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Abstract

In this paper, we consider a failure point process related to the Markovian Arrival
Process defined by Neuts. We show that it converges in distribution to a homogeneous
Poisson process. This convergence takes place in context of rare occurrences of failures. We
also provide a convergence rate of the convergence in total variation of this point process
using an approach developed by Kabanov, Liptser and Shiryaev for the doubly-stochastic
Poisson process driven by a finite Markov process.
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1 Introduction

This work originates in Littlewood papers [12],[13] on a Markov-type model for reliability
assessment of a modular software. Basically, for a software with a finite number of modules
:

• the structure of the software is represented by a finite continuous time Markov chain
(CTMC) (Xt)t where Xt is the active module at time t;

• when module i is active, failures times are part of a homogeneous Poisson Process
(HPP) with intensity µ(i);

• when control switches from module i to module j a failure may happen with probability
µ(i, j);
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• when any failure appears, it does not affect the software because the execution is
assumed to be restarted instantaneously. Such event is referred as to a secondary
failure in [9].

Extend of such a model is considered in [9], taking into account the influence of failures
on the execution dynamic of the software and dealing with the delays in recovering an
operational state. Transient analysis was provided by means of results from [10]. Roughly
speaking, failure point process was a Markovian Arrival Process (MAP) as defined by
Neuts (see e.g. [15]). Therefore, it is well known that we obtain as particular instances
of our failure process: a phase-type renewal process, a doubly stochastic poisson process
with a stochastic intensity driven by a CTMC (also called a Markov Modulated Poisson
Process (MMPP) in queueing literature), etc.

An important issue in reliability theory, specifically for software systems, is what
happens when the failure parameters tend to be smaller and smaller. Littlewood stated
in [12] (or in [13] for a semi-Markov process (Xt))

As all failure parameters µ(i),µ(i, j) tend to zero, the failure process described above
is asymptotically an HPP with intensity

λ =
∑

i

π(i)
[∑

j 6=i

Q(i, j)µ(i, j) + µ(i)
]

(1.1)

where π and Q are the stationary distribution and the generator of the CTMC (Xt) (as-
sumed to be irreducible), respectively. This statement is well-known in the community
of software reliability and has widely supported the hierarchical approach for modeling
modular software (see e.g. [6] for details). However, to the best of our knowledge, no proof
of this fact is reported in the applied probability literature. The aim of this note is to
provide precise statements and proofs for the asymptotic of the general failure point pro-
cess (pp) defined in [9] for which the Littlewood’s model is a particular case. Specifically,
we show that the counting process corresponding to this pp converges in distribution to
the counting process of an HPP when failure parameters tend to zero but at a specific
time scale. Roughly speaking, we introduce a small parameter ε in the failure parameters
and the convergence takes place at time scale t/ε (in other words when failure parame-
ters are small and on a large horizon time). Proving this result is easy using a criterion
of convergence in distribution given in [8] for instance. It is based on the convergence
in probability of compensators corresponding to the various counting processes. In fact,
the counting process converges in variation to the counting process of an HPP and the
convergence rate will be stated using a method developed in [8], for the MMPP.

Note that the class of MMPP is widely used as a model of traffic streams for com-
munication systems. It is easily seen that dealing with the present issue is equivalent to
consider asymptotic for MMPP with a fast modulating Markov chain. Thus we retrieve
the more or less known fact that, when jitterness takes place, the arrival process tends to
Poissonian (see [14, page 116] for a partial discussion).
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Paper is organized as follows. Section 2 recalls some background on the pp studied
here. Moreover, the compensator of the pp is derived in a straightforward manner. In
Section 3, we report results about convergence in distribution of the pp to an HPP. Con-
nection to problem of fast modulation in the case of an MMPP is briefly addressed in
Subsection 3.3. Rate of convergence in total variation of the pp is stated in Section 4.
Appendix A recalls some estimate of convergence rate of singularly perturbated gener-
ator provided in [18]. The derivation of an inequality used in the text is reported in
Appendix B.

2 Definition of the counting process. Compensator

2.1 Definition of the model

We do not report the rationale underlying the definition of the reliability model discussed
here. We refer to [9] for details. We just need of its mathematical formulation.

Parameters µ(·, ·), µ(·) are as in Introduction. These failures was called secondary
events in [9]. Process X = (Xt)t is an irreducible CTMC with infinitesimal genera-
tor Q = (Q(i, j))i,j∈M where M is the finite set {1, . . . ,M}. Xt is the active com-
ponent at time t for a failure-free system, that is X is the execution process. Vector
α = (α(i))i∈M denotes the distribution of random variable X0. New parameters λ(i, j)
and λ(i) (i, j ∈ M) are introduced with the same meaning than µ(i, j) and µ(i). But
when such a type of failure happens in module i or during a transition from module i,
there is a probability p(i, k) that execution restarts in module k. So that, for each i ∈ M,
(p(i, k))k∈M is a probability distribution. Such event was referred as to a primary fail-
ure in [9]. Simultaneous occurrence of a primary and secondary events is neglected. For
simplicity, we do not consider delay in recovering an operational state as used in [9].

