linear system from tHos¢he lumped system.
We provide the algorithms to compute all the proposed baukdds show that they
can be used for models with a large state index set by meansimieaand space
complexity analysis.

KEYWORD: lumpability
2000 MSC:15A45; 16Y60; 39B72; 93C65

1 Introduction

A finite dimensional dynamical system is said to be lineatsiftate vectors(n) n > 1,
are given by the following autonomous difference (or statg)ation

z(0) € R,

zn+1)=Az(n) < x;(n+1) :iamxj(n) i=1,...,n (1)

*IRMAR UMR-CNRS 6625 & INSA, 20 avenue des Buttes de Cosmeg,085Rennes Cedex 7,
jledoux@insa-rennes.fr
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for some matrixA = [a; ;] € R"". In this paper, we consider the counterpart of such a

def

description of a dynamical system when we replace th&®4$s8tR,,.., = RU{—o0} and
the usual operationst, x) by the operations denoted g, ®):

a @ b = max(a, b) a@bZa+b a,b€ Ry

A max-plus linear system is a system where the state vegior satisfies an equation
as Equation (1) with the new operatiofis, ®). Max-plus linear systems cover a large
variety of problems occurring when analyzing the behavidaliscrete event systems [1],
[3], [4], [2]. Let us consider a naive example to give someghsinto the different con-
cepts introduced here. We have an activity network repteddvy the weighted directed
graph in Figure 1. Entry; ; corresponds to the arc from nogléo node:. This arc can be

)’

Nodel Node3

10

Node2
1

Figure 1: Activity network

interpreted as an output channel for ngdand simultaneously, as an input channel for
node:. Suppose that the nodetarts its activity as soon as all preceding nodes have sent
their results to nodé Then, the following equation

n>0: i=1,2,3 z;(n+1)= max (a;; +z;(n)) (2)
7=1,2,3
describes when activities take place. The interpretatidhequantities involved in the
above equation is:
— z;(n) is the earliest epoch at which notlbecomes active for theth time;

— a;,; Is the sum of the activity time of nodeand the traveling time from nodgto
nodes.

The fact that we write; ; for a quantity connected to the arc from ngodk® node: has to
do with matrix equations which will be written with columnaters.
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The core of this paper is theomparison of the dynamia# such max-plus linear
systems. Usually, the comparison between two state veistarade component by com-
ponent [3]. We will introduce a preorder @, ., denoted by, and defined by

r,y € R r<gy Iff @_ <oy i=1,...7n (3)

Itis clear that the preordety is weaker than the component-wise preorder. Indeed, if the
vectorsr andy are such that < y component-wise, then <y y. The converse is false

in general. We can also compare two matrigeand B, with A <k B if Inequality (3)
holds column by column. The preord€k is the analogue of the strong stochastic order
for non-negative vectors/matrices [5]. Comparison betwe® dynamics with respect to
the preordeK, means that we are interested in inequalities as

n>1, 2'(n) <k 2*(n)

where{z!(n),n > 1} and{z*(n),n > 1} are the state vectors associated with two linear
max-plus systems. Let us turn back to our example. Condigdmto different initial data

21 (0) andz?(0). We get two families of state vectofs'(n),n > 1} and{x?(n), > 1}
from the difference equation (2). Then, we havén) <k z*(n) if and only if

for everyi = 1,2, 3, the earliest epoch at which the nodes ., 3 have
all become active for theth time for the first dynamics is less than the
corresponding quantity for the second dynamics.

We will define the concept of monotonicity for a matrix withspect to<y (see [5] for
a stochastic matrix). In fact, dealing withl&monotone matrix4A ensures that ani-
inequality between two vectors is preservedspynultiplication to the left by matrix4d

r<gy=—=ARr <K ARy.

Firstly, we will show that any square matrikis bounded from above (resp. below)
by alK-monotone matrix/ (resp.L). These bounds are optimal in a sense to be specified
later. The main interest in these results is to assert thaawalways<-majorize the state
vectors of a linear max-plus system through the constroaifd<-monotone bounds of
the matrix governing the linear system. Indeed, if the ahitiata are such that0) <y
z(0) <k u(0), then

l(n) L Lfe 1(0) <k x(n) <k u(n) U yen g u(0) n>1.

Secondly, we consider the dynamics of a lumped system. thdeeus define a
surjective mapp from the state index set, s&#/= {1,...,n}, of the linear system into
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the set = {1,..., N} with 1 < N < . Such a map will called belamping map We
assume that is non-decreasing for notational convenience. We assowaiidh the mapp
a lumping matrixt’ € RY 7 defined by

VI € Z,Vj es Vr,; = 5{¢(j):1}7 (4)

where the{—oo, 0}-valued functior;, is 0 if the logical assertior{-} is true, and—oo
otherwise. Then, we deal with the following system of stapeations

z(0) € RI%L
I z(n+1) =A®x(n) } (5)
(II) y(n) =V ®z(n)

whereA € R”%". In general, the vectorg;(n),n > 1} do not verify a difference equation
as Equation (5,(1)). A condition under which there existmeanatrixA € R¥*¥ such
that R

yin+1)=A®yn) n>1,

is called dumpability conditior{8]. These lumpability conditions are the counterparts of
those existing for Markov chains [6]. For our activity netkoconsidering the lumping
map¢; from {1,2,3} into {1, 2} defined byp,(1) = ¢1(2) = 1, ¢1(3) = 2, means that
the behavior of the system is observed through the coupleloésy; (n) = max (z1(n), z2(n))
andy,(n) = x3(n). In other words, the output of the system is only the earbpsich at
which the noded and2 (resp. node) are active for theith time. Roughly speaking, the
activity network in Figure 1 will be lumpable with respectpif the vectorgy(n), n > 1,
satisfy a difference equation. Therefore, the network Witke nodes can be replaced by
a2-nodes network (lumping nodésand2) without loss of the linear characteristic of the
corresponding dynamical system.

