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EIGENVALUE ENCLOSURES AND APPLICATIONS TO THE

MAXWELL OPERATOR

GABRIEL R. BARRENECHEA, LYONELL BOULTON, AND NABILE BOUSSAÏD

Abstract. In this work we discuss the numerical estimation of the eigenfre-

quencies and field phasors of the resonant cavity problem on a bounded region
filled with a possibly anisotropic medium. We present a general framework

which allows finding lower and upper bounds for the eigenfrequencies, hence

providing a computable residual and multiplicity counting. We establish pre-
cise rates of convergence of the method in general, and show that this rate is

optimal for trial spaces of standard nodal finite elements. In the final part of

the paper we include a reproducible computational procedure and then report
on various numerical experiments performed on two and three-dimensional

benchmark geometries, with and without symmetries.
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1. Introduction

In this work we discuss the numerical computation of eigenvalue enclosures and
approximating eigenfunctions for the Maxwell operator on a bounded domain filled
with a possibly anisotropic medium. We establish a general framework which allows
finding lower and upper bounds for eigenvalues, hence providing a computable
residual and multiplicity counting. The origins of this framework can be traced
back to the works of Zimmermann and Mertins, [24], and Davies, [16], and it is
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guaranteed to be free from spectral pollution. One of our goals is to determine the
precise rate of convergence of the method. This rate turns out to be optimal in
the sense of standard interpolation estimates, when a concrete implementation is
performed on trial spaces of nodal finite elements. In the final part of the paper
we include a reproducible computational procedure and report on the outcomes of
several benchmark numerical experiments.

Let Ω ⊂ R3 be a domain which is bounded, open and simply connected. Every-
where below we assume that ∂Ω, the boundary of Ω, is sufficiently regular (in a
sense made precise in Section 5) and denote by n its outer normal vector. Consider
the Maxwell eigenvalue problem

(1)


curlE = iωµH in Ω

curlH = −iωεE in Ω

E × n = 0 on ∂Ω

where the angular frequencies ω ∈ R are to be determined alongside with the
electric and magnetic field phasors (E,H) 6= 0. Here and elsewhere the electric
permittivity and the magnetic permeability, ε and µ respectively, are positive and
such that

(2) ε,
1

ε
, µ,

1

µ
∈ L∞(Ω).

The electromagnetic oscillations in a resonator are described by equation (1) re-
stricted to the solenoidal subspace characterized by Gauss’s law,

(3) div(εE) = 0 = div(µH).

The orthogonal complement of the latter in a suitably weighted L2 space (see [7]
and references therein) is the gradient space, which has infinite dimension and it
lies in the kernel of the self-adjoint operator M associated to (1). In turns, this
means that the non-zero spectrum and non-zero eigenspace of (1), with or without
the ansatz (3), are identical. Below we propose computing the non-zero angular
frequencies and field phasors of the resonator by means of the unrestricted problem
(1).

The operatorM does not have a compact resolvent and it is strongly indefinite.
The self-adjoint operator associated to (1)-(3) has a compact resolvent but it is
still strongly indefinite. By considering the square ofM restricted to the solenoidal
space, one obtains a positive definite eigenvalue problem (involving the bi-curl, for
example, if the medium is isotropic) which can in principle be discretized via the
Galerkin method. One serious drawback of this idea for practical computations is
the fact that the standard finite element spaces are not solenoidal. Usually, spurious
modes associated to the infinite-dimensional kernel appear and give rise to spectral
pollution. This has been well documented to be a manifested problem whenever
the underlying mesh is unstructured, [2] and references therein.

In order to avoid spectral pollution, various ingenious methods have been con-
sidered in the past. One possible approach [10], is to enhance the divergence of
the electric field in a fractional order negative Sobolev norm. In [12] nodal el-
ements are employed in conjunction with a least squares formulation of a weak
form re-writting of (1)-(3). The condition (3) can also be incorporated into (1) by
means of a Lagrange multiplier and then employ continuous finite element spaces
of a Taylor-Hood type, [13]. A further possible approach, [9, 8], is to re-write the
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spectral problem associated to M2 in a mixed form and then consider edge finite
elements. The latter is widely regarded as the most effective way to avoid spurious
modes for the resonant cavity problem. Moreover, it turns out to be linked to deep
results on the rigourous treatment of finite elements and it is at the core of elegant
geometrical ideas, [2].

Unfortunately, as far as we are aware, all these computational techniques avail-
able for the Maxwell problem currently exhibit two main limitations.

a) They are not certified. To be precise, computed eigenvalues are not necessar-
ily guaranteed one-sided bounds of the exact eigenvalues in general, despite
of the possible convergence of the method.

b) Detecting the multiplicity of an eigenvalue or the presence of a cluster of
eigenvalues is extremely difficult.

Our goal below is to propose an alternative approach for computing the eigenvalues
of (1) which addresses these limitations. The general strategy is based on the exten-
sions of the Temple-Lehmann-Goerisch method [21] developed by Zimmermann and
Mertins, [24]. We show that the procedure is robust in the sense that any standard
class of finite elements, including the ones based on nodal degrees of freedom, can
be employed to perform computations which are certified up to machine precision.
In recent years, this method has been successfully implemented in the context of the
radially reduced magnetohydrodynamics operator [24, 11], the Helmholtz equation
[5] and the calculation of sloshing frequencies in the left definite case [4].

The method of Zimmermann and Mertins is closely linked to another pollution-
free technique for eigenvalue computation which is based on a notion of approxi-
mated spectral distance. This other method has been examined by Davies in [16, 17]
and later by Davies and Plum in [18], but it is yet to be tested properly on models
of dimension other than one. Below we develop further the arguments presented in
[18, Section 6], in order to demonstrate that these two approaches are equivalent.

In Section 2 we extend various results of [18]. Notably, we include in our current
analysis the determination of multiplicities for eigenvalues in Proposition 1 and a
description of how eigenfunctions are approximated in Proposition 3. We introduce
the method of Zimmermann and Mertins in Section 3. We derive the latter in
a self-contained manner independently from the work [24]. See Theorem 6 and
Corollary 7.

In Section 4 we examine convergence and residuals. The main statement of
this section is Theorem 12, where we determine a general convergence estimate
with explicit residuals for a finite group of contiguous eigenvalues. This theorem
is employed in Section 5, where we establish concrete approximation rates for the
pollution-free numerical solution of (1) by means of nodal finite elements. Theo-
rem 14 collects the main contribution in this respect. We show that the rate of
convergence achieved by the current method is optimal for these trial spaces. Here
we have chosen the most widely available class of finite elements, in order to illus-
trate our findings in a concrete accessible manner. However we should remark that
the technique described in sections 2 and 3 is formulated in general, and it can also
be implemented on other classes of basis functions.

The final part of the paper has a more computational character. A concrete
numerical strategy is specified in the Procedure 1 of Section 6. According to
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Lemma 16, this strategy is convergent in a suitable regime for finite elements. Sec-
tion 7, on the other hand, is devoted to various benchmark experiments on specific
models which demonstrate the applicability of the proposed technique.

2. Approximated local counting functions

This section is devoted to notions of approximated spectral distance and ap-
proximated local counting function for self-adjoint operators. We follow closely the
framework established in [16, 17, 18]. These notions and their properties will lead in
the next section to the formulation of a method for eigenvalue computation which
has been examined in [24] and subsequent works [5, 4]. Various results in all these
references can be recovered from the unified approach presented below.

Let A : D(A) −→ H be a self-adjoint operator acting on a Hilbert spaceH. Below
we decompose the spectrum of A in the usual fashion, as the union of discrete and
essential spectrum, σ(A) = σdisc(A) ∪ σess(A). Let J be any Borel subset of R.
The spectral projector associated to A is denoted by 1J(A) =

∫
J

dEλ. Hence
Tr1J(A) = dim1J(A)H. We write EJ(A) = ⊕λ∈J ker(A − λ) with the convention
Eλ(A) = E{λ}(A). Generally EJ(A) ⊆ 1J(A)H, however there is no reason for these
two subspaces to be equal.

Let t ∈ R. Let qt : D(A)×D(A) −→ C be the closed bilinear form

(4) qt(u,w) = 〈(A− t)u, (A− t)w〉 ∀u,w ∈ D(A).

For any u ∈ D(A) we will constantly make use of the following t-dependant semi-
norm, which is a norm if t is not an eigenvalue,

(5) |u|t = qt(u, u)1/2 = ‖(A− t)u‖.

By virtue of the min-max principle, qt characterizes the spectrum which lies near
the origin of the positive operator (A − t)2. In turn, this gives rise to a notion of
local counting function at t for the spectrum of A.

Let

dj(t) = inf
dimV=j
V⊂D(A)

sup
u∈V

|u|t
‖u‖

so that 0 ≤ dj(t) ≤ dk(t) for j < k. Then d1(t) is the Hausdorff distance from t to
σ(A),

(6) d1(t) = min{λ ∈ σ(A) : |λ− t|} = inf
u∈D(A)

|u|t
‖u‖

.

Similarly dj(t) are the distances from t to the jth nearest point in σ(A) counting
multiplicity in a generalized sense. That is, stopping when the essential spectrum
is reached. Moreover

dj(t) = dj−1(t) ⇐⇒


either dim E[t−dj−1(t),t+dj−1(t)](A) > j − 1

or t+ dj−1(t) ∈ σess(A)

or t− dj−1(t) ∈ σess(A).

Without further mention, below we will always count spectral points of A relative
to t, regarding multiplicities in this generalized sense.
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We now show how to extract certified information about σ(A) in the vicinity of
t from the action of A onto finite-dimensional trial subspaces L ⊂ D(A), see [16,
Section 3]. For j ≤ n = dimL, let

(7) F jL(t) = min
dimV=j
V⊂L

max
u∈V

|u|t
‖u‖

.

Then 0 ≤ F 1
L(t) ≤ . . . ≤ FnL (t) and F jL(t) ≥ dj(t) for all j = 1, 2, . . . , n. Since

[t − dj(t), t + dj(t)] ⊆ [t − F jL(t), t + F jL(t)], there are at least j spectral points of

A in the segment
[
t− F jL(t), t+ F jL(t)

]
including, possibly, the essential spectrum.

That is

(8) Tr1[t−F jL(t),t+F jL(t)](A) ≥ j ∀j = 1, . . . , n.

Hence F jL(t) is an approximated local counting function for σ(A).

As a consequence of the triangle inequality, F jL is a Lipschitz continuous function
such that

(9) |F jL(t)− F jL(s)| ≤ |t− s| ∀s, t ∈ R and j = 1, . . . , n.

Moreover, F jL(t) is the jth smallest eigenvalue µ of the non-negative weak problem:

(10) find (µ, u) ∈ [0,∞)× L\{0} such that qt(u, v) = µ2〈u, v〉 ∀v ∈ L.

Hence

(11) F jL(t) = max
dimV=j−1

V⊂L

min
u∈L	V

|u|t
‖u‖

= max
dimV=j−1

V⊂H

min
u∈L	V

|u|t
‖u‖

.

We now show how to detect the spectrum of A to the left/right of t by means of

F jL in an optimal setting. This turns out to be a crucial ingredient in the formulation
of the strategy proposed in [16, 17, 18]. The following notation simplifies various
statements below. Let

n−j (t) = sup{s < t : Tr1(s,t](A) ≥ j} and

n+
j (t) = inf{s > t : Tr1[t,s)(A) ≥ j}.

Then n∓j (t) is the jth point in σ(A) to the left(−)/right(+) of t counting multi-

plicities. Here t ∈ σ(A) is allowed and neither t nor n∓1 (t) have to be isolated from
the rest of σ(A). Note that n−j (t) = −∞ for Tr1(−∞,t](A) < j and n+

j (t) = +∞
for Tr1[t,+∞)(A) < j. Without further mention, all statements below regarding

bounds on n∓j (t) will be void (hence redundant) in either of these two cases.

Proposition 1. Let t− < t < t+. Then

(12)
F jL(t−) ≤ t− t− ⇒ t− − F jL(t−) ≤ n−j (t)

F jL(t+) ≤ t+ − t ⇒ t+ + F jL(t+) ≥ n+
j (t).

