
HAL Id: hal-00837503
https://hal.science/hal-00837503

Submitted on 19 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Markov Property for a Function of a Markov chain: a
linear algebra approach
Leonid Gurvits, James Ledoux

To cite this version:
Leonid Gurvits, James Ledoux. Markov Property for a Function of a Markov chain: a linear algebra
approach. Linear Algebra and its Applications, 2005, 404, pp.85-117. �hal-00837503�

https://hal.science/hal-00837503
https://hal.archives-ouvertes.fr


Markov property for a function of a Markov chain:

a linear algebra approach

Leonid Gurvits∗†and James Ledoux‡

14 april 2005

Abstract

In this paper, we address whether a (probabilistic) function of a finite ho-
mogeneous Markov chain still enjoys a Markov-type property. We propose
a complete answer to this question using a linear algebra approach. At the
core of our approach is the concept of invariance of a set under a matrix. In
that sense, the framework of this paper is related to the so-called “geomet-
ric approach” in control theory for linear dynamical systems. This allows us
to derive a collection of new results under generic assumptions on the orig-
inal Markov chain. In particular, we obtain a new criterion for a function
of a Markov chain to be a homogeneous Markov chain. We provide a deter-
ministic polynomial-time algorithm for checking this criterion. Moreover, a
non-standard notion of observability for a linear system will be used. This al-
lows one to show that the set of all stochastic matrices for which our criterion
holds, is nowhere dense in the set of stochastic matrices.
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1 Introduction

Markov models are probably the most common stochastic models for dynamical
systems. However, when a Markov model approach is chosen, one can expect the
following issues to appear. First, computational time explosion as dimensions in-
crease. Second, statistical properties related to a functional of the initial Markov
model will be the quantities of interest, rather than the initial Markov model itself.

As a result, one either has to derive a model reduction to address the first
issue, or deal with a functional of a Markov chain to address the second. Let us
consider a discrete-time homogeneous Markov chain (Xn) as our initial Markov
model. We assume that each random variable Xn is X -valued, where X is the
finite set {1, . . . , N} and is called the state space of the Markov chain (Xn). A
basic way to reduce the dimension of this Markov model is to lump or collapse some
states into a single “mega-state”. Thus, we obtain a partition {C(1), . . . , C(M)} of
X into M < N classes. Given such a partition, we define a map ϕ from X into
Y := {1, . . . ,M} by

∀k ∈X , ∀l ∈ Y , ϕ(k) := l ⇐⇒ k ∈ C(l).

The map ϕ will be referred to as a lumping map. Then, we are interested in the new
process (ϕ(Xn)) defined by

ϕ(Xn) = l ⇐⇒ Xn ∈ C(l).

Each random variable ϕ(Xn) takes its values in the reduced set Y . The process
(ϕ(Xn)) is called the lumped process with respect to the lumping map ϕ. If the
original motivation is to deal with a functional of the Markov chain (Xn) then the
map ϕ is obviously deduced from the functional of interest. It is well known that the
lumped process (ϕ(Xn)) is not Markovian in general (e.g. see [24]). Therefore, we
cannot benefit from the powerful theory and algorithmic associated with the class
of Markov processes. It is also known that the Markov property of (ϕ(Xn)) may
depend on the probability distribution of X0 which is called the initial distribution of
the Markov chain (Xn). If there exists an initial distribution such that (ϕ(Xn)) is a
homogeneous Markov chain then (Xn) is said to be weakly lumpable. Under specific
assumptions on (Xn), an algorithm for checking the weak lumpability property is
known from [24, 35]. It is exponential in the number of states N .

We emphasize that some standard conditions for weak lumpability have been
successfully apply for reducing the computational effort to deal with Markov models.
These conditions are known from [24]. The most famous is the so-called strong
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lumpability property: (ϕ(Xn)) is a homogeneous Markov chain for every probability
distribution of X0. This has a wide range of applications in performance evaluation
of computer systems (e.g. see [38, 19, 31, 9]), in control (e.g. see [14]), in chemical
kinetics (e.g. see [25]), . . . Another condition for weak lumpability was reported in
[24]. We call it the Rogers-Pitman condition. An additional property makes this
condition well suited for the transient assessment of large Markov chains. Indeed,
the transient characteristics of the “large” Markov chain (Xn) can be obtained for
computations with the “small” Markov chain (ϕ(Xn)) (e.g. see [38, 10, 29, 30]
and references therein). The weak lumpability property may also arise in a very
general form as it is reported in [18]. The previous conditions are not satisfied but
it is shown a drastic reduction of the complexity of the Markov chain resulting of
a Markov chain formulation of the so-called k-SAT problem. We refer to [18] for
details.

The aim of this paper is to answer to the following natural question : under which
conditions, the lumped process is a kth-order Markov chain (or a non-homogeneous
Markov chain). The special case k = 1 corresponds to the standard homogeneous
Markov property for (ϕ(Xn)). The contribution of our paper is to give a complete
answer to this question as well as to some related questions, using a matrix-based
approach. The significant contributions of our approach to weak lumpability are the
following.

1. Up to recently, the results on weak lumpability were derived from “ergodic
properties” of the Markov chain (Xn). In this paper, we require generic as-
sumptions on (Xn).

2. Assume the probability distribution of X0 is fixed. We obtain a criterion for
(ϕ(Xn)) to be a kth order Markov chain. This condition is given in terms of
some linear subspaces. This allows us to propose a deterministic polynomial-
time algorithm to check this criterion.

3. We characterize the degree of freedom in the choice of the probability distribu-
tion of X0 for (ϕ(Xn)) to be Markovian. This uses a concept of ϕ-observability
which is strongly related to the standard concept of observability of a linear
dynamic system.

4. If the transition matrix of the Markov chain (Xn) is ϕ-observable, then the
Rogers-Pitman condition is essentially a criterion for weak lumpability prop-
erty to hold.
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5. It has been reported in the literature that, in practice, one rarely encounters a
Markovian function of a Markov model. We provide a quantitative assessment
on this fact. We show that the set of stochastic matrices for which our criterion
for weak lumpability is satisfied, is nowhere dense in the set of the stochastic
matrices.

A last contribution concerns the so-called probabilistic functions of Markov chains
as defined by Petrie [7]. This class of Markov models is referred to as the class of
hidden Markov chains in a modern terminology. The hidden Markov chains has
a wide range of applications in time series modeling (see [15] for a recent review).
Since this class of Markov models may be placed in the context discussed above,
all previously mentioned results may be applied to derive specific results on the
lumpability of hidden Markov chains. To the best of our knowledge, the lumpability
of hidden Markov chains has received attention only in two recent papers, in view
of reducing the complexity of filtering [37, 42]. These results are corollaries of the
results presented here. We only consider in this paper the problem discussed in [37]:
under which conditions does the observed process associated with a hidden Markov
chain have the Markov property?

The framework of this paper is essentially based on the concept of sets invariant
under a matrix. The readers which are familiar with the so-called “geometric ap-
proach” in linear systems theory, will find similarity between the linear subspaces
introduced in this approach and those used in this paper (see [6, 43] and the ref-
erences therein). The connection will be made explicit throughout the paper. The
interplay between standard ”lumping” questions and the “geometric approach” was
one the topics in [20]. The main ”geometric” framework of this paper, including
a criterion for weak lumpability, was first discovered by the first author in early
1980-85 [20]. The second author had discovered independently an almost similar
approach about ten years later [27, 28].

Now, we briefly discuss some topics which may appear to be related to our work.
The question of aggregation of variables of linear dynamic systems is connected

to the questions examined in the paper. Some attention has been given to the
following rather easy problem (e.g. see [39]): given a deterministic input-output
linear dynamic system

xn+1 = Axn, yn = Cxn

under which conditions does the sequence (yn) have a linear dynamics? This ques-
tion is relevant to the Markov framework when xn is the probability distribution
of the random variable Xn, A is the transition matrix of the Markov chain (Xn)
and the matrix C specifies the lumping map ϕ. In this case, yn is the probability
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distribution of the random variable ϕ(Xn). Hence, a linear dynamic for the sequence
(yn) is a property of one-dimensional distributions of the process (ϕ(Xn)). In our
paper, the Markov property for (ϕ(Xn)) is a property of the collection of all the
finite-dimensional distributions of this process. At times, this difference has been
overlooked because the two problems have the same answer under the additional
requirement that the sequence (yn) has a linear dynamic for every stochastic vector
x0 (i.e. for every probability distribution of X0). A discussion about aggregation of
variables in the Markov framework is reported in the recent paper [30].

The problem of identification of models has a strong connection with our work.
Indeed, the problem is to determine whether functions of two Markov chains give
rise to the same stochastic process. This will be apparent in Section 3, when we
use the “non-ϕ-observable subspace” introduced in [3]. In contrast, we would like to
mention that the question of stochastic realization is only weakly connected to our
problem (e.g. see [32, 1] and the references therein). Indeed, the closest formulation
of the stochastic realization problem to our setting is: given a stochastic process (Yn),
are there a function ϕ and a Markov chain (Xn) such that the stochastic processes
(Yn) and (ϕ(Xn)) have the same finite-dimensional distributions. Our problem is
not to find such a Markovian representation or realization of (Yn). In our setting,
the process (Xn) and ϕ are given. However, we mention that a minimal realization
of the process (ϕ(Xn)) may be obtained from the concepts of ϕ-observability and
strong lumpability discussed here [22].