Thirdly, our goal is still to computé&-bounds on the aggregated state vegtor)
(n > 1) defined by Equation (5,(11)). This kind of issue arises wkien state index seft
is (very) large and

1. we can only consider the dynamics of an aggregated systentfie computational
point of view;

2. or we are only interested in assessing the state vector of the system. For
instance, when concerned with the computation of a perfoc@ar cost measure
which only depends on the state vecidn). In the aforementioned network, one
could consider scheduling a monitoring task of the sim@tars activity of nodes
1 and2.



The proposed bounds come from combining

¢ the construction of monotone bounds of the matrix govertinegdynamics of the
system as described in the first step

¢ and the use of lumpability conditions.

The results are as follows. For each selected lumpabiligitmn, we show that for any
matrix A and any lumping map, there always exiskK-boundsL andU of A that are
lumpable with respect tg. Additionally, if [(0) <k y(0) <k u(0), then we will have

I(n) € L ®1(0) <k y(n) <k i(n) = U @a(0), n>1

for someN x N-matricesL andU (wherel(0) = V © {(0) and@(0) = V @ u(0)). We
mainly use the so-called coherency property (see [8] aretertes cited therein). It also
allows one to derivé<-bounds on the original state vectofn) from computation with
the lumped linear system.

Each existence theorem provided in this paper is supposteddonstructive proof.
This allows one to develop algorithms. Their complexity whdhat they are efficient
when the state index s#tis large.

The paper is organized as follows. In Section 2, we reportriaan notation of the
paper while introducing the framework of linear (dynamjcgfstems in the max-plus
algebra. In Section 3, we present the results for the companf the state vectors of
systems with the same state space. These results are basepiameering paper [9].
In Section 4, we provide the methods to compute monotonedsoan a given matrix.
In Section 5, we provide the methodology for bounding théestactors of aggregated
systems. All results will be illustrated by a simple examplie Section 6, we give the
algorithms to compute the various bounds. Their complagignalyzed. We conclude in
Section 7.

2 Notation and definitions

In this Section we follow Baccelli et al. [1, Chap 3] exceptisome notation changes
which are motivated by the setting of this paper.



2.1 Max-plus algebra

(Rimax, @, ®) has a zero denoted hy(hereo = —oo) and an unit element denoted by
(herel = 0) 1. The law® is idempotent, i.ea ® a = a for anya € R,,... The elemend
is absorbing forr. “Max-plus algebra” is the common name of the idempotentiseq
(Runax, B, ®).

The usual order relation dR,,., can be defined using by:

a,b € Rpax, (a<b<=adb=0).

In this paper, the inverse of any reai.r.t. the@-operation is denoted bya (let us note
that we do not use the one or two-dimensional display notatf¢gl, p105]). Thush — a
stands fob ® (—a). Note thato — a = o for anya € R.

The vectors are column-vectors except special mentjon. denotes the transpose
operator.

1,, (resp.o,) denotes the:-dimensional column-vector having all components equal
to 1 (resp.o).

We recall that theo, 1 }-valued functiory, is 1 if logical assertion{-} is true anc
otherwise.

For any matrixA = [a;;] € R?, a;. anda. ; denote itsith row andjth column
respectively. To avoid a heavy use of the transpose operatbe formulaeg, . will be
considered as a row-vector, i.e;. € R.X2. We need define operations on the matrices

max*

with entries inR ... Let us define the external multiplication by

A€ Ryax, A = [a; ;] € RP AR AZE A®ai; =X+ aijli=1,.nj=1,.p

max?

If A e R>P andB € RPX%, the productd ® B is defined by

max max’

e p
A®B= D ik b = nax (@i + bry)

=1,..,p i=1,...,n;5=1,....q

The sumA ¢ B of two matricesd € R*? andB € R”x?, is defined by

max max’?

Ao B® [a;; @ bi; = max(a;; , bij)]

i=1,..n;5=1,....p

1We use this notation to do the parallel with results in thealialgebra. In [1]0 (resp. 1) is denoted
by € (resp.e).



2.2 Autonomous dynamics and aggregated dynamics

Let us consider a lumping map from S = {1,...,n} into ¥ = {1,..., N} with

1 < N < n. Matrix V is the corresponding lumping matrix defined by Equation (4).
In this paper, we study systems for which the dynamical behay determined by Sys-
tem (5) of autonomous difference (or state) equations. Ehes< z(n) > defined

by Equation (5, (1)) will be called an autonomous (linearhdsnics. It is specified by the
2-tuple (x(0), A). The series< y(n) >3 defined by Equation (5,(1),(11)), will be called
the aggregated dynamics.

3 Comparison of the state vectors of linear systems with
the same state space

The aim of this section is to present some results for comgdui.r.t. the<y preorder)
the two autonomous dynami¢s(0), A) and(¢(0), B) with 2(0),¢(0) € R7X! andA, B €

R<7. They are based on the propertylefmonotonicity of a matrix, which ensures that
any K-inequality between two vectors, will be preserved underrthultiplication to the
left by the matrix. The main result (Theorem 3.2) gives a o under which the two
dynamics(z(0), A) and(¢(0), B) may be compared. This section is a slight extension of
the work in the pioneering paper [9] dealing with Bellmangltar chains. All statements

are inspired by results on monotone Markov chains [5].

Definition 3.1 (K,,-comparison) Letz, y be two elements & <. We say that is K,,-
smaller thany iff

K, ® z < K, ® y (component-wise) (6)
wherek,, is the(n x n)-dimensional matrix defined by
T |
def 0 :
K, = [0u<iylicij<n = (7)
Q - 0 1

If Condition(6) is fulfilled, then we write: <, y. Sometimes, the dimensional argument,
i.e.n, will be omitted.
TheK,,-comparison of two matriced, B € REX" is naturally defined by

A<k, B — K, A<K,® B (coefficient-wise)
— Q. <K, b.d‘ j=1,...,n.
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It is easily seen that relatiofik,, is reflexive and transitive oR?, .,
a preorder orfiR? .