Moreover, let t−1 < t−2 < t < t+2 < t+1 . Then

(13)
F jL(t−i ) ≤ t− t−i for i = 1, 2 ⇒ t−1 − F

j
L(t−1 ) ≤ t−2 − F

j
L(t−2 ) ≤ n−j (t)

F jL(t+i ) ≤ t+i − t for i = 1, 2 ⇒ t+1 + F jL(t+1 ) ≥ t+2 + F jL(t+2 ) ≥ n+
j (t).
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Proof. We firstly show (12). Suppose that t ≥ F jL(t−) + t−. Then

Tr1[t−−F jL(t−),t](A) ≥ j.

Since n−j (t) ≤ . . . ≤ n−1 (t) are the only spectral points in the segment [n−j (t), t],
then necessarily

n−j (t) ∈ [t− − F jL(t−), t].

The bottom of (12) is shown in a similar fashion.

The second statement follows by observing that the maps t 7→ t ± F jL(t) are
monotonically increasing as a consequence of (9). �

The structure of the trial subspace L determines the existence of t± satisfying
the hypothesis in (12). If we expect to detect σ(A) at both sides of t, a necessary
requirement on L should certainly be the condition

(14) min
u∈L

〈Au, u〉
〈u, u〉

< t < max
u∈L

〈Au, u〉
〈u, u〉

.

By virtue of lemmas 4 and 5 below, for j = 1, the left hand side inequality of (14)
implies the existence of t− and the right hand side inequality implies the existence
of t+, respectively.

Remark 1. From Proposition 1 it follows that optimal lower bounds for n−j (t) are

achieved by finding t̂−j ≤ t, the closer point to t, such that F jL(t̂−j ) = t− t̂−j . Indeed,

by virtue of (13), t− − F jL(t−) ≤ t̂−j − F
j
L(t̂−j ) ≤ n−j (t) for any other t− as in (12).

Similarly, optimal upper bounds for n+
j (t) are found by analogous means. This

observation will play a crucial role in Section 3.

We now determine further geometrical properties of F 1
L and its connection to

the spectral distance. Let the Hausdorff distances from t ∈ R to σ(A)\ (−∞, t] and
σ(A) \ [t,∞), respectively, be given by

(15)
δ+(t) = inf{µ− t : µ ∈ σ(A), µ > t} and

δ−(t) = inf{t− µ : µ ∈ σ(A), µ < t}.

In general, t − n−1 (t) ≤ δ−(t) and n+
1 (t) − t ≤ δ+(t). In fact, |n±1 (t) − t| = δ±(t)

for t 6∈ σ(A). However, these relations can be strict whenever t ∈ σ(A). Indeed,
n+

1 (t)− t = δ+(t) iff there exists a decreasing sequence t+n ∈ σ(A) such that t+n ↓ t,
whereas t − n−1 (t) = δ−(t) iff there exists an increasing sequence t−n ∈ σ(A) such
that t−n ↑ t.

An emphasis in distinguishing |n±1 (t) − t| from δ±(t) seems unnecessary at this
stage. However, this distinction in the notation will be justified later on. Without
further mention below we write δ±(t) = ±∞ to indicate that either of the sets on
the right side of (15) is empty.

Let λ ∈ σ(A) be an isolated point. If there exists a non-vanishing u ∈ L∩Eλ(A),
then

|u|s
‖u‖

= |λ− s| = d1(s) ∀s ∈
[
λ− δ−(λ)

2
, λ+

δ+(λ)

2

]
.

According to the convergence analysis carried out in Section 4, the smaller the
angle between L and the spectral subspace Eλ(A), the closer the F 1

L(t) is to d1(t)

for t ∈
(
λ− δ−(λ)

2 , λ+ δ+(λ)
2

)
. The special case of this angle being zero is described

by the following lemma.
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Lemma 2. For λ ∈ σ(A) isolated from the rest of the spectrum, the following
statements are equivalent.

a) There exists a minimizer u ∈ L of the right side of (7) for j = 1, such that

|u|t = d1(t) for a single t ∈
(
λ− δ−(λ)

2 , λ+ δ+(λ)
2

)
,

b) F 1
L(t) = d1(t) for a single t ∈

(
λ− δ−(λ)

2 , λ+ δ+(λ)
2

)
,

c) F 1
L(s) = d1(s) for all s ∈ [λ− δ−(λ)

2 , λ+ δ+(λ)
2 ],

d) L ∩ Eλ(A) 6= {0}.

Proof. Since L is finite-dimensional, a) and b) are equivalent by the definitions of
d1(t), F 1

L(t) and qt. From the paragraph above the statement of the lemma it is
clear that d) ⇒ c) ⇒ b). Since |u|t/‖u‖ is the square root of the Rayleigh quotient
associated to the operator (A − t)2, the fact that λ is isolated combined with the
Rayleigh-Ritz principle, gives the implication a)⇒d). �

As there can be a mixing of eigenspaces, it is not possible to replace b) in this

lemma by an analogous statement including t = λ ± δ±(λ)
2 . If λ′ = λ + δ+(λ) is

an eigenvalue, for example, then F 1
L

(
λ+λ′

2

)
= d1

(
λ+λ′

2

)
ensures that L contains

elements of Eλ(A)⊕Eλ′(A). However it is not guaranteed to be orthogonal to either
of these two subspaces. See the Appendix A for similar results in the case j > 1.

We conclude this section by examining extensions of the implications b) ⇒ d) of
Lemma 2 into a more general context. In combination with the results of Section 3,
the next proposition shows how to obtain certified information about spectral sub-
spaces. Some of its practical implications will be discussed later on in Section 7.

Here and below {utj}nj=1 ⊂ L will denote an orthonormal family of eigenfunctions

associated to the eigenvalues µ = F jL(t) of the weak problem (10). In a suitable
asymptotic regime for L, the angle between these eigenfunctions and the spectral
subspaces of |A− t| in the vicinity of the origin is controlled by a residual which is

as small as O
(√

F jL(t)− dj(t)

)
for F jL(t)− dj(t)→ 0.

Assumption 1. Unless otherwise specified, from now on we will always fix the
parameter m ≤ n = dimL and suppose that

(16) [t− dm(t), t+ dm(t)] ∩ σ(A) ⊆ σdisc(A).

Set

δj(t) = dist
[
t, σ(A) \ {t± dk(t)}jk=1

]
.

By virtue of (16), δj(t) > dj(t) for all j ≤ m.

Remark 2. If t =
n−j (t)+n+

j (t)

2 for a given j, the vectors φtj introduced in Proposition 3
and invoked subsequently, might not be eigenvectors of A despite of the fact that
|A− t|φtj = dj(t)φ

t
j . However, in any other circumstance φtj are eigenvectors of A.

Proposition 3. Let t ∈ R and j ∈ {1, . . . ,m}. Assume that F jL(t)− dj(t) is small
enough so that 0 < εj < 1 holds true for the residuals constructed inductively as
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follows,

ε1 =

√
F 1
L(t)2 − d1(t)2

δ1(t)2 − d1(t)2

εj =

√√√√F jL(t)2 − dj(t)2

δj(t)2 − dj(t)2
+

j−1∑
k=1

ε2
k

1− ε2
k

(
1 +

dj(t)2 − dk(t)2

δj(t)2 − dj(t)2

)
.

Then, there exists an orthonormal basis {φtj}mj=1 of E[t−dm(t),t+dm(t)](A) such that

φtj ∈ E{t−dj(t),t+dj(t)}(A),

‖utj − 〈utj , φtj〉φtj‖ ≤ εj and(17)

|utj − 〈utj , φtj〉φtj |t ≤
√
F jL(t)2 − dj(t)2 + dj(t)2ε2

j .(18)

Proof. As it is clear from the context, in this proof we suppress the index t on top
of any vector. We write ΠS to denote the orthogonal projection onto the subspace
S with respect to the inner product 〈·, ·〉.

Let us first consider the case j = 1. Let S1 = E{t−d1(t),t+d1(t)}(A), and decompose

u1 = ΠS1u1 + u⊥1 where u⊥1 ⊥ S1. Since A is self-adjoint,

(19) F 1
L(t)2 = ‖(A− t)u1‖2 = d1(t)2‖ΠS1u1‖2 + ‖(A− t)u⊥1 ‖2.

Hence

F 1
L(t)2 ≥ d1(t)2(1− ‖u⊥1 ‖2) + δ1(t)2‖u⊥1 ‖2.

Since δ1(t) > d1(t), clearing from this identity ‖u⊥1 ‖2 yields ‖u⊥1 ‖≤ε1. Hence
‖ΠS1u1‖2 ≥ 1− ε2

1 > 0. Let

φ1 =
1

‖ΠS1u1‖
ΠS1u1

so that ‖ΠS1u1‖ = |〈u1, φ1〉|. Then (17) holds immediately and (18) is achieved by
clearing ‖(A− t)u⊥1 ‖2 from (19).

We define the needed basis, and show (17) and (18), for j up to m inductively
as follows. Set

φj =
1

‖ΠSjuj‖
ΠSjuj

where Sj = E{t−dj(t),t+dj(t)}(A) 	 Span{φl}j−1
1 and ΠSjuj 6= 0, all this for 1 ≤

j ≤ k − 1. Assume that (17) and (18) hold true for j up to k − 1. Define Sk =

E{t−dk(t),t+dk(t)}(A)	 Span{φl}k−1
1 . We first show that ΠSkuk 6= 0, and so we can

define

(20) φk =
1

‖ΠSkuk‖
ΠSkuk

ensuring φk ⊥ Span{φl}k−1
l=1 . After that we verify the validity of (17) and (18) for

j = k.
Decompose

uk = ΠSkuk +

1∑
l=k−1

〈uk, φl〉φl + u⊥k
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where u⊥k ⊥ Span{φl}k−1
l=1 ⊕ Sk. Then

F kL(t)2 = dk(t)2‖ΠSkuk‖2 +

1∑
l=k−1

dl(t)
2|〈uk, φl〉|2 + ‖(A− t)u⊥k ‖2

≥ dk(t)2‖ΠSkuk‖2 +

1∑
l=k−1

dl(t)
2|〈uk, φl〉|2 + δk(t)2‖u⊥k ‖2

= dk(t)2(1− ‖u⊥k ‖2) +

1∑
l=k−1

(dl(t)
2 − dk(t)2)|〈uk, φl〉|2 + δk(t)2‖u⊥k ‖2.

The conclusion (17) up to k − 1, implies |〈ul, φl〉|2 ≥ 1 − ε2
l for l = 1, . . . , k − 1.

Since 〈uk, ul〉 = 0 for l 6= k,

|〈ul, φl〉||〈uk, φl〉| = |〈uk, ul − 〈ul, φl〉φl〉|.
Then, the Cauchy-Schwarz inequality alongside with (17) yield

(21) |〈uk, φl〉|2 ≤
ε2
l

1− ε2
l

.

Hence, since dl(t) ≤ dk(t),

F kL(t)2 ≥ dk(t)2 +

1∑
l=k−1

(dl(t)
2 − dk(t)2)

ε2
l

1− ε2
l

+ (δk(t)2 − dk(t)2)‖u⊥k ‖2.

Clearing ‖u⊥k ‖2 from this inequality and combining with the validity of (21) and
(17) up to k − 1, yields ΠSkuk 6= 0.

Let φk be as in (20). Then (17) is guaranteed for j = k. On the other hand,
(17) up to j = k, (21) and the identity

F kL(t)2 = dk(t)2|〈uk, φk〉|2 + ‖(A− t)(uk − 〈uk, φk〉φk)‖2,
yield (18) up to j = k. �

The main result of this section is Proposition 1, which is central to the hi-
erarchical method for finding eigenvalue inclusions examined a few years ago in
[16, 17]. For fixed L this method leads to bounds for eigenvalues which are far
sharper than those obtained from the obvious idea of estimating local minima of
F 1
L(t). It was later shown [18] that this hierarchical method is equivalent to an-

other method established in [24], which extends to the indefinite case the classical
Temple-Lehmann-Goerisch inequality. From an abstract perspective, Proposition 1
provides an intuitive insight on the mechanism for determining complementary
bounds for eigenvalues (in the left definite case, for example). Even though the
method proposed in [16, 17, 18] is yet to be explored more systematically in the
practical setting, in most circumstances the following technique appears to be easier
to implement.