The paper is organized as follows. We begin by introducing the basic notations
and conventions used throughout this paper. In Section 2, we propose a complete
study of the Markov property for a deterministic function of (Xn). In Subsection 2.1,
we prove a criterion for (ϕ(Xn)) to be a kth-order Markov chain. Under a non-
singularity assumption for some blocks of the transition matrix of (Xn), the kth-
order Markov property (k ≥ 2) and the usual weak lumpability property (k = 1)
are shown to be equivalent. In Subsection 2.2, we specialize the previous results
to the order one, which corresponds to the usual weak lumpability. This gives our
main criterion for weak lumpability. We also give a new sufficient condition for weak
lumpability to hold. Next, we outline a deterministic polynomial-time algorithm to
check weak lumpability. At this step, we briefly discuss the computation of the set
of all initial distributions for which (ϕ(Xn)) is an Markov chain with a transition
matrix that does not depends on the initial distribution. In Subsection 2.2.4, we
relate the weak lumpability property of (Xn) to that of its ”reversed” or ”dual”
version. In particular, we prove that weak and strong lumpability properties coincide
when (Xn) has an irreducible and normal transition matrix. In the last part of
Section 2, we deal with the non-homogeneous Markov property of (ϕ(Xn)). We
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obtain a ”nice” answer only in the periodic case, that is, when the sequence of
transition matrices of (ϕ(Xn)) is periodic. In Section 3, we present the concept of
ϕ-observability. In Subsection 3.1, it is shown that under ϕ-observability, the Rogers-
Pitman condition becomes essentially a criterion for weak lumpability property to
hold. In Subsection 3.2, the set of all weakly lumpable matrices is shown to be
nowhere dense in the set of stochastic matrices. We turn to the Markov property for
the observed process of a hidden Markov chain in Section 4. Basic criteria are stated
in terms of the standard parameters of such processes. We conclude in Section 5.

Preliminaries

• A vector is a column vector by convention. ()T denotes the transpose operator.
The ith component of a vector u is denoted by u(i). Any inequality between
vectors is understood as being component-wise.

• 1 (resp. 0) stands for a finite-dimensional vector with each component equals
to 1 (resp. 0). Its dimension is defined by the context.

• X , Y denote the finite sets {1, . . . , N} and {1, . . . ,M} respectively, with
M < N .

• P denotes a N × N stochastic matrix, i.e. P is a non-negative matrix such
that 1TP = 1T. Î is the M ×M identity matrix.

• The random elements are assumed to be defined on the same probability space
with probability (Ω,F ,P), where P is a probability on the σ-algebra F of
events.

• The probability distribution of a X -valued (resp Y -valued) random variable
W will be identified with a N -dimensional (resp. M -dimensional) stochastic
vector α defined by α(x) := P{W = x}, x ∈X (resp. x ∈ Y ).

• A set C is said to be invariant under a matrix A if

A C ⊂ C,

where AC := {Ac : c ∈ C}. We also say that C is A-invariant.

• Let ϕ be a non-decreasing map from X into Y such that ϕ(X ) = Y .
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– We define a M ×N matrix Vϕ by

Vϕ(y, x) := 1 if x ∈ ϕ−1(y) and 0 otherwise.

– For any y ∈ Y , let Πy be the N ×N matrix defined by

Πy(x, x) := 1 if x ∈ ϕ−1(y) and Πy(x1, x2) := 0 otherwise.

This matrix will be called the y-lumping projector.

For any v ∈ R
N , Vϕv is the M -dimensional vector

Vϕv = (1TΠyv)y∈Y . (1.1)

We mention that the kernel Ker(Vϕ) is Πy-invariant for any y ∈ Y , that
is

Ker(Vϕ) = ⊕y∈Y ΠyKer(Vϕ).

– Let Y ∗ be the set of all finite sequences of elements in Y . For any
s ∈ Y ∗, P (s) is the N ×N matrix defined by

P (s) :=

{
Πy0 if s = y0
ΠynPP (yn−1...y0) if s = yn . . . y1y0.

(1.2)

For s = yn . . . y1y0, we set lg(s) := n.

– For any non-negative N -dimensional vector v such that 1TΠyv > 0, v(y)

is the N -dimensional vector

v(y) :=
Πyv

1TΠyv
.

– For any non-negative vector v such that Vϕv > 0, the matrix Uv, defined
by

x ∈X , y ∈ Y , Uv(x, y) := v(y)(x),

is such that VϕUv = Î. An equality between matrices of the type Uv

with the mention “(if well-defined)” means that the equality holds when
the matrices and the vectors in the under-script of these matrices are
well-defined according to our definitions.
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• The following definitions are borrowed from [8]. For any subset C of R
n,

Span(C) (resp. Cone(C)) denotes the set of all finite (resp. non-negative)
linear combinations of the elements of C. If C is a set of non-negative vectors,
then Span(C) = Cone(C) − Cone(C). If Cone(C) = C then C is called a cone.
If C is a finite set, then Cone(C) is called a polyhedral cone. Any polyhedral
cone C of Rn has the form C = {v ∈ R

n : Hv ≥ 0} where H ∈ R
m×n. This

is a closed convex subset of Rn.

The cone C is said to be decomposable if C = C1 + C2, where C1 and C2 are two
sub-cones of C such that Span(C1) ∩ Span(C2) = {0}. We write C = C1 ⊕ C2.

Our basic instance of a decomposable cone is the cone denoted by CC(α,Π., P )
for a fixed N -dimensional stochastic vector α. It is defined as the smallest sub-
cone of RN

+ that contains the vector α and that is invariant under the matrix
P and the lumping projectors Πy, y ∈ Y . It is easily seen that

CC(α,Π., P ) := Cone(P (s)α, s ∈ Y
∗). (1.3)

The basic properties of this cone are from its definition

y ∈ Y , ΠyCC(α,Π., P ) ⊂ CC(α,Π., P )⇐⇒ CC(α,Π., P ) = ⊕y∈Y Πy CC(α,Π., P )

P CC(α,Π., P ) ⊂ CC(α,Π., P ).

• For a N -dimensional stochastic vector α, the central linear subspace used in
this paper, is the linear hull CS(α,Π., P ) of cone CC(α,Π., P ) defined above.
That is

CS(α,Π., P ) := CC(α,Π., P )− CC(α,Π., P ) = Span(P (s)α, s ∈ Y
∗). (1.4)

The subspace CS(α,Π., P ) is the minimal subspace that contains α and that
is invariant under P and the lumping projectors Πy, y ∈ Y . In particular, it
satisfies

y ∈ Y , ΠyCS(α,Π., P ) ⊂ CS(α,Π., P )⇐⇒ CS(α,Π., P ) = ⊕y∈Y Πy CS(α,Π., P )

P CS(α,Π., P ) ⊂ CS(α,Π., P ).

2 Markov property for a function of an HMC

The Markov chains are the basic stochastic processes considered in this paper. We
recall the definition of a kth-order Markov chain. For k = 1, the process is simply
said to be a homogeneous Markov chain.
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Definition 2.1 Let E be a finite set. A sequence of E -valued random variables (Zn)
is said to be a homogeneous kth-order Markov chain (kth-HMC) with the transition
matrix Q iff for any n ≥ 0, (z, zn+k−1, . . . , z0) ∈ E n+k+1,

P{Zn+k = z | Zn+k−1 = zn+k−1, . . . , Zn = zn, . . . , Z0 = z0} = Q(z, zn+k−1, . . . , zn)

if P{Zn+k−1 = zn+k−1, . . . , Z0 = z0} > 0.

The set E is called the state space of (Zn). Note that
∑

z∈E
Q(z, zn+k−1, . . . , zn) = 1.

The probability distribution of Z0 is called the initial distribution of the process (Zn).

Let (Xn)n be an HMC with state space X . In Section 2, the N×N matrix P and
the N -dimensional stochastic vector α will stand for the transition matrix and the
initial distribution of the Markov chain (Xn) respectively. Let ϕ be a non-decreasing
map of X onto Y such that

ϕ(X ) = Y , M < N.

Such a map defines a partition of X into the M classes (ϕ−1(y), y ∈ Y ) and

ϕ(Xn) = y ⇐⇒ Xn ∈ ϕ−1(y).

The function ϕ will be called a lumping map. The process (ϕ(Xn)) will called the
lumped process associated with (Xn)n. Considering the string s := yn . . . y1y0 ∈ Y ∗

means that we are interested in the successive visited mega-states y0, . . . , yn by the
lumped model. The integer lg(s) corresponds to the number of transitions in the
path y0, . . . , yn. Note that with (1.2)

P{ϕ(Xn) = yn, . . . , ϕ(X0) = y0} = 1TΠynPΠyn−1 · · ·Πy1PΠy0α = 1TP (s)α. (2.1)

2.1 Homogeneous kth-order Markov property

The following theorem provides a first criterion for (ϕ(Xn)) to be a kth-HMC. This
criterion is in terms of the cone CC(α,Π., P ) defined in (1.3).

Theorem 2.1 The process (ϕ(Xn)) is a kth-HMC with transition matrix P̂ iff

CC(α,Π., P ) ⊂ Ck(P̂ ),

where

Ck(P̂ ) :=
{
β ≥ 0 : ∀(yk−1, . . . , y0) ∈ Y , [VϕP − P̂yk−1,...,y01

T]P (yk−1···y0)β = 0
}

(2.2)
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and P̂yk−1,...,y0 denotes the vector (P̂ (y, yk−1, . . . , y0))y∈Y .
If the above inclusion holds, then (ϕ(Xn)) is still a kth-HMC with any stochastic
vector in CC(α,Π., P ) as initial distribution of (Xn).

ProofL. et Ỹ ∗ be the set Y ∗ complemented by the empty sequence. From Def-
inition 2.1 and (2.1), (ϕ(Xn)) is a kth-HMC with transition matrix P̂ iff for any

(y, yk−1, . . . , y0) ∈ Y k+1 and s ∈ Ỹ ∗

1TP (yyk−1...y0s)α = P̂ (y; yk−1, . . . , y0)1
TP (yk−1...y0s)α.

