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Introduction

Operator splitting techniques [START_REF] Strang | On the construction and comparison of difference schemes[END_REF][START_REF] Marchuk | Splitting and alternating direction methods[END_REF], also called fractional steps methods [START_REF] Témam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires[END_REF][START_REF] Témam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires[END_REF][START_REF] Yanenko | The method of fractional steps. The solution of problems of mathematical physics in several variables[END_REF], were introduced with the main objective of saving computational costs. A complex and potentially large problem could be then split into smaller or subproblems of different nature with an important reduction of the algorithmic complexity and computational requirements. The latter characteristics were largely exploited over the past years to carry out numerical simulations in several domains going from biomedical models, to combustion or air pollution modeling applications. Moreover, these methods continue to be widely used mainly because of their simplicity of implementation and their high degree of liberty in terms of choice of dedicated numerical solvers for the split subproblems. They are in particular suitable for stiff problems, for which a special care must be addressed to choose adequate and stable methods that properly handle and damp out fast transients inherent, for instance, to the reaction [START_REF] Verwer | A second-order Rosenbrock method applied to photochemical dispersion problems[END_REF] or diffusion [START_REF] Ropp | Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems[END_REF] equations. In most applications first and second order splitting schemes are implemented for which a general mathematical background is available (see, e.g., [START_REF] Hairer | Geometric Numerical Integration[END_REF] for ODEs and [START_REF] Hundsdorfer | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations[END_REF] for PDEs). Even though these schemes are usually efficient for the solution of time dependent equations, it is well known that they might suffer from order reduction in the stiff case, and some studies were conducted to explain this phenomenon. Another potential issue is the accuracy loss related to the boundary conditions for PDEs with transport operators, solved in a splitting framework. This problem was investigated, for instance, in [START_REF] Hundsdorfer | A note on splitting errors for advection-reaction equations[END_REF][START_REF] Hundsdorfer | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations[END_REF] for advection-reaction equations and mathematically described in [START_REF] Hansen | High order splitting methods for analytic semigroups exist[END_REF] in a more general framework for two linear operators generating strongly continuous semigroups. For stiff applications, several works [START_REF] Angelo | Comparison and analysis of some numerical schemes for stiff complex chemistry problems[END_REF][START_REF] Yang | An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry[END_REF][START_REF] Sportisse | Method of lines versus operator splitting for reactiondiffusion systems with fast chemistry[END_REF][START_REF] Ropp | Studies of the accuracy of time integration methods for reaction-diffusion equations[END_REF] illustrated perturbing effects on the accuracy of splitting approximations for multi-scale PDEs. Multi-scale features in time are commonly related to physical dynamics characterized by a broad range of time scales, while steep gradients or large higher order spatial derivatives induce similar phenomena in space. In all these cases the standard numerical analysis of splitting errors remains valid for asymptotically small time steps, and rapidly becomes insufficient for stiff problems. A better understanding of splitting methods for such regimes can be thus justified by the fact that practical considerations often suggest the use of relatively large time steps in order to ease heavy computational costs related to the numerical simulation of complex applications.

For PDEs disclosing physical time scales much faster than the splitting time step, a theoretical study was conducted in [START_REF] Sportisse | An analysis of operator splitting techniques in the stiff case[END_REF] in the framework of a linear system of ODEs issued from a reactiondiffusion equation with a linear source term and diagonal diffusion. Splitting errors with relatively large splitting time steps were therefore mathematically described, whereas splitting schemes ending with the stiffest operator were also shown to be more accurate. Similar conclusions were drawn in [START_REF] Kozlov | The behaviour of the local error in splitting methods applied to stiff problems[END_REF] for nonlinear systems of ODEs. A mathematical framework was then introduced in [START_REF] Descombes | Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: singular perturbation and order reduction[END_REF] to describe these errors for nonlinear reaction-diffusion equations. This work further analyzed order reduction in direct relation to the nonlinearity of the equations, and in particular confirmed better performances for splitting schemes that finish with the time integration of the stiffest operator. Other theoretical studies were also conducted to investigate splitting errors and in particular to derive alternative estimates exhibiting deviations from classical asymptotic estimates. A numerical analysis based on analytic semi-group theory was first considered in [START_REF] Jahnke | Error bounds for exponential operator splittings[END_REF] for linear operators, and then in [START_REF] Descombes | On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients[END_REF] for a system of ODEs issued from a discretized linear reaction-diffusion equation with solutions of high spatial gradients. The latter approach, based on the exact representation of local splitting errors introduced in [START_REF] Descombes | Strang's formula for holomorphic semi-groups[END_REF], was then recast in [START_REF] Duarte | Parareal operator splitting techniques for multiscale reaction waves: numerical analysis and strategies[END_REF] in infinite dimension for a linearized reactiondiffusion equation. Whether the analysis is performed in finite or infinite dimension, the resulting estimates predict an effective order reduction for linear or linearized reaction-diffusion equations. For instance, local errors related to a Lie approximation of first order exhibits deviations from O(∆t 2 ) observed in the asymptotic regime to O(∆t 1.5 ) for a range of relatively large splitting time step ∆t [START_REF] Descombes | On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients[END_REF][START_REF] Duarte | Parareal operator splitting techniques for multiscale reaction waves: numerical analysis and strategies[END_REF]. Similarly, Strang error approximations deviate from O(∆t 3 ) to O(∆t 2 ) in infinite dimension [START_REF] Duarte | Parareal operator splitting techniques for multiscale reaction waves: numerical analysis and strategies[END_REF], or from O(∆t 3 ) in the asymptotic regime to O(∆t 2.5 ), and potentially O(∆t 1.5 ) in various ranges of splitting time steps for the corresponding semi-discretized problem [START_REF] Descombes | On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients[END_REF].

All of these studies shed some light on the behavior of splitting methods for stiff PDEs and in particular for non-arbitrarily small splitting time steps. Nevertheless, a mathematical description in a more general and fully nonlinear framework seems natural to further investigate these schemes. No rigorous analysis of these configurations is however available so far in the literature. The relevance of such a study is hence justified not only because most of physical models disclose important stiffness but because short splitting time steps heavily restrict the efficiency of splitting methods. A better understanding of these schemes for non-asymptotic regimes, that is, for splitting time steps much larger than the fast scales associated with each operator, seems therefore necessary to enhance the numerical performance of such methods.

We conduct in this study the numerical analysis of splitting errors for time dependent PDEs in the case of nonlinear reaction-diffusion equations. The approach adopted is based on previous analyses carried out with linear operators and analytic semi-group theory, as well as the exact representation of splitting errors. The inherent nonlinearity of the equations is handled through the Lie formalism. In this work we limit the study to diagonal diffusion terms as a first step, and we neglect as well the influence of boundary conditions of the PDEs. We derive local error bounds that consistently describe classical orders, as well as a hierarchy of alternative estimates more relevant in non-asymptotic regimes related to various ranges of large splitting time step. In particular for large splitting times and problems modeling steep fronts, such a mathematical characterization shows that this deviation from the asymptotic behavior actually involves smaller numerical errors than the ones expected with the asymptotic classical orders. The resulting theoretical estimates are then evaluated for PDEs modeling traveling waves, for which stiffness can be easily introduced in the equations and thus allows us to systematically investigate various stiff scenarios. To further assess these theoretical findings for more complex and realistic applications, we investigate splitting errors for the simulation of premixed flame dynamics in the low Mach number regime with complex chemistry and detailed transport. We therefore introduce a new splitting method compatible with the low Mach number constraint and show how the theoretical results we have obtained allow us to gain fundamental insight in the analysis of splitting errors, thus paving the way for further theoretical studies as well as new numerical algorithms.