Another important concept for comparison is monotonicitijch is defined as fol-
lows.

that is,<i, defines

Definition 3.2 (K-monotone matrix) Let A be an element dR].X". Matrix A is said to

beK,,-monotone iff
Y,y € RM1 ((xg]Kn y):>(A®x§]KnA®y)). (8)

max’

The next theorem provides a tractable criterionlfemonotonicity.

Theorem 3.1 (Criterion for IK-monotonicity) Let A be an element aR?X”. A is said
to belk,,-monotone iff

jI 1,...,71,— 1, Q. j S]Kn Q. 41, (9)
recalling thata. ; denotes thgth column ofA.

Proof. (Only If). Let us note that(j) <k, e(j +1),j =1,...n — 1, if e(j) denotes the
n-dimensional vector where thiéh component id and the others are Thus,A®e(j) =
a.; <k, A®e(j+1) = a. ;41 sinceA is K-monotone.
(If). Let us consider, y € R™X! such thatr <y, y. We write
K, Ay = @?leKn@)a.,j@yj. (10)
It follows from (9) and the transitivity ok that
Kn®a.71 S Kn®a-,2 S S Kn®a-,n'

This could be rewritten using idempotency®f
j=2,....n K,®a.;= kéi]l(n(@a_,k (11)
Using Equation (11), the associativity @fand the distributivity ofp over®, we get
Ki®A®Y= 6Ky ®au® ()

Sincex <k y, i.e. for everyk, (&}_,z;) & (&)_,y;) = D}_.y;, we obtain
K,@Ay=K,® A®ze K, ® A®y (component-wise),
orA®z <k, A®y. n
We state now the main result of this section. It is an extensfd9, Th 3.2].
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Theorem 3.2 (K-comparison of autonomous dynamics)Let(z(0), A) and(¢(0), B) be
two n-dimensional autonomous dynamics. If the following coodg hold
(i) 2(0) <k, £(0),

(i) A<k, B
(i) Aor BisK,-monotone
then

Vn >0, z(n)=A""®z(0) <k, t(n) = B¥" @ t(0).
Proof. Suppose thatl is K,-monotone. We have from Inequality (ii)
K,®A®t0) <K,® B ®t(0).

Since Inequality (i) holds, we can apply Relation (8)te- z(0), y = t(0) and the matrix
A. We get
K,®A®2(0) <K, ® A®1t(0).

By the transitivity of<, we obtain

K,®A® 2(0) <K, ® B®t(0).
Thus, we prove that, i£(0) <k, t(0), thenz(1) <k, t(1). Now, the proof is easily
completed by induction on. [ |
4 Construction of a K-monotone bound

We assume in Theorem 3.2 that at least one of the two autor®dymamics is governed
by a monotone matrix, but it does not always hold. Howevewilitfollow from Theo-
rems 4.1 and 4.3 that the matrix governing any given automsndgnamics is bounded
from above and from below byld-monotone matrix. Specifically, for any squared matrix
A, there existd{-monotone matriced~ and A" such that

A <g A<k AT,
Hence, Theorem 3.2 ensures that(f) <k 2(0) <k «(0), then
I(n) = A"""@1(0) <k x(n) =A""@2(0) <k u(n)=A*"@u(0) n>1.

TheK-boundsA~ andA™ are also shown to be optimal w.r.t. preordeg.



4.1 Upper bound

Given a matrixA € RX" we show in Theorem 4.1 that there always exid€ksaonotone

max !

matrix AT such that

(a) A<k At
(b) for any monoton&’ such thatd <y C, we haveAt <y C.

So, A™ is said to be a monotone upper boundnv.r.t. the preordeK Construction
of such a matrixA* is based on the following lemma.

Lemma 4.1 Leta, b, c be three elements &,,... Let us consider the system of inequali-
tiest/ (a, b, ¢) defined by

(12)

adb<xdc
b<e.

The solution set of systet(a, b, c) over R, is [z~ (a, b, ¢), +00[ wherez~(a, b, c) =
a® (5{C<a}.

Proof. It is easily checked that (a, b, ¢) is a solution of Inequalities (12). Let us show

thatz~(a, b, ) is the smallest solution. Letbe another solution of Inequalities (12). If

¢ < athen we have:™(a,b,¢c) = a =a® b < y @ c. This implies thate™(a, b, ¢) < y.

The case: > a is obvious, since is the minimal element oR,... Sincemax(-,c)

is a non-decreasing function, it is clear that any> x~(a, b, c) is also a solution of

Inequalities (12). ]
Now, we state the main result of this subsection.

Theorem 4.1 (optimal K-monotone upper bound) Let A be an element ak]X". Then,
there exists a matrix*™ € R7<" such that

((l) A SIK 14Jr

(b)) AT isK-monotone (13)
(¢) forany monoton€’ such thatd <y C, we haved™ <y C.

Proof. System (13) may be rewritten as (see Theorem 3.1 for (b))

(@) forj=1,....n, K®a;<K®al

(b) forj=2,....n Kod,  <K®a’

(c) forany monoton& verifying A <k C, we haveK ® o, <K ® c.,
g=1....n.

10



The construction ofi™ is by induction on the column numbgre S.

First, we seti”; = a.;.