3. The method of Zimmermann and Mertins

Let t ∈ R and L ⊂ D(A) be a specified trial subspace as above. Recall that qt
is given by (4). Let lt : D(A) × D(A) −→ C be the (generally not closed) bilinear
form associated to (A− t),

lt(u,w) = 〈(A− t)u,w〉 ∀u,w ∈ D(A).
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Our next purpose is to characterize the optimal parameters t± in Proposition 1 as
described in Remark 1 by means of the following weak eigenvalue problem,

(ZLt )
find u ∈ L \ {0} and τ ∈ R such that

τqt(u, v) = lt(u, v) ∀v ∈ L.
This problem is central to the method of eigenvalue bounds calculation examined
in [24] and it will be at the core of the numerical strategy presented in Section 6.

Let

τ−1 (t) ≤ . . . ≤ τ−n−(t) < 0 and 0 < τ+
n+(t) ≤ . . . ≤ τ+

1 (t),

be the negative and positive eigenvalues of (ZLt ) respectively. Here and below n∓(t)
is the number of these negative and positive eigenvalues, which are both locally
constant in t. Below we will denote eigenfunctions associated with τ∓j (t) by u∓j (t).

The hypotheses (14) ensure the existence of τ∓1 (t). A more concrete connection
with the framework of Section 2 is made precise in the following lemma. Its proof
is straightforward, hence omitted.

Lemma 4. In the following lists, the conditions stated are equivalent.
a−) F 1

L(s) > t− s for all s < t

b−) 〈Au,u〉〈u,u〉 > t for all u ∈ L
c−) all the eigenvalues of (ZLt )

are positive,

a+) F 1
L(s) < s− t for all s > t

b+) 〈Au,u〉〈u,u〉 < t for all u ∈ L
c+) all the eigenvalues of (ZLt )

are negative.

Remark 3. Let L = Span{bj}nj=1. The matrix [qt(bj , bk)]njk=1 is singular if and

only if Et(A) ∩ L 6= {0}. On the other hand, the kernel of (ZLt ) might be non-
empty. If n0(t) is the dimension of this kernel and n∞(t) = dim(Et(A) ∩ L), then
n = n∞(t) + n0(t) + n−(t) + n+(t).

Assumption 2. Note that n∞(t) ≥ 1 if and only if F jL(t) = 0 for j = 1, . . . , n∞(t).
In this case the conclusions of Lemma 5 and Theorem 6 below become void. In order
to write our statements in a more transparent fashion, without further mention from
now on we will suppose that

(22) L ∩ Et(A) = {0}.

By virtue of the next three results, finding the eigenvalues of (ZLt ) is equivalent
to finding s = t̂±j ∈ R such that

(23) t− s = ∓F jL(s),

and in this case t̂±j = t+ 1
2τ±j (t)

. It then follows from Remark 1 that (ZLt ) encodes

information about the optimal bounds for the spectrum around t, achievable by
(13) in Proposition 1.

We begin with the case j = 1, see [18, Theorem 11].

Lemma 5. Let t ∈ R.

(−) The smallest eigenvalue τ = τ−1 (t) of (ZLt ) is negative if and only if there
exists s < t such that F 1

L(s) = t− s. In this case s = t+ 1
2τ−1 (t)

and

F 1
L(s) = − 1

2τ−1 (t)
=
|u−1 (t)|s
‖u−1 (t)‖

for u = u−1 (t) ∈ L the corresponding eigenvector.
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(+) The largest eigenvalue τ = τ+
1 (t) of (ZLt ) is positive if and only if there exists

s > t such that F 1
L(s) = s− t. In this case s = t+ 1

2τ+
1 (t)

and

F 1
L(s) =

1

2τ+
1 (t)

=
|u+

1 (t)|s
‖u+

1 (t)‖

for u = u+
1 (t) ∈ L the corresponding eigenvector.

Proof. We only show (−), as the proof of (+) is similar. For all u ∈ L and s ∈ R,

qs(u, u)− F 1
L(s)2〈u, u〉 = qt(u, u) + 2(t− s)lt(u, u) +

(
(t− s)2 − F 1

L(s)2
)
〈u, u〉.

Suppose that F 1
L(s) = t− s. Then

qs(u, u)− F 1
L(s)2〈u, u〉 = qt(u, u) + 2F 1

L(s)lt(u, u).

As the left side of this expression is non-negative,

lt(u, u)

qt(u, u)
≥ − 1

2F 1
L(s)

for all u ∈ L \ {0} and the equality holds for some u ∈ L. Hence − 1
2F 1
L(s)

is

the smallest eigenvalue of (ZLt ), and thus necessarily equal to τ−1 (t). In this case
s−F 1

L(s) = t−2F 1
L(s) = t+ 1

τ−1 (t)
. Here the vector u for which equality is achieved

is exactly u = u−1 (t).
Conversely, let τ−1 (t) and u−1 (t) be as stated. Then

τ−1 (t) ≤ lt(u, u)

qt(u, u)

for all u ∈ L with equality for u = u−1 (t). Re-arranging this expression yields

qt(u, u)− 1

τ−1 (t)
lt(u, u) ≥ 0

for all u ∈ L with equality for u = u−1 (t). The substitution t = s − 1
2τ−1 (t)

then

yields

qt(u, u)− 1

(2τ−1 (t))2
〈u, u〉 ≥ 0

for all u ∈ L. The equality holds for u = u−1 (t). This expression further re-arranges
as

|u|2s
‖u‖2

≥ 1

(2τ−1 (t))2
.

Hence F 1
L(s)2 = 1

(2τ−1 (t))2
, as needed. �

An extension to j 6= 1 is now found by induction.

Theorem 6. Let t ∈ R and 1 ≤ j ≤ n be fixed.

(−) The number of negative eigenvalues n−(t) in (ZLt ) is greater than or equal
to j if and only if

〈Au, u〉
〈u, u〉

< t for some u ∈ L 	 Span{u−1 (t), . . . , u−j−1(t)}.
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Assuming this holds true, then τ = τ−j (t) and u = u−j (t) are solutions of

(ZLt ) if and only if

F jL

(
t+

1

2τ−j (t)

)
= − 1

2τ−j (t)
=

∣∣u−j (t)
∣∣
t+ 1

2τ
−
j

(t)

‖u−j (t)‖
.

(+) The number of positive eigenvalues n+(t) in (ZLt ) is greater than or equal to
j if and only if

〈Au, u〉
〈u, u〉

> t for some u ∈ L 	 Span{u+
1 (t), . . . , u+

j−1(t)}.

Assuming this holds true, then τ = τ+
j (t) and u = u+

j (t) are solutions of

(ZLt ) if and only if

F jL

(
t+

1

2τ+
j (t)

)
=

1

2τ+
j (t)

=

∣∣u+
j (t)

∣∣
t+ 1

2τ
+
j

(t)

‖u+
j (t)‖

.

Proof. For j = 1 the statements are Lemma 5 taking into consideration (14). For
j > 1, due to the symmetry of the eigenproblem (ZLt ), it is enough to apply again

Lemma 5 by fixing L̃ = L	Span{u∓1 (t), . . . , u∓j−1(t)} as trial spaces. Note that the

eigenvalues of (ZL̃t ) are those of (ZLt ) except for τ∓1 (t), . . . , τ∓j−1(t). �

A neat procedure for finding certified spectral bounds for A, as described in [24],
can now be deduced from Theorem 6. By virtue of Proposition 1 and Remark 1,
this procedure turns out to be optimal in the context of the approximated count-
ing functions discussed in Section 2, see [18, Section 6]. We summarize the core
statement as follows.

Corollary 7. For all t ∈ R and j ∈ {1, . . . , n±(t)},

(24) t+
1

τ−j (t)
≤ n−j (t) and n+

j (t) ≤ t+
1

τ+
j (t)

.

In recent years, numerical techniques based on this statement have been designed
to successfully compute eigenvalues for the radially reduced magnetohydrodynam-
ics operator [24, 11], the Helmholtz equation [5] and the calculation of sloshing
frequencies in the left definite case [4]. We will determine one such a numerical
scheme for the case of the Maxwell operator in Section 6.

Remark 4. Since ± 1
τ±j (t)

≥ ±(n±j (t)− t) in the above,

t̂−j = t+
1

2τ−j (t)
≤
t+ n−j (t)

2
≤

n+
j (t) + n−j (t)

2
≤

n+
j (t) + t

2
≤ t+

1

2τ+
j (t)

= t̂+j .

Hence t̂±j is not further from n±j (t) than it is to n∓j (t). Moreover

t̂±j =
n+
j (t) + n−j (t)

2

renders t ∈ σ(A) and
1

τ±j (t)
= n±j (t)− t.
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This geometrical property for the solution of (23) will be relevant for our next
goal, the examination of the convergence properties of the estimates (24).

4. Convergence and error estimates

Our first goal in this section will be to show that, if L captures an eigenspace
of A within a certain order of precision O(ε) as specified below, then the bounds
consequence of Proposition 1 are

a) at least within O(ε) from the true spectral data for any t ∈ R,
b) within O(ε2) for t 6∈ σ(A).

This will be the content of theorems 9 and 10, and Corollary 11. We will then show
that, in turns, the estimates (24) have always residual of size O(ε2) for any t ∈ R.
See Theorem 12. In the spectral approximation literature this property is known
as optimal order of convergence/exactness, see [14, Chapter 6].

Recall Remark 2, and the assumptions 1 and 2. Below {φtj}mj=1 denotes an
orthonormal set of eigenvectors of E[t−dm(t),t+dm(t)](A) which is ordered so that

|A− t|φtj = dj(t)φ
t
j for j = 1, . . . ,m.

Whenever 0 < εj < 1 is small, as specified below, the trial subspace L ⊂ D(A) will
be assumed to be close to Span{φtj}mj=1 in the sense that there exist wtj ∈ L such
that

‖wtj − φtj‖ ≤ εj and(A0)

|wtj − φtj |t ≤ εj .(A1)

We have split this condition into two, in order to highlight the fact that some times
only (A1) is required. Unless otherwise specified, the index j runs from 1 to m.

From (16) it follows that the family {φsj}mj=1 ⊂ E[t−dm(t),t+dm(t)](A) and the
family {wsj}mj=1 ⊂ L above can always be chosen piecewise constant for s in a
neighbourhood of t. Moreover, they can be chosen so that jumps only occur at
s ∈ σ(A).

Assumption 3. Without further mention all t-dependant vectors below will be
assumed to be locally constant in t with jumps only at the spectrum of A.

A set {wtj}mj=1 subject to (A0)-(A1) is not generally orthonormal. However,
according to the next lemma, it can always be substituted by an orthonormal set,
provided εj is small enough.

Lemma 8. There exists a constant C > 0 independent of L ensuring the following.
If {wtj}mj=1 ⊂ L is such that (A0)-(A1) hold for all εj such that

ε =

√√√√ m∑
j=1

ε2
j <

1√
m
,

then there is a set {vtj}mj=1 ⊂ L orthonormal in the inner product 〈·, ·〉 such that

|vtj − φtj |t + ‖vtj − φtj‖ < Cε.

Proof. As it is clear from the context, in this proof we suppress the index t on top
of any vector. The desired conclusion is achieved by applying the Gram-Schmidt
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procedure. Let G = [〈wk, wl〉]mkl=1 ∈ Cm×m be the Gram matrix associated to {wj}.
Set

vj =

m∑
k=1

(G−1/2)kj wk.

Then

‖G− I‖ ≤

√√√√ m∑
kl=1

|〈wk, wl〉 − 〈φk, φl〉|2

≤

√√√√2

m∑
kl=1

‖wk − φk‖2(‖wl‖+ ‖φl‖)2

≤
√

2(2 + ε)ε.

Since

‖vj − wj‖2 =

∥∥∥∥∥
m∑
k=1

(G−1/2 − I)kj wk

∥∥∥∥∥
2

=

m∑
kl=1

(G−1/2 − I)kj(G−1/2 − I)lj〈wk, wl〉

=

m∑
k=1

(G−1/2 − I)kj

(
m∑
l=1

Gkl(G−1/2 − I)lj

)

=

m∑
k=1

(G−1/2 − I)kj(G
1/2 −G)jk

=
(

(I −G1/2)2
)
jj

then

‖vj − wj‖ ≤ ‖I −G1/2‖.

As G1/2 is a positive-definite matrix, for every v ∈ Cm we have

‖(G1/2 + I)v‖2 = ‖G1/2v‖2 + 2〈G1/2v, v〉+ ‖v‖2 ≥ ‖v‖2.

