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Linear dynamics for the state vector of Markov chain

functions

James Ledoux∗

01 September 2004

Abstract

Let (ϕ(Xn))n be a function of a finite-state Markov chain (Xn)n. In this note, we
investigate under which conditions the random variable ϕ(Xn) have the same distribution
as Yn (for every n), where (Yn)n is a Markov chain with fixed transition probability matrix.
In other words, for a deterministic function ϕ, we investigate the conditions under which
(Xn)n is weakly lumpable for the state vector. We show that the set of all probability
distributions of X0 such that (Xn)n is weakly lumpable for the state vector can be finitely
generated. The connections between our definition of lumpability and usual one’s, as the
proportional dynamics property, are discussed.

Keywords: Lumpability, Proportional dynamics, Rogers-Pitman matrix
AMS: 60J10

1 Introduction

Let us consider a discrete-time S-valued homogeneous Markov chain (HMC), (Xn)n with
S = {1, . . . , N}. Its transition probability matrix (tpm) is denoted by P . Such a stochastic
process is fully specified by the probability distribution distr(X0) of the random variable

X0 and the matrix P . A map ϕ from S = {1, . . . , N} into Ŝ = {1, . . . , N̂} such that

ϕ(S) = Ŝ, (with N̂ < N), is called a lumping map. We see that a lumping map ϕ is

specified by the N × N̂ -matrix Vϕ

x ∈ S, y ∈ Ŝ, Vϕ(x, y) := 1 if x ∈ ϕ−1(y) and 0 otherwise.

∗IRMAR UMR 6625 & INSA de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes cedex 7,
France
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We are interested in the lumped process (ϕ(Xn))n. Specifically, we consider the following
linear dynamic system

∀n ≥ 0,

{
αn+1 = αnP
α̂n = αnVϕ

where αn and α̂n are stochastic vectors corresponding to the probability distributions
of the random variables Xn and ϕ(Xn) respectively. When (ϕ(Xn))n is a Markov chain
for a fixed distr(X0), (Xn)n is said to be weakly lumpable [9]. The corresponding basic
properties are stated in [9], [17] and [10]. In this paper, we are only interested in a

concept of weak lumpability for the state vector. That means, there exists a N̂ × N̂
stochastic matrix P̂ such that, for a fixed distr(X0), the process (ϕ(Xn))n has the same

one-dimensional distributions than the Ŝ-valued Markov chain specified by the tpm P̂ and
the probability distribution distr(ϕ(X0)). In other words, the state probabilities vectors
(α̂n)n≥0, associated with the lumped process (ϕ(Xn))n, satisfy the difference equation

{
α̂n+1 = α̂nP̂ n ≥ 0
α̂0 = α0Vϕ.

When it holds for any distr(X0), (Xn)n is said to be strongly lumpable. In this last case,
we recover the concept of lumpability of a general linear dynamic system as discussed in
many papers and books (see e.g. [1], [5]).

Our work originates in the papers [3] and [13, 14] which attempt to simplify the
computation of the transient characteristics of a Markov model using lumping. Our
concept of lumpability is clearly relevant when assessing the probability distributions
distr(Xn), n ≥ 1. It may be also of some value when we are concerned with the computa-
tion of a measure which only depends on the occupation probabilities of a subset of states
by (Xn)n. Let us briefly illustrate our purpose on the following example.

Example 1.1
We consider the following Markov chain. It is derived from the reliability model described
Page 10. Its tpm is

P =




1/8 1/8 2/8 2/8 1/8 1/8
3/16 1/16 4/16 4/16 3/16 1/16
2/8 2/8 2/8 0 1/8 1/8
0 0 2/8 4/8 1/8 1/8
1/8 1/8 2/8 2/8 1/8 1/8
1/16 3/16 4/16 4/16 3/16 1/16




. (1.1)

The lumping map is defined by ϕ(1) = ϕ(2) = ϕ(3) = 1, ϕ(4) = ϕ(5) = ϕ(6) = 2. The
corresponding matrix Vϕ is

Vϕ =

(
1 1 1 0 0 0
0 0 0 1 1 1

)T

.
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Let us consider

P̂ =

(
5/8 3/8
3/8 5/8

)
(1.2)

as matrix P̂ .
If (ϕ(Xn)) was a Markov chain with tpm P̂ for the probability distribution distr(X0),

then every measure that only depends on the occupation of the subset of states {1, 2, 3}

and {4, 5, 6} by (Xn)n, could be computed from the {1, 2}-valued Markov model (distr(ϕ(X0)), P̂ ).
For instance, let us consider the probability mass function of the cumulative occupation
time of the subset {1, 2, 3} or {4, 5, 6}

∀n ≥ 1, Ci,n :=
n∑

k=1

1{
Xk∈ϕ−1(i)

} =
n∑

k=1

1{ϕ(Xk)=i}, i = 1, 2.