The paper is organized as follows. We carry out the numerical analysis of operator splitting in Section 2, for nonlinear reaction-diffusion equations. We then evaluate in Section 3 the previous theoretical estimates in the context of PDEs modeling traveling waves, in particular with a KPPtype of nonlinearity. A counterflow premixed flame is studied in Section 4, in the low Mach number regime with complex chemistry and detailed transport.

Analysis of operator splitting errors in the non-asymptotic regime

In this section we conduct a mathematical description of splitting local errors for nonlinear reactiondiffusion equations. First, we recall some previous theoretical results for operator splitting in a linear framework, and then we investigate the nonlinear case by using Lie derivative calculus.

Error formulae in the linear framework

Let us consider two general linear operators A and B, for which the exponentials e -tA and e -tB can be understood as a formal series. The first order Lie and the second order Strang splitting formulas to approximate e -t(A+B) are, respectively, given by L(t) = e -tA e -tB , S(t) = e -tA/2 e -tB e -tA/2 .

(

) 1 
In what follows we will give an exact representation of the difference between e -t(A+B) and its Lie and Strang approximations (1), by recalling some results proved in [START_REF] Descombes | On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients[END_REF] and [START_REF] Descombes | Strang's formula for holomorphic semi-groups[END_REF]. We introduce the following notations: ∂ A B denotes the commutator between A and B,

∂ A B = [A, B] = AB -BA, (2) 
and thus

∂ 2 A B = A, [A, B] , ∂ 2 B A = B, [B, A] . (3) 
Theorem 1. The following identities hold

L(t) = e -t(A+B) + t 0 s 0 e -(t-s)(A+B) e -(s-r)A ∂ A B e -rA e -sB dr ds, (4) 
S(t) = e -t(A+B) + 1 4 t 0 s 0 (s -r)e -(t-s)(A+B) e -(s-r)A/2 ∂ 2
A B e -rA/2 e -sB e -sA/2 dr ds

- 1 2 t 0 s 0 (s -r)e -(t-s)(A+B) e -sA/2 e -rB ∂ 2 B A e -(s-r)B e -sA/2 dr ds. (5) 
Formula ( 4) was originally introduced in [START_REF] Sheng | Global error estimates for exponential splitting[END_REF]. Additionally, we have the following equivalent representations which turn out to be more convenient in the nonlinear case.

Corollary 1. Considering (4) and (5), the following identities hold 

L(t) = e -t(A+B) + t 0 s 0 e -sA e -rB ∂ A B e -(s-r)B e -(t-s)(A+B) dr ds, (6) 
S(t) = e -t(A+B)
Proof. It suffices to compute the adjoint of (4) and [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary partial differential equations[END_REF], and noticing that according to the definition of exponentials, we have e tA * = e tA * , e tA e tB * = e tB * e tA * , and with (2) and (3):

(∂ A B) * = ∂ B * A * , ∂ 2 A B * = ∂ 2 A * B * , and ∂ 2 B A * = ∂ 2 B * A * .

Splitting errors for nonlinear reaction-diffusion equations

We consider the scalar reaction-diffusion equation

∂ t u -∂ 2 x u = f (u), x ∈ R, t > 0, u(x, 0) = u 0 (x), x ∈ R. (8) 
Considering the maximum norm ∞ , we denote by C b (R) the space of functions bounded over R, and by C ∞ b (R) the functions of class C ∞ bounded over R. We assume that f is a function of class C ∞ , from R to itself, such that there exists R > 0 for which

|r| ≥ R ⇒ rf (r) ≤ 0. ( 9 
)
Without loss of generality we assume that f (0) = 0 and R = 1. If u 0 belongs to C ∞ b (R), it can be then shown that equation (8) has a unique solution [START_REF] De Mottoni | Geometrical evolution of developed interfaces[END_REF], and we represent the solution u(t, .) as T t u 0 , where T t is the semi-flow associated with [START_REF] Descombes | Strang's formula for holomorphic semi-groups[END_REF]. Moreover such a function u is infinitely differentiable over R × (0, ∞), and the following estimate holds [START_REF] De Mottoni | Geometrical evolution of developed interfaces[END_REF],

T t u 0 ∞ ≤ max ( u 0 ∞ , 1) . ( 10 
)
Given v 0 and w 0 in C ∞ b (R), we consider the following equations:

∂ t v -∂ 2 x v = 0, x ∈ R, t > 0, v(x, 0) = v 0 (x), x ∈ R, (11) 
and

∂ t w = f (w), x ∈ R, t > 0, w(x, 0) = w 0 (x), x ∈ R. ( 12 
)
We denote by X t v 0 and Y t w 0 , respectively, the solutions of ( 11) and [START_REF] Duarte | New resolution strategy for multi-scale reaction waves using time operator splitting, space adaptive multiresolution and dedicated high order implicit/explicit time integrators[END_REF]. It is well known that for t ≥ 0 and u 0 in C ∞ b (R), X t u 0 ∞ ≤ u 0 ∞ ; furthermore property (10) holds naturally for Y t with the assumption [START_REF] Descombes | The Lie-Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime[END_REF]. The Lie approximation formulas are defined by

L t 1 u 0 = X t Y t u 0 , L t 2 u 0 = Y t X t u 0 , (13) 
whereas the two Strang approximation formulas [START_REF] Strang | On the construction and comparison of difference schemes[END_REF] are given by

S t 1 u 0 = X t/2 Y t X t/2 u 0 , S t 2 u 0 = Y t/2 X t Y t/2 u 0 . (14) 
In what follows we investigate the error between the exact solution of equation ( 8), and the corresponding Lie approximations [START_REF] Dumont | Simulation of human ischemic stroke in realistic 3D geometry[END_REF]. Results for Strang local errors can be found in Appendix A. The Strang splitting approximation error for a semi-linear parabolic equation like [START_REF] Descombes | Strang's formula for holomorphic semi-groups[END_REF] was also formally characterized in [START_REF] Hansen | A second-order positivity preserving scheme for semilinear parabolic problems[END_REF]. A different approach is adopted in the present study, where a more compact form of the representation of the error is considered to investigate its dependence on the initial condition and its derivatives. To perform these computations, we use formulas ( 6) and ( 7) from Corollary 1, and the Lie derivative calculus (see, for example, [START_REF] Hairer | Geometric Numerical Integration[END_REF] Sect. III.5 or [START_REF] Hundsdorfer | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations[END_REF] Sect. IV.1.4 for an introduction to this topic). Lie calculus was also considered in [START_REF] Lubich | On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations[END_REF][START_REF] Descombes | The Lie-Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime[END_REF] and in [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary partial differential equations[END_REF] to study splitting schemes for, respectively, nonlinear Schrödinger equations and nonlinear reaction-diffusion equations. Notice that by considering equation ( 8) over R, we exclude the boundary conditions from the present theoretical study. One must recall, however, that both Dirichlet and Neumann boundary conditions may have a negative influence on the splitting approximations, as previously mentioned in the Introduction (see, e.g., [START_REF] Hundsdorfer | A note on splitting errors for advection-reaction equations[END_REF][START_REF] Hundsdorfer | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations[END_REF][START_REF] Hansen | High order splitting methods for analytic semigroups exist[END_REF]). In particular, a recent study [START_REF] Faou | Analysis of exponential splitting methods for inhomogeneous parabolic equations[END_REF] mathematically investigates this problem for both Lie and Strang approximations applied to a two-dimensional inhomogeneous parabolic equation (similar to [START_REF] Descombes | Strang's formula for holomorphic semi-groups[END_REF], but with f (x, y, t), (x, y) ∈ R 2 , instead of f (u)).