Since P (yyk−1...y0s) = ΠyPP (yk−1...y0s) (see (1.2)), the previous statement has the
following equivalent form from (1.1)

∀(yk−1, . . . , y0) ∈ Y
k, ∀s ∈ Ỹ

∗ VϕPP (yk−1...y0s)α = P̂yk−1,...,y01
TP (yk−1...y0s)α

⇐⇒ ∀(yk−1, . . . , y0) ∈ Y
k, ∀s ∈ Ỹ

∗ [VϕP − P̂yk−1,...,y01
T]P (yk−1...y0s)α = 0

⇐⇒ ∀(yk−1, . . . , y0) ∈ Y
k, ∀s ∈ Ỹ

∗ [VϕP − P̂yk−1,...,y01
T]P (yk−1...y0)P (y0s)α = 0

⇐⇒ ∀y0 ∈ Y , ∀s ∈ Ỹ
∗ P (y0s)α ∈ Ck(P̂ ) from (2.2)

⇐⇒ ∀s ∈ Y
∗ P (s)α ∈ Ck(P̂ ).

That P (s)α ∈ CC(α,Π., P ) for any s ∈ Y ∗, is clear from (1.3). Then, we have
CC(P (s)α,Π., P ) ⊂ CC(α,Π., P ) and the last statement of the theorem follows.

We derive now a criterion for (ϕ(Xn)) to be an kth-HMC in terms of the lin-

ear subspace CS(α,Π., P ) defined in (1.4). The knowledge of the matrix P̂ is not
required.

Theorem 2.2 The process (ϕ(Xn)) is a kth-HMC iff

∀(yk−1, . . . , y0) ∈ Y
k, P

(
Ker(Vϕ) ∩ P (yk−1...y0)CS(α,Π., P )

)
⊂ Ker(Vϕ). (2.3)

If Assertion (2.3) holds then (ϕ(Xn)) is still a kth-HMC with any stochastic vector
in CS(α,Π., P ) as initial distribution of (Xn).

The connections with the “geometric approach” in linear system theory is clear
from (1.4) and (2.3). That the subspace CS(α,Π., P ) is the minimal subspace that
is invariant under P and the lumping projectors Πy, y ∈ Y and that contains the
subspace Span(Πyα, y ∈ Y ), is easily seen from its definition. A specific algo-
rithm for computing the subspace CS(α,Π., P ) may be easily designed from [6].
We turn to this question in Subsection 2.2.2. Note that the subspace Ker(Vϕ) is a
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(P, P (yk−1...y0)CS(α,Π., P ))-conditioned invariant according to the terminology used
by Basile and Marro [6]. This last fact is not useful for our purpose.

ProofL. et (ϕ(Xn)) be a kth-HMC with some transition matrix P̂ . We know from

Theorem 2.1 that CC(α,Π., P ) ⊂ Ck(P̂ ). Any vector v ∈ P (yk−1...y0)CS(α,Π., P ) has

the form P (yk−1...y0)(β − γ) with β, γ ∈ Ck(P̂ ). If v ∈ Ker(Vϕ) then

VϕPv = VϕPP (yk−1...y0)(β − γ)

= P̂yk−1,...,y01
TP (yk−1...y0)(β − γ) since β, γ ∈ Ck(P̂ )

= P̂yk−1,...,y01
Tv = 0 since 1Tv = 0.

Thus, the vector Pv is in Ker(Vϕ).

Assume we have the inclusion in (2.3). In a first step, we define the matrix P̂ as
follows. For any (yk−1, . . . , y0) ∈ Y k such that P (yk−1...y0)CC(α,Π., P ) 6= {0}, select
a non-trivial vector β in this set and put

P̂yk−1...y0 := VϕPβ(yk−1). (2.4)

When P (yk−1...y0)CC(α,Π., P ) = {0}, it is easily seen that, with P-probability 1, the

path yk−1 . . . y0 is not observable for (ϕ(Xn)). Then, the stochastic vector P̂yk−1...y0

may be arbitrary chosen.
In a second step, we have to prove that CC(α,Π., P ) ⊂ Ck(P̂ ). If CC(α,Π., P ) = {0}
then this is trivially true. When CC(α,Π., P ) 6= {0}, let γ be a non-trivial vector of
CC(α,Π., P ). We must find that

[
VϕP − P̂yk−1,...,y01

T
]
P (yk−1···y0)γ = 0. (2.5)

If P (yk−1...y0)γ = 0, this is obvious. If P (yk−1...y0)γ 6= 0, then Equation (2.5) has the
following equivalent form from (2.4)

VϕP (P (yk−1...y0)γ)(yk−1) = P̂yk−1...y0 = VϕPβ(yk−1).

Since (P (yk−1...y0)γ)(yk−1) − β(yk−1) ∈ Ker(Vϕ), we have (P (yk−1...y0)γ)(yk−1) − β(yk−1) ∈
Ker(Vϕ) ∩ P (yk−1...y0)CS(α,Π., P ). We find from the inclusion (2.3) that

0 = VϕP [(P (yk−1...y0)γ)(yk−1) − β(yk−1)]⇐⇒ VϕP (P (yk−1...y0)γ)(yk−1) = VϕPβ(yk−1).

Corollary 2.1 Suppose the matrix (P (x1, x2))x1,x2∈ϕ−1(y) is non-singular for every
y ∈ Y . If (ϕ(Xn)) is an kth-HMC for some k ≥ 2 then (ϕ(Xn)) is an HMC.
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ProofI. f (P (x1, x2))x1,x2∈ϕ−1(y) is a non-singular matrix then

∀Z ⊂ R
N , ∀y ∈ Y , P (y...y)Z = P (yy)Z = ΠyZ.

If (ϕ(Xn)) is a kth-HMC, then we deduce from (2.3) with yk−1 . . . y0 := y . . . y and
the equality above, that

∀y ∈ Y , P
(
Ker(Vϕ) ∩ ΠyCS(α,Π., P )

)
⊂ Ker(Vϕ).

Thus, (ϕ(Xn)) is a 1th-HMC from Theorem 2.2.
We mention for completeness, the following spectral properties resulting from

the kth-order lumpability property. They hold because the cone CC(α,Π., P ) is
invariant under the matrices P and ΠyPΠy, y ∈ Y (see [27, Lemma 3.3]). When
a probabilistic approach is favored, these properties combined with the additional
assumption of the existence of an “ergodic” type theorem, allow the derivation of
results on (1-order) lumpability through limit arguments (e.g. see [24, 35]).

Corollary 2.2

1. If (ϕ(Xn)) is a kth-HMC, then it is still a kth-HMC with some stochastic
eigenvector of P as initial distribution of (Xn).

2. If α is such that Πyα 6= 0 and (ϕ(Xn)) is a kth-HMC, then (ϕ(Xn)) is still a
kth-HMC with some stochastic eigenvector of ΠyPΠy as initial distribution of
(Xn).

Comment 1 If P is irreducible then the Perron-Frobenius theorem asserts that
there exists an unique stochastic eigenvector π corresponding to the eigenvalue 1.
This vector is the stationary distribution of the HMC (Xn). Let distr(X0) denotes
the probability distribution of X0. Then, we can write

(ϕ(Xn)) is a kth-HMC (with transition matrix P̂ ) for distr(X0) := α

=⇒ (ϕ(Xn)) is a kth-HMC (with transition matrix P̂ ) for distr(X0) := π

=⇒ (ϕ(Xn)) is a kth-HMC (with transition matrix P̂ ) for distr(X0) ∈ Cπ

with Cπ := ⊕y∈Y Cone(Πyπ)

since CC(u,Π., P ) = CC(π,Π., P ) for any u ∈ Cπ. △
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Let Z be any set of N -dimensional stochastic vectors. The linear subspace
CS(Z,Π., P ) is defined from (1.4) by replacing the single vector α by the collection
of vectors Z. In other words, CS(Z,Π., P ) is the minimal subspace including Z that
is invariant under P and Πy, y ∈ Y . The reader will note that for the notations to
be consistent, CS(α,Π., P ) should be interpreted as CS({α},Π., P ). We choose to
drop the braces in case of a single vector to lighten the notations.

The following result may be proved as Theorem 2.2 (the details are omitted).

Theorem 2.3 Let Z be a set of N-dimensional stochastic vectors. (ϕ(Xn)) is a
kth-HMC for every α ∈ Z with a transition matrix that does not depend on α iff

∀(yk−1, . . . , y0) ∈ Y
k, P

(
Ker(Vϕ) ∩ P (yk−1...y0)CS(Z,Π., P )

)
⊂ Ker(Vϕ). (2.6)

Note that the previous result is not valid if the transition matrix of (ϕ(Xn)) is
allowed to depend on the probability distribution of X0 selected in Z.

2.2 Homogeneous Markov property

This subsection is devoted to the homogeneous (1th-order) Markov property of the
lumped process (ϕ(Xn)).

Definition 2.2 If the process (ϕ(Xn)), is an HMC with transition matrix P̂ , then
the Markov chain (Xn), or its transition matrix P , are said to be weakly lumpable

with the matrix P̂ (w.r.t. the lumping map ϕ).

It is easily seen that (ϕ(Xn)) may be an HMC with a transition matrix which
depend on α. However, it follows from Corollary 2.2, that this transition matrix
only depends on P and the map ϕ for a broad class of Markov chains (e.g. see
Comment 1,[28]).