A closed-form of the distribution P{Ci,n = ·}, i = 1, 2 is provided in [18]. This is based on
difference equations which are very costly in terms of matrix computations. When weak
lumpability holds, we can compute this probability mass function from the two-states
Markov chain (distr(ϕ(X0)), P̂ ) by standard scalar equations. Unfortunately, we shall
show that (ϕ(Xn)) is not a Markov chain, for all initial probability distribution distr(X0).

If we now assume that we are only interested in the expected cumulative occupation
times

∀n ≥ 1,
(
E
[
Ci,n

])
i=1,2

=
( n∑

k=1

P
{
Xk ∈ ϕ−1(i)

})
i=1,2

=
( n∑

k=1

P{ϕ(Xk) = i}
)
i=1,2

=
n∑

k=1

αP kVϕ

where α is the stochastic vector corresponding to the probability distribution distr(X0).
We set α = (1/6, 1/3, 1/6, 0, 1/6, 1/6). It is an easy computation to verify that

∀n ≥ 1,
(
E
[
Ci,n

])
i=1,2

= (2/3, 1/3)
n∑

k=1

P̂ k,

with P̂ the 2 × 2-matrix given in (1.2). In fact, we shall obtain that the above equality
still holds when distr(X0) is any convex combination of the stochastic vectors

(1/2, 0, 1/2, 0, 0, 0) (0, 1/2, 1/2, 0, 0, 0) (0, 0, 1/2, 1/2, 0, 0)
(1/2, 0, 0, 0, 1/2, 0) (0, 1/2, 0, 0, 1/2, 0) (0, 0, 0, 1/2, 1/2, 0)
(0, 0, 0, 1/2, 0, 1/2) (0, 1/2, 0, 0, 0, 1/2) (1/2, 0, 0, 0, 0, 1/2).

In such cases, (distr(X0), P ) is said to be weakly lumpable for the state vector. For such a
distr(X0), the computation of transient measures related to (and only to) the probability
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function mass of random variables 1{Xn∈ϕ−1(i)} i = 1, 2, may be carried out from the two-

states Markov chain (distr(X0)Vϕ, P̂ ). Instances of such measures are the point availability
in reliability, the expected accumulated reward in performance evaluation, or the output
process of some discrete-time queues.

The aim of this note is to establish basic properties associated with the notion of
lumpability introduced above. We also document its relationship with different concepts
of lumpability used in [3, 13, 14], in particular with the so-called proportional dynamics
property.

The article is organized as follows. In Section 2, we analyze the set all probability dis-
tributions distr(X0) such that (Xn)n is weakly lumpable for the state vector. In particular,
we show that this set can be finitely generated. In Section 3, we discuss a connection be-
tween our lumpability property and the Chapman-Kolmogorov condition for the lumped
process (ϕ(Xn))n. In Section 4, we investigate the connections between a lumpability
condition used in [3], the proportional dynamics property as defined in [13, 14] and the
lumpability property introduced above. We conclude in Section 5.

Basic notation

By convention, the vectors are row vectors. The ith component of a vector α is denoted
by α(i). The column vectors are indicated by means of the transpose operator (.)T. The
vector having all components equal to 1 (resp. 0) is merely denoted by 1 (resp. 0). The

entry (i, j) of a matrix A is denoted by A(i, j). The matrix Î denotes the N̂ × N̂ unity
matrix.
An HMC specified by the tpm P and the initial probability distribution distr(X0) is
denoted by (distr(X0), P ).
A lumping map ϕ is assumed to be nondecreasing for notational convenience. If the
stochastic vector α corresponds to distr(X0), then distr(ϕ(X0)) is specified by the vector(
Pα{ϕ(X0) = y}

)
y∈Ŝ

= αVϕ .

For any y ∈ Ŝ, let Πy be the N × N matrix defined by Πy(x, x) := 1 if x ∈ ϕ−1(y) and
Πy(x1, x2) := 0 otherwise. This is the matrix of the orthogonal projector on the ϕ−1(y)-
coordinates that we call the y-lumping projector.
For any nonnegative vector α such that αΠy1

T > 0, α(y) denotes the vector αΠy/αΠy1
T.

A N̂ × N nonnegative matrix U such that UVϕ = Î is called a ϕ-block-diagonal matrix.

For any nonnegative vector α such that αVϕ > 0, the N̂ ×N -matrix Uα defined by

y ∈ Ŝ, x ∈ S Uα(y, x) := α(y)(x)

is ϕ-block-diagonal.
The definition and the basic properties of a cone used throughout this paper, are borrowed
from [2]. For any M ×N matrix G, Cone(G) is the cone generated by the M rows of G.
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2 Lumpability for the state probabilities vector

Let us define the concept of lumpability of a Markov chain for the state vector.

