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Recursive filters for partially observable finite Markov chains

James Ledoux∗

24 august 2005

Abstract

In this note, we consider discrete-time finite Markov Chains and assume that they
are only partly observed. We obtain finite-dimensional normalized filters for basic
statistics associated with such processes. Recursive equations for these filters are de-
rived by means of simple computations involving conditional expectations. An appli-
cation to the estimation of parameters for the so-called discrete-time Batch Markovian
Arrival Processes is outlined.

Keywords: time-inhomogeneous Markov chain; hidden Markov chain; D-BMAP;
EM-algorithm
AMS 60J10,93E11

1 Introduction

Let (X,Y ) := (Xt, Yt)t≥0 be a bivariate discrete-time finite (inhomogeneous) Markov
chain. Only the second component Y is supposed observable. Y is often called the
observation process and X the “hidden” process. The special case of hidden Markov
models is well known. A Hidden Markov Chain (HMC) is a bivariate Markov chain for
which the hidden component is also a Markov chain. This class of Markovian models has
proved to be useful in many ares of probabilistic modeling, including speech process (e.g.
see [15] and the references therein).

At time t, the available data on (X,Y ) consists of the sequence of values Y0, . . . , Yt. A
standard problem is to find from the data the best estimate, at time t, of quantities related
to the unobserved process X. Such a problem is often referred to as a filtering problem.
In this paper, finite-dimensional filters for basic statistics related to X and Y are obtained
in a recursive form. Our only assumption is that (X,Y ) is a finite Markov chain. The
derivation of our main result is based on basic computations on conditional expectations.
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Specializing our result to time-homogeneous dependent hidden Markov chains, we find
a renormalized form of the Zakäı filters obtained by Elliott in [7, 8]. The change of
measure technique used by Elliott has the advantage of providing an unified framework
for the computation of filters for hidden Markov chains. In particular, it works for hidden
Markov chains continuous in both time and space [8]. Note that to be suitable, such a
change of measure must preserve the Markov property of the hidden component X. In the
context of discrete time and space, we believe our approach is more direct and elementary.

In this paper, the number of ‘states’ of X is assumed to be known. This is adequate,
for example, in speech recognition where the hidden states are the elements of a finite
alphabet, in architecture-based software reliability modeling where the hidden states are
the modules of a piece of software. However, in many applications, this is not the case. A
generic situation is when a partially observed model is used as a statistical model for fitting
to empirical time series. Estimation of the number of “hidden states” is known to be a
hard problem. We do not address this fundamental issue here. In the context of hidden
Markov chains, the so-called ‘order estimation problem’ is surveyed in [10, Section VIII].
Recent progress in this direction is reported in [11] and [5]. We refer the reader to these
papers and the references therein for details.

The paper is organized as follows. In section 2, we state our main result. Then, in
Section 3, we specialize the result to the time-inhomogeneous dependent Hidden Markov
chains. We also mention the connection of our result with the so-called innovation ap-
proach for filtering. In Section 4, we briefly describe parameter estimation for the discrete-
time counterpart of the Batch Markovian Arrival Process. Here, a filter-based form of the
EM-algorithm is used. Section 5 is devoted to the proof of our main result. Finally, we
present our conclusions in Section 6.

1.1 Main notation

Throughout, we will use the following notation.

• By convention, vectors are column vectors. Row vectors are denoted by means of
the transpose operator (.)T.

• 1 and 0 are vectors in which each entry is equal to one or 0, respectively. Their
dimensions are defined by the context.

• ei and f j are the ith vector of the canonical basis of Rn and the jth vector of the
canonical basis of Rm, respectively.

• For any vector (or scalar) a and scalar b ∈ R,

(a/b)+ :=

{
a/b b 6= 0
0, b = 0.
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With this notation, (b/b)+ is the indicator function of the set {b 6= 0}.

2 Recursive filters for partially observable finite Markov

chains

In this section, (X,Y ) is only assumed to be a finite Markov chain. The state space of
(X,Y ) is assumed to be the finite set E × F where E := {ei, i = 1, . . . , n} and F :=
{fk, k = 1, . . . ,m}. Note that with our conventions,

1{Xt=ei} = 〈Xt, ei〉 = eTi Xt, Xt =
n∑

i=1

〈Xt, ei〉ei 1TXt = 1

where 1{·} is the indicator function of the set {·} and 〈·, ·〉 denotes the usual Euclidean
scalar product. The corresponding relations also hold for the observed process Y . All
processes are supposed to be defined on the same probability space (Ω,F ,P). We denote
by FX = (FX

t )t≥0, F
Y = (FY

t )t≥0, F
X,Y = (FX,Y

t )t≥0 the internal filtrations of processes
X, Y and (X,Y ) respectively. That is,

F
X
t := σ(Xs, s ≤ t), F

Y
t := σ(Ys, s ≤ t), F

X,Y
t := σ(Xs, Ys, s ≤ t).