Let us briefly recall in the following the definition and some properties of Lie derivatives. We consider function f as an unbounded nonlinear operator in

C ∞ b (R). For any unbounded nonlinear operator G in C ∞ b (R) with Fréchet derivative G ′ , the corresponding Lie derivative D f maps G to a new operator D f G such that for any u 0 in C ∞ b (R): (D f G) (u 0 ) = ∂ t G(Y t u 0 )| t=0 = G ′ (u 0 )f (u 0 ). Hence e tD f G (u 0 ) = G(Y t u 0 ),
and for G = Id, we have the following representation of the flow of ( 12):

e tD f Id (u 0 ) = Y t u 0 .
Similarly, we can write the flow associated with [START_REF] Duarte | Parareal operator splitting techniques for multiscale reaction waves: numerical analysis and strategies[END_REF] by considering the corresponding Lie derivative D ∆ . We finally recall that the commutator of Lie derivatives of two unbounded nonlinear operators is the Lie derivative of the Lie bracket of the unbounded nonlinear operators in reversed order. For instance, the Lie bracket for ∆ and f is defined for any

u 0 in C ∞ b (R) by {∆, f }(u 0 ) = ∂ 2 x (f (u 0 )) -f ′ (u 0 )∂ 2 x u 0 = f ′′ (u 0 )(∂ x u 0 , ∂ x u 0 ) = f ′′ (u 0 )(∂ x u 0 ) 2 , (15) 
and thus we have

([D f , D ∆ ]Id) (u 0 ) = D {∆,f } Id (u 0 ) = {∆, f }(u 0 ).
Considering now the Lie splitting approximations (13) together with Lie derivative calculus, we have

T t u 0 -L t 1 u 0 = e t(D∆+D f ) Id (u 0 ) -e tD f e tD∆ Id (u 0 ), (16) 
and

T t u 0 -L t 2 u 0 = e t(D∆+D f ) Id (u 0 ) -e tD∆ e tD f Id (u 0 ), (17) 
which yield the following exact representations of the local error, denoted as

E t L1 u 0 = T t u 0 -X t Y t u 0 , E t L2 u 0 = T t u 0 -Y t X t u 0 ; ( 18 
)
in which D denotes the derivative with respect to the initial condition since T t , X t , and Y t have been defined as semi flows.

Theorem 2. For t ≥ 0 and u 0 in C ∞ b (R), we have

T t u 0 -X t Y t u 0 = - t 0 s 0 DT t-s (X s Y s u 0 )X s-r f ′′ (X r Y s u 0 ) (∂ x X r Y s u 0 ) 2 dr ds, (19) 
and

T t u 0 -Y t X t u 0 = t 0 s 0 DT t-s (Y s X s u 0 ) exp s-r 0 f ′ (Y σ+r X s u 0 ) dσ × f ′′ (Y r X s u 0 ) exp 2 r 0 f ′ (Y σ X s u 0 ) dσ (∂ x X s u 0 ) 2 dr ds. (20) 
Proof. Considering [START_REF] Descombes | On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients[END_REF] we have

E t L1 u 0 = e t(D∆+D f ) Id (u 0 ) -e tD f e tD∆ Id (u 0 ) = - t 0 s 0 e sD f e rD∆ [D f , D ∆ ]e (s-r)D∆ e (t-s)(D∆+D f ) Id (u 0 ) dr ds = - t 0 s 0 e rD∆ [D f , D ∆ ]e (s-r)D∆ e (t-s)(D∆+D f ) Id (Y s u 0 ) dr ds = - t 0 s 0 D {∆,f } e (s-r)D∆ e (t-s)(D∆+D f ) Id (X r Y s u 0 ) dr ds = - t 0 s 0 e (s-r)D∆ e (t-s)(D∆+D f ) Id ′ (X r Y s u 0 ){∆, f }(X r Y s u 0 ) dr ds. Since e (s-r)D∆ e (t-s)(D∆+D f ) Id (v 0 ) = T t-s X s-r v 0 , we obtain that E t L1 u 0 = - t 0 s 0 DT t-s (X s Y s u 0 )DX s-r (X r Y s u 0 ){∆, f }(X r Y s u 0 ) dr ds. (21) 
Formula [START_REF] Hairer | Geometric Numerical Integration[END_REF] follows from ( 21) as a consequence of [START_REF] Faou | Analysis of exponential splitting methods for inhomogeneous parabolic equations[END_REF]. By formally exchanging f and ∆ (and thus Y and X) we infer from ( 17) and ( 6) that

E t L2 u 0 = - t 0 s 0 DT t-s (Y s X s u 0 )DY s-r (Y r X s u 0 ){f, ∆}(Y r X s u 0 ) dr ds. ( 22 
)
Given w 0 , the derivative of the solution of (12), Y s w 0 (x), with respect to the initial condition, denoted by DY s (w 0 ), satisfies

∂ s DY s (w 0 ) = f ′ (Y s w 0 )DY s (w 0 ), DY 0 (w 0 ) = 1,
and since f is a scalar function

DY s (w 0 ) = exp s 0 f ′ (Y σ w 0 )dσ . (23) 
Similarly,

∂ x Y s w 0 satisfies ∂ s ∂ x Y s w 0 = f ′ (Y s w 0 )∂ x Y s w 0 , ∂ x Y 0 w 0 = ∂ x w 0 ,
and hence

∂ x Y s w 0 = exp s 0 f ′ (Y σ w 0 )dσ ∂ x w 0 , (24) 
which along with ( 15) and ( 23) into [START_REF] Hansen | High order splitting methods for analytic semigroups exist[END_REF], prove [START_REF] Hairer | Solving Ordinary Differential Equations II[END_REF].

Notice that both error representations ( 4) and ( 6) are equivalent, nevertheless we will see in the following that the second one, used in Theorem 2, is more convenient because operators of type ∂ x are applied only on the split solutions X t v 0 and Y t w 0 of ( 11) and [START_REF] Duarte | New resolution strategy for multi-scale reaction waves using time operator splitting, space adaptive multiresolution and dedicated high order implicit/explicit time integrators[END_REF]. A rigorous proof for ( 21) and ( 22) for two general nonlinear operators was also proposed in [START_REF] Descombes | The Lie-Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime[END_REF]. Furthermore, using Duhamel's formula we have for equation [START_REF] Descombes | Strang's formula for holomorphic semi-groups[END_REF]:

T s u 0 = X s u 0 + s 0 X s-r f (T r u 0 ) dr, and hence DT s (u 0 ) = X s + s 0 X s-r f ′ (T r u 0 )DT r (u 0 ) dr. ( 25 
)
In particular using Gronwall's lemma we can also demonstrate that

DT s (u 0 ) = X s 1 + s 0 f ′ (T r u 0 ) exp s r X s-σ f ′ (T σ u 0 ) dσ dr ,
and hence have explicit expressions for both [START_REF] Hairer | Geometric Numerical Integration[END_REF] and [START_REF] Hairer | Solving Ordinary Differential Equations II[END_REF]. We introduce now the following notation: for a scalar continuous function g and a real a, we denote

g [-a,a] = sup r∈[-a,a] |g(r)|.
Using the results of Theorem 2, the following bounds can be obtained for both Lie local errors ( 16) and [START_REF] Giovangigli | Multicomponent flow modeling[END_REF].