Then taking into account failure occurrences, random variable X∗
t gives the active

component at time t. The random variable Nt counts the number of (primary and sec-
ondary) failures in interval ]0, t] (N(0) = 0). Thus, N = (Nt)t is the counting process of
the failure pp. Under the various assumptions in [9], the bivariate process Z :=

(
Nt, X

∗
t

)
t

can be considered as a CTMC over the state space S = N×M. Its infinitesimal generator,
denoted by G, has the special structure

G :=




D0 D1 0 · · ·
0 D0 D1

. . .
...

. . . . . . . . .




using a lexicographic order on state space S. Matrices D0 and D1 are defined by

D0(i, j) := Q(i, j)(1− λ(i, j))(1− µ(i, j)) if i 6= j,

D0(i, i) := −
∑

j 6=i

Q(i, j)− λ(i)− µ(i);
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D1(i, j) :=
[
λ(i) +

∑

k 6=i

Q(i, k)λ(i, k)
]
p(i, j) +Q(i, j)[1− λ(i, j)]µ(i, j) if i 6= j,

D1(i, i) :=
[
λ(i) +

∑

k 6=i

Q(i, k)λ(i, k)
]
p(i, i) + µ(i).

Note that maxx |G(x, x)| < +∞. The structure of the generator G shows that N is the
counting process of a MAP. Finally, X∗ is a CTMC with state spaceM, initial distribution
α and generator

Q∗ := D0 +D1.

X∗ is supposed to be right continuous with left limits (c.a.d-l.a.g.). If the failure param-
eters are assumed to be such that λ(i, j) < 1 for any (i, j), then X∗ is irreducible since X
is. This assumption is not very stringent.

Example 2.1 (Littlewood’s model)
Assume that there is no primary failures, that is, λ(i) = 0 and λ(i, j) = 0 for all i, j ∈ M.
We obtain the model of Littlewood. Then matrices D0 and D1 are given by

D0(i, j) =

{
Q(i, j)(1− µ(i, j)) if i 6= j,

−
∑

j 6=i Q(i, j)− µ(i) if i = j,
D1(i, j) =

{
Q(i, j)µ(i, j) if i 6= j,

µ(i) if i = j.

Furthermore, we have Q∗ = Q and we retrieve the fact that failures do not affect the
execution process.

Example 2.2 (Markov modulated Poisson Process)
Another interesting point process is the one obtained by assuming in Littlewood’s model
that the probability of a secondary failure during a control transfer is 0. In this case,
setting µ(i, j) = 0 for all i, j ∈ M in the previous expressions, we get D0 = Q−diag(µ(i))
and D1 = diag(µ(i)). This an MMPP.

Note that Z ′ = (X∗
t , Nt)t is also a Markov process with homogeneous second compo-

nent as defined in [5], or a Markov-additive process of arrivals discussed in [16].

2.2 Compensator and intensity of the counting process

The basic facts on point processes, martingales, compensator and intensity used in this
paper are reported in [2]. A nice survey on point processes is [17]. For any process
V = (Vt)t, FV = (FV

t )t will denote its internal history, i.e. FV
t := σ(Vs, s ≤ t).

Considering the bivariate process Z to analyze the counting process N allows to deal
with a Markov process with discrete state space. Thus, we can take advantage of the
powerful analytic theory and the computational material developed for such class of pro-
cesses. This fact was exploited in [10],[9] to assess various reliability measures related
to the transient behavior of the counting process. Due to the special structure of the
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generator G of Z, N may be interpreted as the counter of specific transitions in Z. More
precisely, if we are interested in the following pairs of states in S

T :=
{
((n, i); (n+ 1, j)), i, j ∈ M, n ≥ 0

}
,

then

Nt =
∑

(x,y)∈T

∑

0<s≤t

1{Zs−=x,Zs=y}

=
∑

(x,y)∈T

Nt(x, y). (2.1)

In other words, Nt counts the transitions from state x to y (x, y ∈ T ) in interval ]0, t].
It is well-known (see e.g. [2]) that for a counter N(x, y) = (Nt(x, y))t of transitions from
state x to y in a Markov chain, we have

Nt(x, y)−
∫ t

0

1{Zs−=x}G(x, y)ds

is a FZ = (FZ
t )t martingale. The random function

λt(x, y) := 1{Zt−=x}G(x, y) (2.2)

is the FZ-intensity of N(x, y) and

At(x, y) :=

∫ t

0

λs(x, y)ds

is the FZ-compensator (FZ
t dual predictable-projection) of N(x, y). Then it is easily seen

that M = (Mt)t with Mt = Nt − At and

At =
∑

(x,y)∈T

At(x, y)

is a FZ-martingale. The FZ-intensity of N is

λt :=
∑

(x,y)∈T

1{Zs−=x}G(x, y)

=
∑

n≥0

∑

i∈M

∑

j∈M

G((n, i); (n+ 1, j))1{(Nt−,X∗

t−
)=(n,i)}

=
∑

n≥0

∑

i∈M

∑

j∈M

D1(i, j)1{(Nt−,X∗

t−
)=(n,i)}

=
∑

i∈M

1{X∗

t−
=i}

[∑

j∈M

D1(i, j)
]
=
∑

j∈M

D1(X
∗
t−, j).
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In the case of Example 2.1, the intensity of the counting process corresponding to Little-
wood’s model is

µ(Xt−) +
∑

j 6=Xt−

Q(Xt−, j)µ(Xt−, j).