Then det(I +G1/2) 6= 0 and ‖(I +G1/2)−1‖ ≤ 1. Hence

(25) ‖vj − wj‖ ≤ ‖(I −G)(I +G1/2)−1‖ ≤ ‖I −G‖ ‖(I +G1/2)−1‖ ≤ (2 + ε)ε .

Now, identify v = (v1, . . . , vm) ∈ Cm with v =
∑m
k=1 vkφk. As

‖G1/2v‖ =

∥∥∥∥∥∥
m∑
j=1

〈v, φj〉wj

∥∥∥∥∥∥ ≥ ‖v‖ −
∥∥∥∥∥∥
m∑
j=1

〈v, φj〉(wj − φj)

∥∥∥∥∥∥ ≥ (1− ε)‖v‖

then

‖G−1/2‖ ≤ 1

1− ε
.
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Hence

|vj − wj |t ≤
m∑
k=1

|(G−1/2 − I)jk||wk|t

≤
m∑
k=1

|(G−1/2 − I)jk|(εk + dk(t))

≤
m∑
kl=1

|(G−1/2)kl||(G1/2 − I)lj |(εk + dk(t))

≤
√
m(ε+ dm(t))(2 + ε)

1− ε
ε.(26)

The desired conclusion follows from (25) and (26). �

The next theorem addresses the claim a) made at the beginning of this section.

According to Lemma 8, in order to examine the asymptotic behaviour of F jL(t) as
εj → 0 under the constraints (A0)-(A1), we can assume without loss of generality
that the trial vectors wtj form an orthonormal set in the inner product 〈·, ·〉.

Theorem 9. Let {wtj}mj=1 ⊂ L be a family of vectors which is orthonormal in the
inner product 〈·, ·〉 and satisfies (A1). Then

F jL(t)− dj(t) ≤

(
j∑

k=1

ε2
k

)1/2

∀j = 1, . . . ,m.

Proof. From the min-max principle we obtain

F jL(t) ≤ max∑
|ck|2=1

∣∣∣∣∣
j∑

k=1

ckwk

∣∣∣∣∣
t

≤ max∑
|ck|2=1

∣∣∣∣∣
j∑

k=1

ck(wk − φk)

∣∣∣∣∣
t

+ max∑
|ck|2=1

∣∣∣∣∣
j∑

k=1

ckφk

∣∣∣∣∣
t

= max∑
|ck|2=1

∣∣∣∣∣
j∑

k=1

ck(wk − φk)

∣∣∣∣∣
t

+ dj(t).

This gives

F jL(t)− dj(t) ≤ max∑
|ck|2=1

j∑
k=1

|ck||wk − φk|t

≤ max∑
|ck|2=1

(
j∑

k=1

|ck|2
)1/2( j∑

k=1

|wk − φk|2t

)1/2

≤

(
j∑

k=1

ε2
k

)1/2

as needed. �

In terms of order of approximation, Theorem 9 will be superseded by Theorem 10
for t 6∈ σ(A). However, if t ∈ σ(A), the trial space L can be chosen so that
F 1
L(t)−d1(t) is linear in ε1. Indeed, fixing any non-zero u ∈ D(A) and L = Span{u},

yields F 1
L(t)− d1(t) = F 1

L(t) = ε1. This shows that Theorem 9 is optimal, upon the
presumption that t is arbitrary.



16 G.R. BARRENECHEA, L. BOULTON, AND N. BOUSSAID

The next theorem addresses the claim b) made at the beginning of this section.
Its proof is reminiscent of that of [23, Theorem 6.1].

Theorem 10. Let t 6∈ σ(A). Suppose that the εj in (A1) are such that

(27)

m∑
j=1

ε2
j <

d1(t)2

6
.

Then,

(28) F jL(t)− dj(t) ≤ 3
dj(t)

d1(t)2

j∑
k=1

ε2
k ∀j = 1, . . . ,m.

Proof. Since t 6∈ σ(A), then (D(A), qt(·, ·)) is a Hilbert space. Let PL : D(A) −→ L
be the orthogonal projection onto L with respect to the inner product qt(·, ·), so
that

qt(u− PLu, v) = 0 ∀v ∈ L.
Then |u|2t = |PLu|2t + |u− PLu|2t for all u ∈ D(A) and |u− PLu|t ≤ |u− v|t for all
v ∈ L. Hence

(29) |φk − PLφk|t ≤ εk ∀k = 1, . . . ,m.

Let Ej = Span
{
φk}jk=1. Define

Fj = {φ ∈ Ej : ‖φ‖ = 1
}

and

µjL(t) = max
φ∈Fj

∣∣2 Re〈φ, φ− PLφ〉 − ‖φ− PLφ‖2
∣∣ .

Here µjL depends on t, as PL does. We first show that, under hypothesis (27),

µjL(t) < 1
2 . Indeed, given φ ∈ Fj we decompose it as φ =

∑j
k=1 ckφk. Then

|〈φ, φ− PLφ〉| =

∣∣∣∣∣
j∑

k=1

ck〈φk, φ− PLφ〉

∣∣∣∣∣ =

∣∣∣∣∣
j∑

k=1

ck
dk(t)2

qt(φk, φ− PLφ)

∣∣∣∣∣
=

∣∣∣∣∣qt
(

j∑
k=1

ck
dk(t)2

φk, φ− PLφ

)∣∣∣∣∣
=

∣∣∣∣∣qt
(

j∑
k=1

ck
dk(t)2

(φk − PLφk), φ− PLφ

)∣∣∣∣∣
≤

∣∣∣∣∣
j∑

k=1

ck
dk(t)2

(φk − PLφk)

∣∣∣∣∣
t

∣∣∣∣∣
j∑

k=1

ck(φk − PLφk)

∣∣∣∣∣
t

.(30)

For each multiplying term in the latter expression, the triangle and Cauchy-Schwarz’s
inequalities yield (take αk = ck or αk = ck

dk(t)2 )∣∣∣∣∣
j∑

k=1

αk(φk − PLφk)

∣∣∣∣∣
t

≤
j∑

k=1

|αk| |φk − PLφk|t

≤

(
j∑

k=1

|αk|2
)1/2( j∑

k=1

|φk − PLφk|2t

)1/2

.(31)
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Then

(32)

|2 Re〈φ, φ− PLφ〉| ≤ 2

(
j∑

k=1

|ck|2

dk(t)4

)1/2( j∑
k=1

|ck|2
)1/2 j∑

k=1

ε2
k

≤ 2

d1(t)2

j∑
k=1

ε2
k

for all φ ∈ Fj .
The other term in the expression for µjL(t) has an upper bound found as follows.

According to the min-max principle

(33) ‖φ− PLφ‖2 ≤
1

d1(t)2
qt(φ− PLφ, φ− PLφ).

Therefore, by repeating analogous steps as in (30) and (31), we get

‖φ− PLφ‖2 ≤
1

d1(t)2

j∑
k=1

ckqt(φk − PLφk, φ− PLφ)

= qt

(
j∑

k=1

ck
d1(t)2

(φk − PLφk), φ− PLφ

)

= qt

(
j∑

k=1

ck
d1(t)2

(φk − PLφk),

j∑
l=1

cl(φl − PLφl)

)

≤ 1

d1(t)2

j∑
k=1

ε2
k .(34)

Hence, from (32) and (34),

(35) µjL(t) ≤ 3

d1(t)2

j∑
k=1

ε2
k <

1

2

as a consequence of (27).
Next, observe that dim(PLEj) = j. Indeed PLψ = 0 for ‖ψ‖ = 1 would imply

µjL(t) ≥
∣∣2 Re〈ψ,ψ − PLψ〉 − ‖ψ − PLψ‖2

∣∣ = ‖ψ‖2 = 1,

which would contradict the fact that µjL(t) < 1. Then,

F jL(t)2 ≤ max
u∈PLEj

|u|2t
‖u‖2

= max
φ∈Ej

|PLφ|2t
‖PLφ‖2

= max
φ∈Fj

|PLφ|2t
‖PLφ‖2

.

As

‖PLφ‖2 = ‖φ‖2 − 2 Re〈φ, φ− PLφ〉+ ‖φ− PLφ‖2 ≥ 1− µjL(t),

we get

(36) F jL(t)2 ≤ max
φ∈Fj

|φ|2t
1− µjL(t)

= max∑
|ck|2=1

∑j
k=1 |ck|2dk(t)2

1− µjL(t)
=

dj(t)
2

1− µjL(t)
.
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Finally, (36) and (35) yield

F jL(t)2 − dj(t)
2 ≤

µjL(t)

1− µjL(t)
dj(t)

2

≤ 2µjL(t)dj(t)
2

≤ 2
3

d1(t)2
dj(t)

2

j∑
k=1

ε2
k.(37)

The proof is completed by observing that F jL(t) + dj(t) ≥ 2dj(t). �

As the next corollary shows, a quadratic order of decrease for F jL(t) − dj(t) is
prevented for t ∈ σ(A) in the context of theorems 9 and 10, only for j up to
dim Et(A).

Corollary 11. Let t ∈ σdisc(A), ` = 1 + dim Et(A) and k ∈ {`, . . . ,m}. Let

αk(t) =
1

4
min {|dl(t)− dl−1(t)| : dl(t) 6= dl−1(t), l = `, ..., k} > 0.

There exists ε > 0 independent of k ensuring the following. If (A1) holds true for√∑m
j=1 ε

2
j < ε, then

F kL(t)− dk(t) ≤ 3
dk(t)

αk(t)2

k∑
j=1

ε2
j .

Proof. Without loss of generality we assume that t + dk(t) ∈ σ(A). Otherwise
t− dk(t) ∈ σ(A) and the proof is analogous to the one presented below.

Let t̃ = t + αk(t). Then t̃ 6∈ σ(A) and t + dk(t) = t̃ + dk(t̃). Since the map

s 7→ s + F jL(s) is non-decreasing as a consequence of Proposition 1, Theorem 10
applied at t̃ yields

F kL(t)− dk(t) = t+ F kL(t)− (t+ dk(t)) ≤ t̃+ F kL(t̃)− (t̃+ dk(t̃))

= F kL(t̃)− dk(t̃) ≤ 3
dk(t̃)

d1(t̃)2

k∑
j=1

ε2
k ≤ 3

dk(t)

αk(t)2

k∑
j=1

ε2
j

as needed. �

For the final part of this section, we are now able to formulate a precise state-
ments on the convergence of the method of Zimmermann and Mertins. Theo-
rem 12 below improves upon two crucial aspects of a similar result established in
[11, Lemma 2]. It allows j > 1 and it allows t ∈ σ(A). These two improvements
are essential in order to obtain sharp bounds for those eigenvalues of the Maxwell
operator which are either degenerate or form a tight cluster.

Remark 5. The constants ε̃t and C±t below do have a dependance on t that may be
determined explicitly from Theorem 10, Corollary 11 and the proof of Theorem 12.
Despite of the fact that they can deteriorate as t approaches the isolated eigenvalues
of A and they can have jumps precisely at these points, they may be chosen locally
independent of t in compacts outside the spectrum. This has an impact on practical
implementations of the computational method to be described in Section 6 which
we do not fully understand at present. Our numerical tests in Section 7 indicate
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that the best results are achieved by choosing t relatively far form the spectral point
being approximated.

Set

ν−j (t) = sup{s < t : Tr1(s,t)(A) ≥ j}
ν+
j (t) = inf{s > t : Tr1(t,s)(A) ≥ j}.

Note that these are the spectral points of A which are strictly to the left and strictly
to the right of t respectively. The inequality ν±j (t) 6= n±j (t) only occurs when t is

an eigenvalue. In view of (15), δ±(t) = |t− ν±1 (t)|.

Theorem 12. Let J ⊂ R be a bounded open segment such that J∩σ(A) ⊆ σdisc(A).
Let {φk}m̃k=1 be a family of eigenvectors of A such that Span{φk}m̃k=1 = EJ(A). For
fixed t ∈ J , there exist constants ε̃t > 0 and C±t > 0 independent of the trial space
L, ensuring the following. If there are {wj}m̃j=1 ⊂ L such that

(38)

 m̃∑
j=1

‖wj − φj‖2 + |wj − φj |2t

1/2

≤ ε < ε̃t,

then ∣∣∣∣∣ν±j (t)−

(
t+

1

τ±j (t)

)∣∣∣∣∣ ≤ C±t ε2

for all j ≤ n±(t) such that ν±j (t) ∈ J .