Definition 2.1 Let P̂ be a N̂ × N̂ stochastic matrix. The HMC (Xn)n with tpm P is

said to be weakly lumpable for the state vector with matrix P̂ , if there exists a probabil-
ity distribution distr(X0) such that the process (ϕ(Xn))n has the same one-dimensional

distributions than the Markov chain
(
distr(ϕ(X0)), P̂

)
, that is, iff

∀n ≥ 1, αP nVϕ = αVϕP̂
n (2.1)

when distr(X0) = α. If Property (2.1) holds for any distr(X0), (Xn)n is said to be strongly
lumpable (for the state vector).

Let us recall that the Markov chain (Xn)n has the standard weak lumpability property

when (ϕ(Xn))n and
(
distr(ϕ(X0)), P̂

)
have the same finite dimensional distributions (see

[10]). In other words, the stochastic processes (ϕ(Xn)) and
(
distr(ϕ(X0)), P̂

)
have the

same distribution. When it is true for every distr(X0), we obtain the standard definition
of strong lumpability. The usual weak lumpability property is clearly stronger than that
corresponding to Definition 2.1. We emphasize that the two concepts are quite different
in general but the difference has sometimes been overlooked in the literature (see e.g.
[6, 20]). This may be explained by the following fact. The standard strong lumpability
and the strong lumpability for the state vector are equivalent properties. This is proved
below. Let us recall that (Xn)n with tpm P is strongly lumpable with P̂ (see [9]) iff

PVϕ = VϕP̂ .

Proposition 2.1 (Xn)n is strongly lumpable with the matrix P̂ iff (Xn)n is strongly

lumpable for the state vector with P̂ . In this case, the matrix P̂ is U1PVϕ.

Proof. We just have to justify the “if part”. It follows from Relation (2.1) with n = 1

∀α ≥ 0, αPVϕ = αVϕP̂ ⇐⇒ ∀α ≥ 0, α
[
PVϕ − VϕP̂

]
= 0

⇐⇒ ∀α ∈ R
N , α

[
PVϕ − VϕP̂

]
= 0

⇐⇒ PVϕ = VϕP̂ .

Therefore, (Xn)n is strongly lumpable with the matrix P̂ . �

We are now interested in the set DM(P̂ ) of all distr(X0) such that (Xn)n is weakly

lumpable for the state vector with matrix P̂ . DM(P̂ ) is clearly the set of the stochastic
vectors belonging to

SM(P̂ ) :=
{
α ≥ 0 : ∀n ≥ 1, α[P nVϕ − VϕP̂

n] = 0
}
.
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If SM(P̂ ) 6= {0} then (Xn)n is weakly lumpable for the state vector with P̂ and

SM(P̂ ) =
⋂

n≥1

SM
[n] (2.2)

where SM
[n] denotes the polyhedral cone

SM
[n] :=

{
α ≥ 0 : α

[
P kVϕ − VϕP̂

k
]
= 0, for 1 ≤ k ≤ n

}
. (2.3)

2.1 Computation of SM(P̂ )

The computation of SM(P̂ ) may be carried out as follows. There is some similarity

with the computation of CM(P̂ ) in [17]. The comparison of these two sets is reported in
Section 2.2.

Theorem 2.1 The set SM(P̂ ) may be finitely generated. We have

SM(P̂ ) = SM
[N+1].

Proof. For n ≥ 1, , we have SM
[n+1] ⊆ SM

[n] ⊆ SM
[1] from Definition (2.3) of the

polyhedral cone SM
[n]. Now, let us show that

SM
[n+1] =

{
α ∈ SM

[n] : αP ∈ SM
[n]
}
. (2.4)

Indeed, we have the following equivalent assertions:

α ∈ SM
[n+1] ⇐⇒ k = 0, . . . , n α

[
P k+1Vϕ − VϕP̂

k+1
]
= 0 from (2.3)

⇐⇒ α ∈ SM
[n] and αPP kVϕ − αVϕP̂ P̂ k = 0, k = 1, . . . , n

⇐⇒ α ∈ SM
[n] and αPP kVϕ − αPVϕP̂

k = 0, k = 1, . . . , n

since α ∈ SM
[1]

⇐⇒ α ∈ SM
[n] and αP

[
P kVϕ − VϕP̂

k
]
= 0, k = 1, . . . , n

⇐⇒ α ∈ SM
[n] and αP ∈ SM

[n].

Next, it follows from (2.4) that

SM
[n+1] = SM

[n] ⇐⇒ SM
[n]P := {αP : α ∈ SM

[n]} ⊆ SM
[n].