Assume now the construction @fk, k=1,...,5—1with j > 1to be done. Thgth row
of A*, a7}, will be defined by a backward induction on the component remabWith
conventlon thak, .. = o,, we have to solve

L{(am s Iki-l—l,' X Q.j, Iki-l—l,' X afj) and Z/[( ;i1 Iki-l—l,' X afj_l , Iki-l—l,' X afj).
From Lemma 4.1, a minimal solution is given by

GJ,FJ x (@z’,j, kit ®a.j, kiy1, ®@a )5933 ( a;iq, Kiy1, ® afjfla kit1, ® @.J,rj)-
Or, equivalently

t —a . +
a’i,j - a'zvj ® 5{ai7‘j>ﬂ<i+1’.®afj} @ al,]—l ® 5{a?:‘7-_1>]ki+1,.®atj}’ (14)

Let C be akK-monotone matrix such that <i C. The inequalityA* <y C'is proved
by induction on the column number. Sina:é1 = a.;, we obviously haveﬁf1 <k C.1.
Now, assume that for some> 2,

(afy - at )<k (ecq - cjq).
The jth column ofC satisfies
i1=1,...,7n: k. ®a,; <k, .®c,; and k;,.®c;j1 <k, ®c.;.
This is equivalent to
1=1,...,n k. ®c;>k . ®a,dk,.®@c ;1.
Sinceafjf1 <k c.j—1 by the induction assumption, we have
1=1,...,n ki.®cj;j>ki.®a.;®k;. ®a]1

But, we show now that the right hand side member of the lasjuakty isk; . ® afj.
Thus, the induction will be complete.

Let us show that, forany j € S, k; . ®a =k.®a;®k. ®a i1
The proof is by induction on the row number From the deflnltntf)A+ we havea;j =
Ay j @%J 1» SO that the result is true for= 7. Suppose thdt; ;. ®a,7j =kiy1,. ®a.;®
kiy1, ®al;_, for somei < 7. Noticing that

ki ®@a’; >k ®@a;0k. @,

11



we just have to justify thak;. ® o, < k;.

following computation

]ki,- & a_+j

. +
(alﬂ ® 5{a¢7j>ﬂ<¢+1,.®afj} @ a“l',jfl ® 5{0,:?

(from Definition (14) ofa;”

+

®a.;®k.®a’;_;. Letus develop the

a;; ® kiy1,. ® a’; (by definition oflk; )

. +
171>]ki+1«®afj}) Skit1, ®aj

7j

(@i,j ® 5{a¢,j>]k¢+1,,®afj} Okip1, ® a'vj)

+ , +
@(%j—l ® 5{a;fj_1>n<i+1,.®afj} S kiy1,. ® a-,j—l)

(by assumption ofi; ;1. ® a)).

We getfromigy < 1, k;. @ a’; <k;. ® a.; k;. ® a;_,. This last inequality ends the

proof.

Example 4.2

To illustrate the previous results, we considef@n®)-linear system with state index set
S ={1,2,3,4,5}, where the dynamics is governed by the matrix

2 411 3 o)
—-10 15| -8 o 20
A= o o|-1 -9 1 (15)
1 4| o 7 2
-7 42 —-10 8
The monotone upper bounti” on A is obtained following the lines of the proof of The-
orem4.1
(@) (@) (0) (0)
—10 15|15 15 20
At = o o|lo o o (16)
1 o|lo 7 o
-7 414 4 8

4.2 Lower bound

The result for the monotone lower bound is based on the fallguemma. Its proof
follows that of Lemma 4.1 and is left to the reader.

12



Lemma 4.2 Leta, b, c be three elements &,,... Let us consider the system of inequali-
ties£(a, b, ¢) defined by

y®c<adb

{ c<b. (17)

Then the solution set @ (a, b, c) is [0, y™(a, b, ¢)| wherey™(a,b,c) = a ® b.

Theorem 4.3 (optimalIK-monotone lower bound) Let A be an element dR}X7. Then
there exists a matrixl~ € R} such that

max

((l) A~ <K A
(b) A~ is K-monotone (18)
(¢) forany monoton€’ such that” <k A, we havel’ <k A~.

Proof. System (18) may be rewritten as (see Theorem 3.2 for (b))

(a) forj=1,....n, K®a; <K®a,
() forj=1,....n—-1 Koa; <K®a;,
(c) forany monotoné&’ verifying C' <k A, we haveK @ ¢ ; < K®a_,

g=1....n.

Once again, the construction of matrix is by induction on the column numbgre S,
starting witha~, = a. ,,.
For every columry, we have to solve the following constraints

i=1,...,n: k. ®a;<k ®a; and k ®a; <k ®a;,,.

If we assume thak; ;. ® a

a solutiona;j of

iy andk; ;. ® a_;q are known, then we have to find

E(ai,j s ]kiJrL. X Q. 5, ]kiJrL. X ajj) and E(a;jﬂ s ]kiJrL. X a’:j—i—l s ]kiJrL. X a:j).

From Lemma 4.2, a maximal solution is given by

a;; = min (y+(am’ s ]ki+1,. ® a.j, ]kiJrl,- & a:j) ’ y+<a;j+1 ) ]kiJrlf ® a:j-ﬁ-l ) ]ki*lv' ® aij))
= min (]kz7 X a.;, ]ki,- &® G/:jJrl).

The optimality of the solution could be proved as for Theorkefn ]
Without loss of generality, we can assume tHas alK-monotone matrix till the end
of the paper.
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Example 4.4 (Example 4.2 continued)
Construction of a monotone lower bound for the matfixs as in the proof of Theo-
rem 4.3. This gives the following matrit~

2 212 7 o
1 2|2 7 2

A =|"1 22 7 1 (19)
1 2|2 7 2
~10 —-10|-10 —10 8

5 Bounding the aggregated dynamics

Let us consider a lumping mapfrom S into X, andV the corresponding lumping matrix
(see Relation (4)). We can define a partitionsohto N aggregates—'(J) = [m s, M|
such thatardinal(¢~1(J)) = n;, J € . Additional notations are needed. For a matrix
X € R setx!/ = [xi,j]iedfl(l),quﬁ_l(J) and X/ = [xi,j]ies,je¢>—1(J)- .’L’Z{’.J, .’L’{}j, .’L’l:J,