Proof. We focus on the case of the plus sign, as the one with the minus sign is
completely analogous. The hypotheses ensure that the number of indices j ≤ n±(t)
such that ν±j (t) ∈ J never exceeds m̃. Therefore this condition in the conclusion of
the theorem is consistent.

Let

m(t) = max{m ∈ N : [t− dm(t), t+ dm(t)] ⊂ J}.
Recall the Assumption 1 and the Remark 3. The hypothesis on L guarantees that

(A0)-(A1) hold true for m = m(t) and
(∑m(t)

j=1 ε
2
j

)1/2

< ε. By combining Lemma 8,

Theorem 9 and the fact that we can pick {wtj}
m(t)
j=1 ⊆ {wk}m̃k=1, there exists ε̃t > 0

small enough, such that (38) yields

(39) F jL(s)− dj(s) ≤
ν+

1 (t)− t
2

∀j = 1, . . . , m̃ and s ∈ J.

Let j be such that ν±j (t) ∈ J . Since t + α − ν+
1 (t) ≤ ν+

j (t) − (α + t) for all

0 ≤ α ≤ ν+
j (t)+ν+

1 (t)

2 − t, then

dj(s) = ν+
j (t)− s ∀s ∈

[
t+ ν+

j (t)

2
,
ν+

1 (t) + ν+
j (t)

2

]
.

Let

g(α) = α− F jL(t+ α).
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Then g is an increasing function of α and g(0) = −F jL(t) < 0. For the strict
inequality in the latter, recall Assumption 2. Moreover, according to (39)

g

(
ν+
j (t) + ν+

1 (t)

2
− t

)
= ν+

1 (t)− t+
ν+
j (t)− ν+

1 (t)

2
− F jL

(
ν+
j (t) + ν+

1 (t)

2

)

= ν+
1 (t)− t+ dj

(
ν+
j (t) + ν+

1 (t)

2

)
− F jL

(
ν+
j (t) + ν+

1 (t)

2

)

≥ ν+
1 (t)− t− ν+

1 (t)− t
2

> 0 .

Hence, the Mean Value Theorem ensures the existence of α̃ ∈
(

0,
ν+
1 (t)+ν+

j (t)

2 − t
)

such that α̃ = F jL(t+ α̃). According to Theorem 6 (+), α̃ is unique and α̃ = 1
2τ+
j (t)

.

The proof is now completed as follows. By virtue of Remark 4,

t̂+j (t) = t+
1

2τ+
j (t)

∈

(
t+ ν+

j (t)

2
,
ν+

1 (t) + ν+
j (t)

2

)
and F jL(t̂+j (t)) =

1

2τ+
j (t)

.

Then, Theorem 10 or Corollary 11, as appropriate, ensure the existence of C+
t > 0

yielding

ν+
j (t)−

(
t+

1

τ+
j (t)

)
= F jL(t̂+j )− dj(t̂

+
j ) ≤ C+

t

j∑
k=1

ε2
k < ε2 ,

as needed. �

We conclude this section with a result on convergence of eigenfunctions.

Corollary 13. Let J ⊂ R be a bounded open segment such that J∩σ(A) ⊆ σdisc(A).
Let {φk}m̃k=1 be a family of eigenvectors of A such that Span{φk}m̃k=1 = EJ(A). For
fixed t ∈ J , there exist constants ε̃t > 0 and C±t > 0 independent of the trial space
L, ensuring the following. If there are {wj}m̃j=1 ⊂ L guaranteeing the validity of

(38), then for all j ≤ n±(t) such that ν±j (t) ∈ J there exist ψε±j ∈ E{ν−j (t),ν+
j (t)}(A)

such that

|u±j (t)− ψε±j |t + ‖u±j (t)− ψε±j ‖ ≤ C
±
t ε.

Proof. Fix t ∈ J . By virtue of Theorem 6, u±j (t) = u
t̂±j
j in the notation for eigen-

vectors employed in Proposition 3. The claimed conclusion is a consequence of the
latter combined with Theorem 10 or Corollary 11, as appropriate. �

5. The finite element method for the Maxwell eigenvalue problem

Let Ω be an open subset of R3. Below D(Ω) denotes the infinitely differentiable
test functions with compact support in Ω. The inner product of L2(Ω) is 〈·, ·〉Ω
and its norm ‖ · ‖0,Ω. The Sobolev space of order m is Hm(Ω) and its norm is
‖ · ‖m,Ω. We do not distinguish in the notation between products and norms of
scalar functions or vector fields with components in these linear spaces.

We define rigorously the domain of the operatorM associated to the eigenvalue
problem (1) by following closely the ideas of the work [7]. Let

H(curl; Ω) =
{
u ∈ [L2(Ω)]3 : curlu ∈ [L2(Ω)]3

}
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equipped with the norm

(40) ‖u‖2curl,Ω = ‖u‖20,Ω + ‖ curlu‖20,Ω.
LetRmax denote the operator defined by the expression “curl” acting on the domain
D(Rmax) = H(curl; Ω), the maximal domain. Let

Rmin = R∗max = Rmax � [D(Ω)]3.

The domain of Rmin is

D(Rmin) = H0(curl; Ω)

= {u ∈ H(curl; Ω) : 〈curlu,v〉Ω = 〈u, curlv〉Ω ∀v ∈ H(curl; Ω)}.

By virtue of Green’s identity for the rotational (see e.g. [20, Theorem I.2.11]), if
Ω is Lipschitz in the sense of [1, Notation 2.1], then u ∈ H0(curl; Ω) if and only if
u ∈ H(curl; Ω) and u× n = 0 on ∂Ω.

Let

M1 =

(
0 iRmax

−iRmin 0

)
on the domain

(41) D(M1) = D(Rmin)×D(Rmax) ⊂ [L2(Ω)]6.

As Rmax and Rmin are mutually adjoints, M1 : D(M1) −→ [L2(Ω)]6 is a self-
adjoint operator, [7, Lemma 1.2]. Now, write the system (1) as(

ε−1/2 0
0 µ−1/2

)(
0 i curl

−i curl 0

)(
ε−1/2 0

0 µ−1/2

)(
Ẽ

H̃

)
= ω

(
Ẽ

H̃

)
with unknowns (Ẽ, H̃) = (ε1/2E, µ1/2H). Let

P = diag[ε1/2I3×3, µ
1/2I3×3]

be the self-adjoint operator acting on [L2(Ω)]6 given by the permittivity and per-
meability. The constraint (2) ensures that P is bounded and invertible with

P−1 = diag[ε−1/2I3×3, µ
−1/2I3×3].

Define M = P−1M1P−1 on the dense domain D(M) = P (D(M1)). Then M
is a self-adjoint operator and its eigenvalues correspond exactly with the angular
frequencies in (1). Every eigenfunction (Ẽ, H̃)t 6= 0 of M will produce a corre-

sponding field phasor (E,H)t = P−1(Ẽ, H̃)t 6= 0 satisfying (1) and vice-versa.

Assumption 4. Here and everywhere below we assume that the non-zero spectrum
of M1 is purely discrete and it does not accumulate at ω = 0. This hypothesis can
be verified whenever Ω is a polyhedron with Lipschitz boundary for example, see [22,
Corollary 3.49] and [7, Lemma 1.3]. A more systematic analysis of the properties
of M on more general regions Ω will be carried out elsewhere [3].

Suppose that Ω is a polyhedron. We may consider applying the framework of
Section 3 for A =M as follows. Fix {Th}h>0 a family of shape-regular triangula-
tions of Ω [19], where the elements K ∈ Th are simplexes with diameter hK such
that h = maxK∈Th hK . For r ≥ 1, let

Vr
h = {vh ∈ [C0(Ω)]3 : vh|K ∈ [Pr(K)]3 ∀K ∈ Th}

Vr
h,0 = {vh ∈ Vr

h : vh × n = 0 on ∂Ω}.
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Then

(42) Lh = Vr
h,0 ×Vr

h ⊂ D(M1)

and

(43) L̃h = PLh ⊂ D(M)

are finite element spaces of isotropic and anisotropic media, respectively. Recall
that P is bounded and invertible as a consequence of (2).

By virtue of [22, Theorem 3.26] and the fact that H0(curl; Ω) is the closure
in the curl norm of C∞0 (Ω), the family Lh is dense in D(M1). That is, for any
(F ,G)t ∈ D(M1) there exists a sequence {(F h,Gh)t}h>0 such that (F h,Gh)t ∈ Lh
and

(44) lim
h→0

(
‖F − F h‖curl,Ω + ‖G−Gh‖curl,Ω

)
= 0 .

In turns, this implies that for all (F̃ , G̃)t = P(F ,G)t ∈ D(M), there exists a family

{(F̃ h, G̃h)t}h>0 ⊂ L̃h such that

(45) lim
h→0

(∥∥∥∥M(
F̃ − F̃ h

G̃− G̃h

)∥∥∥∥
0,Ω

+

∥∥∥∥( F̃ − F̃ h

G̃− G̃h

)∥∥∥∥
0,Ω

)
= 0 .

Let Ih denote the Lagrange interpolator on Lh, [19]. Under the condition of
regularity (F ,G)t ∈ Hr+1(Ω)6,

(46) ‖F − Ih(F )‖curl,Ω + ‖G− Ih(G)‖curl,Ω ≤ Crhr (‖F ‖r+1,Ω + ‖G‖r+1,Ω)

for a suitable constant Cr > 0. Hence, there also exists a constant C̃r(ε, µ) > 0,
such that

(47)

∥∥∥∥M(
F̃ − Ih(F̃ )

G̃− Ih(G̃)

)∥∥∥∥
0,Ω

+

∥∥∥∥( F̃ − F̃ h

G̃− G̃h

)∥∥∥∥
0,Ω

≤ C̃r(ε, µ)hr.

As a consequence of Theorem 12 and Corollary 13, the estimates (45) and (47)
lead to precise convergence and error estimates for the method of Section 3 in the
case A = M and L = L̃h. We summarize the corresponding statements in two
main theorems.

Theorem 14. Let J ⊂ R be a bounded open segment such that 0 6∈ J . Let t ∈ J .
Let τ+

j,h(t) and τ−j,h(t) be the corresponding positive and negative eigenvalues of (ZLt )

for L = L̃h. Then, for every j such that ν±j (t) ∈ J ,

lim
h→0

∣∣∣∣∣
(
t+

1

τ±j,h(t)

)
− ν±j (t)

∣∣∣∣∣ = 0.

Moreover, if in addition P−1EJ(M) ⊆ Hr+1(Ω)6, then there exist C±t > 0 such
that

(48)

∣∣∣∣∣
(
t+

1

τ±j,h(t)

)
− ν±j (t)

∣∣∣∣∣ ≤ C±t h2r

for h sufficiently small and j such that ν±j (t) ∈ J .
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For (F̃ , G̃)t ∈ D(M) and a subspace E ⊆ D(M), let

distM[(F̃ , G̃), E ] = inf
(X,Y )t∈E

[∥∥∥∥M(
F̃ −X

G̃− Y

)∥∥∥∥
0,Ω

+

∥∥∥∥( F̃ −X

G̃− Y

)∥∥∥∥
0,Ω

]
.

Theorem 15. Assume the same hypotheses as in Theorem 14. Let

(Ẽ
±
j,h(t), H̃

±
j,h(t))t ∈ L̃h

be the corresponding normalized eigenvectors of the eigenvalue problem (ZL̃ht ). Then,
for every j such that ν±j (t) ∈ J ,

lim
h→0

distM[(Ẽ
±
j,h(t), H̃

±
j,h(t)), E{ν−j (t),ν+

j (t)}(M)] = 0.

Moreover, if in addition P−1EJ(M) ⊆ Hr+1(Ω)6, then there exist C±t > 0 such
that

distM[(Ẽ
±
j,h(t), H̃

±
j,h(t)), E{ν−j (t),ν+

j (t)}(M)] ≤ C±t hr

for h sufficiently small and j such that ν±j (t) ∈ J .

Theorems 14 and 15 above have various consequences for the numerical cal-
culation of the eigenfrequencies associated to the resonant cavity problem which
are worth highlighting. Note that convergence and absence of spectral pollution
are guaranteed, despite of the fact that Lh is a spaces of nodal finite elements
with no particular mesh structure. These convergence properties are constrained
to extremely mild assumptions on the coefficients ε and µ. Moreover, the order of
approximation achieved is optimal in the context of the finite elements chosen.