These filtrations are assumed to be complete, that is every σ-algebra contains all the sets
of F of P-probability zero.

In this paper, we deal with the following statistics of the partially observed Markov
chain, for any time t ≥ 1 and i, j = 1, . . . , n:

• the number of jumps of X from ei to ej up to time t, i.e.

N ji
t :=

t∑

l=1

〈Xl, ej〉〈Xl−1, ei〉; (2.1)

• the number of visits of X to state ei up to time t− 1, i.e.

O
(i)
t :=

t∑

l=1

〈Xl−1, ei〉; (2.2)

• the number of times, up to time t, (X,Y ) jumps to state (fk, ej) given that X is in
state ei, at the previous time, i.e.

L
k,ji
t :=

t∑

l=1

〈Yl,fk〉〈Xl, ej〉〈Xl−1, ei〉, k = 1, . . . ,m. (2.3)
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For these scalar random variables, we are interested in their quadratic mean estimates
from the data (Y0, Y1, . . . , Yt):

N̂ ji
t := E[N ji

t | FY
t ], Ô(i)

t := E[O
(i)
t | FY

t ] and L̂ k,ji
t := E

[
L

k,ji
t | FY

t

]
. (2.4)

In fact, we find that X̂t := E[Xt | F
Y
t ] and the filters defined by

N̂ jiXt := E
[
N ji

t Xt | F
Y
t

]
,

Ô(i)Xt := E
[
O

(i)
t Xt | F

Y
t

]

L̂ k,jiXt := E
[
L

k,ji
t Xt | F

Y
t

]
,

for any t ≥ 0, each satisfies a recursive equation. Since 1TXt = 1, the filters in (2.4) can
be written

N̂ ji
t = 1TN̂ jiXt, Ô(i)

t = 1TÔ(i)Xt, and L̂ k,ji
t = 1TL̂ k,jiXt.

For any t ≥ 0, we define the n × m random matrices S(t;Xt, Yt) as follows: for any
j = 1, . . . , n and k = 1, . . . ,m, its (j, k)th entry is

S(t;Xt, Yt)(j, k) := E
[
〈Xt+1, ej〉〈Yt+1,fk〉 | Xt, Yt

]

= P
(
(Xt+1, Yt+1) = (ej ,fk) | Xt, Yt

)
.

(2.5)

Then, the Markov property of (X,Y ), the equality

Xt+1Yt+1
T =

n∑

j=1

m∑

k=1

〈Xt+1, ej〉〈Yt+1,fk〉ejf
T

k

and (2.5) allow us to write

E
[
Xt+1Yt+1

T | FX,Y
t

]
= E

[
Xt+1Yt+1

T | Xt, Yt

]

=

n∑

j=1

m∑

k=1

E [〈Xt+1, ej〉〈Yt+1,fk〉 | Xt, Yt] ejf
T

k

= S(t;Xt, Yt), t ≥ 0.

(2.6)

Since 1TXt = 1, we deduce from (2.6) that, for every t ≥ 0,

E
[
Yt+1 | F

X,Y
t

]
= E [Yt+1 | Xt, Yt] = S(t;Xt, Yt)

T1. (2.7)
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Let (Ut)t≥0 be any sequence of integrable random variables. For any t, set Ût := E[Ut |

FY
t ]. In an abuse of notation, we denote by S(t; Ût, Yt) the n×m random matrix

S(t; Ût, Yt) :=

n∑

i=1

S(t; ei, Yt) 〈Ût, ei〉 (2.8)

Since S(t;Xt, Yt) =
∑n

i=1 S(t; ei, Yt)〈Xt, ei〉 and E
[
〈Xt, ei〉 | F

Y
t

]
= 〈E[Xt | F

Y
t ], ei〉, the

random matrix S(t; X̂t, Yt) is a conditional expectation:

S(t; X̂t, Yt) = E
[
S(t;Xt, Yt) | F

Y
t

]
. (2.9)

Theorem 2.1 1. (Estimator for the state.) For k = 1, . . . ,m, let pk be the n-dimensional
vector defined by: pk(i) := P(X0 = ei, Y0 = fk), i = 1, . . . , n. For any t ≥ 0, we have

X̂0 =

m∑

k=1

(
pk

1Tpk

)+

〈Y0,fk〉, X̂t+1 =
m∑

k=1

(
S(t; X̂t, Yt)fk

1TS(t; X̂t, Yt)fk

)+

〈Yt+1,fk〉. (2.10)

2. (Estimator for the number of visits to ei.) Set O
(i)
0 := 0 and, for t ≥ 1, define O