When the inclusion in the right-hand side of the above statement holds, SM
[n] is said

to be invariant under the matrix P . When SM
[n+1] = SM

[n], it is easily seen from
(2.4) that SM

[n] = SM
[n+j], j ≥ 0. We deduce from Representation (2.2) of SM(P̂ ) that

SM(P̂ ) = SM
[n+j], j ≥ 0.
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Now, suppose the following statement to be true

dim(SM
[n+1]) = dim(SM

[n]) =⇒ SM
[n+1] = SM

[n]. (2.5)

The sequence
(
dim(SM

[n])
)
n≥1

, is nonincreasing. If there exists n ≥ 1 such that dim(SM
[n+1]) =

dim(SM
[n]), then SM

[n+1] = SM
[n] = SM(P̂ ) from (2.5) and (2.2). Consequently, the

equality SM(P̂ ) = SM
[N+1] follows from dim(SM

[1]) ≤ N .
The proof will be complete if we show that Assertion (2.5) is valid. Let us assume

that dim(SM
[n+1]) = dim(SM

[n]). For any n ≥ 1, the pointed polyhedral cone SM
[n] is

such that the linear subspace span(SM
[n]) generated by the vectors of SM

[n] is equal to
SM

[n] − SM
[n] (see [2]). Since span(SM

[n+1]) ⊆ span(SM
[n]), we have

span(SM
[n+1]) = span(SM

[n]).

Suppose that there exists α ∈ SM
[n] \SM

[n+1] and α 6= 0. It follows from the last equality
that α ∈ span(SM

[n+1]) and α = u−v with u, v ∈ SM
[n+1]. Let us check that αP ∈ SM

[n]:
for k = 1, . . . , n

αP
[
P kVϕ − VϕP̂

k
]

= (u− v)
[
P k+1Vϕ − PVϕP̂

k
]

= u
[
P k+1Vϕ − VϕP̂

k+1
]
− v

[
P k+1Vϕ − VϕP̂

k+1
]
since u, v ∈ SM

[1].

= 0

since u, v ∈ SM
[n+1]. Because α ∈ SM

[n] and αP ∈ SM
[n], we obtain α ∈ SM

[n+1] from
(2.4), which is absurd. �

Remark 2.1 The core of the proof of the previous theorem provides a finite algorithm to
compute SM(P̂ ). First, compute the extremal rays of the cone SM

[1]. Next, if SM
[1]P ⊆

SM
[1] then stop with SM(P̂ ) = SM

[1]; otherwise compute the extremal rays of the cone

SM
[2]. If SM

[2]P ⊆ SM
[2] then stop with SM(P̂ ) = SM

[2]; otherwise compute the extremal
rays of the cone SM

[2]. And so on. We see from (2.3), that a well-suited algorithm for
computing the extremal rays of cones SM

[n] is Chernikova’s incremental procedure [12].
It is known from [12] that the computation of the extremal rays of a cone is exponential
in dimensions involved.

2.2 Basic properties of set SM(P̂ )

The set SM(P̂ ) is a polyhedral cone from Theorem 2.1. Let us give some basic properties
of this cone.

Theorem 2.2

1. SM(P̂ ) 6= {0} if and only if there exists a non-trivial (polyhedral) sub-cone S of SM
[1]

which is invariant under the matrix P .
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2. SM(P̂ ) is the maximal convex sub-cone of SM
[1] which is invariant under the matrix

P .

3. SM(P̂ ) 6= {0} iff there exists a M×M nonnegative matrix Q and a nonnegative M×N
matrix U (1 ≤ M ≤ N) such that

UP = QU and U
[
PVϕ − VϕP̂

]
= 0 (2.6)

with dimCone(U) = M . In such a case, Cone(U) ⊆ SM(P̂ ).

4. If SM(P̂ ) 6= {0} then SM(P̂ ) contains one stochastic eigenvector of P corresponding
to the eigenvalue 1.

Proof. 1. If SM(P̂ ) 6= {0} then the polyhedral cone SM(P̂ ) is included in SM
[1] by

definition. We just have to check that SM(P̂ ) is invariant under the matrix P . We have

SM(P̂ ) = SM
[N+1] from Theorem 2.1. Then SM

[N+2] = SM
[N+1] which gives that the non-

trivial cone SM
[N+1] is invariant under P (see the first part of the proof of Theorem 2.1).

Conversely, assume that there exists a (polyhedral) sub-cone S of SM
[1] that is invari-

ant under the matrix P . It follows that, for every α ∈ S, we have

αP n ∈ SM
[1], ∀n ≥ 0.

Therefore, we can write

∀n ≥ 0, αP n ∈ SM
[1] ⇐⇒ ∀n ≥ 0, αP n+1Vϕ = αP nVϕP̂ from (2.3)

=⇒ ∀n ≥ 0, αP n+1Vϕ = αVϕP̂
nP̂

=⇒ ∀n ≥ 0, α
[
P n+1Vϕ − VϕP̂

n+1
]
= 0

=⇒ α ∈ SM(P̂ ) from (2.2).

Thus, we have S ⊆ SM(P̂ ).
Statement 2. is clear from the last inclusion.
3. SM(P̂ ) is a polyhedral sub-cone of RN

+ , so that there exists a finite set of nonnegative

vectors U := {u1, . . . , uM} such that Cone(U) = SM(P̂ ), where Cone(U) denotes the cone
generated by the vectors u1, . . . , uM . Let us identify the set of row vectors U to a M ×N
matrix. The invariance of Cone(U) under the matrix P , i.e. Cone(U)P ⊆ Cone(U), shows
that there exists a M ×M nonnegative matrix Q such that

UP = QU.

