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ANALYSIS OF OPERATOR SPLITTING IN THE

NON-ASYMPTOTIC REGIME FOR NONLINEAR

REACTION-DIFFUSION EQUATIONS. APPLICATION TO THE

DYNAMICS OF PREMIXED FLAMES∗

STÉPHANE DESCOMBES†∗∗, MAX DUARTE†‖, THIERRY DUMONT‡ ,

FRÉDÉRIQUE LAURENT§ , VIOLAINE LOUVET‡ , AND MARC MASSOT§

Abstract. In this paper we mathematically characterize through a Lie formalism the local errors
induced by operator splitting when solving nonlinear reaction-diffusion equations, especially in the
non-asymptotic regime. The non-asymptotic regime is often attained in practice when the splitting
time step is much larger than some of the scales associated with either source terms or the diffusion
operator when large gradients are present. In a series of previous works a reduction of the asymptotic
orders for a range of large splitting time steps related to very short time scales in the nonlinear source
term has been studied, as well as that associated with large gradients but for linearized equations.
This study provides a key theoretical step forward since it characterizes the numerical behavior of
splitting errors within a more general nonlinear framework, for which new error estimates can be
derived by coupling Lie formalism and regularizing effects of the heat equation. The validity of
these theoretical results is then assessed in the framework of two numerical applications, a KPP-type
reaction wave where the influence of stiffness on local error estimates can be thoroughly investigated;
and a much more complex problem, related to premixed flame dynamics in the low Mach number
regime with complex chemistry and detailed transport, for which the present theoretical study shows
to provide relevant insights.
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1. Introduction. Operator splitting techniques [40, 32], also called fractional
steps methods [41, 42, 44], were introduced with the main objective of saving com-
putational costs. A complex and potentially large problem could be then split into
smaller or subproblems of different nature with an important reduction of the algo-
rithmic complexity and computational requirements. The latter characteristics were
largely exploited over the past years to carry out numerical simulations in several
domains going from biomedical models, to combustion or air pollution modeling ap-
plications. Moreover, these methods continue to be widely used mainly because of
their simplicity of implementation and their high degree of liberty in terms of choice
of dedicated numerical solvers for the split subproblems. They are in particular suit-
able for stiff problems, for which a special care must be addressed to choose adequate
and stable methods that properly handle and damp out fast transients inherent, for
instance, to the reaction [43] or diffusion [34] equations. In most applications first
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and second order splitting schemes are implemented for which a general mathematical
background is available (see, e.g., [19] for ODEs and [24] for PDEs). Even though
these schemes are usually efficient for the solution of time dependent equations, it is
well known that they might suffer from order reduction in the stiff case, and some
studies were conducted to explain this phenomenon. Another potential issue is the
accuracy loss related to the boundary conditions for PDEs with transport opera-
tors, solved in a splitting framework. This problem was investigated, for instance,
in [23, 24] for advection-reaction equations and mathematically described in [22] in
a more general framework for two linear operators generating strongly continuous
semigroups. For stiff applications, several works [2, 45, 39, 35] illustrated perturbing
effects on the accuracy of splitting approximations for multi-scale PDEs. Multi-scale
features in time are commonly related to physical dynamics characterized by a broad
range of time scales, while steep gradients or large higher order spatial derivatives
induce similar phenomena in space. In all these cases the standard numerical analy-
sis of splitting errors remains valid for asymptotically small time steps, and rapidly
becomes insufficient for stiff problems. A better understanding of splitting methods
for such regimes can be thus justified by the fact that practical considerations often
suggest the use of relatively large time steps in order to ease heavy computational
costs related to the numerical simulation of complex applications.