:cjj, denote theth row of matrix X/, the kth column of matrixX’/, the /th row of
matrix X -/, the jth column of matrixX -’ respectively. We recall that’ andz;” are
considered as row-vectors. The sca&é,g’ refers to the entry,,,, — 147, —1+% Of matrix
X = [2ij]ijes

The aim of this section is to finé&-bounds on the series y(n) >’ which is
defined by the following system

{ z(n+1) =A®z(n)
y(n) =V eu(n).

wherex(n) € R7L y(n) € R¥*! andA € R7X"

max max"*

The series< z(n) >!2 with given initial dataz(0), is said to bdumpableif the
aggregated series y(n) > satisfy the reduced equation

yn+1) = A® y(n) (20)

for some( NV x N)-dimensional matrixd. In such a cases y(n) >, may be considered
as an autonomous dynamicsRf), . governed by matrixd.
If there exist matriced. andU such that

L<x A<k U

14



andi(0) <k z(0) <k u(0), then we have from Theorem 3.2

Vn >0, I(n)% L% @1(0) <k x(n) <k u(n) & U™ @ u(0). (21)

Additionally, assume thak, U are lumpable with corresponding matricesand U re-
spectively. The aggregated dynamicsV @ i(n) >!% and< V @ u(n) >! are

lower and uppeiK-bounds for the aggregated seriesy(n) >. Indeed, since is
non-decreasing, it follows from Inequalities (21) that

Veln) <k yn) <k V u(n).

Finally, the lumpability property will give that the aggiet@d dynamics: V @1(n) >1>
and< V @ u(n) >12 are governed by the matricésandU respectively, i.e.

Vn>0, Vln)=VeL"wl(0) Veun) =VeU o u).

In the following subsections, we focus on two conditionsdenitify a lumpable ma-
trix. For each condition, we show that ai§*monotone matrixd may be bounded from
above and from below by a lumpable matrix. Thus, welgehtounds on the aggregated
dynamics< y(n) >'25. Similar methods were used for Markov chains in [7].

5.1 Strongly lumpable matrix
Definition 5.1 A € R7X" is said to be strongly lumpable By, or simplyV-lumpable

max

[8], if there existsA € RY>XN such that ® A = A ® V. Equivalently, this means

max

VIeX,VJ € XVj e o (J) - a;; = ar,j.
i€p~1(I)

The lumped matrix! is thenV @ A V.

When the autonomous dynamicsz(n) > is governed by a strongly lumpable matrix
A, the aggregated variablg$n) = V ® z(n) satisfy the autonomous difference equa-
tion (20). Indeed, we have

yin+1) = Vezn+1) =V A®x(n)
AQV ® x(n) (using Definition 5.1)
— A®y(n).
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Theorem 5.1 There always exist -lumpable matrice$/ and L such that
L<x A<k U. (22)

Proof. SinceA is K-monotone, Inequality (22) holds for the following matsde= [/; ;]
andU = [ui,j]

Viexviex: o7 =d’ li{’]?]:az{’f i=1,...n7, j=1,....n;. (23)

ivj iv”J’
It is easily seen from their definition thatandU areV -lumpable. ]

Example 5.2 (Example 4.2 continued)
The lumpingmap i : S — ¥ = {1,2} where¢(l) = ¢(2) = 1 etp(3) = ¢(4) =
¢(5) = 2. The corresponding matriX is

1 1 o o o
V—(G)@I[]l]l)

U, L denote the strongly lumpable upper and lower boundsifoand A~ respectively.
The method of construction of these matrices is given in tegipus proof.

0O 0|0 O O 2 2 2 2 2
15 15120 20 20 1 1 2 2 2
U= O 0|0 O O L= 1 1 2 2 2 (24)
0O 0|0 0 o0 1 1 2 2 2
4 418 8 8 —-10 —-10| —-10 —10 -10

The corresponding aggregated, ©)-systems, are governed by the matrices

(7:V®U®VT:<145 280) andf:V@L@VT:(Qﬂ 3)

respectively.

5.2 Coherency

Let us consider théy x N)-dimensional matrixC' = diag(c’), where, forJ = 1,..., N,
vectore’ € R7*! is a normalized positive vector in the following sense

j=1...,n; ¢ >0 and 1, ®c’ =1

.....
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Definition 5.2 A matrix A € R”*" is C'-coherent [8] w.r.t. the lumping magyp if there

max

exists a matrixd € RV*N suchthatd ® C = C ® A or

max

vi,jex, AV ecd =a,2c. (25)

In this case, the matrid isV ® A ® C.

When the autonomous dynamiesz(n) > 129 is governed by &'-coherent matrix,
we have for any:(0) € ImC = {C @ u | u € RYVX!

n>1, z(n)=A"@Cou=Cx A" ®u.

Hence, the dynamics of the original model may be derived ftloat of the aggregated

system. It also follows that the aggregated dynarricg(n) Yy z(n) >0 is an
autonomous dynamics

yn+1) = VoAt gy =A%) gy (sinceV @ C = Iy)
= ARV ®CR A ®u
A®y(n).

Remark 5.1 Considering a normalized vecter in matrix C' of Definition 5.2 is not a
major restriction. Indeed{-coherency may be defined from any set of positive vectors
c(J=1,...,N),i.e.c/ € RW* Thus, we choose matriX such thatV’ @ C' = I for
writing convenience.

Example 5.3 (Example 5.2 continued)
We consider the matrig' = diag(c', ¢*) wherec! = 1,7 andc? = 13". The following
matrix W+ denotes one of the uppéf-coherent bounds oA™

15 2o 20 o

—10 15|15 15 20
Wt = o 4|0 o 8 |. (26)
1 4 1o 7 8
-7 414 4 8

The dynamics of the aggregatéd, ®)-system obtained from matri¥’ * is governed by

the matrix
Wr=Vew+eC = ( Y 280)

Note that, even iVt =0 (see Example 5.2)) " is not strongly lumpable.
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We will show that there is a counterpart to Theorem 5.1 in th&ext of coherency.
We need the next lemma, which follows from [1, p 112].