The ith-row of matrix Q is the vector of the nonnegative coordinates of uP with respect
to the generators u1, . . . , uM . The equality U

[
PVϕ − VϕP̂

]
= 0 follows from the inclusion

{u1, . . . , uM} ⊆ SM
[1].
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Conversely, suppose that there exists a matrix U such that the equalities in (2.6) hold.
Then, the rows of U define a polyhedral sub-cone of RN

+ which is included in SM
[1] and is

invariant under the matrix P . We obtain Cone(U) ⊆ SM(P̂ ) from Statement 2.

4. The last statement follows from the invariance of cone SM(P̂ ) under the matrix P
and from [10, Lemma 3.3]. �

Assuming the matrix P to be irreducible and SM(P̂ ) 6= {0}, it follows from Therorem 2.2

that the stationary distribution π of P belongs to the set SM(P̂ ). Since π ∈ SM
[1], πVϕ

is a stationary distribution of the stochastic matrix P̂ . In fact, we obviously have

SM(P̂ ) 6= {0} ⇐⇒ πVϕ is a stationary distribution of matrix P̂ .

Comparison of sets SM(P̂ ) and CM(P̂ ) Let us denote the set of all distr(X0) such that

(Xn)n is weakly lumpable with the matrix P̂ by CM(P̂ ). Let Cy be the range CM(P̂ )Πy :=

{αΠy : α ∈ CM(P̂ )} of CM(P̂ ) under the lumping projector Πy. If CM(P̂ ) 6= {0}, then

some of the cones Cy (y ∈ Ŝ) are non-trivial and the family (Cy, y ∈ Ŝ) satisfies [10, Th
3.4, Th 3.5]

Cy ⊆ C(P̂ ) (2.7)

Cy ⊆ CM(P̂ ) (2.8)

CyΠyPΠx ⊆ Cx for x = 1, . . . , N̂ , (2.9)

where
C(P̂ ) := {v ≥ 0 : vΠy[PVϕ − VϕP̂ ] = 0, y ∈ Ŝ}. (2.10)

The first condition asserts that each Cy is a sub-cone of the cone C(P̂ ). The second

condition says that Cy = CM(P̂ )Πy is a sub-cone of CM(P̂ ), or CM(P̂ ) is invariant under

the lumping projectors Πy (y ∈ Ŝ). Therefore, CM(P̂ ) is the direct sum of its N̂ projections

Cy (y ∈ Ŝ). Condition (2.9) means: the range of Cy under the matrix ΠyPΠx is included

in Cx for every x = 1, . . . , N̂ . In particular, the cone Cy is invariant under the matrix

ΠyPΠy and CM(P̂ )P ⊆ CM(P̂ ). For each y ∈ Ŝ, the cone Cy is the maximal sub-cone

of C(P̂ ) satisfying the three conditions (2.7)–(2.9) [10, Remark 1]. The computation of

CM(P̂ ) requieres to compute the extremal rays of the N̂ cones Cy, (y ∈ Ŝ) under the
constraints (2.7)–(2.9).

If we are interested in the computation of SM(P̂ ), we only have to determine the
extremal rays of the maximal sub-cone of SM

[1] that is invariant under the matrix P .
Note the inclusion C(P̂ ) ⊆ SM

[1]. Since CM(P̂ ) is invariant under P , we retrieve the in-

clusion CM(P̂ ) ⊆ SM(P̂ ). The major difference between the two sets CM(P̂ ) and SM(P̂ )

is that SM(P̂ ) is no more invariant under the lumping projectors Πy, y ∈ Ŝ (i.e. Condi-
tions (2.7),(2.8) may fail).

Now, let us compare the two sets for the Markov model briefly discussed in the Intro-
duction. Specifically, we prove the claims given in Example 1.1.
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Example 2.3 (Example 1.1 continued)
The Markov model discussed in Example 1.1 is based on a generalization of Cheung’s soft-
ware reliability model [4] provided in [11]. Cheung’s model is integrated in the Cleanroom
Reliability Manager whose aim is planning and certification of component-based software
system reliability [16]. The basic framework of [11] is as follows. The model results in
the combination of an execution model of a program with a failure model. First, the
architecture of the software is represented by an HMC (Xn)n with tpm Q. (Xn)n may
be thought of as the control flow graph of the program. Thus, each state i stands for a
group of statements. Q(i, j) is interpreted as the conditional probability for the statement
group j to be executed, given that the program has just completed the execution of the
statement group i. The tpm Q is here

Q =




0 1/7 2/7 2/7 1/7 1/7
14/70 0 19/70 19/70 14/70 4/70
2/8 2/8 2/8 0 1/8 1/8
0 0 2/8 4/8 1/8 1/8

7/48 7/48 14/48 14/48 0 6/48
5/72 15/72 20/72 19/72 13/72 0




.