Theorem 3. For t ∈ [0, T) and u 0 in C ∞ b (R), with κ = max( u 0 ∞ , 1), we have T t u 0 -X t Y t u 0 ∞ ≤ t 2 exp 2t f ′ [-κ,κ] f ′′ [-κ,κ] 2 ∂ x u 0 2 ∞ , (26) 
and

T t u 0 -Y t X t u 0 ∞ ≤ t 2 exp 2t f ′ [-κ,κ] f ′′ [-κ,κ] 2 ∂ x u 0 2 ∞ . (27) 
Proof. Taking norms for [START_REF] Hansen | A second-order positivity preserving scheme for semilinear parabolic problems[END_REF], we obtain

T t u 0 -X t Y t u 0 ∞ ≤ t 0 s 0 DT t-s (X s Y s u 0 ) ∞ f ′′ (X r Y s u 0 ) ∞ × (∂ x X r Y s u 0 ) 2 ∞ dr ds.
From [START_REF] Ichinose | The norm convergence of the Trotter-Kato product formula with error bound[END_REF], assumption [START_REF] Descombes | The Lie-Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime[END_REF], and hence (10), we see that

DT s (u 0 ) ∞ ≤ 1 + s 0 f ′ (T r u 0 )DT r (u 0 ) ∞ dr ≤ 1 + s 0 f ′ [-κ,κ] DT r (u 0 ) ∞ dr.
Gronwall's lemma then yields

DT s (u 0 ) ∞ ≤ exp s f ′ [-κ,κ] .
We thus have

T t u 0 -X t Y t u 0 ∞ ≤ t 0 s 0 exp (t -s) f ′ [-κ,κ] f ′′ [-κ,κ] ∂ x X r Y s u 0 2 ∞ dr ds. ( 28 
)
Taking into account that

∂ x X r Y s u 0 2 ∞ = X r ∂ x Y s u 0 2 ∞ ≤ ∂ x Y s u 0 2
∞ and with [START_REF] Hundsdorfer | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations[END_REF], we finally obtain

T t u 0 -X t Y t u 0 ∞ ≤ t 0 s 0 exp (t + s) f ′ [-κ,κ] f ′′ [-κ,κ] ∂ x u 0 2 ∞ dr ds ≤ t 2 exp 2t f ′ [-κ,κ] f ′′ [-κ,κ] 2 ∂ x u 0 2 ∞ ,
which proves [START_REF] Jahnke | Error bounds for exponential operator splittings[END_REF]. The proof for [START_REF] Kolmogoroff | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] follows the same procedure which yields

T t u 0 -Y t X t u 0 ∞ ≤ t 0 s 0 exp (t + r) f ′ [-κ,κ] f ′′ [-κ,κ] ∂ x X s u 0 2 ∞ dr ds ≤ t 0 exp 2t f ′ [-κ,κ] f ′′ [-κ,κ] ∂ x X s u 0 2 ∞ s ds, (29) 
and proves ( 27) by considering that

∂ x X s u 0 2 ∞ = X s ∂ x u 0 2 ∞ ≤ ∂ x u 0 2
∞ . Notice that both Lie schemes are bounded by the same expression in Theorem 3, and for sufficiently small t these estimates involve the classical second order local error for Lie splitting. Considering now the Gauss-Weierstrass formula for the heat semi-group associated with [START_REF] Duarte | Parareal operator splitting techniques for multiscale reaction waves: numerical analysis and strategies[END_REF], and the Young's inequality for convolutions, we have for all u 0 in C ∞ b (R) and t > 0, the following regularizing effect of the Laplace operator:

∂ x X t u 0 ∞ ≤ 1 √ πt u 0 ∞ . (30) 
The following bounds can be then derived.

Theorem 4. For t ∈ [0, T) and u 0 in C ∞ b (R), with κ = max( u 0 ∞ , 1), we have T t u 0 -X t Y t u 0 ∞ ≤ 4κ t √ t exp t f ′ [-κ,κ] f ′′ [-κ,κ] 3 √ π ∂ x u 0 ∞ ( 31 
)
T t u 0 -Y t X t u 0 ∞ ≤ 2 t √ t exp 2t f ′ [-κ,κ] f ′′ [-κ,κ] 3 √ π u 0 ∞ ∂ x u 0 ∞ , (32) 
and

T t u 0 -Y t X t u 0 ∞ ≤ t exp 2t f ′ [-κ,κ] f ′′ [-κ,κ] π u 0 2 ∞ . (33) 
Proof. Proof of (31) comes from considering the regularizing effect of the Laplacian [START_REF] Lubich | On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations[END_REF] and that

∂ x X r Y s u 0 2 ∞ ≤ ∂ x X r Y s u 0 ∞ X r ∂ x Y s u 0 ∞ ≤ max( u 0 ∞ , 1) × exp s f ′ [-κ,κ] ∂ x u 0 ∞ √ πr , into (28) 
, where assumption (9) has been considered and hence (10) for Y s u 0 ∞ . Similarly,

∂ x X s u 0 2 ∞ ≤ ∂ x X s u 0 ∞ X s ∂ x u 0 ∞ ≤ u 0 ∞ ∂ x u 0 ∞ √ πs ,
and

∂ x X s u 0 2 ∞ ≤ u 0 2 ∞ πs ,
yield, respectively, ( 32) and ( 33) into [START_REF] Laurent | Dynamical response of a premixed counter-flow flame: Numerical simulations and experimental measurements[END_REF].

Theorem 4 provides then with alternative estimates for both Lie methods. To summarize, and using the notation in [START_REF] Gray | Chemical Oscillations and Instabilites[END_REF] for a time t set by a given splitting time step ∆t, we have the following results for u 0 in C ∞ b (R) and ∆t > 0:

E ∆t L1 u 0 ∞ ∝ min ∂ x u 0 2 ∞ ∆t 2 , max( u 0 ∞ , 1) × ∂ x u 0 ∞ ∆t 1.5 , and E ∆t L2 u 0 ∞ ∝ min ∂ x u 0 2 ∞ ∆t 2 , u 0 ∞ ∂ x u 0 ∞ ∆t 1.5 , u 0 2 ∞ ∆t .
For sufficiently small time steps, we thus recover the classical second order O(∆t 2 ) for local errors in accordance to the asymptotic behavior of both Lie splitting schemes. For larger time steps, however, the alternative estimates that behave like O(∆t 1.5 ) or O(∆t) might become more relevant, which apparently entail a loss of accuracy of the splitting approximations. It is nevertheless important to highlight the impact of the multiplying constants in the different estimates, and in particular the nature of the initial condition and its derivatives, especially for non-asymptotic regimes defined by relatively large time step. Considering, for instance, solutions with high spatial gradients, the multiplying factor for the classical estimates in ∆t 2 is of order O ∂ x u 0 2 ∞ , of smaller order O (max( u 0 ∞ , 1) × ∂ x u 0 ∞ ) for ∆t 1.5 , and of potentially much smaller O u 0 2 ∞ for ∆t. Therefore, the alternative bounds given in Theorem 4 should describe much better the numerical behavior of the approximations, which in this case yield smaller local errors than those predicted by the classical estimates in ∆t 2 , initially derived in Theorem 3. The same discussion is valid for the Strang local error estimates detailed in Appendix A.