Our analysis above relies on the regularity of the eigenspaces associated to the
interval J only. This opens the possibility of approximating eigenvalues associated
to regular eigenfunctions with high accuracy, if a priori information about their
location is at hand. Refer to the numerical results below for concrete examples on
this matter.

The discussion above was restricted finite elements of Lagrange type with the
sole purpose of illustrating a concrete implementation. Analogous approximation
results hold true for other choices of trial subspaces (made out of standard finite
elements or otherwise) as long as they form a dense family in D(M). A control in the
order of convergence will be achieved in a similar fashion, as long as interpolation
estimates are available.

6. The numerical strategy in a nutshell

We now describe a certified numerical scheme for computing the eigenvalues of
M which is based on Corollary 7. In an asymptotic regime, as specified below, this
scheme provides small intervals which are guaranteed to contain spectral points.
Its convergence will be deduced from Theorem 14.

Let t > 0. Let L = L̃h as in (42)-(43) satisfy (14). Bounds for the eigenvalues
ofM in a vicinity of t, can be found from (24). The inverse residuals τ∓j (t) in (24)

can be computed by solving (ZL̃ht ) as follows. Let {b1, . . . , bn(h)} be a basis of Lh.

Let Bt, Kt ∈ Cn(h)×n(h) be determined by

[Bt]jk =
〈
(P−1M1 − tP)bj , (P−1M1 − tP)bk

〉
and

[Kt]jk =
〈
(P−1M1 − tP)bj ,Pbk

〉
.
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Then τ∓j (t) = η−1
∓ where η∓ is the negative(−)/positive(+) eigenvalue of the pencil

Bt − ηKt which is in the jth place among those closer to 0.
Denote by 0 < tup < tlow the corresponding position t set for computing upper

and lower bounds by means of τ−j (tlow) and τ+
j (tup), respectively. Since M is

strongly indefinite and L̃h are dense in the graph norm of D(M) for suitable sub-
families of mesh, we can always assume that the trial spaces are chosen such that

(49) min
u∈L̃h

〈Mu, u〉
〈u, u〉

< tup and tlow < max
u∈L̃h

〈Mu, u〉
〈u, u〉

.

Recall the condition (14).
The following procedure aims at computing intervals of enclosure for the eigen-

values ofM which lie in the segment (tup, tlow) for a prescribed tolerance set by the
parameter δ > 0. According to Lemma 16 below, these intervals will be certified in
the regime δ → 0.

Procedure 1.

Input.
– Initial tup > 0.
– Initial tlow > tup such that tlow − tup is fairly large.

– A sub-family F of finite element spaces L̃h as in (42)-(43), dense in the
graph norm of D(M) as h→ 0.

– A tolerance δ > 0 fairly small compared with tlow − tup.
Output.

– A prediction m̃(δ) ∈ N of Tr1(tup,tlow)(M).

– Predictions ω±j (δ) of the endpoints of enclosures for the eigenvalues in

σ(M)∩(tup, tlow), such that 0 < ω+
j (δ)−ω−j (δ) < δ for j = 1, . . . , m̃(δ).

Steps.

a) Set initial L = L̃h ∈ F .
b) While

ω+
j,h − ω

−
j,h ≥ δ or ω−j,h > ω+

j,h for some j = 1, . . . , m̃,

do c) - e).
c) Compute

ω+
j,h = tup +

1

τ+
j (tup)

for j = 1, . . . , m̃up

where m̃up is such that all ω+
j,h < tlow and

tup +
1

τ+
m̃up+1(tup)

≥ tlow.

d) Compute

ω−m̃low−k+1,h = tlow +
1

τ−k (tlow)
for k = 1, . . . , m̃low

where m̃low is such that all ω−m̃low−k+1,h > tup and

tlow +
1

τ−m̃low+1(tlow)
≤ tup.
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e) If m̃low 6= m̃up, decrease h, set new L = L̃h ∈ F and go back to c).

Otherwise set m̃ = m̃low = m̃up, decrease h, set new L = L̃h ∈ F and
continue from b).

f) Exit with m̃(δ) = m̃ and ω±j (δ) = ω±j,h for j = 1, . . . , m̃.

Let

(tup, tlow) ∩ σ(M) = {ωk+1, . . . , ωk+m}
where

m = Tr1(tup,tlow)(M) and k ≥ 0.

Observe that, a priori, an interval (ω−j , ω
+
j ) obtained as the output of Procedure 1

is not guaranteed to have a non-empty intersection with the spectrum of M or
in fact include precisely the eigenvalue ωk+j . However, as it is established by the
following lemma, the latter is certainly true for δ small enough.

Lemma 16. There exist t0 > 0 and δ0 > 0, ensuring the following for all tlow ≥ t0
and δ < δ0.

a) The conditional loop in Procedure 1 always exits in the regime h→ 0.
b) m(δ) = m.
c) ω−j (δ) ≤ ωk+j ≤ ω+

j (δ) for all j = 1, . . . , n.

Proof. Since ν+
j (tup) = ωk+j = ν−n−j+1(tlow) for all j = 1, . . . , n, Theorem 14

alongside with the assumption on F , confirms the existence of ω±j,h in Procedure 1-

c) and d), for all j = 1, . . . , n whenever h is small enough. Moreover

ω+
j,h ↓ ωk+j and ω−j,h ↑ ωk+j as h→ 0.

This ensures the validity of the lemma. �

If the eigenfunctions of M lie in Hr+1(Ω)6, where r is the degree of the polyno-
mials in (42), then

ω+
j,h − ω

−
j,h = O(h2r).

This means that the exit rate of the conditional loop in Procedure 1 is also O(h2r)
as h→ 0.

A close examination of the constants involved in the proof of Theorem 14, indi-
cates that they are of order |t−ν±1 (t)|−1. See Theorem 10 and Corollary 11. Table 1
and other various numerical experiments not included in Section 7, strongly suggest
that the accuracy improves significantly, as tup ↓ ν−1 (tup) and tlow ↑ ν+

1 (tlow).

7. Computational examples

We now illustrate the practical applicability of the ideas discussed above by
means of several examples. Two canonical references for benchmarks on the Maxwell
eigenvalue problem are [15] and [9]. We validate some of the numerical bounds found
below against these benchmarks. All the experiments presented are performed for
ε = µ = 1 and some of them consider the so-called two-dimensional Maxwell prob-
lem.

If the domain Ω has a cylindrical symmetry, say Ω = Ω̃× (0, π) for Ω̃ ⊂ R2 open
and sufficiently regular, then (1) decouples. Indeed, by performing a separation
of variables, a non-zero ω is an eigenvalue of M1 if and only if either ω2 = λ2

or ω2 = ν2 + ρ2, where λ2 is a Dirichlet eigenvalue of the Laplacian in Ω̃, ν2 is
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a non-zero Neumann eigenvalue of the Laplacian in Ω̃ and ρ ∈ N. In turns the
Neumann problem can be re-written as

(50)


curlE = iµH in Ω̃

curlH = −iωE in Ω̃

E · t = 0 on ∂Ω̃ ,

for non-zero (E, H)t ∈ L2(Ω̃)3 and ν = ω ∈ R, where

E =

(
E1

E2

)
, curlE = ∂xE2 − ∂yE1, curlH =

(
∂yH
−∂xH

)
and t is the unit tangent to ∂Ω̃. This two-dimensional Maxwell problem suffers
from all the complications concerning spectral pollution, as its three-dimensional
counterpart.

We denote by M̃ the self-adjoint operator associated to (50). This operator
can be employed for numerical tests which can then be validated against numerical
calculations for the original Neumann Laplacian via the Galerkin method, [15].
Indeed, note that the latter is a semi-definite operator with a compact resolvent,
so it does not exhibit spectral pollution.

The ideas developed in Section 5 for the operator M have analogues for M̃. In
the lower-dimensional examples presented below, we have chosen the finite element
spaces on a corresponding triangulation Th of Ω̃ as

Vr,k
h = {vh ∈ [C0(Ω̃)]k : vh|K ∈ [Pr(K)]k ∀K ∈ Th} (k = 1, 2)

Vr,2
h,0 = {vh ∈ Vr,2

h : vh × n = 0 on ∂Ω̃} and

Lh = Vr,2
h,0 ×Vr,1

h .

This ensures that Lh ⊂ D(M̃).

7.1. Convex domains. For a convex domain, the eigenfunctions of (1) or (50)
possess interior regularity. This leads to an improvement in accuracy as a conse-
quence of (48). In this, the best possible case scenario, the Zimmermann-Mertins
method for the resonant cavity problem achieves an optimal order of convergence
in the context of the finite element method.

Accuracy of the enclosures on a square. In this set of experiments we consider Ω̃ =
Ωsqr = (0, π)2 ⊂ R2. The eigenvalues of M̃ are ω = ±

√
l2 +m2 for l,m ∈ N ∪ {0}.

In order to estimate ω±k numerically, we have picked

tup =
1

4
ωk−1 +

3

4
ωk and tlow =

3

4
ωk +

1

4
ωk+1

to machine precision. Here and below we substitute from the notation in previous
sections the index j for eigenvalues by an index k, in order to highlight the fact
that we do not always count multiplicities.

In our first experiment we have computed the enclosure width ω+
k − ω−k for

k = 1, . . . , 100 and r = 1, 3, 5. We have chosen h = h(r) such that the subspaces
Lh have roughly the same dimension ≈ 61K. Figure 1 shows the outcomes of this
experiment. We have excluded enclosures with size above 10−1. As it is natural
to expect, for a fixed subspace Lh, the accuracy deteriorates as the eigenvalue
counting number j increases: high energy eigenfunctions present more oscillations
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Figure 1. Semi-log graph associated to Ωsqr. Vertical axis:
ω+
k −ω

−
k . Horizontal axis: eigenvalue index k (not counting multi-

plicity). Here we use elements of order r = 1, 3, 5 on unstructured
uniform meshes rendering roughly the same degrees of freedom.

that make their approximation more challenging. The accuracy increases with the
polynomial order. The first 100 eigenvalues are approximated fairly accurately
(note that ω100 =

√
261) with polynomial order r = 5.

Convergence for a cube. We now consider numerical approximation of the eigenval-
ues of the three dimensional problem (1) for Ω = Ωcbe = (0, π)3 ⊂ R3. The non-zero

eigenvalues are now ω = ±
√
l2 +m2 + n2. The corresponding eigenfunctions are

E(x, y, z) =

α1 cos(lx) sin(my) sin(nz)
α2 sin(lx) cos(my) sin(nz)
α3 sin(lx) sin(my) cos(nz)

 ∀

α1

α2

α3

 ·
 l
m
n

 = 0.

Here {l,m, n} ⊂ N ∪ {0} and not two indices are allowed to vanish simultane-
ously. The vector α determines the multiplicity of the eigenvalue for a given triplet
(l,m, n). That is, for example, ω =

√
2 (the first positive eigenvalue) has multi-

plicity 3 corresponding to indices {(1, 0, 0), (0, 1, 0), (0, 0, 1)} each one of them con-

tributing to one of the dimensions of the eigenspace. However, ω =
√

3 (the second
positive eigenvalue) corresponding to index {(1, 1, 1)} has multiplicity 2 determined
by α on a plane.

In Figure 3 we have depicted the decrease in the enclosure width for the com-
putation of the eigenvalue ω2 =

√
2 for Lagrange elements of order r = 1, 2, 3. We

have chosen a sequence of unstructured tetrahedral mesh. The computed values for
the slopes of the straight lines indicate that the enclosures obey the estimate

(51) |ω±j − ωj | ≤ ch
2r.



28 G.R. BARRENECHEA, L. BOULTON, AND N. BOUSSAID

10 2 10 1

10 10

10 8

10 6

10 4

10 2

Si
ze

 e
nc

lo
su

re

Maximum element size:    h

 

 +
10 10
+
10 10

r=1 (slope 2)
r=3 (slope 6)
r=5 (slope 10)

Figure 2. Log-log graph associated to Ωsqr and ω10 =
√

17. Ver-
tical axis: enclosure width. Horizontal axis: Maximum element
size h. Here we have chosen Lagrange elements of order r = 1, 3, 5
on a sequence of unstructured meshes.

Therefore the conclusion (48) of Theorem 14 will be sharp. Note that in the picture,
we have considered both the exact residual and the length of the enclosure.