In the case of Example 2.2, we retrieve the well-known expression for the F (N,X)-
intensity for an MMPP

µ(Xt−).

3 Convergence of the counting process

3.1 What does it mean that failure parameters are small?

A basic way to represent smaller and smaller failure parameters is to multiply each of
them by a scalar ε and to investigate the behavior of the counting process N as ε tends
to 0. Thus, we consider the perturbated failure parameters

ελ(i), ελ(i, j), εµ(i), εµ(i, j), i, j ∈ M. (3.1)

Let us consider the example of an MMPP (see Example 2.2) with associated matrices

Q =

(
−1 1
1 −1

)
D1 =

(
µ(1) 0
0 µ(2)

)

(µ(1) 6= µ(2)) and with α = π = (1/2, 1/2) (i.e. with a stationary environment). Matrix

D
(ε)
0 is

D
(ε)
0 = Q−

(
µ(1)ε 0
0 µ(2)ε

)
.

If T is the time to first failure, then

P{T > t} = P{Nt = 0} = π exp
(
D

(ε)
0 t
)
1t.

Setting a = 4 + (µ(1)− µ(2))2ε2, we have

π exp
(
D

(ε)
0 t
)
1t =

[
cosh

(
t
√
a

2

)
+

2√
a
sinh

(
t
√
a

2

)]
exp(−t)

× exp (−(µ(1)π(1) + µ(2)π(2))ε t)

As it is expected, P{T > t} converges to 1 as ε tends to 0. Therefore, convergence
in distribution of the counting process to an HPP, i.e. weak convergence of the finite-
dimensional distributions of N to those of an HPP, can not take place at the current time
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scale. If we investigate the asymptotic distribution of T at time scale t/ε, we get from
previous expression for P{T > t}

lim
ε→0

P{T > t/ε} = exp
(
− (µ(1)π(1) + µ(2)π(2)) t

)
.

Therefore, we will deal with the counting process N (ε) = (N
(ε)
t )t defined by

N
(ε)
t = N t

ε

whereNt counts the number of failures in interval ]0, t] for the reliability model of Section 2

with system (3.1) of perturbated failure parameters. D
(ε)
0 , D

(ε)
1 are the matrices associated

with model N . Note that

D
(ε)
1 = εB + ε2L (3.2)

with L(i, j) =

{
−Q(i, j)λ(i, j)µ(i, j) if j 6= i
0 if j = i

B(i, j) =

{ [
λ(i) +

∑
k 6=i Q(i, k)λ(i, k)

]
p(i, j) +Q(i, j)µ(i, j) if j 6= i

D1(i, i) if j = i

Note that B is a nonnegative matrix. The Markov processes X∗ := (X∗
t )t and X∗,ε :=

(X∗
t/ε)t have as generator Q∗ = D

(ε)
0 +D

(ε)
1 and Q∗,ε := Q∗/ε respectively.

3.2 Convergence of compensators

Using development of Subsection 2.2, the F (N(ε),X∗,ε)-compensator of N (ε) is

A
(ε)
t =

∫ t/ε

0

∑

j∈M

D
(ε)
1 (X∗

s−, j)ds

= ε

∫ t/ε

0

∑

j∈M

B(X∗
s−, j)ds+ ε2

∫ t/ε

0

∑

j∈M

L(X∗
s−, j)ds from (3.2)

=
∑

i∈M

∫ t/ε

0

ε1{X∗

s−
=i}ds

∑

j∈M

B(i, j) +
∑

i∈M

∫ t/ε

0

ε21{X∗

s−
=i}ds

∑

j∈M

L(i, j). (3.3)

SinceX∗ is c.a.d-l.a.g., we have for almost all ω ∈ Ω,X∗
s (ω) = X∗

s−(ω) except for countably
many s. Thus, we can replace X∗

s− by X∗
s in the above integrals. This observation will

be used to equate similar integrals throughout this paper.
Now, let us consider the Littlewood’s model corresponding to Example 2.1. Failures

do not affect the execution process, that is X∗ = X and Q∗ = Q. Then

A
(ε)
t =

∑

i∈M

ε

∫ t/ε

0

1{Xs=i}ds
∑

j∈M

B(i, j).
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It follows from well-known time-average properties of cumulative process
∫ t

0
f(Xs)ds for

an irreducible Markov process X (see [3]) that (ε/t)
∫ t/ε

0
1{Xs=i}ds converges a.s. to π(i)

where π is the stationary distribution of X. Thus, we derive that

A
(ε)
t

a.s.−→
ε→0

t
∑

i∈M

π(i)
∑

j∈M

B(i, j) = λt

with λ as in (1). In particular this implies the probability convergence of A
(ε)
t to λ t. We

recognize the compensator of an HPP with intensity λ. It follows from [7, Th 1] that

N (ε) d−→
ε→0

P

where P = (Pt)t is the counting process of an HPP with parameter λ. We have shown that
Theorem 3.1 holds for an MMPP or the Littlewood’s reliability model (Examples 2.1,2.2).