Application to traveling waves

In this part we evaluate the previous theoretical study in the context of reaction-diffusion problems that admit self-similar traveling wave solutions. The main interest of considering this kind of configuration is that the featured stiffness can be tuned using a space-time scaling. Therefore, it provides the right framework to perform a complete numerical validation of the theoretical local error estimates. Moreover, a detailed study can be conducted on the impact of the stiffness featured by propagating fronts with steep spatial gradients as performed, for instance, in [START_REF] Duarte | Parareal operator splitting techniques for multiscale reaction waves: numerical analysis and strategies[END_REF]. In what follows, we first recast previous estimates in the context of reaction traveling waves, and then we will illustrate them with the numerical solution of a KPP model.

Theoretical estimates

We consider the propagation of self-similar waves modeled by parabolic PDEs of type:

∂ t u -D ∂ 2 x u = kf (u), x ∈ R, t > 0, u(0, x) = u 0 (x), x ∈ R, (34) 
with solution u(x, t) = u 0 (x -ct), where c is the steady speed of the wavefront, and D and k stand, respectively, for diffusion and reaction coefficients. Introducing the Lie splitting solutions [START_REF] Dumont | Simulation of human ischemic stroke in realistic 3D geometry[END_REF] for equation [START_REF] Ropp | Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems[END_REF] and taking into account that the corresponding Lie bracket is now defined as {D∆, kf } = kD{∆, f }, we obtain the following estimates.

Corollary 2. For t ∈ [0, T) and u 0 in C ∞ b (R), with κ = max( u 0 ∞ , 1), we have

T t u 0 -X t Y t u 0 ∞ ≤ kD t 2 exp 2kt f ′ [-κ,κ] f ′′ [-κ,κ] 2 ∂ x u 0 2 ∞ , and 
T t u 0 -Y t X t u 0 ∞ ≤ kD t 2 exp 2kt f ′ [-κ,κ] f ′′ [-κ,κ] 2 ∂ x u 0 2 ∞ .
Furthermore, with the regularizing effect of the Laplacian:

∂ x X t u 0 ∞ ≤ 1 √ πDt u 0 ∞ ,
the following bounds can be derived.

Corollary 3. For t ∈ [0, T) and u 0 in C ∞ b (R), with κ = max( u 0 ∞ , 1), we have T t u 0 -X t Y t u 0 ∞ ≤ 4κ kD t √ t exp kt f ′ [-κ,κ] f ′′ [-κ,κ] 3 √ πD ∂ x u 0 ∞ T t u 0 -Y t X t u 0 ∞ ≤ 2kD t √ t exp 2kt f ′ [-κ,κ] f ′′ [-κ,κ] 3 √ πD u 0 ∞ ∂ x u 0 ∞ , and 
T t u 0 -Y t X t u 0 ∞ ≤ k t exp 2kt f ′ [-κ,κ] f ′′ [-κ,κ] π u 0 2 ∞ .
In the context of traveling wave solutions, the diffusion and reaction coefficients, D and k, might be seen as scaling coefficients in time and space. A dimensionless analysis of a traveling wave can be then conducted, as shown in [START_REF] Gray | Chemical Oscillations and Instabilites[END_REF], by considering dimensionless time τ and space r:

τ = kt, r = (k/D) 1/2 x.
As a consequence, a steady velocity of the wavefront can be derived

c = d t x ∝ (Dk) 1/2 , (35) 
whereas the sharpness of the wave profile is measured by

d x u 0 | max = ∂ x u 0 ∞ ∝ (k/D) 1/2 . ( 36 
)
Condition Dk = 1 then involves waves of constant velocity, but greater k (or smaller D) yields wavefronts with higher spatial gradients, and thus stiffer configurations.

By considering the Lie local errors (18) for a time t set by a given splitting time step ∆t, the bounds from Corollary 2 and 3, and the measure of the wave gradient [START_REF] Sheng | Global error estimates for exponential splitting[END_REF] together with condition Dk = 1, we have that for u 0 in C ∞ b (R) and ∆t > 0:

E ∆t L1 u 0 ∞ ∝ min k 2 ∆t 2 , max( u 0 ∞ , 1) × k 1.5 ∆t 1.5 , and E ∆t L2 u 0 ∞ ∝ min k 2 ∆t 2 , u 0 ∞ k 1.5 ∆t 1.5 , u 0 2 ∞ k∆t .
Even though these bounds are not sufficient to determine precisely the various intervals of numerical behavior depending on ∆t, i.e., the actual time steps for which each bound becomes relevant, for solutions with high spatial gradients it is very likely to start having transitions from one behavioral regime to another even for small splitting time steps of about ∂ x u 0 -1 ∞ (or k -1 following (36) with Dk = 1), based on a simple comparison of the multiplying coefficients in the estimates. Similar conclusions can be drawn from Strang local error estimates.

Numerical illustration: 1D KPP equation

Recalling the classical Kolmogorov-Petrovskii-Piskunov model [START_REF] Kolmogoroff | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] with f (u) = u(1 -u), we consider in this study a higher order KPP nonlinearity with f (u) = u 2 (1 -u) (often referred to as Zeldovich nonlinearity). The description of the dimensionless model and the structure of the analytical solution for this case can be found, for instance, in [START_REF] Gray | Chemical Oscillations and Instabilites[END_REF], where a theoretical analysis shows that in the case with D = k = 1, the velocity of the self-similar traveling wave is c = 1/ √ 2 in [START_REF] Ropp | Studies of the accuracy of time integration methods for reaction-diffusion equations[END_REF], and the maximum gradient value reaches 1/ √ 32 in [START_REF] Sheng | Global error estimates for exponential splitting[END_REF]. Notice that for this KPP nonlinearity there is a single isolated value of the speed for which the front exists, contrary to the monostable, classical KPP equation. In particular the case f (u) = u 2 (1 -u) verifies assumption (9) on f (u), considered in §2.2. The key point of this illustration is that the velocity of the traveling wave is proportional to (k D) 1/2 , whereas the maximum gradient is proportional to (k/D) 1/2 . Hence, we consider the case kD = 1 for which one may obtain steeper gradients with the same speed of propagation.