The slashed cube. We now assume that Ω = Ωsla = (0, π)3 \ T ⊂ R3. Here T is
the closed tetrahedron with vertices (0, 0, 0), (π/2, 0, 0), (0, π/2, 0) and (0, 0, π/2).
This domain does not have symmetries allowing a reduction into two-dimensions.
However, as Ωsla is fairly close to Ωcbe, we should expect that the structure of the
spectrum in the two cases is reminiscent of one another.

In our first experiment on this region, we compute benchmark eigenvalue enclo-
sures for (1). The table to the right of Figure 4 shows the outcomes of implementing
the Procedure 1. We have run an algorithm based on this procedure for each of
three fixed choices of tup and tlow (third and fourth columns) with δ = 10−2. We
have picked the family of mesh so that no more than five iterations were required
to achieve the needed accuracy. The parameter l in this table counts the number
of eigenvalues to the right of tup or to the left of tlow, respectively.

In this experiment we have chosen trial spaces made out of Lagrange elements of
order r = 3. All the final eigenvalue enclosures have a length of at most 2× 10−3.
The mesh used in the last iteration is depicted on the left of Figure 4.

From the table it seems clear that there is a cluster of eigenvalues at the bottom
of the positive spectrum near

√
2. The latter is the first positive eigenvalue of Ωcbe

which is of multiplicity 3. It appears that this eigenvalue splits into a single eigen-
value at the bottom of the spectrum and a seemingly double eigenvalue slightly
above it. Another cluster occurs at ω4 and ω5 with strong indication that this is
a double eigenvalue. This pair is near

√
3, the second eigenvalue of Ωcbe which is
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t

k (ωk)+
− tup (l) tlow (l)

1 1.412236
000 0.5 (1) 1.6 (3)

2 1.430672
560 0.5 (2) 1.6 (2)

3 1.430673
577 0.5 (3) 1.6 (1)

4 1.755308
043 1.5 (1) 2.1 (2)

5 1.755329
063 1.5 (2) 2.1 (1)

6 2.22200
053 1.8 (1) 2.6 (5)

7 2.237667
434 1.8 (2) 2.6 (4)

8 2.237684
459 1.8 (3) 2.6 (3)

9 2.239533
387 1.8 (4) 2.6 (2)

10 2.270778
558 1.8 (5) 2.6 (1)

Figure 4. Benchmark spectral approximation for Ωsla. In the ta-
ble we compute interval of enclosure for the first 10 eigenvalues of
(1). In order to obtain this calculation we have employed Proce-
dure 1. The trial spaces are made of Lagrange elements of order
r = 3. The final mesh is the one shown on the right side. Total
number of DOF=117102.

indeed double. The next eigenvalues for the cube are 2 and
√

5 with total multi-
plicity 5. It is natural to conjecture that ωj for j = 5, . . . , 10 are perturbations of
these eigenvalues, but the data shown in the table is inconclusive.
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Figure 5. The first six eigenfunctions on Ωsla for the first six
positive eigenvalues. Densities |E| (top) and |H| (bottom). Cor-
responding arrow fields E (red) and H (blue) on ∂Ωsla.
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For our next experiment on this region, we have estimated numerically the elec-
tromagnetic fields corresponding to index up to 6 from the table in Figure 4. The
purpose of the experiment is to set benchmarks for the eigenfunctions on Ωsla and
simultaneously illustrate Theorem 15. In Figure 5 we depict the density of electric
and magnetic fields, |E| and |H| both normalized to having maximum equal to 1.
We also show arrows pointing towards the direction of these fields on ∂Ωsla.

The mesh employed for these calculations is the one shown in Figure 4. According
to Theorem 15 and the data presented in the table, the shown eigenfunctions should
be close to the exact eigenfunctions in the curl norm. We remark that for both
experiments on Ωsla a reasonable accuracy has been achieved even for the fairly
coarse mesh depicted in Figure 4.

7.2. Non-convex domains. The numerical approximation of the eigenfrequencies
and electromagnetic fields in the resonant cavity is known to be challenging when
the domain is not convex. The main reason for this is the fact that the electro-
magnetic field might have a singularity and a low degree of regularity at re-entrant
corners. See for example the discussion after [22, Lemma 3.56] and references
therein.

In some of the examples of this section we consider a mesh adapted to the
geometry of Ω. However, we do not pursue any specialized mesh refinement strategy.
We show below that, even in the case where there is poor approximation due to low
regularity of the eigenspace, the method presented in this paper provides valuable
information about the localization of the eigenvalues of (1).

The L-shaped domain. The region Ω̃ = ΩL = (0, π)2 \ [0, π/2]2 is a classical bench-
mark domain both for the Maxwell and the Helmholtz problems, and it has been
extensively examined in the past. Numerical computations for the eigenvalues of
M were reported in [9, Table 5] via an implementation based on a mixed formula-
tion of (50) and the help of edge finite elements. See also [15]. We now show how
to achieve accurate enclosures for these eigenvalues with the help of nodal finite
elements.

For this next set of experiments we consider unstructured triangulations of the
domain, refined around the re-entrant corner. The polynomial order is set to r = 3.
Figures 6 - 8 compile our findings.

We produced the table in Figures 6 by implementing Procedure 1 in the same
fashion as for the case of Ωsla discussed previously. For comparison in the second
column of this table we have included the benchmark eigenvalue estimations found
in [9] and [15]. Note that some of the computed eigenvalues associated to the mixed
formulation are lower bounds of the true eigenvalues, and some, like the 9th, are
upper bounds. This confirms that the latter approach is in general un-hierarchical
as previously suggested in the literature.

From the third column of the table, it is clear that the accuracy depends on the
regularity of the corresponding eigenspaces. The eigenfunctions associated to ω3 =
ω4 = 2 and ω7 =

√
8 are found by gluing together corresponding eigenfunctions

of (1) on squares of side π/2. These eigenfunctions are smooth in the interior of
ΩL, while those associated to ω1 and ω2 present singularities around the re-entrant
corner. The electric field component of the former is known to be outside H1(ΩL)2

while that of the latter is in H1(ΩL)2. This explains the significant gain in accuracy
in the calculation of ω2 with respect to the one of ω1.
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k ωj from [9] (ωj)
+
− tup (l) tlow (l)

(from [15])
1 0.768192684 0.773334991

694 0.1 (1) 2.1 (4)
(0.773334985176)

2 1.196779010 1.1967827557026
761 0.1 (2) 2.1 (3)

(1.19678275574)
3 1.999784988 2.00000000064

1.99999999933 1.5 (1) 2.5 (4)
(2.00000000000)

4 1.999784988 2.00000000067
1.99999999936 1.5 (2) 2.5 (3)

(2.00000000000)
5 2.148306309 2.14848368365

199 3.1 (5) 1.5 (3)
(2.14848368266)

6 2.252760528 2.25729896
776 1.5 (4) 3.1 (4)

7 2.828075317 2.8284271354
186 1.5 (5) 3.7 (4)

8 2.938491109 2.94671343
112 1.5 (6) 3.7 (3)

9 3.075901493 3.0758929738
571 1.5 (7) 3.7 (2)

10 3.390427701 3.3980724
676 1.5 (8) 3.7 (1)

Figure 6. Enclosures for the first 10 positive eigenvalues ofM on
the region ΩL. The next eigenvalue is above 3.7. Here Procedure 1
has been implemented on Lagrange elements of order 3. The final
mesh shown on the right has a number of DOF=56055. The mesh
has a maximum element size h = 0.1 and has been refined at
(π/2, π/2). For comparison on the second column we include the
eigenvalue estimations found in [9] and [15].

Figure 7 depicts in log-log scale residuals versus maximum element size. We
have considered here Lagrange elements of order r = 3 and r = 5. The hierarchy
of mesh (not shown) was chosen unstructured, but with an uniform distribution of
nodes. Since the eigenfunctions associated to ω1 and ω2 have a limited regularity,
then there is no noticeable improvement of convergence order as r increases. As
the third eigenfunction is smooth, it does obey the estimate (51).

Benchmark approximated eigenfunctions are depicted in Figure 8. The mesh
employed to produce these graphs is the one shown on the right of Figure 6. As
some of the electric fields have a singularity at (π/2, π/2) we have normalized each
individual plot to a range in the interval [0, 1].

The Fichera domain. In this next experiment we approximate for the eigenpairs of
(1) associated to the region Ω = ΩF = (0, π)3 \ [0, π/2]3 ⊂ R3 numerically.

Some of the eigenvalues can be obtained by domain decomposition and the cor-
responding eigenfunctions are regular. For example, eigenfunctions on the cube
of side π/2 can be assembled in the obvious fashion, in order to build eigenfunc-

tions on ΩF. Therefore the set {±2
√
l2 +m2 + n2} where not two indices vanish

simultaneously certainly lie in σ(M). The first eigenvalue in this set is 2
√

2. We

conjecture that there are exactly 15 eigenvalues in the interval (0, 2
√

2). Further-
more, we conjecture that the multiplicity counting of the spectrum in this interval
is

1, 2, 3, 2, 1, 2, 1, 3.
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Figure 7. Compared order of approximation for different eigen-
values in the region ΩL. The log-log plot shows residual versus
maximum element size h for the calculation of enclosures for ωk
where k = 1, 2, 3 and L is generated by Lagrange elements of order
r = 3 and r = 5. Note that (E, H) 6∈ Hs(ΩL)3 for k = 1 and
s = 1, and for k = 2 and s = 1.5. On the other hand, for k = 3 we
have (E, H) smooth, as the eigenfunction is also solution of (1) on
a square of side π/2.

The table on the right of Figure 9 shows a numerical estimation of these eigenvalues.
Here we have fixed tup = 0.2 and tlow = 2.8. We have considered a family of
mesh refined along the re-entrant edges. The final mesh is shown on the left side
of Figure 9. We have stopped the algorithm when the tolerance δ = 0.05 has
been achieved. However, note that the accuracy is much higher for the indices
k = 2, 3, 9, 10, 11, 15.

The slight numerical discrepancy shown in the table for the seemingly multi-
ple eigenvalues appears to be a consequence of the fact that the meshes employed
are not entirely symmetric with respect to permutation of the spacial coordinates.
Figure 10 includes the corresponding approximated eigenfunctions. The mesh em-
ployed for this calculation is the same as that of Figure 9.

The slit square. As mentioned in Section 6, for a single trial space L, the accuracy
of the eigenvalue bounds produced by the Zimmermann-Mertins method depends
on the position of t relative to the spectrum of M. In this final experiment we
demonstrate that this dependence might vary significantly with t. The numerical
evidence suggests that a good choice of tup and tlow plays a role in the design of
efficient algorithms for eigenvalue calculation based on this method.

Let Ω̃ = (0, π)2 \ S for S = [π/2, π] × {π/2}. Benchmarks on the eigenvalues
of (50) are known by means of solving numerically the corresponding Neumann
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Figure 8. Eigenfunctions on ΩL associated to the first eight pos-
itive eigenvalues. Densities |E| (top) and |H| (bottom). Corre-
sponding arrow fields E. We have normalized each individual den-
sity to have as maximum the value 1.
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k (ωk)+
−

1 1.146
25

2 1.5441
16

3 1.5441
18

4 2.082
64

5 2.082
78

6 2.082
78

7 2.235
13

8 2.235
14

9 2.3267
58

10 2.3323
09

11 2.3324
10

12 2.40
36

13 2.60
59

14 2.60
59

15 2.6056
09

Figure 9. Spectral enclosures for the spectrum lying on the in-
terval (0, 2

√
2) for the Fichera domain ΩF. Here we have fixed

tup = 0.2 and tlow = 2.8. We considered mesh refined at the
re-entrant edges as shown on the left. The final number of
DOF=208680.

RF DOF tlow = 1.95 tlow = 2.05 tup = 1.05 tup = 0.7
(j = 1) ω−3 (j = 3) ω−3 (j = 1) ω+

3 (j = 3) ω+
3

1 4143 1.24764 1.26640 1.50395 1.3436
0.1 9648 1.25029 1.26830 1.49282 1.3336
0.01 74226 1.25063 1.26846 1.48899 1.3274
Table 1. Numerical experiment showing the dependence of the
accuracy in the Zimmermann-Mertins method on the choice of tup

and tlow. It is preferable to pick tup and tlow as far as possible from
ω than to increase the dimension of L.

Laplacian problems, [15]. The first seven positive eigenvalues are

ω1 ≈ 0.647375015, ω2 = 1, ω3 ≈ 1.280686161,

ω4 = ω5 = 2, ω6 ≈ 2.096486081 and ω7 ≈ 2.229523505.