Second, the failure process is as follows. When the execution model is in state i, a
failure occurs with probability pi, thus depending on the identity of the state. For the
sake of simplicity, we do not consider here that a failure may happen during a transfer
of control between two groups of statements and that a failure can cause an execution
break. However, a failure may affect the execution process. Indeed, state j is entered
after a failure occurrence in state i with constant probability αi,j (with

∑6
j=1 αi,j = 1).

The parameters are

p1 = p2 = 1/8, p3 = p4 = 0, p5 = 1/7, p6 = 1/10(
α1,1 = 1, α1,j = 0, j = 2, . . . , 6

) (
α2,2 = 1/2, α2,1 = α2,j = 1/10, j = 3, . . . , 6

)
(
α3,j = α4,j = 0, j = 1, . . . , 6

) (
α5,j = 0, j = 1, . . . 4, α5,5 = 7/8, α5,6 = 1/8

)
(
α6,j = 0, j = 1, . . . 3, α6,4 = 1/8, α6,5 = 1/4, α6,6 = 5/8

)
.

Let us define X∗ :=
(
X∗

n

)
n
where X∗

n is the occupied state at n. X∗ is an HMC with a tpm
P which is defined componentwise by P (i, j) := Q(i, j)(1 − pi) + piαi,j. With the above
values of parameters, P is the matrix in Example 1.1-(1.1). The stationary distribution
of P is π = (73, 72, 145, 145, 81, 64)/580.

As in Example 1.1, suppose that we are interested in the expected number of visits
to {1, 2, 3} or {4, 5, 6}. Then, we need the vectors αP nVϕ n ≥ 1, where Vϕ is as in
Example 1.1 and the stochastic vector α corresponds to distr(X0).

From Theorem 2.2, (π, P ) must be weakly lumpable for the state vector to obtain

SM(P̂ ) 6= {0}. Put P̂ := UπPVϕ (see (1.2)). The stationary distribution of P̂ is π̂ =

10



(1/2, 1/2). (π, P ) is weakly lumpable for the state vector since π̂ = πVϕ and

∀n ≥ 0, πP nVϕ = πVϕ = π̂ = π̂P̂ n.

• First, let us compute the set SM(P̂ ) along with Remark 1. Form the matrix involved
in the definition of the set SM

[1] (see (2.3))

PVϕ − VϕP̂ =
1

8

(
−1 −1 1 −1 1 1
1 1 −1 1 −1 −1

)T

.

Since this matrix is non trivial, P is not strongly lumpable according to Proposition 2.1.
Now, SM

[1] is the set of all nonnegative vectors α such that α(1, 1,−1, 1,−1,−1)T = 0.
It is easily checked that

SM
[1] = Cone(gi, i = 1, . . . , 9)

with g1 = (1, 0, 1, 0, 0, 0), g2 = (0, 1, 1, 0, 0, 0), g3 = (0, 0, 1, 1, 0, 0),

g4 = (1, 0, 0, 0, 1, 0), g5 = (0, 1, 0, 0, 1, 0), g6 = (0, 0, 0, 1, 1, 0),

g7 = (0, 0, 0, 1, 0, 1), g8 = (0, 1, 0, 0, 0, 1), g9 = (1, 0, 0, 0, 0, 1).

For i = 1, . . . , n, the generator gi of the cone SM
[1] is such that the nonnegative vector

giP is orthogonal to vector (1, 1,−1, 1,−1,−1)T. That is, the vectors giP i = 1, . . . , 9
are in SM

[1]. Consequently, SM
[1] is invariant under P and is obviously the maximal

polyhedral cone included in SM
[1]. We deduce from Theorem 2.2

SM(P̂ ) = SM
[1].

In connection with the discussion on the sets SM(P̂ ) and CM(P̂ ), note that πΠ1 ∈

SM(P̂ ). Then πΠ1P ∈ SM(P̂ ) from Theorem 2.2. But, it is easily checked that the

projection πΠ1PΠ1 of the vector πΠ1P is not in SM(P̂ ).

• Second, let us consider the set CM(P̂ ). Since P is irreducible, we know from [9] that

CM(P̂ ) 6= {0} implies that π ∈ CM(P̂ ). It follows from (2.10)

C(P̂ ) = {v ≥ 0 : v(1) + v(2)− v(3) = 0; v(4)− v(5)− v(6) = 0} (2.11)

= Cone(g1, g2, g6, g7)

and π = (73g1 + 72g2 + 81g6 + 64g7)/580 ∈ C(P̂ ).