Since convergence in L2-norm implies convergence in probability, the following lemma
will give the convergence in probability of compensator A

(ε)
t to λt as ε tends to 0 for the

general reliability model of Section 2.

Lemma 3.1 If probability vector π is such that πQ = 0, then

lim
ε→0

E

(
ε

∫ t/ε

0

(
1{X∗

s=i} − π(i)
)
ds

)2

= 0.

ProofT. he perturbated generator Q∗ = D
(ε)
0 +D

(ε)
1 of X∗ can be decomposed under the

following form

Q∗ = Q+Rε (3.4)

with R(i, j) =

{ [
λ(i) +

∑
k 6=i Q(i, k)λ(i, k)

]
p(i, j)−Q(i, j)λ(i, j) if j 6= i[

λ(i) +
∑

k 6=i Q(i, k)λ(i, k)
]
p(i, i)− λ(i) if j = i

Changes of variables u = sε gives that ε
∫ t/ε

0
1{X∗

s=i}ds =
∫ t

0
1{X∗,ε

s =i}ds. Recall that

(X∗,ε
t )t has Q∗/ε = Q/ε + R as generator. It is easily checked R1It = 0 where 1It is the

M -dimensional column vector whose all entries are 1. In such a case, [18, Corollary C.1,p
349] gives the estimate

E

∣∣∣∣
∫ t

0

(
1{X∗,ε

s =i} − π(i)
)
ds

∣∣∣∣
2

≤ C(1 + t2) ε.

The convergence of
∫ t

0
1{X∗,ε

s =i}ds to π(i) in L2-norm as ε tends to 0, follows from the
previous estimate. �

The following theorem follows from [7, Th 1].
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Theorem 3.1 Probability vector π is such that πQ = 0. As ε tends to 0, the counting
process N (ε) =

(
Nt/ε

)
t
converges in distribution to the counting process of an HPP with

intensity

λ =
∑

i∈M

π(i)

[
µ(i) + λ(i) +

∑

j 6=i

Q(i, j)
[
µ(i, j) + λ(i, j)

]]
. (3.5)

3.3 Fast modulation in MMPP

When we consider an MMPP (see Example 2.2), the previous issue is equivalent to inves-
tigate the asymptotic of a Poisson process with an intensity modulated by a fast Markov
chain. Indeed, the compensator of N (ε) is then

A
(ε)
t = ε

∫ t/ε

0

µ(Xs−)ds

=

∫ t

0

µ(X s

ε
−)ds with changes of variable u = εs

The Markov chain X(ε) = (Xt/ε)t has the generator Q/ε. As ε tends to 0, it is now clear
that introduction of small parameter ε speeds up the rate of switches between states.
Theorem 3.1 states that the asymptotic process is an HPP with intensity

λ =
∑

i∈M

π(i)µ(i).

This fact is known and has been investigated for various applications. The closest context
of reliability theory is [1], where the underlying Poisson process is either homogeneous
or nonhomogeneous. Proofs are based on asymptotic expansion of the transition semi-
group of the bivariate Markov process Z(ε). Introduction of time-dependent intensity is
not relevant in our context. Indeed, the decrease of failure parameters, or the reliability
growth, is already taken into account by the small parameter ε.

The case where the modulating process is a finite nonhomogeneous Markov process
X is addressed in [4]. The asymptotic process is a nonhomogeneous Poisson process with
suitable ergodicity assumptions on X.

From a strictly mathematical point of view, the issue addressed in this paper is equiv-
alent to both a fast modulating MP X∗ (with generator Q∗/ε) and the introduction of a
small scalar ε only in the failure parameters µ(·, ·) corresponding to a transition between
states. Speed up the modulating MP X∗ at rate 1/ε implies a speeding up of the number
of transitions between states of X∗. Therefore, we have to compensate this ”explosion”
by introducing a small factor ε in µ(·, ·).
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4 Convergence rate

We provide in this section an estimate of the convergence rate of the finite-dimensional
distributions of N (ε) to those of an HPP with intensity as in Theorem 3.1. The counting
process of the HPP is denoted by P = (Pt)t. Note that λ in (3.5) is the scalar product
〈π,B1It〉, where 1It is the M -dimensional column vector whose all entries are 1. We can
write the limit compensator as

At = 〈π,B1It〉 t. (4.1)

The FN(ε),X∗,ε

-compensator of N (ε) is from (3.3)

A
(ε)
t =

∑

i∈M

(B + εL)1It)(i)

∫ t/ε

0

ε1{X∗

s−
=i}ds

=
∑

i∈M

(B + εL)1It)(i)

∫ t

0

1{X∗,ε

s−
=i}ds (setting u = sε)

=

∫ t

0

〈Y (ε)
s− , (B + εL)1It〉ds (4.2)

where Y
(ε)
s :=

(
1{X∗,ε

s =i}

)
i∈M

. Hence, the FN(ε),X∗,ε

-intensity of N (ε) is

λ(ε)
s := 〈Y (ε)

s− , (B + εL)1It〉. (4.3)