Lemma5.1 Leta = (ay,...,a,)" € R andd € Ry, be fixed. Then,

(zeRyy and 2' ®a<d) <= s<(d—a)_, (27)
and we always have
(d—a)_, ,®a=d. (28)
Moreover, for any, d € R, andc € R -
b—c)®(d—c)=(bdd) —c. (29)

The next theorem states that, for any monotone matrixhere always exists &-
coherent upper bound. We emphasize that an exligibherent upper bound will be
given in the proof (see Formula (36)).

Theorem 5.4 For anyK-monotone matrix4, there always exists @-coherent matrixt/
such that

A<y U. (30)
The corresponding aggregated matfix= [z, ;] € R¥*Y has entries that are a solution
of system

I,J=1,...,N:
(Ky ® A @ 1, @ [BF_; 11, ® A7) @ < (31)
ury @K, @ @ (BN _;1Uk,s) ® 1,, (component-wise)
Proof.
Firstly, assume that there existsacoherent matriXJ such that Inequality (30) holds.

Let U be the matrix associated with tii&coherent matrix/ (see (25)). Itis easily seen
thatA <k U iff

vJe{l,...,N} K,® A’ <K, U". (32)

®-right-multiplying this last inequality by the normalizedctorc’ and using Relation (25),
we obtain that the entries of satisfy System (31).

Secondly, let us show that System (31) has always a solufibis system may be
rewritten as, forany, J € {1,..., N}

VZG{]_,?][}

N N
(koA e & 1L oA ed <t ok ede| & il (33
’ K=I+1 ’ K=I+1
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Now, letus fixJ € {1,..., N}. ForI = N, we can set

g = & (1Y @AM @ — KN @ ) (34)
Assume that we have obtainegl ; for K = [ +1,...,N (I < N). u;; will be a
solution of System (33) ifi; ; satisfies the following system

N
Vie{l,...on} dry>(ki'eAdYe @& 1) oA ed -k'ecd
’ K=I+1 ’
Note that the right hand side member in the above inequalitevell defined, since
k' @ ¢! > o (c! > o). Finally, we just have to set

N
1= =/+

Finally, let us give &-coherent matriX/ satisfying (30) from the matrik previously
defined. FixJ € . Foreveryl =1,..., N, set
. T
uiv.J = (’LLLJ ® CZ-I — C}'])jzl n

.....

izl,...,n[. (36)
Let us check thal/ is aC'-coherent matrix. We have to prove Relation (25), i.e.
VI, JeX Vie{l,...,n} u{’f’@c‘]:ﬂ]’{]@cz{.

1

This is clear from Definition (36) of vectar;”” and from Relation (28) (witd = i, ; ®c!
anda = ¢’).
It remains to show thatl+’/ < U/, i.e.

Vie{l,...n} m@)E da’ < duy. (37)
Let us define scalar; as follows

. i N ~
Ti = Ug(i),s & [67;(1-)(@ —agi) +1) @Ky, © ) @ K:<§?¢)+1UK’J (39)

Wheree%(i) (7) is the vecto(6sx—;} ) k—=1...., oty
It is easily checked that System (31) for fixédis

i=1,....,n m@Eec <r. (39)



Moreover, we have from Definition (36) &f/-” and Equality (29)

i=1,...,7m anuk‘]: (Ti—c;])i . (40)
Applying Relation (27) to solve Inequality (39) with= ¢’, T = m(i) andd = r; for
eachi = 1,...,n, we get

j=1my omyli) Sri—¢ = S
The proof is complete. [ |

Remark 5.2 We can derive another solutiaty ; of system (33). Indeed, Formula (35)
(1 < I < N)can be replaced by

N

_ P ((]kf’f@A“@ e 1;K®AK7J)®CJ—J1<{’_I®C1) if Gy # 0

ur,g = i€Gr,y ' K=I+1 '

o if Gy =0
(41)

whereGr ;= {i € {1,....m} | @ _; ks < (k' @ AV @ @¥_;,1) ® AR @
iy

Remark 5.3 We emphasize that we getacoherent upper bound, whatever the choice
of matrix C. Thus, the problem of the selection of an appropriate matrifor having
such aC-coherent bound does not arise. The same remark holds fdower bounds.

Example 5.5 (Example 5.3 continued)
Consider the matrix’ = diag(ct, ¢?), wherec! = (1, =3)",¢* = (=12, 1, —4) T, and
Ky®c =(1,-3)", Ks®c>= (1,1, —4)".

Using Formulae (34), (35), we obtain as matrix

~ 15 19
U:<5 8). (42)

We get from (36) the following’-coherent matrixX/ such thatd <i A" <i U

15 18|31 19 23
12 15128 16 20
U= -7 -4]8 -4 1
5 8120 8 12
1 4 1]16 4 8
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Let us chooser(0) = (2, —3; 2,4, —15)" for the (&, ®)-linear system governed by
the matrixA in Example 4.2. In Table 1, we report the dynamicsofr(n) >3_, and
that of the corresponding reduced serieg(n) >3_.

step|| y(n) =V ®@x(n) | z(n)=A"® 2(0)
0 (2;4)7 (2, -3;2,4, —15)"
1 (12; 11)7 (7,12;1,11,4)7
2 (27;18)7 (16,27;5, 18, 16)"
3 (42; 31)7 (31,42; 17,31, 31)7

Tablel: The dynamics of the syste(m(0), A).