For the numerical approximations, we consider a 1D discretization with 5001 points over a region of [-70, 70] with homogeneous Neumann boundary conditions, for which we have negligible spatial discretization errors with respect to the ones coming from the numerical time integration for the relatively large time steps that have been considered. The Laplacian is discretized using a standard second order, centered finite differences scheme. The exact solution T t u 0 will be approximated by a reference or quasi-exact solution given by the numerical solution of the coupled reaction-diffusion equation performed by the Radau5 solver [START_REF] Hairer | Solving Ordinary Differential Equations II[END_REF] with a fine tolerance, η Radau5 = 10 -10 . Notice that even though an analytic solution exists, we consider a reference solution corresponding to the semidiscretized problem in order to avoid including spatial discretization errors in the analysis, that is, both the reference and splitting solutions are computed on the same grid with the same spatial discretization. All splitting approximations are computed with the splitting technique introduced in [START_REF] Duarte | New resolution strategy for multi-scale reaction waves using time operator splitting, space adaptive multiresolution and dedicated high order implicit/explicit time integrators[END_REF], with Radau5 for the reactive term, and the ROCK4 method [START_REF] Abdulle | Fourth order Chebyshev methods with recurrence relation[END_REF] for the diffusion problem. In order to properly discriminate splitting errors from those coming from the temporal integration of the subproblems, we consider the following fine tolerances, η Radau5 = η ROCK4 = 10 -10 . For this particular problem another option for the splitting approximation might have taken into account the ODE analytic solution for the reaction steps, as well as the solution of the discrete heat equation for the diffusion subproblems by considering, for instance, Fast Fourier Transforms (FFT). However, a fully numerical approach is adopted in this study in accordance with more general and complex configurations envisioned, as the ones presented in [10,[START_REF] Dumont | Simulation of human ischemic stroke in realistic 3D geometry[END_REF] and in the next section. Figure 1 shows the numerical quasi-exact solutions at times t = 0 and t = 45 for k = 1, 10, and 100. In what follows, 10001 points of discretization are considered for k = 100 instead of 5001 in order to better represent the wavefront, as illustrated in Figure 1.

We first compute the L 2 local errors for different splitting time steps ∆t for all Lie and Strang splitting schemes, that is, L ∆t 1 , L ∆t 2 , S ∆t 1 , and S ∆t 2 in ( 13) and [START_REF] Ern | Multicomponent transport algorithms[END_REF]. Starting from the same initial solution u 0 , the local error associated with L ∆t 1 u 0 is measured by T ∆t u 0 -L ∆t 1 u 0 L 2 , and similarly for the other schemes. Figure 2 illustrates these errors for k = 10, for relatively large splitting time steps. A deviation from the asymptotic behavior is exhibited for all splitting schemes for time steps of order k -1 or larger. For smaller time steps we retrieve classical orders as established in Theorems 3 and 6. In this case, L 1 -and L 2 -Lie schemes are practically equivalent in terms of accuracy, as established in Theorem 3. On the other hand, there is a slight difference for S 1 -and S 2 -Strang schemes, as seen in Theorem 6. For the L 1 -Lie scheme, the dependence on ∆t varies from ∆t 2 to ∆t 1.5 , whereas it attains ∆t for the L 2 -Lie scheme, as described in Theorem 4. For the Strang schemes, the same phenomenon occurs from ∆t 3 to ∆t 2.5 and ∆t 2 , respectively, for the S 1 -and S 2 -Strang schemes, following the bounds established in Theorem 7. Notice that in all cases a better accuracy is achieved in the non-asymptotic regime by splitting schemes ending with the reaction substep, as previously proved in [START_REF] Descombes | Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: singular perturbation and order reduction[END_REF]. In particular the L 2 -Lie scheme is even more accurate than a S 1 -Strang one, for sufficiently large splitting time steps. Similar conclusions are drawn for a stiffer configuration with k = 100, illustrated in Figure 3. In this case the splitting local errors eventually behave like ∆t. In this way the bounds introduced in Theorems 4 and 7, as well as the mathematical characterization of these errors for non-asymptotic regimes, consistently describe the numerical accuracy of operator splitting for solutions disclosing high spatial gradients. Considering the global error for the S 2 -Strang scheme: T t u 0 -(S ∆t 2 ) n u 0 L 2 , where S ∆t 2 has been successively applied n times to u 0 , such that t = n∆t, Figure 4 illustrates these errors for the S 2 -Strang scheme, which perfectly reproduces the behavior of local errors. The latter is not always the case since there might be some error compensation and thus a global accuracy better than the one theoretically expected. This has been shown, for instance, in [START_REF] Ichinose | The norm convergence of the Trotter-Kato product formula with error bound[END_REF] for a linear configuration but the proofs cannot be extended to a nonlinear framework. In particular the global error evaluation in Figure 4 was made after a long integration time in order to illustrate the worst possible configuration. The influence of stiffness is highlighted for increasingly stiffer configurations corresponding to higher values of k. Notice that for k = 1, a non-stiff configuration, asymptotic orders are preserved even for relatively large splitting time steps.

Application to the dynamics of premixed flames

We now consider the simulation of a counterflow premixed methane flame with detailed transport and complex chemistry in the low Mach number regime. These flames have received an extensive number of studies in both the steady and the pulsated case for realistic engineering applications (see e.g., [START_REF] Smooke | Comparison between experimental measurements and numerical calculations of the structure of counterflow, diluted, methane-air, premixed flames[END_REF][START_REF] Gao | Quantitative comparison of detailed numerical computations and experiments in counterflow spray diffusion flames[END_REF][START_REF] Laurent | Dynamical response of a premixed counter-flow flame: Numerical simulations and experimental measurements[END_REF]). Here we will consider the configuration where the flame is pulsated periodically in time through upstream modulations [START_REF] Darabiha | Transient behaviour of laminar counterflow hydrogen-air diffusion flames with complex chemistry[END_REF]. In this way we consider a time dependent system of PDEs for which we introduce a new way to perform operator splitting, compatible with the low Mach constraint. Taking into account that there is already a validated coupled, fully implicit code, based on [START_REF] Darabiha | Transient behaviour of laminar counterflow hydrogen-air diffusion flames with complex chemistry[END_REF][START_REF] Massot | Spray counterflow diffusion flames of heptane: Experiments and computations with detailed kinetics and transport[END_REF], that can provide us with the reference dynamics of such flames, we evaluate the splitting errors introduced by this new approach and analyze the resulting behavior based on the theoretical study previously conducted.

Governing equations

We consider two premixed flames stabilized in a symmetric framework where two injections of methane-air mixture occur in a counterflow way (see Figure 9 in Appendix B). Isobaric flames equations are considered in the low Mach Number limit [START_REF] Majda | The derivation and numerical solution of the equations for zero Mach number combustion[END_REF], so that for x ∈ R d the pressure reads p(t, x) = p atm + p(t, x), where p is a perturbation of the atmospheric pressure. The counterflow configuration admits a symmetry of revolution and thus the set of equations can be written as a 2D axisymmetric system. In particular, we consider 1D similarity solutions of this 2D system of equations for which the density of the gas ρ, the temperature T , the axial velocity u z , the reduced radial velocity u r /r, and the mass fractions Y k of the gas species have no radial dependence, and all of them are functions of the axial coordinate z. Assuming that the perturbation on the atmospheric pressure field is given by p = -Jr 2 /2 + p(z), where r denotes the radial coordinate, the governing equations read

ρc p ∂ t T + c p V ∂ z T -∂ z (λ∂ z T ) = - k∈S h k m k ω k - k∈S ρY k c p,k V z,k ∂ z T, ( 37 
)
ρ∂ t Y k + V ∂ z Y k + ∂ z (ρY k V z,k ) = m k ω k , k ∈ S, (38) 
∂ z J = 0, ( 39 
)
ρ∂ t U + ρU 2 + V ∂ z U = J + ∂ z (µ∂ z U ) , (40) 
∂ t ρ + 2ρU + ∂ z V = 0, (41) 
where V = ρu z is the axial mass flux, U the reduced radial velocity, S the set of species indices, c p the specific heat of the gas mixture, c p = k∈S Y k c p,k , c p,k the specific heat of the k-th species, h k its enthalpy, m k its molar mass, λ the heat conductivity, µ the shear viscosity, J the reduced pressure gradient, ω k the molar chemical production rate, and V k,z the axial diffusion velocity of the k-th gas species. Density ρ is a function of the local temperature and gas composition through the ideal gas state equation. Full details on this model can be found, for instance, in [START_REF] Giovangigli | Multicomponent flow modeling[END_REF].