Let T be any positive scalar and T := {t0, t1, . . . , tn} with 0 = t0 < t1 < · · · <

tn = T . To evaluate proximity between the respective distributions L(N (ε)
T

) and L(PT) of

N
(ε)
T

:= (N
(ε)
t1 , . . . , N

(ε)
tn ) and PT := (Pt1 , . . . , Ptn), the distance in total variation, denoted

by dTV

(
L(N (ε)

T
),L(PT)

)
, may be used, that is [17]

dTV

(
L(N (ε)

T
),L(PT)

) def
= sup

B⊂Nn

∣∣∣P{N (ε)
T

∈ B} − P{PT ∈ B}
∣∣∣

=
1

2

∑

k∈Nn

∣∣P{N (ε)
T

= k} − P{PT = k}
∣∣

For a locally bounded variation function t 7→ f(t), the total variation in the interval [0, T ]
is

Var[0,T ](f)
def
= sup

{t1,...,tn}∈P([0,T ])

n∑

i=1

|f(ti)− f(ti−1)|

where P([0, T ]) is the set of all the finite subdivisions of the interval [0, T ].
In this section, we state that the finite-dimensional distributions of N (ε) converges in

total variation to those of an HPP with intensity λ at rate ε. Proof is borrowed from
[8, Th 6.1] where a similar result is stated for an MMPP. This is heavily based on the
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following estimate of the total variation between finite-dimensional distributions of N (ε)

and P [8, Th 3.1]

dTV

(
L(N (ε)

T
),L(PT)

)
≤ E Var[0,T ](Â

(ε) − A).

where Â(ε) is the FN(ε)
-compensator of N (ε). Â(ε) is from (4.2) and [11, Th 18.3]

Â
(ε)
t =

∫ t

0

〈Ŷ (ε)
s− , (B + εL)1It〉ds

with Ŷ
(ε)
t :=

(
P{X∗,ε

t = i | FN(ε)

t }
)
i∈M

. Hence, the FN(ε)
-intensity of N (ε) is

λ̂(ε)
s := 〈Ŷ (ε)

s− , (B + εL)1It〉. (4.4)

Therefore, we obtain from (4.1) and (4.2) that

dTV

(
L(N (ε)

T
),L(PT)

)
≤ E Var[0,T ](

∫ t

0

〈Ŷ (ε)
s− − π,B1It〉+ ε〈Ŷ (ε)

s− , L1It〉ds)

= E

∫ T

0

∣∣〈Ŷ (ε)
s− − π,B1It〉+ ε〈Ŷ (ε)

s− , L1It〉
∣∣ds

≤ E

∫ T

0

∣∣〈Ŷ (ε)
s− − π,B1It〉

∣∣ds+ εE

∫ T

0

∣∣〈Ŷ (ε)
s− , L1It〉

∣∣ds

≤ E

∫ T

0

∣∣〈Ŷ (ε)
s− − π,B1It〉

∣∣ds+ εCT (4.5)

(since Ŷ (ε) is bounded).

Since Ŷ
(ε)
s and π are stochastic vectors, it follows from (.19)

∣∣〈Ŷ (ε)
s − π,B1It〉

∣∣ ≤ δ

2
‖Ŷ (ε)

s − π‖1 (4.6)

where δ := max
(
B1It(i)

)
− min

(
B1It(i)

)
and ‖ · ‖1 is the l1-norm. Hence, it remains to

estimate in (4.5) the convergence rate of ‖Ŷ (ε)
s − π‖1 to 0 when ε → 0. The first step

consists in writing a filtering equation for vector Y
(ε)
t .

4.1 Filtering equation for Y (ε)

Let us recall that Y
(ε)
t =

(
1{X∗,ε

t =i}

)
i∈M

. Note that each component Y
(ε)
t (i) of vector Y

(ε)
t

is a bounded random variable. We basically follows [2, Ch IV].

Lemma 4.1 Define Ŷ
(ε)
t := E[Y

(ε)
t | FN(ε)

t ]. Let α be the probability distribution of X∗ε
0 .

We have for all t ≥ 0

Ŷ
(ε)
t = α +

1

ε

∫ t

0

Ŷ
(ε)
s− Q∗ds+

∫ t

0

v
(ε)
s−(dN

(ε)
s − λ̂(ε)

s ds) (4.7)

11



where λ̂(ε) is the FN(ε)
-intensity of N (ε) given in (4.4) and

v
(ε)
s− :=

Ŷ
(ε)
s− (B + εL)

λ̂
(ε)
s

− Ŷ
(ε)
s− . (4.8)

ProofW. e recall that the MP X∗,ε has the generator Q∗,ε = Q∗/ε. It follows from
Dynkin formula that