If u(0) = (1,4), then we have

2(0) <k u(0) = C@A(0) = () ;40 (7).
FromU defined by Equation (42), we deduce the dynamics of the agtge@nd original
systems associated with the upper bothdf A. This gives uppei-bounds on series
< y(n) >'20 and< z(n) > respectively.

step| u(n) =U®" @ u(0) || u(n) =U®"®@u(0) = C @ u(n)
0 T, 4" T, 3; 8,4,1)"
1 (23; 12)7 (23,20; 1,12, 8)7
2 (38; 28)T (38, 35; 16, 28, 24)7
3 (53; 43)7 (53, 50; 31, 43, 39)"

Table2: The dynamics of systeni&(0), U) and(C ® (0), U).

It is easily checked that there always existé'a@oherent lower bound for a K-
monotone matrixA. Indeed, sel. = (o). However, we can obtain another (non-trivial)
lower bound. We need the properties reported in the next nita proof is similar to
that of [1, Th 3.21]. For any,b € Ry, a A b stands formin(a, b). The operaton
is assumed to have the same priority thanv.r.t. ®. If A € RP*? andB € RF*?, the
productA A B is defined by

e b 3
ANBZ | A i ®bg; = min (aig+ byj)

Lemmab5.2 Leta = (ay,...,a,)" € R andd € R, be fixed. Then,

(z € RS and xT/\azd)<:>x2(d—ai)iT:1 ..... - (43)

We also have
(d— ai)iTzl ANa=d. (44)

.....



Now, we present our result for the lower bound.

Theorem 5.6 For any K-monotone matrix4, there always exists @-coherent matrix_
such that
L <k A. (45)

The corresponding aggregated matiix= [I; ;] € RN has entries that are a solution
of system

I,J=1,....N:
@Ky @ @ [OF_lks] ® 1, < (46)
(K, @ AV & 1, @ [®R_;, 1) @ AK]) A ¢’ (component-wise)

Proof.
Firstly, let us show that System (46) has always a solution/F~= N, we have to solve

i=1...nv, ook ed <& oAN A

So, we can set

Ing = K((kﬁﬂ @ AN AT KN @ ). (47)
Note that we have (with= 1), Iy, < (1,, ® ANy A ¢’ sincel, ® ¢V = 1. Suppose
now that we have obtaind}b forK=I1I+1,...,N (I <N)and

N ~ N
O lks<( @& 1, @A )AL (48)
K=I+1 K=I+1

We must derivéALJ from (46), i.e.

izl,...,n],

hookl'ede @ Iky;<(k'eAd”e @ 1, @ ASY A (49)
’ K=I+1 ’ K=I+1

It follows from & _, 1] @ AX <k" @ Al @ell_, 1] © AKX/ that

N
1,1 1,J N T K,J J T K,J J
(ki @AY @eg_,1, @ AV ) A > (KE?HILW@A ) Ac

N ~
> D ZK’J from (48)
K=I+1
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Hence, solving system (49) is equivalent to solve

1= ]-7 - N
~ N
ook ®d< (]kil’.l A" e @ ILJK ® A7) A
’ ’ K=I+1
We set
~ N
lro= A ((IkI oAb @ B E?HIL;K R AR A K ® cf) : (50)

~ N
In particular, we havé; ; < ( & 1, ®A%7)Ac’ sincel] @’ = 1. We deduce from
K=I
(48) that

N ~ N N
T K,J J T K,J J
K:e}?HlK,Jg(KZQ?HﬂnK @ AN N el < ( D1, ©A ) Ac

Therefore, we obtain that

lres 7 < @IILJK ® AT A

T@z

Secondly, frorﬂALJ I,J =1,..., N satisfying System (46), we defineCacoherent
matrix L such that Inequality (45) holds as follows. Eixe . Foreveryl =1,..., N,

set
T

o ed-d) = -

First, it is easily seen from the definition (51) of matfixand Equation (28) that, for each
I e ¥andforalli € {1,...,n,}

li{’_‘] ®c’ :TLJ ® cl.
Thus, matrixL is C'-coherent. Note that we also have from Equality (44)
li{’,‘] N ZAI,J X CZ-I = li{’_‘] ® ¢’

Second, we must show that’ <x A7/, i.e.

i=1,...,n &I <m@)Z day. (52)



We make the following remarks. System (46) could also be&vrit
i=1,...,7m s; <m(i) A, (53)

wheres; € R, isdefined by{=1,...,7)

T (; i 7 X7
5 = |Gy (i —age +1) @Ky @ e )] D lows @ K:S(%)HZK’J’ 4)

i=1...,n &L =(si—c), . (55)

From these results, we just have to apply Formula (43) with ¢/, " = m(i) and
d = s; foreachi = 1,...,n, to Inequality (53). Thus, we get

jzl,...,ﬁj mJ(Z)ZSZ—CJ: Q_B'Z%J,

and the proof is complete. [ |

Remark 5.4 We emphasize that an explicitcoherent lower bound. is given by For-
mula (51)). Note that this definition providegalumpable matrix in the max-plus alge-
bra, which is alsaC-lumpable in the min-plus algebra.

Example 5.7 (Example 5.5 continued)
Matrix C' and vectorz(0) are as in Example 5.5. We get from Formulae (47) and (50)

~ (=1 —10
L= <—9 —18) '
The expanded matrik of L such thatl, <k A™ <k A, is from Formula (51)

-1 2 2 10 -6
-4 -1 -1 =13 =9
L=]| -21 —-18|—-18 —-30 —-26
-9 6| -6 -—-18 —-14
-13 —-10| —-10 —-22 -—18
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If 1(0) = (0, —11) T, then
1(0)=C@1(0) = () @o; (AT @—-11)" <k z(0).

In Table 3, we report the dynamics of the aggregated andnatdigystems associated with
the lower bound. of A. The dynamics of the original system is computed frbnrhis
gives lowerK-bounds on< y(n) >3_;and< xz(n) >3_.

step| I(n) = L®"®1(0) | I(n)=L®"®1(0) = C ®1(n)
0 (o; —11)" (0,0; —23; —11 —15)
1 (—21; —29)7 (=21, —24; —41, —29, —-33)"
2 (—22; =30)7 (=22, —33; —42, —30, —34)"
3 (=23; =31)T | (=23, —26; —43, —35)T

Table3: The dynamics of systen($(0) L) and(C ® l( ), L).