Given the symmetry of this configuration, only half domain is considered, z ≥ 0, with symmetry conditions at z = 0. The top boundary at z = 1.55 cm coincides with the fuel injection and thus fixed values of the temperature, the axial and the reduced radial velocities, and the gas composition are imposed. Its velocity is of 1.423 m/s, pulsated with a modulation of 10% at a frequency of 100 Hz. The gas is composed of methane with a mass fraction equal to 3.88%, mixed with air at 293 K and atmospheric pressure. A detailed methane-air chemical kinetic mechanism with 29 species and 150 reactions is considered, whereas transport parameters are computed based on [START_REF] Ern | Multicomponent transport algorithms[END_REF].

Introduction of operator splitting

We aim at solving separately the chemical sources in system ( 37)- [START_REF] Témam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires[END_REF]:

ρc p ∂ t T = - k∈S h k m k ω k , ( 42 
)
ρ∂ t Y k = m k ω k , k ∈ S, (43) 
and then consider the following convection-diffusion problem:

ρc p ∂ t T + c p V ∂ z T -∂ z (λ∂ z T ) = - k∈S ρY k c p,k V z,k ∂ z T, (44) 
ρ∂ t Y k + V ∂ z Y k + ∂ z (ρY k V z,k ) = 0, k ∈ S, (45) 
∂ z J = 0, ( 46 
)
ρ∂ t U + ρU 2 + V ∂ z U = J + ∂ z (µ∂ z U ) , (47) 
∂ t ρ + 2ρU + ∂ z V = 0. ( 48 
)
In this way, we obtain a decoupled system of ODEs ( 42)- [START_REF] Verwer | A second-order Rosenbrock method applied to photochemical dispersion problems[END_REF] on each grid point of the domain, for which a dedicated stiff ODE solver can be implemented; whereas the numerical effort required to solve the coupled system (44)-( 48) is also relieved. However, since density ρ depends on the local temperature and gas composition, its time variation during the chemistry step ( 42)-( 43) must be taken into account in equation (48). Deriving in time the ideal gas state equation and considering ( 42)- [START_REF] Verwer | A second-order Rosenbrock method applied to photochemical dispersion problems[END_REF], this variation, denoted as (∂ t ρ) chem , is given by

(∂ t ρ) chem = 1 c p T k∈S h k m k ω k -m k∈S ω k . (49) 
Hydrodynamics are therefore solved, coupled with the transport equations without chemical source terms for temperature and species, in system ( 44)-(47) together with

∂ t ρ + (∂ t ρ) chem + 2ρU + ∂ z V = 0, (50) 
instead of (48). In this implementation, the corrective term (∂ t ρ) chem is updated at the beginning of each splitting time step, and kept constant throughout the time integration of the current time step. Considering the instantaneous nature of this correction that affects especially the solution of the hydrodynamics, both Lie and Strang schemes should finish with the numerical solution of the convection-diffusion problem ( 44)-( 47) plus (50). This is also coherent with the idea of always ending the splitting scheme with the fastest operator [START_REF] Sportisse | An analysis of operator splitting techniques in the stiff case[END_REF][START_REF] Kozlov | The behaviour of the local error in splitting methods applied to stiff problems[END_REF][START_REF] Descombes | Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: singular perturbation and order reduction[END_REF]. The convection-diffusion system is numerically solved with the same code considered for the original full problem (37)- [START_REF] Témam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires[END_REF]. The method considers implicit time integration of the coupled equations on a dynamically adapted grid (see details in [START_REF] Smooke | Comparison between experimental measurements and numerical calculations of the structure of counterflow, diluted, methane-air, premixed flames[END_REF][START_REF] Darabiha | Transient behaviour of laminar counterflow hydrogen-air diffusion flames with complex chemistry[END_REF]). On the other hand, the chemical source terms ( 42)-( 43) are integrated point-wise with the Radau5 solver [START_REF] Hairer | Solving Ordinary Differential Equations II[END_REF].

Numerical results

To visualize the numerical performance of the splitting approximation, the point z = 0.25 cm in the high gradient zone is chosen (see Figure 10). The evolution of the temperature is shown in Figure 5 for Lie and Strang approximations with different splitting time steps. The reference solution corresponds to the solution of the full problem ( 37)-( 41), computed with fine tolerances (see [START_REF] Smooke | Comparison between experimental measurements and numerical calculations of the structure of counterflow, diluted, methane-air, premixed flames[END_REF]). For the time steps considered the dynamics of the flame is properly reproduced with the new operator splitting introduced. The same can be observed even for minor species, as illustrated, for instance, in Figure 6 for Y OH . Figures 7 and8 illustrate the local and global errors for the Lie and Strang splitting approximations, respectively, for relatively large splitting time steps. We consider temperature T , and some main and minor species like Y CH4 and Y CO2 , and Y OH and Y CH , respectively. Global errors are evaluated at time 0.032 s, which corresponds to a maximum pulsated velocity. For the Lie approximations, the dependence on the splitting time step ∆t varies from ∆t 2 to ∆t 1.5 (close to ∆t for Y CH ); and similarly from ∆t 3 to ∆t 2.5 , for the Strang solutions in Figure 8 (about ∆t 2 for Y CH ). Global errors follow approximately the same behaviors. However, compensations can take place as illustrated, for instance, by the Strang scheme that displays behaviors between ∆t 2 and ∆t 1.5 , even for very large splitting time steps. The Lie scheme on the other side involves a global accuracy that behaves like ∆t 0.5 , and even worse for very large time steps. In what concerns to the present study we can identify similar behaviors previously observed for the KPP problem, and predicted by the theoretical study, this time for a much more complex problem. In particular splitting approximations with relatively large time steps involve better accuracies than those expected out of the asymptotic bounds. Moreover, splitting errors remain bounded even for considerably large time steps of about 10 -5 s, compared, for instance, with some of the chemical time scales, of the order of the nanoseconds. Complementary analyses on these numerical results, as well as more details and further extensions of this approach for Low Mach number flames will be reported in a forthcoming work.