Y
(ε)
t = Y

(ε)
0 +

1

ε

∫ t

0

Y
(ε)
s− Q∗ds+Mt (4.9)

where M = (Mt) is a FX∗,ε

-martingale. Then applying [2, Ch IV, Th 1] to the represen-

tation (4.9) of the bounded process Y (ε), we get for Ŷ
(ε)
t

Ŷ
(ε)
t = Ŷ

(ε)
0 +

1

ε

∫ t

0

Ŷ
(ε)
s− Q∗ds+ M̂t

where M̂ = (M̂t) is a FN(ε)
-martingale. Now, [2, Ch III, Th 17] gives us the following

representation of the FN(ε)
-martingale M̂

∫ t

0

Gs(dN
(ε)
s − λ̂(ε)

s ds)

where λ̂(ε) is the FN(ε)
-intensity of N (ε) and G = (Gt) is a FN(ε)

-predictable process called

the innovations process. We also know from [2, Ch IV, Th 2] that Gt := G1,t− Ŷ
(ε)
t− +G3,t,

where the entry i of vectors G1,s and G3,s must be computed from

E

∫ t

0

Cs Ys(i)λ
(ε)
s ds = E

∫ t

0

Cs G1,s(i) λ̂
(ε)
s ds (4.10)

E
∑

0<s≤t

Cs ∆Ms(i)∆N (ε)
s = E

∫ t

0

Cs G3,s(i) λ̂
(ε)
s ds (4.11)

where C := (Cs)s is any nonnegative FN(ε)
-predictable process, ∆Ms(i) = Ms(i)−Ms−(i)

and ∆N
(ε)
s = N

(ε)
s − N

(ε)
s− are the jumps of martingale M(i) and counting process N (ε),

respectively. Random processes λ(ε) and λ̂(ε) are given by (4.3) and (4.4). We determine
an explicit expression for G1,t and G3,t. This is similar to the MMPP case (see [2, page
98]) else but X∗,ε and N (ε) may have common jumps.

12



The left hand-side of Equality (4.10) can be rewritten as

E

∫ t

0

Cs Y
(ε)
s (i)λ(ε)

s ds = E

∫ t

0

Cs Y
(ε)
s− (i)λ(ε)

s ds

= E

∫ t

0

Cs Y
(ε)
s− (i) 〈Y (ε)

s− , (B + εL)1It〉 ds from (4.3)

= E

∫ t

0

Cs Y
(ε)
s− (i)

(
(B + εL)1It

)
(i) ds

= E

∫ t

0

Cs Ŷ
(ε)
s− (i)

(
(B + εL)1It

)
(i) ds since Cs is FN(ε)

s -measurable.

Then, we deduce from (4.10) that

G1,s =

(
Ŷ

(ε)
s− (i)

(
(B + εL)1It

)
(i)

λ̂
(ε)
s

)

i∈M

.

The counting process N (ε) has the following representation (see (2.1))

N
(ε)
t =

+∞∑

n=0

∑

j∈M

∑

k∈M

N
(ε)
t

(
(n, j), (n+ 1, k)

)
. (4.12)

whereN
(ε)
t (x, y) is the cumulative number of transitions of the bivariate process (N (ε), X∗,ε)

up to time t. Since ∆Ms(i) = ∆Y
(ε)
s (i), we have

∑

0<s≤t

Cs ∆Ms(i)∆N (ε)
s =

∑

0<s≤t

Cs Y
(ε)
s (i)∆N (ε)

s −
∑

0<s≤t

Cs Y
(ε)
s− (i)∆N (ε)

s . (4.13)

The first term in the right-hand side of the last equality can be rewritten from (4.12)

∑

0<s≤t

Cs Y
(ε)
s (i)∆N (ε)

s =
∑

0<s≤t

Cs Y
(ε)
s (i)

+∞∑

n=0

∑

j∈M

∑

k∈M

∆N (ε)
s

(
(n, j), (n+ 1, k)

)
.

It is easily seen that the right-hand side of the last equality is also

∑

0<s≤t

Cs

+∞∑

n=0

∑

j∈M

Y
(ε)
s− (j)∆N (ε)

s

(
(n, j), (n+ 1, i)

)
.

So, we have from (4.13) and the previous equality

∑

0<s≤t

Cs ∆Ms(i)∆N (ε)
s =

∫ t

0

Cs

+∞∑

n=0

∑

j∈M

Y
(ε)
s− (j) dN (ε)

s

(
(n, j), (n+1, i)

)
−
∫ t

0

Cs Y
(ε)
s− (i) dN (ε)

s

13



Since the processes C and Y (ε) are FN(ε),X∗,ε

-predictable, we get from the definition of
the compensator, the formulae (2.2) and (4.3)

E
∑

0<s≤t

Cs ∆Ms(i)∆N (ε)
s

= E

∫ t

0

Cs

[∑

j∈M

Y
(ε)
s− (j)

(
B(j, i) + εL(j, i)

)
− Y

(ε)
s− (i) 〈Y (ε)

s− , (B + εL)1It〉
]
ds

= E

∫ t

0

Cs

[∑

j∈M

Y
(ε)
s− (j)

(
B(j, i) + εL(j, i)

)
− Y

(ε)
s− (i)

∑

j∈M

(
B(i, j) + εL(i, j)

)
]
ds

= E

∫ t

0

Cs

[∑

j 6=i

Y
(ε)
s− (j)

(
B(j, i) + εL(j, i)

)
− Y

(ε)
s− (i)

∑

j 6=i

(
B(i, j) + εL(i, j)

)
]
ds

= E

∫ t

0

Cs

[∑

j 6=i

Ŷ
(ε)
s− (j)

(
B(j, i) + εL(j, i)

)
− Ŷ

(ε)
s− (i)

∑

j 6=i

(
B(i, j) + εL(i, j)

)
]
ds

since Cs is FN(ε)

s -measurable.