(i)
t

according to (2.2). We have Ô(i)X0 = 0 and, for any t ≥ 0,

Ô(i)Xt+1 =
m∑

k=1

(
S(t; Ô(i)Xt, Yt)fk + S(t; ei, Yt)fk〈X̂t, ei〉

1TS(t; X̂t, Yt)fk

)+

〈Yt+1,fk〉. (2.11)

3. (Estimator for the number of jumps of X from ei to ej .) Set N ji
0 = 0 and, for t ≥ 1,

define N ji
t according to (2.1). We have N̂ jiX0 = 0 and, for any t ≥ 0,

N̂ jiXt+1 =
m∑

k=1


S(t; N̂ jiXt, Yt)fk + eTj S(t; ei, Yt)fk〈X̂t, ei〉ej

1TS(t; X̂t, Yt)fk




+

〈Yt+1,fk〉. (2.12)

4. (Estimator for the number of joint transitions.) Set L
k,ji
0 := 0 and for t ≥ 1, define

L
k,ji
t according to (2.3). We have: L̂ k,jiX0 = 0 and, for any t ≥ 0,

L̂ k,jiXt+1 =
m∑

l=1

(
S(t; L̂ k,jiXt, Yt)f l

1TS(t; X̂t, Yt)f l

)+

〈Yt+1,f l〉

+

(
eTj S(t; ei, Yt)fk

1TS(t; X̂t, Yt)fk

〈X̂t, ei〉ej

)+

〈Yt+1,fk〉.

(2.13)

The equalities (2.10)–(2.13) are equalities up to a set of P-probability zero.
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3 Hidden Markov chains

Let us consider a bivariate Markov chain (X,Y ) := (Xt, Yt)t≥0. X0 and Y0 are assumed
to be independent random variables. Suppose that the transition probabilities of (X,Y )
satisfy

P
(
(Xt+1, Yt+1) = (ej ,fk) | Xt, Yt

)
= P

(
(Xt+1, Yt+1) = (ej ,fk) | Xt

)

⇐⇒ E
[
〈Xt+1, ej〉〈Yt+1,fk〉 | Xt, Yt

]
= E

[
〈Xt+1, ej〉〈Yt+1,fk〉 | Xt

]

t ≥ 0, k = 1, . . . ,m j = 1, . . . , n.

For any t ≥ 0, let us define the matrices Dk(t), k = 1, . . . ,m via their components
Dk(t; ·, ·) by

P
(
(Xt+1, Yt+1) = (ej ,fk) | Xt = ei

)
= Dk(t; j, i) i, j = 1, . . . , n. (3.1)

It is immediate that X is a Markov chain with transition matrices (P (t))t≥0 given by

P (t) :=

m∑

k=1

Dk(t).

For such a Markov chain (X,Y ), the random matrix S(t;Xt, Yt) defined by (2.5) does not
depend on Yt and (2.6) becomes

E
[
Xt+1Yt+1

T | FX,Y
t

]
= E

[
Xt+1Yt+1

T | Xt

]
= S(t;Xt), t ≥ 0, (3.2)

where S(t;Xt) is the following n×m random matrix

S(t;Xt) :=
(
D1(t)Xt · · · Dm(t)Xt

)
t ≥ 0, (3.3)

i.e. the jth column of S(t;Xt) is given by Dj(t)Xt. Therefore, the conditional expectation
in (2.7) can be written as

E
[
Yt+1 | F

X,Y
t

]
= E [Yt+1 | Xt] = S(t;Xt)

T1 = G(t)Xt for every t ≥ 0, (3.4)

where G(t) is the m× n matrix

G(t) :=




1TD1(t)
...

1TDm(t)


 .

Since E[Xt+1 | Xt] = P (t)Xt, the Markov chain X has the representation

Xt+1 = P (t)Xt + Vt+1, t ≥ 0, (3.5)

6



where V := (Vt)t≥1 is a F
X -martingale difference (i.e. Vt+1 is an integrable FX

t+1-measurable
random variable satisfying E[Vt+1 | FX

t ] = 0). Finally, from (3.5) and (3.4), the processes
X and Y have the following representation for t ≥ 0, where V is an FX -martingale differ-
ence and W := (Wt)t≥1 is an FX,Y -martingale difference:

{
Xt+1 = P (t)Xt + Vt+1

Yt+1 = G(t)Xt +Wt+1.
(3.6)

The two processes V and W are sometimes called the state noise and the observation
noise, respectively. In the common set-up in hidden Markov modeling, the noise processes
V and W are assumed to be uncorrelated given X, that is

E
[
Vt+1Wt+1

T | Xt

]
= 0.

Using (3.2) and the representations (3.6), this last condition may be rewritten as

E
[
Xt+1Yt+1

T | Xt

]
= E [Xt+1 | Xt] E[Yt+1 | Xt]

T

⇐⇒ S(t;Xt) = P (t)Xt(G(t)Xt)
T = P (t)diag(Xt)G(t)T.