2.2.1 Local characterization

The cone C1(P̂ ) is from (2.2)

C1(P̂ ) =
{
β ≥ 0 : ∀y ∈ Y , [VϕP − P̂ Vϕ]Πyβ = 0

}
. (2.7)

Specializing Theorem 2.1 for k = 1, we get the following criterion of weak lumpa-
bility.
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Corollary 2.3 The process (ϕ(Xn)) is an HMC with transition matrix P̂ iff

CC(α,Π., P ) ⊂ C1(P̂ ).

If the above inclusion holds, then (ϕ(Xn)) is still an HMC with the transition matrix

P̂ for any stochastic vector in CC(α,Π., P ) as initial distribution of (Xn).

A new sufficient condition for weak lumpability. Let us check that a sufficient
condition for weak lumpability is given by

∀y ∈ Y , PUα = PUPα(y) (if well-defined). (2.8)

This relation is equivalent to

∀y0, y1, y2, Πy2PΠy1PΠy0α ∝ Πy2PΠy1α.

Therefore, we have

CC(α,Π., P ) = Cone(Πy0α,Πy2PΠy1α, y0, y1, y2 ∈ Y ).

As in the “only if” part of the proof of Theorem 2.2, we can define a M × M
stochastic matrix P̂ such that

∀y ∈ Y , Πyα ∈ C1(P̂ ).

Next, multiplying to the left Relation (2.8) by Vϕ, we find that

∀y0, y1 ∈ Y , Πy1PΠy0α ∈ C1(P̂ ).

Then, it follows that CC(α,Π., P ) ⊂ C1(P̂ ) and we deduce from Corollary 2.3 that
(ϕn(Xn)) is an HMC. Condition (2.8) will be useful in Section 4.

A new criterion for weak lumpability is given by Theorem 2.2 with k := 1. The
main interest in this result is to provide a polynomial algorithm to check the weak
lumpability property (see Subsection 2.2.2). Notice, the transition matrix of the
lumped process has not to be specified to use the criterion.

Corollary 2.4 The process (ϕ(Xn)) is an HMC iff

P
(
Ker(Vϕ) ∩ CS(α,Π., P )

)
⊂ Ker(Vϕ). (2.9)

If the above inclusion holds, then (ϕ(Xn)) is still an HMC with every stochastic
vector in CS(α,Π., P ) as initial distribution of (Xn).
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Note that Relation (2.9) is just a reformulation of the Property (2.3) with k := 1

∀y ∈ Y , P
(
Ker(Vϕ) ∩ ΠyCS(α,Π., P )

)
⊂ Ker(Vϕ).

Since CS(α,Π., P ) is P -invariant, Relation (2.9) has the equivalent form

P
(
Ker(Vϕ) ∩ CS(α,Π., P )

)
⊂ Ker(Vϕ) ∩ CS(α,Π., P ).

That is, the subspace CS(α,Π., P ) ∩Ker(Vϕ) is P -invariant.
Rogers-Pitman’s condition. Suppose the stochastic vector α is such that CC(α,Π., P ) =
Cone(Πyα, y ∈ Y ), or CS(α,Π., P ) = Span(Πyα, y ∈ Y ). Condition (2.9) is triv-
ially satisfied since CS(α,Π., P ) ∩ Ker(Vϕ) = {0}. Then, (ϕ(Xn)) is an HMC from
Corollary 2.4. Note that, for any y ∈ Y such that 1TΠyα 6= 0, (ϕ(Xn)) is still an
HMC with α(y) as probability distribution of X0. The present assumption corre-
sponds to a well known sufficient condition for weak lumpability to hold, given by
Kemeny and Snell [24, p. 136]:

∀y ∈ Y , Uα = UPα(y) (if well-defined) . (2.10)

This condition is clearly stronger than that defined by Relation (2.8).

The matrix-condition (2.10) has been generalized for the class of HMCs with a
general state space by Rogers and Pitman [33]. It is based on the following specific
condition satisfied by the transition matrix.

Definition 2.3 A stochastic matrix P is called a R-P matrix if there exist a N×M
stochastic matrix Λ such that

VϕΛ = Î and PΛ = ΛVϕPΛ. (2.11)

We mention an interesting property of a Markov chain (Xn) with a R-P transition
matrix P . The probability distributions of random variables Xn, n = 1, . . . may be
computed as follows. We deduce from Relation (2.11) that

P nΛ = Λ(VϕPΛ)n, ∀n ≥ 1.

Thus, with any stochastic vector in the cone ΛRM
+ as probability distribution of X0,

the one-dimensional distributions of the Markov chain (Xn) can be computed from
the M ×M matrix VϕPΛ. When Λ = U1, such a fact is known from [14] and is
used in [38, 10]. This was one of the main motivations to deal with R-P matrices
for investigating Markov bounds for functions of an HMC in [29].

Specializing Theorem 2.3 for k = 1, we obtain the following statement.
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Corollary 2.5 Let Z be a subset of probability distributions on X . (ϕ(Xn)) is an
HMC for every α ∈ Z with a transition matrix that does not depend on α iff

P
(
Ker(Vϕ) ∩ CS(Z,Π., P )

)
⊂ Ker(Vϕ). (2.12)

Strong lumpability. When Z is the set of all the probability distributions over X

in Corollary 2.5, we obtain the so-called lumpability property or strong lumpabil-
ity property of the transition matrix P . This property is widely used in stochastic
modeling because it can be easily checked on the transition matrix or on the associ-
ated graph (e.g. see [38, 19, 9]). Since Z is assumed to be the set of N -dimensional
stochastic vectors, we have Span(Z) = R

N . Since Z ⊂ CS(Z,Π., P ) by definition, it
follows that CS(Z,Π., P ) = R

N . Then, Relation (2.12) gives the following criterion
for strong lumpability:

PKer(Vϕ) ⊂ Ker(Vϕ). (2.13)

We can take P̂ := VϕPU1 as the transition matrix of (ϕ(Xn)).

In fact, the following criteria for strong lumpability may be easily derived [24, 6, 12].

Theorem 2.4 Let P be a stochastic matrix and P̂ be the matrix VϕPU1. The
following statements are equivalent.

1. The process (ϕ(Xn)) is an HMC with transition matrix P̂ for every initial

distribution of (Xn), and P is said to be strongly lumpable into P̂

2. ∀y1, y2 ∈ Y ,
[∑

x2∈ϕ−1(y2)
P (x2, x1) does not depend on x1 ∈ ϕ−1(y1)

]

3. VϕP = P̂ Vϕ

4. PKer(Vϕ) ⊂ Ker(Vϕ)

5. Ker(Vϕ) ⊂ Ker(VϕP ).

2.2.2 An algorithm for checking the weak lumpability property

Let us outline a finite algorithm to check that (ϕ(Xn)) is an HMC when X0 has
probability distribution α. Since CS(α,Π., P ) is the minimal subspace that is in-
variant under P and Πy, y ∈ Y and that contains Span(Πyα, y ∈ Y ), an algorithm
for the evaluation of CS(α,Π., P ) may be designed from [6, p. 209] as follows. Note
that the computation of CS(α,Π., P ) allows to check the kth-order Markov property
of (ϕ(Xn)) from Theorem 2.2.
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Write the given transition matrix P in a block form, based on the partition
∪y∈Y ϕ−1(y) of X , i.e. P = {Py1,y2 : y1, y2 ∈ Y }. The same block form is used for
the stochastic vector α = {αy, y ∈ Y }. Define the following iterative process: for
every y ∈ Y

Ly
[0] := Span(αy)

Ly
[n+1] :=

∑
y1∈Y

Py,y1 Ly1
[n] + Ly

[n] n ≥ 0.
(2.14)

Set d := maxy∈Y (card(ϕ−1(y))). Since Ly
[n] ⊂ Ly

[n+1] and dim(Ly
[n]) ≤ card(ϕ−1(y)) ≤

d, we easily find that: for all y ∈ Y

Ly
[n] = Ly

[d] for n ≥ d− 1.

Any linear subspace L of Rcard(ϕ−1(y)) may be identified with the subspace Im(L) :=
{0} × L × {0} of R

N . That is, any card(ϕ−1(y))-dimensional vector u ∈ L is
identified with the N -dimensional vector ũ defined by : ũ(x) := 0 if x /∈ ϕ−1(y) and
ũ(x) := u(i) if x ∈ ϕ−1(y) = {x1, . . . , xcard(ϕ−1(y))}. Then, for every y ∈ Y , we have

Im(L(n)
y ) = ΠyCS(α,Π., P ) for all n ≥ d− 1, or

⊕y∈Y Im(L(n)
y ) = CS(α,Π., P ), n ≥ d− 1.

Thus, the algorithm (2.14) is finite. More important, the algorithm is polynomial
in the number N of states since it only involves computation of the sum and range
of linear subspaces (with “small” dimension). Indeed, at step n+ 1, it is clear from
(2.14) that we have to compute the sum of the two linear subspaces

Ly
[n] and

∑

y1∈Y

Py,y1 Ly1
[n].

Suppose that a basis of Ly1
[n] for y1 ∈ Y is given. The main computational task

is the computation of the M < N ranges Py,y1Ly1
[n]. Such computations may be

performed with the Gaussian elimination procedure which is known to be polynomial
in the dimensions and bit-sizes involved (e.g. [17, p. 112]).
In the same way, we get a polynomial-time algorithm to construct CS(Z,Π., P ),
where Z is a set of N -dimensional stochastic vectors, provided that the minimal
linear subspace containing Z has “effective” representation. Clearly, in this case,
we also can check in polynomial-time the weak lumpability property with respect to
the set of initial distributions Z. We will use this observation in Section 4.

The next result follows from Corollary 2.4.