We get from (4.11) that

G3,s(i) =

∑
j 6=i Ŷ

(ε)
s− (j)

(
B(j, i) + εL(j, i)

)
− Ŷ

(ε)
s− (i)

∑
j 6=i

(
B(i, j) + εL(i, j)

)

λ̂
(ε)
s

.

Consequently, the gain Gs has the form reported in Lemma 4.1. �

Lemma 4.2 Let α be the probability distribution of X∗ε
0 . Then Equation (4.7) has the

unique solution

Ŷ
(ε)
t = α exp

(
Q∗t/ε

)
+

∫ t

0

v
(ε)
s− exp

(
Q∗(t− s)/ε

)
(dN (ε)

s − λ̂(ε)
s ds). (4.14)

ProofF. irst, let us check that the right-hand side term of (4.14) is a solution of (4.7). It
has the form UtVt where

Ut = α +

∫ t

0

v
(ε)
s− exp

(
−Q∗s/ε

)
(dN (ε)

s − λ̂(ε)
s ds)

Vt = exp
(
Q∗t/ε

)
.

Using an integration by parts [2, T2, p 336], we obtain

UtVt = U0V0 +

∫ t

0

Us dVs +

∫ t

0

dUs Vs

= α +
1

ε

∫ t

0

(UsVs)Q
∗ds+

∫ t

0

v
(ε)
s− (dN (ε)

s − λ̂(ε)
s ds).
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Second, note that (Ŷ
(ε)
t − UtVt)t is a solution of the homogeneous linear differential

equation

y(t) =
1

ε

∫ t

0

y(s)Q∗ds

with initial condition y(0) = 0. Then, Ŷ
(ε)
t − UtVt ≡ 0. �

4.2 Convergence rate

Theorem 4.1 P = (Pt) is the counting process of an HPP with intensity

λ = 〈π,B1It〉 =
∑

i∈M

π(i)

[
µ(i) + λ(i) +

∑

j 6=i

Q(i, j)
(
λ(i, j) + µ(i, j)

)]

where π is the probability distribution such that πQ = 0. For any T > 0, there exists a
constant CT such that

dTV

(
L(N (ε)

T
),L(PT)

)
≤ CT ε.

ProofL. et us recall that (see (4.5) and (4.6))

dTV

(
L(N (ε)

T
),L(PT)

)
≤ δ

2
E

∫ T

0

‖Ŷ (ε)
t − π‖1dt+ C1,T ε.

We just have to control the first term in the right-hand side of the inequality. Since
v
(ε)
s−1I

t = 0, we can write from (4.14)

Ŷ
(ε)
t − π = α exp

(
Q∗t/ε

)
− π

+

∫ t

0

v
(ε)
s−

[
exp

(
Q∗(t− s)/ε

)
− 1Itπ

]
(dN (ε)

s − λ̂(ε)
s ds).

Using the triangle inequality, it is easily seen that

E

∫ T

0

‖Ŷ (ε)
t − π‖1dt ≤

∫ T

0

‖α exp
(
Q∗t/ε

)
− π‖1dt (4.15)

+E

∫ T

0

∥∥∥∥
∫ t

0

v
(ε)
s−

[
exp

(
Q∗(t− s)/ε

)
− 1Itπ

]
(dN (ε)

s − λ̂(ε)
s ds)

∥∥∥∥
1

dt.

In a first step, let us consider the former term in the right hand side of the previous
inequality. We have from (.18) with Q(ε) = Q∗/ε = Q/ε+R (see (3.4)) that for all s ≥ 0

‖α exp
(
Q∗t/ε

)
− π‖1 ≤ C1

(
ε+ exp(−ρt/ε)

)
.

Then ∫ T

0

‖α exp
(
Q∗t/ε

)
− π‖1 dt ≤ (C1 T +

1

ρ
) ε = C2,T ε. (4.16)
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In a second step, we have

E

∥∥∥∥
∫ t

0

v
(ε)
s−

[
exp

(
Q∗(t− s)/ε

)
− 1Itπ

]
(dN (ε)

s − λ̂(ε)
s ds)

∥∥∥∥
1

≤ E

∫ t

0

∥∥v(ε)s−

[
exp

(
Q∗(t− s)/ε

)
− 1Itπ

] ∥∥
1
(dN (ε)

s + λ̂(ε)
s ds)

= 2E

∫ t

0

∥∥v(ε)s−

[
exp

(
Q∗(t− s)/ε

)
− 1Itπ

] ∥∥
1
λ̂(ε)
s ds

since λ̂
(ε)
s is the FN(ε)

-intensity of N (ε) and v
(ε)
s− is FN(ε)

-predictable. We recall that
‖xM‖1 ≤ ‖x‖1‖M‖1 for any vector x and matrix M , where ‖M‖1 := maxi

(∑
j |M(i, j)|

)

is the 1-matrix norm. Now, we get

∥∥∥v(ε)s−

[
exp

(
Q∗(t− s)/ε

)
− 1Itπ

]∥∥∥
1
≤ ‖v(ε)s−‖1 ‖ exp

(
Q∗(t− s)/ε

)
− 1Itπ‖1.