Wemust have πΠ1PΠ1 ∈ C1 ⊆ C(P̂ ) from (2.7) and (2.9). But πΠ1PΠ1 ∝ (471, 399, 580, 0, 0, 0) /∈

C(P̂ ) from (2.11). Hence, Condition (2.9) does not hold and CM(P̂ ) = ∅.
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3 Connection between lumpability and Chapman–

Kolmogorov’s condition

The first order transition probabilities of process (ϕ(Xn))n, with distr(X0) = α, satisfy

the Chapman-Kolmogorov condition, if there exists a N̂ × N̂ stochastic matrix P̂ such
that

∀y ∈ Ŝ such that αΠy 6= 0, ∀n ≥ 1, α(y)P nVϕ = êyP̂
n (3.1)

where êy is the y-th vector of the canonical basis of RN̂ . We prove the following result.

Proposition 3.1 Let α be a stochastic vector corresponding to distr(X0). The first order
transition probabilities of the lumped process ϕ(Xn)n satisfy the Chapman-Kolmogorov

condition with the matrix P̂ iff

∀y ∈ Ŝ, αΠy ∈ SM(P̂ ). (3.2)

In other words, the probability distributions distr(X0) for which the first order tran-
sition probabilities of ϕ(Xn)n satisfy the Chapman-Kolmogorov equation with the matrix

P̂ , are the stochastic vectors contained in C(P̂ ) ∩ SM(P̂ ) (C(P̂ ) is defined by (2.10)).

Proof.

α satisfies (3.1) ⇐⇒ ∀y ∈ Ŝ, ∀n ≥ 1, αΠyP
nVϕ = αΠy1

TêyP̂
n

⇐⇒ ∀y ∈ Ŝ, ∀n ≥ 1, αΠy

[
P nVϕ − 1TêyP̂

n
]
= 0

⇐⇒ ∀y ∈ Ŝ, ∀n ≥ 1, αΠy

[
P nVϕ − VϕP̂

n
]
= 0

since αΠy1
Têy = αΠyVϕ

⇐⇒ ∀y ∈ Ŝ, αΠy ∈ SM(P̂ ).

�

In the case of Example 2.3, we have C(P̂ )∩SM(P̂ ) = C(P̂ ) = Cone
(
g1, g2, g6, g7

)
. Thus,

for any stochastic vector in Cone
(
g1, g2, g6, g7

)
as distr(X0), the first order transition

probabilities of (ϕ(Xn))n satisfy the Chapman-Kolmogorov condition with P̂ given in
(1.2).

When (3.2) holds for some α and αVϕ > 0, (Xn)n is weakly lumpable for the state

vector with P̂ given by
P̂ = UαPVϕ.

4 Proportional dynamics for the state probabilities

vector

Some authors (e.g. Tsertsvadze [21], Nicola [13] [14], Buchholz [3]) have looked for condi-
tions under which the transient characteristics of (Xn)n are easily deduced from those of
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(ϕ(Xn))n. A first instance of such a condition is related with what we call a Rogers-Pitman
(R-P) matrix P . That is, P satisfies

ΛP = P̂Λ, (4.1)

where Λ is a stochastic ϕ-block diagonal matrix and P̂ is some N̂ × N̂ stochastic matrix.
In such a case, (ϕ(Xn))n is an HMC with tpm P̂ , at least for any êyΛ as distr(X0). For
such a R-P matrix, the transient (and stationary) state vector for (Xn)n may be derived
from that of the lumped model. Indeed, it follows from (4.1) that

∀n ≥ 1, ΛP n = ΛPP n−1 = P̂ΛP n−1 = P̂ nΛ. (4.2)

Thus, with any êyΛ as distr(X0), the one-dimensional distributions of the HMC (Xn)n
are obtained from a computation with a N̂ × N̂ matrix. Such a relation is known [6], [19],
[3] when P is a Schweitzer’s matrix (that is, Λ = U1).

In the context of linear dynamical systems, a condition was identified in [21] for lump-

ing with respect to the state probabilities vector. In this work, note that α and P̂ are
not constrained to be nonnegative. A similar concept is developed in [13] for continuous
time positive linear systems and is referred as to the proportional dynamics property for
the transient measure concerned with, here the state probabilities vector. In our discrete
time context, this property can be reformulated as follows.

Definition 4.1 Let α be a stochastic vector on S. The Markov chains (α, P ) and (αVϕ, P̂ )
have proportional dynamics for the state probabilities vector, if there exists a stochastic
ϕ-block diagonal matrix U such that

∀n ≥ 1, αP n = αVϕP̂
nU. (4.3)

Such a condition has to be interpreted as follows: for α as distr(X0), for every n ≥ 1

∀y ∈ Ŝ, ∀x ∈ ϕ−1(y), Pα{Xn = x} = Pα{ϕ(Xn) = y} U(y, x).

Remark 4.1 In contrast to [13], Relation (4.3) is not required for n = 0. It will be shown
that the proportional dynamics property with α satisfying α = αVϕU , is equivalent to P
is a R-P matrix.