6 Algorithms

In this section, we report the algorithms associated withlibunds provided by The-
orems 4.1, 5.1, 5.4. We only deal with the case of upper bouhdsver bounds are
obtained in a similar way. Let us consider an autonomousmjcggoverned by matrix
A. Algorithm UpOpt allows one to get &-monotone upper bound* on A. Next, we
consider the aggregated dynamics w.r.t. some lumping map algorithms that compute
bounds on this aggregated dynamics are presented. Thddwsitlam uses the construc-
tion of a strongly lumpable bound of. The second algorithm provides a bound that is
derived from aC-lumpable upper bound oA. Finally, we address their complexity.
Letusrecallthap—'(I) = [my, M;],for] =1,..., N andA = [a; ]; jes- UpOpt(a. ;)
is the function that returns the optimal (in the sense defindtheorem 4.1) c:oluma+
from a columna. ; of A such that: (a)17 <k a ~and (b)a. ; <k a+ (with the con-
vention that property (a) holds whegn= 1) From Formula (14), and usmg the relation

Ikz‘; & afj = a;fj &P ﬂ{z‘+17. & CL.—t—j
we get
UpOpt(a. ;)
o =0

For: =ntol
Begin
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+ . +

0 = i @ a0y @ 51 @ Ot ooy
a=aday;

End

Returna_*j

Construction of a IK-monotone upper bound on A
Let V' be the matrix associated with the considered lumping map ffanto X (see
(4)). Using Formula (23), we derive now an upper bolhdn the aggregated dynamics
specified by/.

Strong(A4, V)

ForJ=1to N
Begin
Forj = m  to M, (* loop UP *)
Begin
Generatda. ;)
If j = 1thena’; ;= a.;
elsea’; := UpOpt(a. ;)
Free(a’; ,, a.;)
End
u,y=Vea,,
End
Returnl

Construction of an upper bound U based on the strong lumpability
Under this formUpOpt has a time complexity i (). Using the particular structure
of matrix V', the time spent to compuié ® anJ is O(n). Thus, the time complexity for

computing matrixU is O(n(T+mn)+Nn), whereT denotes the time spent to generatg
Note also that we only need the storagea@@h (O(n) space complexity) for computing
u. ;. Hence, only a part of data are needed at each step of thdthafgorParameters
of procedureFree clearly indicate which data are set free in memory at eagh ste
My, ...,my . Thus, the space complexity of the whole algorithm is ofly;), which
means that it is linear with the number of elements of theestatex setS.

The generic functiolCoherencyprovides another upper boundon the aggregated
dynamics by using one of the Formulae (35) and (41). The 8pecmputation of entries
of U is carried out by functiol@ompute.

Coherency A, V, ()
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For/J=1to N
Begin
Forj = m  to M; (* loop UP *)
Begin
Generatda. ;)
If j = 1thena’; := a.;
elsea’; := UpOpt(a. ;)
End
u.; := Compute(At"7, C)
Free(a.,j,j =my,... ,MJ)
Free(afj,j =my,...,Mj;— 1)
End
Returnl

Construction of an upper bound U based on the C-coherency R
We list properties that are explicitly used for the compotaf the entries ofU.
Sincek; " is theith row of matrix<,,, we have for7, J = 1,... N:

i=1,....nr Kkled=deok] o (56a)
i=1,....,m k@AY =AY ekl ® A" (56b)
1) ® AN =kjT e Al (56¢)
We also have:
17 @A 1T @ A e & 17 o AN (56d)
K=1 ™ S Kl MK

We present now the two versions of functiGompute.

Compute(A+/, O)

B = oy,
Forl=Ntol
Begin
Q=07 :=0,,uU=0
For: = nr to 1
Begin
a:=adc from Relation (56a)
v i=qT e’ from Relation (56b)
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=T oM ed
ui=ud(r—a) from Relation (35)
End
a]“] =Uu
B:=0®dy from Relation (56¢)
End
Returnu. ;

Computation of u. ; from (35)

Compute(A~/, O)
Bi=0y,,;X, =0

For/=Ntol
Begin
Q:=0;7:=0y,;u =0
For: = nr to 1
Begin
a=adcd from Relation (56a)
v =9 @a’ from Relation (56b)
r=0n" e
if (X, <z)thenu:=u® (x — ) from relation (41)
End
a[7J =Uu
Zu = Zu @D ﬁLJ
B:=0dy from Relation (56¢)
End
Returnu. ;

Computation of @. ; from (41)

FunctionCoherency has with aO(n,n)-time complexity, whichever the version of
function Compute that we use. It requires the storage of vectarsj = my, ..., M;
andafj,j =my,..., M;—1,i.e. the function has @(nn,)-space complexity. The loop
UP has arO(n,;(T + n))- time complexity and a®(n)-space complexity, recalling that
T is the time spent to generade;. Thus, the time complexity of the whole algorithm is
O((T + n)n + n?) and its space complexity 8(nmax—; _n1,).

7 Conclusion

In this paper, we define a new preordey; for comparing the state vectors of max-plus
linear systems. Then, we are interested in bounding the sgators of lumped max-plus
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systems with respect tg. The originality of the proposed methodology consists in
combining bounds on the state vectors of the linear systehitempability conditions to
have the linear feature for the lumped system. We emphdsatel results are explicit.
Hence, we develop algorithms. Their complexity shows they tan be efficient for ana-
lyzing large max-plus linear systems. Further investaeaiwill concern the assessment
of the quality of bounds. Clearly, the quality should dependhe underlying lumpability
criterion and on the “distance” of the matrix governing tly@amics of the initial system
from a monotone matrix. Finally, it can be intended to gelwegaur approach to more
general algebraic structures.
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