Property 1 The homogeneous Markov property of (ϕ(Xn)) is checked from k ≤
maxy∈Y (card(ϕ−1(y))) steps of the algorithm above.
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Rosenblatt’s algorithm to check the weak lumpability is based on Corollary 2.3,
which is essentially the criterion of weak lumpability given by Kemeny and Snell
[24] for an irreducible matrix P (see also [35, Th 3.4]). Proposition 1 shows that the
cone CC(α,Π., P ) may be computed in at most maxy∈Y (card(ϕ−1(y))) steps. Thus,
Rosenblatt’s algorithm is finite. However, the extremal rays of cones are needed for
these algorithms and their computation is exponential in the dimensions involved.
Rosenblatt’s algorithm is essentially a Bayesian computation and is ”mildly” non-
linear. The main contribution of the algorithm associated with (2.14) is to show
that it is possible to avoid the “Bayesian” nonlinearity.

Comment 2 In this paper, we only deal with discrete-time Markov chains. The
main criteria for a function of a discrete-time Markov chain to be an HMC carry
over in the continuous-time context. Indeed, the “uniformization procedure”, which
is a basic tool for the numerical analysis of continuous time Markov models [41],
may be used to derive from a continuous-time Markov chain (Xt)t∈R+ , a discrete-
time Markov chain to which our results apply. This discrete-time Markov chain
is called the “uniformized” chain associated with (Xt)t∈R+ . The following result
may be proved (see [22] for further details). For a Markov process (Xt)t∈R+ and
a lumping map ϕ, checking that the process (ϕ(Xt))t∈R+ is an HMC with a fixed
probability distribution of X0, consists in applying the algorithm of Subsection 2.2.2
to the uniformized chain associated with (Xt)t∈R+ Under specific assumptions on the
continuous time Markov chain (Xt)t∈R+ , this property is known from [36, 26]. △

2.2.3 Global characterization

Many papers are concerned with the derivation of the set DM(P̂ ) of all probability

distributions of X0 such that (ϕ(Xn)) is an HMC with the transition matrix P̂ (e.g.
see [35, 27] and the references therein). From Corollary 2.3, this set is the collection
of all stochastic vectors in

CM(P̂ ) :=
{
α ∈ R

N
+ : CC(α,Π., P ) ⊂ C1(P̂ )

}
. (2.15)

The following properties of the set CM(P̂ ) are easily seen from its definition.

(P1) CM(P̂ ) is a closed convex cone.

(P2) CM(P̂ ) is invariant under the matrix P and the lumping projectors Πy, y ∈ Y .

(P3) CM(P̂ ) is the maximal sub-cone of C1(P̂ ) that is invariant under all lumping

projectors and matrix P . In other words, DM(P̂ ) is the maximal subset Z
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of the set of all probability distributions over X , such that P (CS(Z,Π., P ) ∩
Ker(Vϕ)) ⊂ Ker(Vϕ).

(P4) If ΠyCM(P̂ ) = {0} then, with P-probability 1, the state class ϕ−1(y) can never

be accessed by the Markov chain (Xn) with any initial distribution in CM(P̂ ).

Property (P4) leads us to define the notion of essentially weakly lumpable matrix.

Definition 2.4 The Markov chain (Xn), or its transition matrix P , are said to be

essentially weakly lumpable with the matrix P̂ if (∀y ∈ Y , ΠyCM(P̂ ) 6= {0}).

Note that a weakly lumpable irreducible matrix P is essentially weakly lumpable
from Comment 1.

Any vector α in CM(P̂ ) is a solution of the linear equations {0 = [VϕP −

P̂ Vϕ]P
(s), s ∈ Y ∗ } (see Corollary 2.3). When CM(P̂ ) is non-trivial, it is clear from

Proposition 1 that,

CM(P̂ ) =

maxy∈Y (card(ϕ−1(y)))−1⋂

k=0

{
v ∈ R

N
+ : ∀s ∈ Y

∗, lg(s) ≤ k, [VϕP−P̂ Vϕ]P
(s)v = 0

}
.

Therefore, the cone CM(P̂ ) has the central property to be polyhedral. Next, the
following criterion of weak lumpability is easily derived from [27, Th 3.4].

Theorem 2.5 CM(P̂ ) 6= {0} iff there exist a non-negative K ×K matrix Q and a
non-negative N ×K matrix U (1 ≤ K ≤ N) such that

Cone(U) ⊂ C1(P̂ ), Cone(U) = ⊕y∈Y ΠyCone(U), PU = UQ (2.16)

with Cone(U) := UR
M
+ and dimCone(U) = K. In such a case, Cone(U) ⊂ CM(P̂ ).

For a R-P matrix P , Conditions (2.11) have to be compared to Conditions (2.16).

Indeed, the matrices U ,P̂ and Q in (2.16) may be identified with Λ, Q = P̂ = VϕPΛ
in (2.11) respectively. We see from (2.16) that Cone(Λ) := ΛRM

+ is invariant under

P and the lumping projectors. We have that Cone(Λ) ⊂ CM(P̂ ) and P is essentially

weakly lumpable. But the set CM(P̂ ) may be larger than Cone(Λ).
Let us denote the spectrum of a matrix A by σ(A). The following spectral

properties arise from the weak lumpability property and can be proved from [5, 27].

Corollary 2.6 If P is essentially weakly lumpable with matrix P̂ , then we have

∀y ∈ Y , P̂ (y, y) ∈ σ(ΠyPΠy) and σ(P̂ ) ⊂ σ(P ).
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2.2.4 Duality results

In this subsection, the Markov chain (Xn) and its dual version w.r.t. the scalar
product defined in (2.17) are considered. The Markov property of their respective
lumped processes is examined. Our results generalize the theorems Th 6-4.5, Th
6-4.8 in [24], where the transition matrix P is assumed to be primitive (that is
irreducible and aperiodic). Note that the method of derivation is new.

Let v be a positive vector of RN . The N × N diagonal matrix with generic
diagonal entry v(i) is denoted by diag(v). We define a scalar product 〈·, ·〉v on R

N

by
∀x, y ∈ R

N , 〈x, y〉v := xTdiag(v)−1y. (2.17)

Definition 2.5 Let P be a N × N stochastic matrix. The adjoint matrix P ∗ of P
w.r.t. the scalar product 〈·, ·〉v is defined by

P ∗ := diag(v)PTdiag(v)−1.

We have (P ∗)∗ = P .

The matrix P ∗ is stochastic if and only if the vector v is an eigenvector corresponding
to the eigenvalue 1 of P . If P ∗ is stochastic, then P ∗ is the well known dual or time-
reversed matrix of P [24, Def 3-5.1]. When P ∗ = P , the matrix P is said to be
self-adjoint, or reversible in the Markov chain framework. A self adjoint matrix P
is an instance of a normal matrix, that is, P satisfies PP ∗ = P ∗P .
Let H be a linear subspace of RN . The space R

N is the direct sum

R
N = H⊕H∗. (2.18)

where H∗ := {w ∈ R
N : 〈w, h〉v = 0, h ∈ H} is the adjoint subspace of H. Note

that (H∗)∗ = H and we know that

PH ⊂ H ⇐⇒ P ∗H∗ ⊂ H∗. (2.19)

If P is a normal matrix, then we have [16, p. 275]

PH ⊂ H ⇐⇒ PH∗ ⊂ H∗. (2.20)

Theorem 2.6 Let v be a positive stochastic vector. We define the linear subspace
V := Span(v(y), y ∈ Y ). Then,

1. V is P -invariant if and only if Ker(Vϕ) is P ∗-invariant.
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2. When P is a normal matrix, we have

P
(
Ker(Vϕ) ∩ CS(v,Π., P )

)
⊂ Ker(Vϕ)⇐⇒ PKer(Vϕ) ⊂ Ker(Vϕ)⇐⇒ PV ⊂ V .

ProofA. direct computation shows that V∗ = Ker(Vϕ) and hence, V = (Ker(Vϕ))
∗.

Applying Relation (2.19) to H := V gives Statement (1). When the matrix P is
normal, the second equivalence in Statement (2) is just Relation (2.20) with H := V .
Next, we have V ⊂ CS(v,Π., P ) by definition of the last subspace. This inclusion
has the equivalent form

CS(v,Π., P )∗ ⊂ V∗ = Ker(Vϕ).

Moreover, the subspace CS(v,Π., P ) is P -invariant. The matrix P is assumed to
be normal, so that CS(v,Π., P )∗ is P -invariant from (2.20). Since CS(v,Π., P )∗ ∩
Ker(Vϕ) = CS(v,Π., P )∗, we find that

P
(
Ker(Vϕ) ∩ CS(v,Π., P )∗

)
⊂ Ker(Vϕ).

The first equivalence in Statement (2) is proved as follows. Suppose that P (Ker(Vϕ)∩
CS(v,Π., P )) ⊂ Ker(Vϕ). Then, we deduce from (2.18) with H := CS(v,Π., P )∗ and
from the inclusion above, that

PKer(Vϕ) ⊂ Ker(Vϕ).

The converse statement easily follows from the P -invariance of CS(v,Π., P ).
When the matrix P ∗ is stochastic, the previous theorem reads as follows.

Corollary 2.7 Assume that P has a positive stochastic eigenvector v associated
with its eigenvalue 1. Then

1. P is a R-P matrix if and only if P ∗ is strongly lumpable.

2. When the matrix P is irreducible and normal, the three following statements are
equivalent: P is weakly lumpable; P is strongly lumpable; P is a R-P matrix.