Concluding remarks

We have introduced in this paper a rigorous mathematical characterization of splitting errors for nonlinear reaction-diffusion equations. The corresponding error estimates are particularly relevant for relatively large splitting time steps, and therefore for many applications modeled by stiff PDEs in which fast physical or numerical scales usually impose prohibitively expensive time steps. In this context splitting techniques can become a more efficient alternative to overcome stability restrictions related to stiff source terms or mesh size, as shown in [START_REF] Duarte | New resolution strategy for multi-scale reaction waves using time operator splitting, space adaptive multiresolution and dedicated high order implicit/explicit time integrators[END_REF]. Additionally, a theoretical description of splitting errors may also lead to further developments, as the adaptive splitting scheme introduced in [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary partial differential equations[END_REF]. Understanding the numerical behavior of splitting schemes, especially for relatively large splitting time steps, is therefore shown to be of the utmost importance for both theoretical and practical reasons. Besides, we have illustrated the relevance of the present theoretical study in the case of self-similar waves with high spatial gradients. This kind of problem mimics many other applications characterized by the propagation of steep chemical fronts. In particular we have considered a counterflow premixed flame with complex chemistry and detailed transport, for which we have also introduced a new way of implementing operator splitting techniques. In all cases the key point of these numerical illustrations is that the present theoretical study consistently describes the behavior of the numerical errors, especially for relatively large splitting time steps. It can be thus seen how better accuracies are actually achieved with respect to the asymptotic bounds in the case of propagating fronts with steep spatial gradients. and D ∆ , [D ∆ , D f ] Id (u 0 ) =f (4) (u 0 ) (∂ x u 0 , ∂ x u 0 , ∂ x u 0 , ∂ x u 0 ) + 4f (3) (u 0 ) ∂ x u 0 , ∂ x u 0 , ∂ 2 x u 0 + 2f ′′ (u 0 ) ∂ 2 x u 0 , ∂ 2 x u 0 . (52)

Theorem 5. For t ≥ 0 and u 0 in C ∞ b (R), we have T t u 0 -X t/2 Y t X t/2 u 0 = -1 4 The following bounds can be then obtained for the local errors corresponding to both Strang approximations [START_REF] Ern | Multicomponent transport algorithms[END_REF], following the procedure considered for the proof of Theorem 3 for (53)-(54) together with (51)-(52). Theorem 6. For t ∈ [0, T) and u 0 in C ∞ b (R), with κ = max( u 0 ∞ , 1), we have

T t u 0 -X t/2 Y t X t/2 ∞ ≤ t 3 f (4) [-κ,κ] 24 + t 4 f (3) [-κ,κ] f ′′ [-κ,κ] 8 + t 5 f ′′ 3 [-κ,κ] 20 exp 4t f ′ [-κ,κ] ∂ x u 0 4 ∞ + t 3 f (3) [-κ,κ] 6 + t 4 f ′′ 2 [-κ,κ] 8 exp 3t f ′ [-κ,κ] ∂ x u 0 2 ∞ ∂ 2 x u 0 ∞ + t 3 exp 2t f ′ [-κ,κ] f ′′ [-κ,κ] 12 ∂ 2 x u 0 2 ∞ + t 3 exp 2t f ′ [-κ,κ] f ′ [-κ,κ] f ′′ [-κ,κ] + f [-κ,κ] f (3) [-κ,κ] 12 ∂ x u 0 2 ∞ ,
velocity of 1.423 m/s. These jets are pulsated with a frequency of 100 Hz and a modulation of 10%, in a synchronized way, so that the plane z = 0 remains in the symmetry plane. The distance between the injectors and this stagnation planes is d = 1.55 cm. Figure 10 illustrates the velocity pulsations on the fuel injection, and the time variations of temperature profiles, as well as for Y CH4 and Y OH . 
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 1 Figure 1: 1D KPP. Numerical quasi-exact solutions at t = 0 and t = 45 for k = 1 (top left), 10 (top right) and 100 (bottom left) with a discretization of 5001 points. Bottom right: case k = 100 with 10001 points of discretization.
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 2 Figure 2: 1D KPP with k = 10. Local L 2 errors for several splitting time steps ∆t for Lie (left) and Strang (right) splitting schemes. Dashed lines with slopes 2, 1.5, and 1 (left), and with 3, 2.5, and 2 (right) are depicted.
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 3 Figure 3: 1D KPP with k = 100. Local L 2 errors for several splitting time steps ∆t for Lie (left) and Strang (right) splitting schemes. Dashed lines with slopes 2 and 1 (left), and with 3 and 1 (right) are depicted.
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 4 Figure 4: 1D KPP. S 2 -Strang local (left) and global (right) L 2 errors for several splitting time steps ∆t and k = 1, 10, and 100. Dashed lines with slopes 3 and 1 (left), and with 2 and 1 (right) are depicted.
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 5 Figure 5: Top: time evolution of temperature at point z = 0.25 cm, with the reference solution (black line), and the Lie (blue lines) and Strang (red lines) splitting approximations. Bottom: difference with respect to the reference solution with ∆t = 10 -7 .

Figure 6 :

 6 Figure 6: Top: time evolution of the mass fraction of OH at point z = 0.25 cm with the reference solution (black line), and the Lie (blue lines) and Strang (red lines) splitting approximations. Bottom: difference with respect to the reference solution with ∆t = 10 -7 .
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 7 Figure 7: Local (left) and global (right) L 2 errors for the Lie scheme for temperature T and species Y CH4 , Y CO2 , Y OH , and Y CH . Lines with slope of 2 and 1.5 (left), and of 1 and 0.5 (right) are depicted.
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 8 Figure 8: Local (left) and global (right) L 2 errors for the Strang scheme for temperature T and species Y CH4 , Y CO2 , Y OH , and Y CH . Lines with slope of 3 and 2.5 (left), and of 2 and 1.5 (right) are depicted.

0 f/ 2 0f

 02 r)DT t-s (X s/2 Y s X s/2 u 0 )X (s-r)/2 × D ∆ , [D ∆ , D f ] Id (X r/2 Y s X s/2 u 0 r)DT t-s (X s/2 Y s X s/2 u 0 )X s/2 × exp r ′ (Y σ+s-r X s/2 u 0 ) dσ × D f , [D f , D ∆ ] Id (Y s-r X s/2 u 0 ) dr ds (53)andT t u 0 -Y t/2 X t Y t/2 u 0 = -r)DT t-s (Y s/2 X s Y s/2 u 0 ) × exp (s-r)/2 0 f ′ (Y σ+r/2 X s Y s/2 u 0 )dσ × D f , [D f , D ∆ ] Id (Y r/2 X s Y s/2 u 0 r)DT t-s (Y s/2 X s Y s/2 u 0 ) × exp s′ (Y σ X s Y s/2 u 0 )dσ X r × D ∆ , [D ∆ , D f] Id (X s-r Y s/2 u 0 ) dr ds (54)

Figure 9 :

 9 Figure 9: Schematic configuration of the counterflow, premixed flames.
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A Local error estimates for Strang splitting

Based on formula [START_REF] Descombes | Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: singular perturbation and order reduction[END_REF] we can also obtain an exact representation of Strang local errors, considering the same type of computations carried out for the proof of Theorem 2 and taking into account that

and

Considering the regularizing effects of the Laplacian (30) and

the next theorem yields alternative estimates as in Theorem 4 for the Lie case.

Theorem 7. For t ∈ (0, T) and u 0 in C ∞ b (R), with κ = max( u 0 ∞ , 1), we have

and

16π .

Notice that the previous bounds are derived by using the regularizing effects of the Laplacian as much as possible. Additional bounds could be nevertheless derived (similar to [START_REF] Marchuk | Splitting and alternating direction methods[END_REF] in Theorem 4) of O(t 2.5 ), O(t 2 ), and O(t 1.5 ) for the S 1 -Strang scheme, and of O(t 2.5 ) and O(t 2 ) for the S 2 -Strang splitting.

B Laminar premixed counterflow flame

The counterflow, premixed methane flame configuration is illustrated in Figure 9. Two premixed flames are stabilized between two injections of the same mixture of methane and air with an axial