We refer the reader to [9] for results on filtering in such a context. In this section, we deal
with hidden Markov models that only satisfy Property (3.1). Such processes are referred
to as dependent hidden Markov chains. Filtering for time-homogeneous dependent hidden
Markov chains was considered in [8, Section 2.10] and [7]. The following result is obtained
as a corollary of Theorem 2.1. As mentioned above, the matrix S(t;Xt, Yt) in (2.7) does
not depend on Yt and is replaced by the matrix S(t;Xt) defined by (3.3). Then, the
random matrix S(t; X̂t) is

∑n
i=1 S(t; ei)〈X̂t, ei〉 according to (2.8), and

1TS(t; X̂t)fk =

n∑

i=1

1TS(t; ei)fk 〈X̂t, ei〉

=
n∑

i=1

1TDk(t)ei 〈X̂t, ei〉 from (3.3)

= 1TDk(t)X̂t.

Corollary 3.1 1. (Estimator for the state.) Let x0 be a stochastic vector corresponding
to the probability distribution of the random variable X0. We have

X̂0 = x0, X̂t+1 =
m∑

k=1

(
Dk(t)X̂t

1TDk(t)X̂t

)+

〈Yt+1,fk〉, t ≥ 0. (3.7)
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2. (Estimator for the number of visits to ei.) We have Ô(i)X0 = 0 and, for t ≥ 0,

Ô(i)Xt+1 =
m∑

k=1

(
Dk(t)Ô(i)Xt + 〈X̂, ei〉Dk(t)ei

1TDk(t)X̂t

)+

〈Yt+1,fk〉.

3. (Estimator for the number of jumps of X from ei to ej .) We have N̂ jiX0 = 0 and, for
t ≥ 0,

N̂ jiXt+1 =
m∑

k=1

(
Dk(t)N̂ jiXt +Dk(t; j, i)〈X̂t, ei〉 ej

1TDk(t)X̂t

)+

〈Yt+1,fk〉.

4. (Estimator for the number of joint transitions.) We have L̂ k,jiX0 = 0 and, for t ≥ 0,

L̂ k,jiXt+1 =
m∑

l=1

(
Dl(t)L̂ k,jiXt

1TDl(t)X̂t

)+

〈Yt+1,f l〉+

(
Dk(t; j, i)

1TDk(t)X̂t

〈X̂t, ei〉ej

)+

〈Yt+1,fk〉.

Remark 3.1 1. A similar estimator for the state was derived by Aström [3] using Bayes’s
formula.

2. We have obtained a renormalized form of the recursive formulas provided in [7] and
[8, Section 2.10] for time-homogeneous hidden Markov chains. It is such a form that
is numerically implemented in practice. The simple setting of discrete-time processes
with finite state spaces allows us to provide a direct approach. However, the change-
of-measure approach used in [7] and [8] is general enough to deal with much more
complex hidden Markov models than the ones considered here. Note that, for discrete- or
continuous-time hidden Markov chains, the measure change must preserve the Markov
property of X.

Remark 3.2 The recursive (3.7) may be rewritten as

X̂0 = x0, X̂t+1 = P (t)X̂t +Kt

(
Yt+1 −G(t)X̂t

)
t ≥ 0 (3.8)

where Kt is the FY
t -measurable matrix-valued random variable defined by

Kt :=

((
D1(t)X̂t

1
TD1(t)X̂t

)+
· · ·

(
Dm(t)X̂t

1
TDm(t)X̂t

)+)

Indeed, (3.7) has the form
X̂t+1 = KtYt+1,
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whence

X̂t+1 = Kt

(
Yt+1 −G(t)X̂t

)
+KtG(t)X̂t.

Since
Kt =

(
D1(t)X̂t · · ·Dm(t)X̂t

)
diag

((
1/1TDk(t)X̂t

)+)

and (see (3.4))

G(t)X̂t =




1TD1(t)X̂t

...

1TDm(t)X̂t




we find that

KtG(t)X̂t =
(
D1(t)X̂t · · ·Dm(t)X̂t

)
((

1TDk(t)X̂t

1TDk(t)X̂t

)+)m

k=1

=

m∑

k=1

Dk(t)X̂t

(
1TDk(t)X̂t

1TDk(t)X̂t

)+

.

Note that if 1TDk(t)X̂t = 0 then Dk(t)X̂t = 0, meaning that

KtG(t)X̂t =
m∑

k=1

Dk(t)X̂t.

Since P (t) =
∑m

k=1Dk(t), the proof of (3.8) is complete.