ProofT. his is just a reformulation of Theorem 2.6 once the following comments
have been mentioned. P is a R-P matrix with associated matrix Λ iff the cone ΛRM

+

is P -invariant, which is easily checked to be equivalent to the subspace ΛRM is P -
invariant. Assuming P irreducible is equivalent to assuming that P has an unique
stochastic eigenvector associated with the eigenvalue 1 [8, p. 27]. We need this
assumption only to derive from Statement (1) in Corollary 2.2, that the inclusion
P (Ker(Vϕ) ∩ CS(v,Π., P )) ⊂ Ker(Vϕ) holds when (Xn) is weakly lumpable.
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2.3 Non-homogeneous Markov property

We are interested in a criterion for (ϕ(Xn)) to be a non-homogeneous Markov chain.
A related problem was studied by Kelly [23] under the assumption that (Xn) was a
non-homogeneous Markov chain.

Definition 2.6 The process (ϕ(Xn)) is a non-homogeneous Markov chain (NHMC)

with the transition matrices (P̂n)n≥0 iff
for every n ≥ 0 and for every (yn+1, . . . , y0) ∈ Y n+2, we have

P{ϕ(Xn+1) = yn+1 | ϕ(Xn) = yn, . . . , ϕ(X0) = y0 } = P̂n(yn+1, yn)
if P{ϕ(Xn) = yn, . . . , ϕ(X0) = y0} > 0.

Proceeding as in the homogeneous case, we obtain that (ϕ(Xn)) is an NHMC with

the transition matrices (P̂n)n≥0 iff for any n ≥ 0 and any (yn, . . . , y0) ∈ Y n+1

[VϕP − P̂nVϕ]P
(yn...y0)α. (2.21)

Let us define the following sub-cones of RN
+ :

C (P̂n) := { β ≥ 0 : ∀y ∈ Y , [VϕP − P̂nVϕ]β = 0 }, n ≥ 0.

CC0(α) := ⊕y∈Y Cone(Πyα)
CCn+1(α) := ⊕y∈Y ΠyPCCn, n ≥ 0.

}
(2.22)

Using the cones CCn(α) and Condition (2.21), the following criterion for (ϕ(Xn) to
be an NHMC may be derived as Theorem 2.1. The details are omitted.

Theorem 2.7 (ϕ(Xn)) is an NHMC with the transition matrices (P̂n)n≥0 iff

CCn(α) ⊂ C (P̂n), ∀n ≥ 0.

Assume the above inclusion holds and set the initial distribution of (Xn) to P (s)α/1TP (s)α
for some s ∈ Y ∗ with lg(s) = k. Then, (ϕ(Xn)) is an NHMC with the transition

matrices (P̂n+k)n≥0.

The last statement in Theorem 2.7 follows from the inclusion CCn(P
(s)α) ⊂ CCn+k(α)

for any s ∈ Y ∗ such that lg(s) = k. Now, we find a criterion in terms of the linear
spaces

CSn(α) := CCn(α)− CCn(α) n ≥ 0,

which does not require the knowledge of matrices (P̂n)n≥0.
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Theorem 2.8 The process (ϕ(Xn)) is an NHMC iff

∀n ≥ 0, P
(
Ker(Vϕ) ∩ CSn(α)

)
⊂ Ker(Vϕ). (2.23)

ProofT. he proof of the“only if” part is as in that of Theorem 2.2.
The converse statement is proved as follows. In a first step, we define the matrices
(P̂n)n≥0 as follows. Let n ≥ 0 be fixed. For any y ∈ Y such that ΠyCCn(α) 6= {0},
select a vector β in this set. We set

P̂n(., y) := VϕPβ(y). (2.24)

When ΠyCCn(α) = {0}, (ϕ(Xn)) does not visit the state y at time n with P-

probability 1. Then, the stochastic vector P̂n(., y) may be arbitrary chosen.

In a second step, we have to prove that ΠyCCn(α) ⊂ C (P̂n) for every y ∈ Y . If
ΠyCCn(α) = {0} then the inclusion is trivial. If not, we just have to justify that

∀γ ∈ ΠyCCn(α), VϕPγ(y) = P̂n(., y) = VϕPβ(y) (from (2.24)).

Since γ(y)− β(y) ∈ Ker(Vϕ), we have γ
(y)− β(y) ∈ CSn(α)∩Ker(Vϕ). It follows from

the inclusion (2.23), that 0 = VϕP (γ(y) − β(y)) and VϕPγ(y) = VϕPβ(y).

Example 2.9
Let us consider an HMC (Xn) with transition matrix P and the lumping map ϕ
defined by

P =




0 0 1
1 0 0
0 1 0


 , ϕ(1) = 1, ϕ(2) = ϕ(3) = 2.

Take e1 = (1, 0, 0)T as initial distribution. Starting in state 1, the path of process
(ϕ(Xn)) is 1, 2, 2, 1, 2, 2, . . . with P-probability 1. Therefore (ϕ(Xn)) is a Markov
chain. The sequence of transitional matrices may be chosen as

P̂n :=

(
0 0
1 1

)
if n ≡ 0 mod 3; P̂n :=

(
1 0
0 1

)
if n ≡ 1 mod 3;

P̂n :=

(
1 1
0 0

)
if n ≡ 2 mod 3.

However, note that two entries of each matrix of the sequence are arbitrary. Indeed,
a simple computation shows that

CCn(e1) = Cone(e1), P̂n(., 1) = (0, 1)T, if n ≡ 0 mod 3,

CCn(e1) = Cone(e2), P̂n(., 2) = (0, 1)T if n ≡ 1 mod 3,

CCn(e1) = Cone(e3), P̂n(., 1) = (1, 0)T if n ≡ 2 mod 3.
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Since Ker(Vϕ) = Span((0, 1,−1)) and CSn(e1) ∩ Ker(Vϕ) = {0}, the criterion in
Theorem 2.8 is satisfied. △

A natural question is: can a lumped process (ϕ(Xn)) be an NHMC for every
probability distribution of X0? The answer is “negative” if we require that all
lumped NHMC share the same sequence of transition matrices (P̂n)n≥0. In fact, the
lumped process will be actually a homogeneous Markov chain. Indeed, if (ϕ(Xn)) is

an NHMC with transition matrices (P̂n)n≥0 for every initial distribution, we deduce

from Theorem 2.7 that C (P̂0) = R
N
+ and we have VϕP − P̂0Vϕ = 0. We recognize

a condition for (Xn) to be strongly lumpable (see Theorem 2.4). Let ex be the xth
vector of the canonical basis of RN . It can be seen that (ϕ(Xn)) may be an NHMC
for any initial distribution ex (x ∈ X ) without being an NHMC for every initial
distribution [22].

Now, we investigate the conditions under which (ϕ(Xn)) is an NHMC with a

periodic sequence of transition matrices (P̂n)n≥0. We just present a criterion for the
2-periodic case. The general situation is quite similar. It is clear from Theorem 2.7
that (ϕ(Xn)) is an NHMC with a 2-periodic sequence of transition matrices (P̂n)n≥0

iff

∀n ≥ 0, CC2n(α) ⊂ C (P̂0) and CC2n+1(α) ⊂ C (P̂1)

or CCe(α) ⊂ C (P̂0) and CCo(α) ⊂ C (P̂1) (2.25)

with CCe(α,Π., P ) :=
∑

n≥0 CC2n(α) and CCo(α,Π., P ) :=
∑

n≥0 CC2n+1(α). Note
that

P CCe(α,Π., P ) ⊂ CCo(α,Π., P ) and P CCo(α,Π., P ) ⊂ CCe(α,Π., P ). (2.26)

In such a context, we obtain the following criterion for weak lumpability. The proof
is similar to that of Theorem 2.8 and is omitted.

Theorem 2.10 The process (ϕ(Xn)) is a 2-periodic NHMC iff

P
(
Ker(Vϕ) ∩ CSe(α,Π., P )

)
⊂ Ker(Vϕ) ∩ CSo(α,Π., P )

and P
(
Ker(Vϕ) ∩ CSo(α,Π., P )

)
⊂ Ker(Vϕ) ∩ CSe(α,Π., P )

where

CSe(α,Π., P ) := CCe(α,Π., P )− CCe(α,Π., P )

and CSo(α,Π., P ) := CCo(α,Π., P )− CCo(α,Π., P ).

24



3 ϕ-Observability

In this section, the matrix P is the transition matrix of the Markov chain (Xn). The
following linear system can be considered from matrices P and Vϕ

xn+1 := Pxn and yn := Vϕ yn n ≥ 0,

where the “state vector” xn corresponds to the probability distribution of the random
variable Xn. The “observed vector” yn is the probability distribution of the random
variable ϕ(Xn).

Let us recall that the pair of matrices (P, Vϕ) is said to be observable if the
so-called non-observable space is reduced to {0}, that is (e.g. see [6])

⋂

k∈N

Ker(VϕP
k) = {0}.

In an intuitive sense, the pair (P, Vϕ) is observable if the initial state x0 (probability
distribution of X0) can be computed by suitable processing of the observed vectors
(probability distributions of ϕ(Xn)). The observability concept above, is appropriate
for the study of the one-dimensional distributions of the lumped process (ϕ(Xn)).
It is clear from (2.1) that we need a concept of observability adapted to the study of
finite-dimensional distributions (or paths) of the lumped process. Such a concept has
been introduced by Gurvits for the investigation of the stability of linear inclusions
[21] (see also [20]) and by Amari and its co-authors [3] in the context of identifiability
of hidden Markov models [3].

Let us define the non-ϕ-observable space by

NOP,ϕ := {v ∈ R
N : ∀s ∈ Y

∗, VϕP
(s)v = 0}. (3.1)

It is easily checked that NOP,ϕ is the maximal subspace of Ker(Vϕ) that is invariant
under all lumping projectors and the matrix P . The finite generation of this subspace
is similar to that of the non-observable space in linear system theory (e.g. see [6,
Section 3]).

Definition 3.1 A pair of matrices (P, Vϕ) is said to be ϕ-observable if

NOP,ϕ = {0}.