For PDEs disclosing physical time scales much faster than the splitting time step,
a theoretical study was conducted in [38] in the framework of a linear system of
ODEs issued from a reaction-diffusion equation with a linear source term and diago-
nal diffusion. Splitting errors with relatively large splitting time steps were therefore
mathematically described, whereas splitting schemes ending with the stiffest oper-
ator were also shown to be more accurate. Similar conclusions were drawn in [28]
for nonlinear systems of ODEs. A mathematical framework was then introduced in
[7] to describe these errors for nonlinear reaction-diffusion equations. This work fur-
ther analyzed order reduction in direct relation to the nonlinearity of the equations,
and in particular confirmed better performances for splitting schemes that finish with
the time integration of the stiffest operator. Other theoretical studies were also con-
ducted to investigate splitting errors and in particular to derive alternative estimates
exhibiting deviations from classical asymptotic estimates. A numerical analysis based
on analytic semi-group theory was first considered in [26] for linear operators, and
then in [6] for a system of ODEs issued from a discretized linear reaction-diffusion
equation with solutions of high spatial gradients. The latter approach, based on the
exact representation of local splitting errors introduced in [8], was then recast in [11]
in infinite dimension for a linearized reaction-diffusion equation. Whether the anal-
ysis is performed in finite or infinite dimension, the resulting estimates predict an
effective order reduction for linear or linearized reaction-diffusion equations. For in-
stance, local errors related to a Lie approximation of first order exhibits deviations
from O(∆t2) observed in the asymptotic regime to O(∆t1.5) for a range of relatively
large splitting time step ∆t [6, 11]. Similarly, Strang error approximations deviate
from O(∆t3) to O(∆t2) in infinite dimension [11], or from O(∆t3) in the asymptotic
regime to O(∆t2.5), and potentially O(∆t1.5) in various ranges of splitting time steps
for the corresponding semi-discretized problem [6].

All of these studies shed some light on the behavior of splitting methods for stiff
PDEs and in particular for non-arbitrarily small splitting time steps. Nevertheless,
a mathematical description in a more general and fully nonlinear framework seems
natural to further investigate these schemes. No rigorous analysis of these configu-
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rations is however available so far in the literature. The relevance of such a study is
hence justified not only because most of physical models disclose important stiffness
but because short splitting time steps heavily restrict the efficiency of splitting meth-
ods. A better understanding of these schemes for non-asymptotic regimes, that is, for
splitting time steps much larger than the fast scales associated with each operator,
seems therefore necessary to enhance the numerical performance of such methods.

We conduct in this study the numerical analysis of splitting errors for time de-
pendent PDEs in the case of nonlinear reaction-diffusion equations. The approach
adopted is based on previous analyses carried out with linear operators and analytic
semi-group theory, as well as the exact representation of splitting errors. The inherent
nonlinearity of the equations is handled through the Lie formalism. In this work we
limit the study to diagonal diffusion terms as a first step, and we neglect as well the
influence of boundary conditions of the PDEs. We derive local error bounds that
consistently describe classical orders, as well as a hierarchy of alternative estimates
more relevant in non-asymptotic regimes related to various ranges of large splitting
time step. In particular for large splitting times and problems modeling steep fronts,
such a mathematical characterization shows that this deviation from the asymptotic
behavior actually involves smaller numerical errors than the ones expected with the
asymptotic classical orders. The resulting theoretical estimates are then evaluated for
PDEs modeling traveling waves, for which stiffness can be easily introduced in the
equations and thus allows us to systematically investigate various stiff scenarios. To
further assess these theoretical findings for more complex and realistic applications, we
investigate splitting errors for the simulation of premixed flame dynamics in the low
Mach number regime with complex chemistry and detailed transport. We therefore
introduce a new splitting method compatible with the low Mach number constraint
and show how the theoretical results we have obtained allow us to gain fundamental
insight in the analysis of splitting errors, thus paving the way for further theoretical
studies as well as new numerical algorithms.

The paper is organized as follows. We carry out the numerical analysis of operator
splitting in Section 2, for nonlinear reaction-diffusion equations. We then evaluate in
Section 3 the previous theoretical estimates in the context of PDEs modeling traveling
waves, in particular with a KPP-type of nonlinearity. A counterflow premixed flame
is studied in Section 4, in the low Mach number regime with complex chemistry and
detailed transport.

2. Analysis of operator splitting errors in the non-asymptotic regime.

In this section we conduct a mathematical description of splitting local errors for non-
linear reaction-diffusion equations. First, we recall some previous theoretical results
for operator splitting in a linear framework, and then we investigate the nonlinear
case by using Lie derivative calculus.