Conditioning with respect to FY
t in (3.4), we obtain G(t)X̂t = E[Yt+1 | F

Y
t ]. Hence, the

random process (Kt)t≥0 is the gain with respect to the innovation martingale (Yt − E[Yt |

FY
t−1])t≥1. Equation (3.8) is the Doob decomposition of the process X̂ and can be thought

of as the ‘projection of the decomposition (3.5) for X onto the internal filtration FY ’. A
related reference is [18]. For each filter in Corollary 3.1, an analogue of (3.8) may be
derived in a similar way.

4 Parameter estimation for D-BMAPs

We consider the discrete-time counterpart of the Batch Markovian Arrival Process (D-
BMAP) defined by Neuts [14]. For the purpose of this section, only time-homogeneous
Markov chains are considered. A standard presentation of a D-BMAP is as follows. Let us
consider a Markov chain (X,N) := (Xt, Nt)t≥0 over the state space E ×N, with transition
probabilities satisfying

P
(
(Xt+1, Nt+1) = (ej , l + k) | (Xt, Nt) = (ei, l)

)

= P
(
(Xt+1, Nt+1 −Nt) = (ej , k) | Xt = ei

)
= Dk(j, i).

9



for all l ≥ 0, t ≥ 0, i, j = 1, . . . , n, and k = 0, . . . ,m. The other transition probabilities are
0. N0 = 0 and the probability distribution of X0 is denoted by x0. The above matrices Dk

(k = 0, . . . ,m), agree with those of Lucantoni’s formalism for defining the finite BMAP [2].
The nonnegative number D0(j, i) represents the probability that X jumps from state ei
to ej with no arrival event. For k ≥ 1, the entry Dk(j, i) is the probability that X jumps
from state ei to state ej with the occurrence of k arrivals. Then X is a Markov chain
with transition probability matrix P =

∑m
k=0Dk. D-BMAPs have been found useful in

numerous situations (e.g. see [4] and [1]). We point out the central role played by Dks for
analyzing the number Nt of arrivals, up to time t, generated by a D-BMAP. For instance,
the distribution function of Nt may be numerically evaluated using the following system
of difference equations, where x(l, t) := (P(Nt ≤ l | X0 = ei))

n
i=1:

x(l, t) =

l∧m∑

k=0

Dk x(l − k, t− 1), l ≥ 0, t ≥ 1 x(l, 0) = 1, l ≥ 0.

Let θ be the nonnegative parameter vector

θ := {Dk(j, i), k = 0, . . . ,m i, j = 1, . . . , n}

which satisfies:
∑m

k=0

∑n
j=1Dk(j, i) = 1 for i = 1, . . . , n. The vector θ must be estimated

from the data. We stress that a D-BMAP (X,N) can be thought of as a time-homogeneous
hidden Markov chain (X,Y ) as defined in Section 3, for which P(Y0 = f0) = 1 and

P
(
(Xt+1, Yt+1) = (ej ,fk) | Xt = ei

)
= Dk(j, i) k = 0, . . . ,m i, j = 1, . . . , n.

Thus, fk stands for a k-arrival(s) event (k = 0, . . . ,m). In what follows, a D-BMAP is
identified with the associated HMC (X,Y ) defined above. The EM-algorithm is known
to be a standard procedure for the statistical estimation of discrete-time hidden Markov
chains [15].

Methods of statistical estimation for the Markovian arrival process has been recently
developed in the continuous-time context. Specifically, the EM-algorithm has been used
by Rydén [16] for the Markov Modulated Poisson Process, by Asmussen and its co-authors
for the Phase-Type distributions (see [2] and references therein), by Lindemann and its
co-authors for general Markovian arrival processes [12], and by Breuer [6] for BMAPs.
The numerical experiments reported in these studies show that EM-algorithm works well
in general. We mention that the number of states of X is assumed to be known in these
works. Procedures for estimating the number n of states of X are discussed in [17] (a brief
discussion on the order estimation was also presented in [6, p 124]).

We briefly explain the EM-algorithm for D-BMAPs. For a fixed parameter vector θ,
the underlying probability measure and the associated expectation are denoted by Pθ and
Eθ, respectively. The random variable X0 or its probability distribution x0 is assumed to

10



be known. Under Pθ, the likelihood function for the complete data (X,Y ), up to time t,
is

Lt(θ;X,Y ) :=
t∏

l=1

m∏

k=0

n∏

i,j=1

Dk(j, i)
〈Yl,fk〉〈Xl,ej〉〈Xl−1,ei〉

n∏

i=1

x0(i)
〈X0,ei〉,

where x0(i) is the ith component of x0. The parameter θ is estimated from the observa-

tions (Y1, . . . , Yt), using the following iterative procedure. The vector θp := {D
(p)
k (j, i), i, j =

1, . . . , n; k = 0, . . . ,m} denotes the estimate of θ at the end of iteration p.