The eigenfunctions associated to ω2, ω4 and ω5 are smooth, as they are also eigen-
functions on Ωsqr. On the other hand, ω1 and ω3, correspond to singular eigenfunc-
tions. Standard nodal elements are completely unsuitable for the computation of
these eigenvalues, even with a significant refinement of the mesh on S.

Table 1 shows computation of ω±3 on a mesh that is increasingly refined at S
with a factor RF for two pairs of choices of tup and tlow. Here h = 0.1 and we
consider Lagrange elements of order r = 1. The choice of tup and tlow further from
ω3 even with the very coarse mesh, provide qualitatively sharper ω±3 than the other
choices even with the finer mesh.
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Figure 10. The first six eigenfunctions on ΩF for the first six
positive eigenvalues. Densities |E| (top) and |H| (bottom). Cor-
responding arrow fields E (red) and H (blue) on ∂ΩF.
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Appendix A. Further geometrical properties of F jL(t)

Various extensions of Lemma 2 to the case j > 1 are possible, however it is
difficult to write these results in a neat fashion. The proposition below is one such
an extension.

The following generalization of Danskin’s Theorem is a direct consequence of [6,
Theorem D1]. Let J ⊂ R be an open segment. Denote by

∂±t f(t) = lim
τ→0+

±f(t± τ)− f(t)

τ
,

the one-side derivatives of a function f : J −→ R. Let V be a compact topological.
For given J : J × V −→ R we write

J̃ (t) = max
v∈V
J (t, v) and Ṽ(t) =

{
ṽ ∈ V : J̃ (t) = J (t, ṽ)

}
.

Lemma 17. If the map J is upper semi-continuous and ∂±t J (t, v) exist for all

(t, v) ∈ J × V, then also ∂±t J̃ (t) exist for all t ∈ J and

(52) ∂±t J̃ (t) = max
ṽ∈Ṽ(t)

∂±t J̃ (t, ṽ).

In the statement of this lemma, note that the left and right derivatives of both
J and J̃ might possibly be different.

Proposition 18. Let j = 1, . . . , n and t ∈ R be fixed. The following assertions are
equivalent.

a) |F jL(t)− F jL(s)| = |t− s| for some s 6= t.
b) There exists an open segment J ⊂ R containing t in its closure, such that

|F jL(t)− F jL(s)| = |t− s| ∀s ∈ J.

c) There exists an open segment J ⊂ R containing t in its closure, such that

∀s ∈ J, either L ∩ Es+F jL(s) 6= {0} or L ∩ Es−F jL(s)(A) 6= {0}.

Proof.
a) ⇒ b). Assume a). Since r 7→ r ± F jL(r) are continuous and monotonically

increasing, then they have to be constant in the closure of

J = {τt+ (1− τ)s : 0 < τ < 1}.

This is precisely b).

b) ⇒ c). Assume b). Then s 7→ F jL(s) is differentiable in J and its one-side
derivatives are equal to 1 or −1 in the whole of this interval. For this part of
the proof, we aim at applying (52), in order to get another expression for these
derivatives.

Let Fj be the family of (j−1)−dimensional linear subspaces of L. Identify an
orthonormal basis of L with the canonical basis of Cn. Then any other orthonormal
basis of L is represented by a matrix in O(n), the orthonormal group. By picking the
first (j−1) columns of these matrices, we cover all possible subspaces V ∈ Fj . Indeed

we just have to identify (v1| . . . |vj−1) for [vkl]
n
kl=1 ∈ O(n) with V = Span{vk}

j−1
k=1.

Let

Kj =
{

(v1, . . . , vj−1) : [vkl]
n
kl=1 ∈ O(n)

}
⊂ Cn × . . .× Cn︸ ︷︷ ︸

j−1

.



38 G.R. BARRENECHEA, L. BOULTON, AND N. BOUSSAID

Then Kj is a compact subset in the product topology of the right hand side. Ac-
cording to (11),

F jL(s) = max
(v1,...,vj−1)∈Kj

g(s; v1, . . . , vj−1)

where

g(s; v1, . . . , vj−1) = min
(a1,...,aj−1)∈Cj−1∑

|ak|2=1

∣∣∣∑ akṽk

∣∣∣
s
.

Here we have used the correspondence between vk ∈ Cn and ṽk ∈ L in the or-
thonormal basis set above. We write

g(r, V ) = g(r; v1, . . . , vj−1) for V = Span{ṽk}
j−1
k=1 ∈ Fj .

The map g : J × Kj −→ R+ is the minimum of a differentiable function, so the
hypotheses of Lemma 17 are satisfied by J = −g. Hence, by virtue of (52),

∂±s g(s, V ) = min
u∈L	V,‖u‖=1
|u|s=g(s,V )

(
Re ls(u, u)

|u|s

)
.

As minima of continuous functions, g(s, V ) and ∂±s g(s, V ) are upper semi-continuous.
Therefore, a further application of Lemma 17 yields

∂±s F
j
L(s) = max

(v1,...,vj−1)∈Kj
g(s;v1,...,vj−1)=F jL(s)

∂±s g(s, v1, . . . , vj−1)

= max
V ∈Fj

g(s,V )=F jL(s)

min
u∈L	V,‖u‖=1
|u|s=g(s,V )

(
Re ls(u, u)

|u|s

)
.

Now, this shows that∣∣∣∣∣∣∣ max
V ∈Fj

g(s,V )=F jL(s)

min
u∈L	V,‖u‖=1
|u|s=g(s,V )

(
Re ls(u, u)

|u|s

)∣∣∣∣∣∣∣ = 1.

As L is finite dimensional, there exists a vector u ∈ L satisfying |u|s = F jL(s) such
that

|Re ls(u, u)|
|u|s

= 1.

Thus |Re〈(A − s)u, u〉| = 〈(A − s)u, (A − s)u〉 = F jL(s). Hence, according to the
“equality” case in the Cauchy-Schwarz inequality, u must be an eigenvector of A
associated with either s+ F jL(s) or s− F jL(s). This is precisely c).

c) ⇒ a). Under the condition c), there exists an open segment J̃ ⊆ J , possibly

smaller, such that t ∈ J̃ and F jL(s) = dj(s) for all s ∈ J̃ . As |dj(s)−dj(r)| = |s−r|,
then either a) is immediate, or it follows by taking r → t. �

Appendix B. A core Comsol v4.3 LiveLink code

%

% Core Comsol V4.3 LiveLink code for computing

% fundamental frequencies on a resonant cavity

% with perfect conductivity conditions

% the test geometry below is the Fichera domain.
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%

%

% Gabriel Barrenchea, Lyonell Boulton

% and Nabile Boussaid

%

% November 2012

%

% INITIALIZATION OF THE MODEL FROM SCRATCHES

model = ModelUtil.create(’Model’);

geom1=model.geom.create(’geom1’, 3);

mesh1=model.mesh.create(’mesh1’, ’geom1’);

w=model.physics.create(’w’, ’WeakFormPDE’, ’geom1’,

{’E1’,’E2’, ’E3’, ’H1’, ’H2’, ’H3’});

% CREATING THE GEOMETRY - IN THIS CASE THE FICHERA DOMAIN

hex1=geom1.feature.create(’hex1’, ’Hexahedron’);

hex1.set(’p’,{’0’ ’0’ ’0’ ’0’ ’pi’ ’pi’ ’pi’ ’pi’;

’0’ ’0’ ’pi’ ’pi’ ’0’ ’0’ ’pi’ ’pi’;

’0’ ’pi’ ’pi’ ’0’ ’0’ ’pi’ ’pi’ ’0’});

hex2=geom1.feature.create(’hex2’, ’Hexahedron’);

hex2.set(’p’,{’0’ ’0’ ’0’ ’0’ ’pi/2’ ’pi/2’ ’pi/2’ ’pi/2’;

’0’ ’0’ ’pi/2’ ’pi/2’ ’0’ ’0’ ’pi/2’ ’pi/2’;

’0’ ’pi/2’ ’pi/2’ ’0’ ’0’ ’pi/2’ ’pi/2’ ’0’});

dif1 = geom1.feature.create(’dif1’, ’Difference’);

dif1.selection(’input’).set({’hex1’});

dif1.selection(’input2’).set({’hex2’});

geom1.run;

%CREATING THE GEOMETRY

model.mesh(’mesh1’).automatic(false);

model.mesh(’mesh1’).feature(’size’).set(’custom’, ’on’);

model.mesh(’mesh1’).feature(’size’).set(’hmax’, ’.8’);

mesh1.run;

% PARAMETER t WHERE TO LOOK FOR EIGENVALUES

parat=2.2;

% WHETHER TO LOOK FOR THE EIGENVALUES TO THE LEFT (-) OR RIGHT (+) AND WHERE

ABOUT

shi=-.3;

model.param.set(’tt’, num2str(parat));

searchtau=shi;

% FINITE ELEMENTS TO USE AND ORDER
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w.prop(’ShapeProperty’).set(’shapeFunctionType’, ’shlag’);

w.prop(’ShapeProperty’).set(’order’, 3);

% PHYSICS

w.feature(’wfeq1’).set(’weak’,1 ,’(H3y-H2z)*(H3y_test-H2z_test)-

i*2*tt*(H3y-H2z)*E1_test+tt^2*E1*E1_test+(i*(H3y-H2z)-tt*E1)*E1t_test’);

w.feature(’wfeq1’).set(’weak’,2 ,’(H1z-H3x)*(H1z_test-H3x_test)-

i*2*tt*(H1z-H3x)*E2_test+tt^2*E2*E2_test+(i*(H1z-H3x)-tt*E2)*E2t_test’);

w.feature(’wfeq1’).set(’weak’,3 ,’(H2x-H1y)*(H2x_test-H1y_test)-

i*2*tt*(H2x-H1y)*E3_test+tt^2*E3*E3_test+(i*(H2x-H1y)-tt*E3)*E3t_test’);

w.feature(’wfeq1’).set(’weak’,4 ,’(E3y-E2z)*(E3y_test-E2z_test)+

i*2*tt*(E3y-E2z)*H1_test+tt^2*H1*H1_test+((-i)*(E3y-E2z)-tt*H1)*H1t_test’);

w.feature(’wfeq1’).set(’weak’,5 ,’(E1z-E3x)*(E1z_test-E3x_test)+

i*2*tt*(E1z-E3x)*H2_test+tt^2*H2*H2_test+((-i)*(E1z-E3x)-tt*H2)*H2t_test’);

w.feature(’wfeq1’).set(’weak’,6 ,’(E2x-E1y)*(E2x_test-E1y_test)+

i*2*tt*(E2x-E1y)*H3_test+tt^2*H3*H3_test+((-i)*(E2x-E1y)-tt*H3)*H3t_test’);

% BOUNDARY CONDITIONS

cons1=model.physics(’w’).feature.create(’cons1’, ’Constraint’);

cons1.set(’R’, 2, ’E2’);

cons1.set(’R’, 3, ’E3’);

cons1.selection.set([1 8 9]);

cons2=model.physics(’w’).feature.create(’cons2’, ’Constraint’);

cons2.set(’R’, 1, ’E1’);

cons2.set(’R’, 3, ’E3’);

cons2.selection.set([2 5 7]);

cons3=model.physics(’w’).feature.create(’cons3’, ’Constraint’);

cons3.set(’R’, 1, ’E1’);

cons3.set(’R’, 2, ’E2’);

cons3.selection.set([3 4 6]);

% HOW MANY EIGENVALUES TO LOOK FOR AROUND t

neval=3;

% SOLVING THE MODEL

std1=model.study.create(’std1’);

model.study(’std1’).feature.create(’eigv’, ’Eigenvalue’);

model.study(’std1’).feature(’eigv’).set(’shift’, num2str(searchtau));

model.study(’std1’).feature(’eigv’).set(’neigs’, neval);

std1.run;

% STORING SOLUTION FOR POST PROCESSING

[SZ,NDOFS,DATA,NAME,TYPE]= mphgetp(model,’solname’,’sol1’);

% DISPLAYING SOLUTION

for inde=1:neval,

tauinv=(real(DATA(inde)));

bd=parat+tauinv;
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if tauinv<0, disp([’lower= ’,num2str(bd,10)]);

else disp([’upper= ’,num2str(bd,10)]);

end

disp([’DOF= ’,num2str(NDOFS)])

end
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