2.1. Error formulae in the linear framework. Let us consider two general
linear operators A and B, for which the exponentials e−tA and e−tB can be understood
as a formal series. The first order Lie and the second order Strang splitting formulas
to approximate e−t(A+B) are, respectively, given by

L(t) = e−tAe−tB , S(t) = e−tA/2e−tBe−tA/2. (2.1)

In what follows we will give an exact representation of the difference between e−t(A+B)

and its Lie and Strang approximations (2.1), by recalling some results proved in [6]
and [8]. Part of these results was originally demonstrated in [36] for two matrices A



4 DESCOMBES, DUARTE, DUMONT, LAURENT, LOUVET, MASSOT

and B. We introduce the following notations: ∂AB denotes the commutator between
A and B,

∂AB = [A,B] = AB −BA, (2.2)

and thus

∂2
AB =

[

A, [A,B]
]

, ∂2
BA =

[

B, [B,A]
]

. (2.3)

Theorem 2.1. The following identities hold

L(t) = e−t(A+B) +

∫ t

0

∫ s

0

e−(t−s)(A+B)e−(s−r)A
(

∂AB
)

e−rAe−sB dr ds, (2.4)

S(t) = e−t(A+B)

+
1

4

∫ t

0

∫ s

0

(s− r)e−(t−s)(A+B)e−(s−r)A/2
(

∂2
AB
)

e−rA/2e−sBe−sA/2 dr ds

− 1

2

∫ t

0

∫ s

0

(s− r)e−(t−s)(A+B)e−sA/2e−rB
(

∂2
BA
)

e−(s−r)Be−sA/2 dr ds. (2.5)

Additionally, we have the following equivalent representations which turn out to be
more convenient in the nonlinear case.

Corollary 2.2. Considering (2.4) and (2.5), the following identities hold

L(t) = e−t(A+B) +

∫ t

0

∫ s

0

e−sAe−rB
(

∂AB
)

e−(s−r)Be−(t−s)(A+B) dr ds, (2.6)

S(t) = e−t(A+B)

+
1

4

∫ t

0

∫ s

0

(s− r)e−sA/2e−sBe−rA/2
(

∂2
AB
)

e−(s−r)A/2e−(t−s)(A+B) dr ds

− 1

2

∫ t

0

∫ s

0

(s− r)e−sA/2e−(s−r)B
(

∂2
BA
)

e−rBe−sA/2e−(t−s)(A+B) dr ds. (2.7)

Proof. It suffices to compute the adjoint of (2.4) and (2.5), and noticing that ac-
cording to the definition of exponentials, we have

(

etA
)∗

= etA
∗

,
(

etAetB
)∗

= etB
∗

etA
∗

,

and with (2.2) and (2.3): (∂AB)
∗
= ∂B∗A∗,

(

∂2
AB
)∗

= ∂2
A∗B∗, and

(

∂2
BA
)∗

= ∂2
B∗A∗.

2.2. Splitting errors for nonlinear reaction-diffusion equations. We con-
sider the scalar reaction-diffusion equation

∂tu− ∂2
xu = f(u), x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.

}

(2.8)

Considering the maximum norm ‖ ‖∞, we denote by Cb(R) the space of functions
bounded over R, and by C∞

b (R) the functions of class C∞ bounded over R. We
assume that f is a function of class C∞, from R to itself, such that there exists R > 0
for which

|r| ≥ R ⇒ rf(r) ≤ 0. (2.9)
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For example, assumption (2.9) is satisfied when f has a polynomial growth at infinity
of the form r2n+1, n being an integer. Without loss of generality we assume that
f(0) = 0 and R = 1. If u0 belongs to C∞

b (R), it can be then shown that equation
(2.8) has a unique solution [4], and we represent the solution u(t, .) as T tu0, where
T t is the semi-flow associated with (2.8). Moreover such a function u is infinitely
differentiable over R× (0,∞), and the following estimate holds [4],

∥

∥T tu0

∥

∥

∞
≤ max (‖u0‖∞, 1) . (2.10)

Given v0 and w0 in C∞
b (R), we consider the following equations:

∂tv − ∂2
xv = 0, x ∈ R, t > 0,

v(x, 0) = v0(x), x ∈ R,

}

(2.11)

and

∂tw = f(w), x ∈ R, t > 0,

w(x, 0) = w0(x), x ∈ R.

}

(2.12)

We denote byXtv0 and Y tw0, respectively, the solutions of (2.11) and (2.12). It is well
known that for t ≥ 0 and u0 in C∞

b (R), ‖Xtu0‖∞ ≤ ‖u0‖∞; furthermore property
(2.10) holds naturally for Y t with the assumption (2.9). The Lie approximation
formulas are defined by

Lt
1u0 = XtY tu0, Lt

2u0 = Y tXtu0, (2.13)

whereas the two Strang approximation formulas [40] are given by

St
1u0 = Xt/2Y tXt/2u0, St

2u0 = Y t/2XtY t/2u0. (2.14)