1. Initialization : Choose θ0

2. Expectation step. Set θ := θp. Consider the so-called pseudo-log-likelihood function
θ∗ 7→ Q(θ∗ | θ) defined by

Q(θ∗ | θ) := Eθ

[
logLt(θ

∗;X,Y ) | FY
t

]
=

m∑

k=0

n∑

i,j=1

logD∗
k(j, i) L̂ k,ji

t +K (4.1)

where θ∗ := {D∗
k(j, i), i, j = 1, . . . , n; k = 0, . . . ,m}, K does not depend on θ∗ and

L̂ k,ji
t := Eθ[L

k,ji
t | FY

t ].

3. Maximization step. Determine the θp+1 maximizing the function (4.1) under the con-
straints

n∑

i=1

Ô(i)
t

m∑

k=0

n∑

j=1

D∗
k(j, i) = t,

where Ô(i)
t := Eθ[O

(i)
t | FY

t ]. We obtain

D
(p+1)
k (j, i) =

L̂ k,ji
t

Ô(i)
t

, i, j = 1, . . . , n (4.2)

4. Return in step 2 until a stopping criterion is satisfied.

It is clear that the best estimate of the transition probability P (j, i) at the end of iteration
p+ 1 is given by

P (p+1)(j, i) =
N̂ ji

t

Ô(i)
t

i, j = 1, . . . , n.

The EM-algorithm produces a sequence of parameter vectors θ0,θ1, . . . such that [10]:

• the sequence of values of the observed likelihood function (lt(θp;Y ))p is nondecreasing
(with equality if and only if θp+1 = θp under an identifiability condition), and

11



• under appropriate conditions, the sequence (lt(θp;Y ))p converges to a local maximum
of the observed likelihood function.

Note that the zero entries of Dks are preserved by the procedure above.
As a result of the procedure above, we must compute the estimates in (4.2). The

standard method is to use the Baum-Welch implementation of the maximization step of the
EM-algorithm (also referred to as the “forward-backward” technique). This has been done
in the previously mentioned works for continuous-time BMAPs [2], [6], [12]. In the filter-
based approach pioneered by Elliott [7], [8], the estimates (4.2) are directly computed from
the recursive equations given in Corollary 3.1. Therefore, the filter-based EM-procedure
is very easily implemented and retains the well-established statistical properties of the
EM-algorithm. The basic difference with the standard Baum-Welch method, is that only
one pass through the data set is needed in the filter-based method. This approach was
shown to be of value for specific continuous-time Markovian models in a recent paper [13].

We mention that a simple procedure for estimating the matrices Dk associated with a
continuous-time BMAP, was numerically compared to the EM procedure in [6]. Breuer’s
procedure [6] was shown to be much faster and to require less storage than the Baum-Welch
implementation of the EM-algorithm. Breuer provided no details on the computational
complexity and the statistical properties of his procedure. A discrete-time version of
this simple procedure could be designed. We mention that the storage space required
by the filter-based implementation of the EM-algorithm is independent of the number
of observations (indeed, only the filtered variables at each instant need to be stored in
order to compute the variables at the next instant). The filter-based EM-algorithm has a
slightly higher computational complexity than its Baum-Welch form. Therefore, Breuer’s
procedure should perform faster than ours. However, due to the simplicity of the filter-
based EM-algorithm for D-BMAPs, the speed increase should not be very great. We will
not go into further details of Breuer’s procedure.

5 Proof of Theorem 2.1

A formula for the conditional expectation given FY
t (t ≥ 0) is proposed in the lemma

below. Equation (5.5) is our basic formula for deriving the recursive equations reported
in Theorem 2.1. It is based on the natural dynamics of the observations:

F
Y
t+1 = F

Y
t ∨ σ(Yt+1).

Here, σ(Yt+1) is a σ-subalgebra of F generated by the finite partition {A1, . . . , Am} of Ω
with

Ak := {Yt+1 = fk}.
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The conditional probability given Ak is defined, for any B ∈ F , by

PAk
(B) :=

(
1

P(Ak)

)+

E[1B∩Ak
].

Then, for any integrable random variable X, we have

EAk
[X] =

(
1

P(Ak)

)+

E[X1Ak
] (5.1)

and E[X | σ(Yt+1)] =

m∑

k=1

EAk
[X] 1Ak

. (5.2)

Lemma 5.1 Consider the filtration FY = (FY
t )t≥0 of F and an integrable random variable

X. The following relations hold for every t ≥ 0:

E[X | FY
t ∨ σ(Yt+1)] =

m∑

k=1

EAk
[X | FY

t ] 1Ak
(5.3)

E[1Ak
X | FY

t ] = E[1Ak
| FY

t ] EAk
[X | FY

t ] (5.4)

E[X | FY
t ∨ σ(Yt+1)] =

m∑

k=1

(
E[1Ak

X | FY
t ]

E[1Ak
| FY

t ]

)+

1Ak
(5.5)

Remark 5.1 Lemma 5.1 still holds when the random variable Yt+1 is replaced by any
finite-valued random variable. A general form of Formula (5.4) is referred to as a condi-
tional Bayes’s formula in [8].