It follows from (.17) that for all s ≤ t

‖ exp
(
Q∗(t− s)/ε

)
− 1Itπ‖1 ≤ C2

(
ε+ exp(−(t− s)ρ/ε)

)
.

Since v
(ε)
s− is the difference between two probability vectors, we have ‖v(ε)s−‖1 ≤ 2. Using

(4.4) and ‖Ŷ (ε)
s− ‖1 = 1, we get ‖v(ε)s−‖1 λ̂(ε)

s ≤ 2 ‖(B + εL)1It‖∞. Then

‖v(ε)s−‖1 λ̂(ε)
s ≤ C3 + C4 ε

is uniformly bounded in s. Therefore, for all t ≥ 0, we can write

E

∫ t

0

∥∥v(ε)s−

[
exp(Q∗(t− s)/ε)− 1Itπ

] ∥∥
1
λ̂(ε)
s ds ≤ (C5 + εC6)

∫ t

0

(
ε+ exp(−(t− s)ρ/ε)

)
ds

≤ (C5 + εC6) (t ε+ C7 ε)

≤ (C8 t+ C9) ε. (for ε ≤ 1)

We deduce from the previous estimate (and Fubini’s theorem) that the second term in
the right-hand side of Inequality (4.15) is such that

E

∫ T

0

∥∥∥∥
∫ t

0

v
(ε)
s−

(
exp(Q∗(t− s)/ε)− 1Itπ

)
(dN (ε)

s − λ̂(ε)
s ds)

∥∥∥∥
1

dt

≤
∫ T

0

(C8 t+ C9) ε dt = C3,T ε (for ε ≤ 1).

Theorem 4.1 follows from (4.15) with the last inequality and (4.16). �
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Remark 4.1 With respect to Theorem 3.1, note that [7, Th 1] would give, in fact, con-
vergence in distribution of the counting process N (ε) to Poisson process P in the space of
all counting processes, equipped with the Skorokhod topology. Moreover, convergence in
variation also takes place in this space. Indeed, the distance in total variation over interval
[0, T ] between distributions of N (ε) and P is also bounded from above by E Var[0,T ](Â

(ε)−A)
(see [8, Th 4.1]). Thus, it follows from Theorem 4.1 that the rate of convergence is ε.

Remark 4.2 The order of the convergence rate in Theorem 4.1 cannot be improved in
general. This follows from [4, Section 5, Example 1], where the authors report a lower
bound for the distance in variation, that has order 1 in ε for a Poisson process modulated
by a 2-states Markov process.

Estimate of convergence rate
Let us consider a generator Q(ε) = Q1+Q2/ε where Q2 is assumed to be an irreducible

generator. There exists a probability vector π such that πQ2 = 0. The following estimates
are provided in [18, Lemma C.3, p 346]: for all t ≥ 0 and any probability vector α, there
exists constants K and ρ > 0 such that

‖ exp
(
Q(ε)t

)
− 1Itπ‖1 ≤ K

(
ε+ exp(−ρt/ε)

)
(.17)

‖α exp(Q(ε)t)− π‖1 ≤ K
(
ε+ exp(−ρt/ε)

)
(.18)

and ρ only depends upon Q2

A simple inequality
Let v be any M -dimensional vector. Any convex combinations 〈u1, v〉 and 〈u2, v〉

of scalars (v(i), i = 1, . . . ,M) are in the interval
[
min(v(i)),max(v(i))

]
, so that

∣∣〈u1 −
u2, v〉

∣∣ ≤ δ with δ := max(v(i))−min(v(i)).
Let α1 and α2 two stochastic vectors. Write α1 −α2 = (α1 −α2)

+ − (α1 −α2)
− where

w+ = (max(w(i), 0))i=1,...,M , w− = −(min(w(i), 0))i=1,...,M . Since (α1−α2)1I
t = 0, we have

‖α1 − α2‖1 = (α1 − α2)
+1It + (α1 − α2)

−1It = 2(α1 − α2)
+1It = 2(α1 − α2)

−1It, where ‖ · ‖1
is the l1-norm. Then, we may write the vector α1 − α2 as (u1 − u2) ‖α1 − α2‖1/2 where
u1, u2 are the stochastic vectors

u1 =
(α1 − α2)

+

(α1 − α2)+1I
t u2 =

(α1 − α2)
−

(α1 − α2)−1I
t .

Next, it follows from the first part that

∣∣〈α1 − α2, v〉
∣∣ =

∥∥α1 − α2‖1
2

∣∣〈u1 − u2, v〉
∣∣ ≤ δ

2

∥∥α1 − α2‖1. (.19)
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