In an intuitive sense, the pair (P, Vϕ) is ϕ-observable if the probability distribution
of X0 can be computed from the knowledge of the finite-dimensional distributions
of (ϕ(Xn)) [22]. That any observable pair (P, Vϕ) is ϕ-observable, is clear from their
respective interpretations.

25



3.1 Connection between the sets CM(P̂ ) and NOP,ϕ

The decomposable cone CM(P̂ ) defined in (2.15) is connected to the space NOP,ϕ as

follows. Let α
(1)
y and α

(2)
y be two stochastic vectors in ΠyCM(P̂ ). Consider the two

Markov chains with the same transition matrix P and respective initial distributions
α
(1)
y and α

(2)
y . They give rise to the same lumped process, which is an HMC with

the transition matrix P̂ and the initial distribution Vϕα
(1)
y = Vϕα

(2)
y = êy, where

êy is the yth vector of the canonical basis of RM . Then, it follows from (2.1) (1.1)

and (3.1) that α
(1)
y − α

(2)
y ∈ NOP,ϕ. Noting that the set NOP,ϕ is the direct sum

⊕y∈Y ΠyNOP,ϕ and that Πy(NOP,ϕ) ∩ R
N
+ = {0}, the proof of the next result is

easily completed from [28, Th3.2].

Theorem 3.1 Suppose the cone ΠyCM(P̂ ) in (2.15) contains a stochastic vector αy.
Then,

ΠyCM(P̂ ) = [Span(αy)⊕ΠyNOP,ϕ]∩R
N
+ and dim(ΠyCM(P̂ )) = dim(ΠyNOP,ϕ)+1

where dim(ΠyCM(P̂ )) is the dimension of the affine hull of the set ΠyCM(P̂ ).
When P is essentially weakly lumpable, there exists a stochastic vector α such that

Vϕα > 0 and CM(P̂ ) = [NOP,ϕ ⊕ Span(Πyα, y ∈ Y )] ∩ R
N
+ .

When the pair (P, Vϕ) is ϕ-observable, we obtain the following criterion for the HMC
(Xn) to be essentially weakly lumpable.

Corollary 3.1 Let P̂ be a M × M stochastic matrix. If the pair (P, Vϕ) is ϕ-
observable (observable) then the following statements are equivalent.

1. P is essentially weakly lumpable with matrix P̂ .

2. CM(P̂ ) = ΛRN
+ for some stochastic matrix Λ such that VϕΛ = Î.

3. P is a R-P matrix.

ProofA. ssume that NOP,ϕ = {0}. If P is weakly lumpable with P̂ then it follows

from Theorem 3.1 that CM(P̂ ) = ΛRM
+ with Λêy = α(y) for any y ∈ Y and VϕΛ = Î.

Property (P3) (p.18) and Theorem 2.5 give that PΛ = ΛQ̂ for some non-negative

matrix Q̂. In other words, P is a R-P matrix. The fact that Statement (3) implies
Statement (1) is already known (see pages 15,19).
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3.2 Nowhere density of the set of weakly lumpable matrices

Let M be the linear space of real N × N matrices and S be the set of stochastic

matrices. A subset H of S is said to be nowhere dense in S, if
o

H = ∅ where H and
o

H are respectively the closure and the interior of H in S. Note that a closed subset
H of S is nowhere dense in S if its complement set Hc is dense in S. It is clear that
a finite union of nowhere dense closed subsets of S is also nowhere dense in S.

The two following lemmas are easily proved from [16, p. 62] and [40, Prop 3.3.12]
respectively.

Lemma 3.1 The set of all positive stochastic matrices is an open subset of S, which
is dense in S.

Lemma 3.2 Let us fix the lumping map ϕ. The set Eϕ := {P ∈ S : (Vϕ, P ) is not
observable } is a closed subset of S that is nowhere dense in S.

Lemma 3.3 Let us fix the lumping map ϕ. The set RPϕ of the R-P matrices is a
closed subset of S that is nowhere dense in S.

ProofL. et (Pn) be a sequence of elements in RPϕ converging to P . Since Pn ∈

RPϕ, there exist stochastic matrices Λn and P̂n with PnΛn = ΛnP̂n. The sets of

stochastic matrices are compact, so we can extract subsequences (Λnk
), (P̂nk

) from

(Λn) and (P̂n) that converge to some stochastic matrices Λ and P̂ , respectively. We
have

PΛ ←−
k→+∞

Pnk
Λnk

= Λnk
P̂nk

−→
k→+∞

ΛP̂

and P ∈ RPϕ.
Let êy be the yth vector of the canonical basis of RM . Condition (2.10) for P to be
a R-P matrix may be reformulated as

∀y1, y0 ∈ Y , Πy1PΠy0Λêy0 ∝ Λêy1 .

We have to prove that the interior of RPϕ w.r.t. S is empty. In other words, if
P ∈ RPϕ then we must find a stochastic matrix Pε, as closed to P as necessary,
such that Pε /∈ RPϕ. If 1 < M < N then there exists a class ϕ−1(y) with 2 ≤
card(ϕ−1(y)) < N . We only perturb the entries of P corresponding to the transition
probabilities from states in ϕ−1(y0) to states in ϕ−1(y) for some y0 6= y to obtain
Pε. Since we choose Iy1PIy1 = Iy1PεIy1 for all y1 ∈ Y , we just have to assert that
the perturbations of entries of ΠyPΠy0 may be arbitrary small such that matrix Pε
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is stochastic and vector ΠyPΠy0Λêy0 is not proportional to Λêy for some y0 6= y. It
is clear that this can be done, so that Pε is not a R-P matrix.

Corollary 3.1 is reformulated as follows.

If P is essentially weakly lumpable w.r.t. the lumping map ϕ, then either
the pair (Vϕ, P ) is not observable (not ϕ-observable) or the matrix P is a
R-P matrix.

Now, we state the main result of this subsection.

Theorem 3.2 The set of all weakly lumpable matrices is nowhere dense in S.

ProofL. et us fix a lumping map ϕ from X . The set of all essentially weakly
lumpable matrices according to ϕ, denoted by EWLϕ, is such that

EWLϕ ⊂ RPϕ ∪ Eϕ.

We deduce from Lemmas 3.2,3.3 that RPϕ∪Eϕ is a closed and nowhere dense subset
of S. Since X is assumed to be a finite set, the set of lumping maps from X is
also a finite set. Hence, the set of essentially weakly lumpable matrices is contained
in the finite union ∪ϕ(RPϕ ∩ Eϕ) of closed and nowhere dense subsets. The proof
is easily completed if we prove that the set of all non-essentially weakly lumpable
matrices is also contained in a nowhere dense closed subset of S.
Note that the weak lumpability property for a positive stochastic matrix is equivalent
to the essential weak lumpability property. Moreover, we deduce from Lemma 3.1,
that the set of all non-positive matrices is closed and nowhere dense in S. Con-
sequently, the set of all non-essentially weakly lumpable matrices is included in a
nowhere dense closed subset of S.

4 Markov property for a probabilistic function of

a Markov chain

4.1 Hidden Markov Chains

Let us give an intuitive description of a hidden Markov chain. The mechanism of
such a model is as follows (e.g see [34] for further reading). We have a finite set
of “states”, say X . At each clock time n, a new state is entered based upon a
transition probability distribution which depends on the previous state (the Markov
property). After each transition is made, an observation output symbol in Y is
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produced according to a probability distribution which depends on the current state.
This probability distribution is held fixed for the state regardless of when and how
the state is entered. A formal definition of a hidden Markov chain is as follows.

Definition 4.1 A bivariate homogeneous Markov chain ((Yn, Xn)) with the state
space Y ×X is said to be a hidden Markov chain, if its transition matrix Q satisfies

∀x, x1 ∈X , ∀y, y1 ∈ Y , ∀n ≥ 1

Q( (y, x), (y1, x1) ) = P{ (Yn, Xn) = (y, x) | (Yn−1, Xn−1) = (y1, x1) }

= P{ (Yn, Xn) = (y, x) | Xn−1 = x1 } (4.1)

= P{Yn = y | Xn = x }P{Xn = x | Xn−1 = x1 } (4.2)

= G(y, x)P (x, x1). (4.3)

for some M × N- (resp. N × N) stochastic matrix G (resp. P ). The probability
distribution of (Y0, X0) is

∀(y, x) ∈ Y ×X , P { (Y0, X0) = (y, x) } = G(y, x)P{X0 = x}.

We assume (without loss of generality) that none of the rows of matrix G is zero.
The processes (Xn), (Yn) are called the state process and the observed process of the
hidden Markov chain, respectively.

It is easily checked from (4.1) that (Xn) is an HMC with transition matrix P .
Property (4.2) is the so-called “factorization hypothesis” [15, p 1524]. The random
variable Yn may be thought of as a probabilistic function of the random variable
Xn. Indeed, we have

Yn = ϕn(Xn)

where (ϕn) is an independent and identically distributed sequence of maps from X

into Y ; the probability distribution of ϕn is specified by P{ϕn(x) = y} = G(y, x)
and (ϕn) is independent of (Xn). This explains why the process (Yn) was early
referred to as a probabilistic function of the Markov chain (Xn) [7].

Spreij investigated the conditions under which (Yn)n is an HMC [37]. We restrict
ourselves to this basic question. He used Rubino and Sericola’s formulation [35] of
Kemeny-Snell’s criterion for an irreducible state process (Xn) and a filtering point of
view. Here, we need no special assumptions on (Xn). In the next subsection, we just
express the basic results in terms of the standard parameters of a hidden Markov
chain. The results in Section 2 could also be used to deal with the lumpability
property studied in [42].
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4.2 Lumpability of a hidden Markov chain

In this subsection, the stochastic vector α stands for the probability distribution of
X0. The HMC ((Yn, Xn)) can be thought of as the following one-dimensional HMC
(Zn) with state space {1, . . . , NM}:

x ∈X , y ∈ Y , Zn = (y − 1)N + x⇐⇒ (Yn, Xn) = (y, x).