Proof[.Proof of Lemma 5.1] Let t be a positive integer. Any element of the σ-algebra
FY
t ∨σ(Yt+1) is a finite union of sets of the form B∩Ak for some B ∈ FY

t . The summation
on the right-hand side member of (5.3) is FY

t ∨σ(Yt+1)-measurable. Hence, to derive (5.3),
we must show that, for k = 1, . . . ,m,

E[1B∩Ak
X] = E

[
1B∩Ak

m∑

i=1

1Ai
EAi

[X | FY
t ]
]
, B ∈ F

Y
t .

We can write

E[1B∩Ak
X] = P(Ak) EAk

[1B X] from (5.1)

= P(Ak) EAk

[
EAk

[1B X | FY
t ]
]

= P(Ak) EAk

[
1BEAk

[X | FY
t ]
]

since B ∈ FY
t

= E
[
1B EAk

[X | FY
t ] 1Ak

]
applying (5.1) to the r.v. 1B EAk

[X | FY
t ]

= E
[
1B∩Ak

m∑

i=1

1Ai
EAi

[X | FY
t ]
]
since 1Ak∩Ai

is 0 except when k = i.
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Second, we deduce from

E[X | FY
t ] = E

[
E[X | FY

t ∨ σ(Yt+1)] | F
Y
t

]

and (5.3) that

E[X | FY
t ] =

m∑

i=1

E[1Ai
| FY

t ] EAi
[X | FY

t ].

Applying this equality to the random variable 1Ak
X, we obtain (5.4).

Note that if P(Ak) = 0 for some k, then EAk
[X | FY

t ] = 0. Hence, in (5.3), each term
1Ak

EAk
[X | FY

t ] for which P(Ak) = 0, vanishes. We also mention that P(Ak) > 0 implies
that P(Ak | FY

t ) = E[1Ak
| FY

t ] > 0 P a.s. Therefore, by (5.4), a nonzero term in (5.3)
may be written as the following well-defined fraction (up to a set of P-probability zero)

E[1Ak
X | FY

t ]

E[1Ak
| FY

t ]
.

Formula (5.5) is just a reformulation of (5.3) taking into account Relation (5.4) and the
previous comments. This complete the proof. �

Proof[.Proof of Theorem 2.1] For t = 0, we deduce from (5.1) and (5.2) that

X̂0 := E[X0 | Y0] =
m∑

k=1

(
E[X0〈Y0,fk〉]

E[〈Y0,fk〉]

)+

〈Y0,fk〉

=

m∑

k=1

(
pk

1Tpk

)+

〈Y0,fk〉

with the notation introduced in Theorem 2.1.
An application of Lemma 5.1 allows us to complete the proof of (2.10). Indeed, we

find from our basic formula (5.5) that, for any t ≥ 0,

E
[
Xt+1 | F

Y
t ∨ σ(Yt+1)

]
=

m∑

k=1

(
E
[
Xt+1〈Yt+1,fk〉 | F

Y
t

]

E
[
〈Yt+1,fk〉 | F

Y
t

]
)+

〈Yt+1,fk〉.

The numerator of the fraction above may be rewritten as

E
[
Xt+1〈Yt+1,fk〉 | F

Y
t

]
= E

[
E[Xt+1Y

T

t+1fk | FX,Y
t ] | FY

t

]

= E
[
E[Xt+1Yt+1

T | FX,Y
t ] | FY

t

]
fk

= E
[
S(t;Xt, Yt) | F

Y
t

]
fk from (2.6)

= S(t; X̂t, Yt)fk with (2.9).
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Since 1TXt+1 = 1, the scalar E[〈Yt+1,fk〉 | FY
t ] is 1TE

[
Xt+1〈Yt+1,fk〉 | FY

t

]
, or by the

previous result, 1TS(t; X̂t, Yt)fk. From this, we recover (2.10).

We recall that the scalar L
k,ji
t is defined by

L
k,ji
t =

t∑

l=1

〈Yl,fk〉〈Xl, ej〉〈Xl−1, ei〉

for t ≥ 1. Thus, we find that

L
k,ji
t+1 = L

k,ji
t + 〈Yt+1,fk〉〈Xt+1, ej〉〈Xt, ei〉.