Note that for a R-P matrix P , we have from (4.2)

ΛP n = P̂ nΛ = ΛVϕP̂
nΛ

since ΛVϕ = Î. Consequently, we have the proportional dynamics property with any
stochastic vector α ∈ Cone(Λ) as distr(X0). If Relation (4.3) holds for some stochastic
vector α, then

∀n ≥ 1, αP nVϕ = αVϕP̂
nUVϕ = αVϕP̂

n
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and α ∈ SM(P̂ ). Hence, the proportional dynamics property implies that (α, P ) is weakly
lumpable for the state vector. The converse is generally false (see Example 4.1).

For any stochastic ϕ-block diagonal matrix U , let us consider as in [13], the set SU

of the stochastic vectors contained in the polyhedral cone CU := {α ≥ 0 : αVϕU = α}.
SU is the solution set of Equation (4.3) for n = 0. Note that we have êyU ∈ CU for every

y ∈ Ŝ since UVϕ = Î. That is, we have Cone(U) ⊆ CU . In fact, CU = Cone(U) since we
can write for α ∈ CU

α =
∑

y∈Ŝ

αΠy =
∑

y∈Ŝ

(αΠy1
T) êyU ∈ Cone(U).

Assuming in addition that (4.3) holds, we obtain from (4.3) with n = 1

UP = UVϕP̂U = P̂U (since UVϕ = Î).

That is, P is a R-P matrix with Λ = U . Hence, the matrix P has the proportional
dynamics property for every stochastic vector α ∈ Cone(U), where U is a stochastic
ϕ-block diagonal matrix, is equivalent to P is a R-P matrix with U as associated matrix.

Finally, if the Markov chains (α, P ) and (αVϕ, P̂ ) have proportional dynamics for the
state vector with every α, then P is a R-P matrix which is strongly lumpable. Such a
matrix is called a strictly lumpable matrix in [3]. The converse is false in general as shown
by the following example.

Example 4.1
Let us consider the tpm P below with a lumping map ϕ defined from S = {1, 2, 3, 4} into
{1, 2} by ϕ(1) = ϕ(2) = 1 and ϕ(3) = ϕ(4) = 2:

P =




1/6 1/3 1/3 1/6
1/3 1/6 1/6 1/3
1/3 1/6 1/4 1/4
1/6 1/3 1/4 1/4


 Vϕ =




1 0
1 0
0 1
0 1


 .

P is a R-P matrix since ΛP = P̂Λ with

P̂ =

(
1/2 1/2
1/2 1/2

)
Λ =

(
1/2 1/2 0 0
0 0 1/2 1/2

)
.

Note that P is also strongly lumpable since PVϕ = VϕP̂ . We have the proportional
dynamics property for every stochastic vector α in Cone(Λ).

For the vector e1 := (1, 0, 0, 0) /∈ Conv(Λ), we check that the proportional dynamics
property fails to hold for any stochastic ϕ-block diagonal matrix U . We have

∀n ≥ 1, e1VϕP̂
n =

(
1/2 1/2

)
.
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Let us use

U =

(
α1 1− α1 0 0
0 0 α2 1− α2

)
α1, α2 ∈ [0, 1],

as generic matrix U . Then, the vector e1VϕP̂
nU is (1/2)(α1, 1− α1, α2, 1− α2) for every

n ≥ 1. If U is a solution of e1P = e1VϕP̂U , then α1 = 1/3 and α2 = 2/3. But, we have

e1P
2 = (1/72)(20, 16, 17, 19) 6= e1VϕP̂

2U = (1/6, 1/3, 1/3, 1/6). Thus, the proportional

dynamics property does not hold from (4.3). However, e1 ∈ SM(P̂ ) since the matrix P is

strongly lumpable into the matrix P̂ .

We do not go into further details since the property of proportional dynamics is more
stringent than weak lumpability. We refer to [3] for the practical use of the proportional
dynamics property. We conclude this section by proving the following result.

Proposition 4.1 For every stochastic vector α, the Markov chains (α, P ) and (αVϕ, P̂ )
have proportional dynamics for the state vector with the ϕ-block diagonal matrix U iff

P = VϕP̂U.

Proof. Assume that (α, P ) and (αVϕ, P̂ ) have proportional dynamics for every initial
distribution α. We have from Relation (4.3) for n = 1

∀α ≥ 0, α[P − VϕP̂U ] = 0 =⇒ ∀α ∈ R
N , α[P − VϕP̂U ] = 0

=⇒ P = VϕP̂U.

Conversely, if P = VϕP̂U then P n = (VϕP̂U)n = VϕP̂
nU since UVϕ = Î. �

5 Conclusion

In this paper, we introduce a concept of lumpability with respect to the state vector of a
discrete-time homogeneous finite Markov chain. The merit of this form of lumpability is
twofold: it simplifies the computation of the state vector of a Markov model, and it may
be applied when standards lumpability criteria fail. Finally, almost all results presented
in this paper have their continuous-time counterpart using the uniformization technique
(e.g. see [8, 7]).
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