The marginal process (Yn) is (Φ(Zn)) with the lumping map Φ defined by

y ∈ Y , ( Φ((y − 1)N + x) = y, x ∈X ) .

The transition matrix Q of (Zn) has the form

Q = ∆(G)P (1T ⊗ IN) with ∆(G) :=




diag(G(1, ·))
...

diag(G(M, ·))


 ,

diag(G(y, ·)) is the diagonal matrix with the yth row of G as diagonal entries, and ⊗
is the Kronecker product of matrices. The probability distribution of Z0 is ∆(G)α.

From Definition 4.1, (Yn) is an HMC when X0 has probability distribution α
if and only if the marginal process (Yn) of ((Yn, Xn)) is an HMC with (Gα, α) as
probability distribution of (Y0, X0). Thus, (Yn) is an HMC if and only if (Φ(Zn)) is
an HMC when Z0 has probability distribution ∆(G)α.

The following criterion for (Yn) to be an HMC is derived from Corollary 2.5.

Theorem 4.1 Let Z be a subset of probability distributions over X . (Yn) is an
HMC with the same transition matrix for every probability distribution of X0 in Z
iff

Q
(
Ker(VΦ) ∩ CS(∆(G)Z,Π., Q)

)
⊂ Ker(VΦ).

When the inclusion above is satisfied for Z reduced to a singleton, the hidden
Markov chain ((Yn, Xn)) is said to be weakly lumpable. If the inclusion holds for Z
be the set of all stochastic vectors, the hidden Markov chain ((Yn, Xn)) is said to be
semi-strongly lumpable. The counterpart of the standard conditions for HMCs to be
weakly lumpable are now briefly discussed.
Semi-strong lumpability of a hidden Markov chain. We know from Theorem 2.4
that (Φ(Zn)) is an HMC for every probability distribution of Z0 iff

QKer(VΦ) ⊂ Ker(VΦ). (4.4)
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In this case, it is clear from the theorem above that the hidden Markov chain
((Yn, Xn)) is semi-strongly lumpable. Let ex denote the xth vector of the canonical
basis of RN . Condition (4.4) has the following algebraic form (see Theorem 2.4 and
(4.3))

∀x1, x2 ∈X , GPex1 = GPex2 , (4.5)

that is, all columns of the matrix GP are identical. It can seen from Theorem 4.1
that a criterion for the hidden Markov chain to be semi-strongly lumpable is

∀y ∈ Y : GPex1 = GPex2 whenever x1, x2 ∈ {x ∈X : G(y, x) 6= 0}. (4.6)

As shown by the example below, Condition (4.5) is only sufficient in general for
Condition (4.6) to hold. But, both conditions are equivalent when G is positive for
instance.
Let us consider the matrices

P :=



1/2 1/4 1/4
1/3 1/3 1/3
1/6 5/12 5/12


 G :=

(
1 0 0
0 1 1

)
.

Since
GPe1 = (1/2 1/4 1/4)T GPe2 = (1/2 3/4 3/4)T,

the hidden Markov chain ((Yn, Xn)) is semi-strongly lumpable from (4.6), but (Zn)
is not strongly lumpable w.r.t. Φ from (4.5).

Rogers-Pitman’s condition for a hidden Markov chain. Condition (2.10) reads as

∀y ∈ Y , U∆(g)α = UQ(∆(g)α)(y) (if well-defined),

and it asserts that (Yn) is an HMC. In terms of matrices G and P , this condition
has the form: for every y1, y2 ∈ Y

diag(G(y1, .))Pdiag(G(y2, .))α

GT(y1, .)Pdiag(G(y2, .))α
=

diag(G(y1, .))α

GT(y1, .)α
(if well-defined).

Spreij’s condition. Assume the following condition be satisfied

∀y ∈ Y , QU∆(g)α = QUQ(∆(g)α)(y) (if well-defined). (4.7)

Then, it follows (see the discussion from (2.8))

CC(∆(G)α,Π., Q) = Cone(Πy1∆(G)α, Πy3QΠy2∆(G)α, y1, y2, y3 ∈ Y )
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and (Φ(Zn)) is an HMC with ∆(G)α as probability distribution of Z0. The following
condition for the hidden Markov chain ((Yn, Xn)) to be weakly lumpable is given by
Spreij

∀y ∈ Y , P (1T ⊗ IN)U∆(g)α = P (1T ⊗ IN)UQ(∆(g)α)(y) (if well-defined).

Left multiplying by the matrix ∆(G), we obtain Condition (4.7).

Example 4.2 ([37])
Let us consider the hidden Markov chain ((Yn, Xn)) with associated matrices

P1 =



1/2 1/3 1/6
1/4 1/3 5/12
1/4 1/3 5/12


 G =

(
1/2 2/3 1/3
1/2 1/3 2/3

)
.

This hidden Markov chain is semi-strongly lumpable since all columns of GP1 are
identical. However, contrary to what is reported in [37], there exists a deterministic
lumping map w.r.t. which P1 is weakly lumpable. Indeed, P1 is a R-P matrix for
the map ϕ(1) = 1, ϕ(2) = ϕ(3) = 2:

Λ =

(
1 0 0
0 1/2 1/2

)T

P̂1 =

(
1/2 1/4
1/2 3/4

)
.

Since G is positive, the HMC (Zn) is also strongly lumpable w.r.t. the lumping map
Φ(1) = Φ(2) = Φ(3) = 1,Φ(4) = Φ(5) = Φ(6) = 2.

Now, consider the matrix P2 = P1
T. We get

GP2 =

(
19/36 35/72 35/72
17/36 37/72 37/72

)
.

Therefore, the hidden Markov chain with associated matrices P2, G is not semi-
strongly lumpable. The matrix Q of (Zn) is

Q =




1/4 1/8 1/8 1/4 1/8 1/8
2/9 2/9 2/9 2/9 2/9 2/9
1/18 5/36 5/36 1/18 5/36 5/36
1/4 1/8 1/8 1/4 1/8 1/8
1/9 1/9 1/9 1/9 1/9 1/9
1/9 5/18 5/18 1/9 5/18 5/18




.
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The lumped process (Φ(Zn)) is shown to be an HMC with transition matrix

Q̂ :=

(
1/2 1/2
1/2 1/2

)

only for an initial distribution of Z0 selected in

C := Cone
(
(
1

3
,
2

3
, 0, 0, 0, 0)T ; (

1

3
, 0,

2

3
, 0, 0, 0)T ; (0, 0, 0,

1

3
,
2

3
, 0)T ; (0, 0, 0,

1

3
, 0,

2

3
)T

)
.

In fact, the hidden Markov chain ((Yn, Xn)) is weakly lumpable only for πX =
(1/3, 1/3, 1/3)T as probability distribution of X0. Indeed, it is easily checked that
πX is the only stochastic vector such that ∆(G)πX = πZ ∈ C. △

5 Conclusion

In this paper, we solve a probabilistic question in a pure linear algebra framework.
The question addressed here is: under which conditions does a function of a finite
Markov chain have still a Markov property? The linear subspaces we introduced
to answer to this question are reminiscent of the so-called “geometric approach”
in linear control theory [6, 43]. The interest in using such an approach is that we
obtain a collection of results probably tedious to derive by means of probabilistic
methods.

The initial motivation for such a question, is to obtain a model reduction via
an aggregation of some states of a Markov model. We emphasize that this model
reduction is exact, in the sense that the aggregated or lumped process has a Markov
property which can be exploited to do numerical computations through standard
numerical methods for Markov chains. A vast literature exists on model reduction
procedures for dynamic systems and, in particular, for Markov models (e.g. see
[2, 13, 10] and the references therein). We emphasize that these methods are ap-
proximate methods and are well-suited only for specific conditions on the initial
model. Finally, we do not intend to claim that our results produce a method of
model reduction which is effective for any Markov model. This is not the case.
However, there exists a sufficient number of applications for which lumpability leads
to a valuable reduction of the computational complexity, to consider that our work
may be useful in practice. At least, it should give some insight on the rationale
underlying some methods of model reduction.

Finally, we are only concerned with finite Markov chains in this paper. We
just say a few words on the countable state space case. Relevant references to

33



this discussion are [11, 23, 12, 20, 4, 26]. Most results presented here still hold
with minor modifications in the statements. Indeed, we have to take care of some
topological issues. For instance, the subspace CS(α,Π., P ) will be the minimal closed
subspace including the vector α and that is invariant under the matrix P and the
lumping projectors Πy, y ∈ Y . Series like

∑
y∈Y

must be understood as l1-sums.
An algorithm for computing CS(α,Π., P ) will be infinite in general. However, the
instance of R-P matrix reported in [26] shows that finite generation may happen.

Results needing topological assumptions on the operators P and P̂ are clearly related
to the statements on spectral properties as in Corollaries 2.2,2.6. In particular, the
connection between the equation VϕP = P̂ Vϕ and the spectrum of P and P̂ is studied
in [20]. We must also take care of topological issues in the continuous-time context.
Indeed, it is clear that if the generator A is strongly bounded then most results
still hold because the reduction to the discrete-time case mentioned in Comment 2
still applies (see [26]). But if A is not bounded, then precautions are needed. In
particular, a criterion for the existence of a closed subspace invariant under A is
studied in [20]. ϕ-observability can be used in the countable case. We do not go
into further details here.
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