The corresponding decomposition of vector L
k,ji
t+1 Xt+1 therefore allows us to write

L̂ k,jiXt+1 := E
[
L

k,ji
t+1 Xt+1 | F

Y
t+1

]

= E
[
L

k,ji
t Xt+1 | F

Y
t+1

]
+ E

[
〈Yt+1,fk〉〈Xt+1, ej〉〈Xt, ei〉 Xt+1 | F

Y
t+1

]

= E
[
L

k,ji
t Xt+1 | F

Y
t+1

]
+ 〈Yt+1,fk〉E

[
〈Xt+1, ej〉〈Xt, ei〉 | F

Y
t+1

]
ej . (5.6)

Using (5.5), the first term in the right-hand side of the above equality has the form

m∑

l=1

(
E
[
L

k,ji
t Xt+1〈Yt+1,f l〉 | F

Y
t

]

E
[
〈Yt+1,f l〉 | F

Y
t

]
)+

〈Yt+1,f l〉.

Let us develop the numerator of the above fraction. Since L
k,ji
t is F

X,Y
t -measurable, we

have

E
[
L

k,ji
t Xt+1〈Yt+1,f l〉 | F

Y
t

]

= E
[
L

k,ji
t E[Xt+1Y

T

t+1f l | F
X,Y
t ] | FY

t

]

= E
[
L

k,ji
t E[Xt+1Y

T

t+1 | Xt, Yt] | F
Y
t

]
f l since (X,Y ) is Markovian

= E
[
L

k,ji
t S(t;Xt, Yt) | F

Y
t

]
f l from (2.6)

=

n∑

p=1

E
[
L

k,ji
t 〈Xt, ep〉S(t; ep, Yt) | F

Y
t

]
f l

=

n∑

p=1

E
[
L

k,ji
t 〈Xt, ep〉 | F

Y
t

]
S(t; ep, Yt)f l

=
n∑

p=1

〈E
[
L

k,ji
t Xt | F

Y
t

]
, ep〉S(t; ep, Yt)f l

= S(t; L̂ k,jiXt, Yt)f l with (2.8). (5.7)
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We now deduce, from Formula (5.5), that the scalar 〈Yt+1,fk〉E[〈Xt+1, ej〉〈Xt, ei〉 | F
Y
t+1]

is equal to (
E
[
〈Xt+1, ej〉〈Xt, ei〉〈Yt+1,fk〉 | F

Y
t

]

E
[
〈Yt+1,fk〉 | F

Y
t

]
)+

〈Yt+1,fk〉.

The scalar in the numerator of the above fraction is rewritten as follows:

E
[
〈Xt+1, ej〉〈Xt, ei〉〈Yt+1,fk〉 | F

Y
t

]
= E

[
〈Xt, ei〉E[〈Xt+1, ej〉〈Yt+1,fk〉 | F

X,Y
t ] | FY

t

]

= E
[
〈Xt, ei〉E[e

T

j Xt+1Y
T

t+1fk | Xt, Yt] | F
Y
t

]

= eTj E
[
〈Xt, ei〉E[Xt+1Yt+1

T | Xt, Yt] | F
Y
t

]
fk

= eTj E
[
〈Xt, ei〉S(t; ei, Yt) | F

Y
t

]
fk from (2.6)

= eTj S(t; ei, Yt)fk E
[
〈Xt, ei〉 | FY

t

]

= eTj S(t; ei, Yt)fk 〈X̂t, ei〉.

Since E
[
〈Yt+1,fk〉 | F

Y
t

]
was found to be 1TS(t; X̂t, Yt)fk, it follows that

〈Yt+1,fk〉E
[
〈Xt+1, ej〉〈Xt, ei〉 | F

Y
t+1

]
=

(
eTj S(t; ei, Yt)fk

1TS(t; X̂t, Yt)fk

〈X̂t, ei〉

)+

〈Yt+1,fk〉. (5.8)

Therefore, the recursion (2.13) for L̂ k,jiX finally takes the form of (5.6) using (5.7) and
(5.8).

A direct proof of (2.11) and (2.12) could be given using Lemma 5.1. But for the sake
of brevity, we remark that they can be easily derived from (2.13), which is associated with

the filter L̂ k,jiX, due to the relations

Ô(i)Xt+1 =
m∑

k=1

n∑

j=1

L̂ k,jiXt+1

N̂ jiXt+1 =
m∑

k=1

L̂ k,jiXt+1.

�

6 Conclusion

In this note, we have derived normalized filters for various statistics of any partially ob-
served discrete-time finite Markov chain in a recursive form. These results cover, in partic-
ular, the case of time-homogeneous dependent hidden Markov chains discussed in [7] and
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[8]. We emphasize that only simple computation involving discrete-time Markov chains
are required. An application to the parameter estimation for discrete-time batch Marko-
vian arrival processes has been outlined. Models of this sort are widely used in applied
probability, especially in queuing theory.
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