In what follows we investigate the error between the exact solution of equation (2.8),
and the corresponding Lie approximations (2.13). Results for Strang local errors
can be found in Appendix A. The Strang splitting approximation error for a semi-
linear parabolic equation like (2.8) was also formally characterized in [21]. A different
approach is adopted in the present study, where a more compact form of the represen-
tation of the error is considered to investigate its dependence on the initial condition
and its derivatives. To perform these computations, we use formulas (2.6) and (2.7)
from Corollary 2.2, and Lie derivative calculus (see, for example, [19] Sect. III.5 or
[24] Sect. IV.1.4 for an introduction to this topic). Lie calculus was also considered
in [30, 9] and in [5] to study splitting schemes for, respectively, nonlinear Schrödinger
equations and nonlinear reaction-diffusion equations. Notice that by considering equa-
tion (2.8) over R, we exclude the boundary conditions from the present theoretical
study. One must recall, however, that both Dirichlet and Neumann boundary con-
ditions may have a negative influence on the splitting approximations, as previously
mentioned in the Introduction (see, e.g., [23, 24, 22]). In particular, a recent study
[15] mathematically investigates this problem for both Lie and Strang approximations
applied to a two-dimensional inhomogeneous parabolic equation (similar to (2.8), but
with f(x, y, t), (x, y) ∈ R

2, instead of f(u)).
Let us briefly recall in the following the definition and some properties of Lie

derivatives. We consider function f as an unbounded nonlinear operator in C∞
b (R).

For any unbounded nonlinear operator G in C∞
b (R) with Fréchet derivative G′, the
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corresponding Lie derivative Df maps G into a new operator DfG such that for any
u0 in C∞

b (R):

(DfG) (u0) = ∂tG(Y tu0)|t=0 = G′(u0)f(u0).

Hence

(

etDfG
)

(u0) = G(Y tu0),

and for G = Id, we have the following representation of the flow of (2.12):

(

etDf Id
)

(u0) = Y tu0.

Similarly, we can write the flow associated with (2.11) by considering the correspond-
ing Lie derivative D∆. We finally recall that the commutator of Lie derivatives of
two unbounded nonlinear operators is the Lie derivative of the Lie bracket of the
unbounded nonlinear operators in reversed order. For instance, the Lie bracket for ∆
and f is defined for any u0 in C∞

b (R) by

{∆, f}(u0) = ∂2
x(f(u0))− f ′(u0)∂

2
xu0 = f ′′(u0)(∂xu0)

2, (2.15)

and thus we have

([Df , D∆]Id) (u0) =
(

D{∆,f}Id
)

(u0) = {∆, f}(u0).

Considering now the Lie splitting approximations (2.13) together with Lie deriva-
tive calculus, we have

T tu0 − Lt
1u0 =

(

et(D∆+Df )Id
)

(u0)−
(

etDf etD∆Id
)

(u0), (2.16)

and

T tu0 − Lt
2u0 =

(

et(D∆+Df )Id
)

(u0)−
(

etD∆etDf Id
)

(u0), (2.17)

which yield the following exact representations of the local error, denoted as

Et
L1
u0 = T tu0 −XtY tu0, Et

L2
u0 = T tu0 − Y tXtu0; (2.18)

in which D denotes the derivative with respect to the initial condition since T t, Xt,
and Y t have been defined as semi flows.

Theorem 2.3. For t ≥ 0 and u0 in C∞
b (R), we have

T tu0 −XtY tu0 =−
∫ t

0

∫ s

0

DT t−s(XsY su0)X
s−rf ′′(XrY su0) (∂xX

rY su0)
2
dr ds,

(2.19)

and

T tu0 − Y tXtu0 =

∫ t

0

∫ s

0

DT t−s(Y sXsu0) exp

(
∫ s−r

0

f ′(Y σ+rXsu0) dσ

)

×

f ′′(Y rXsu0) exp

(

2

∫ r

0

f ′(Y σXsu0) dσ

)

(∂xX
su0)

2
dr ds. (2.20)
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Proof. Considering (2.6) we have

Et
L1
u0 =

(

et(D∆+Df )Id
)

(u0)−
(

etDf etD∆Id
)

(u0)

=−
∫ t

0

∫ s

0

(

esDf erD∆ [Df , D∆]e
(s−r)D∆e(t−s)(D∆+Df )Id

)

(u0) dr ds

=−
∫ t

0

∫ s

0

(

erD∆ [Df , D∆]e
(s−r)D∆e(t−s)(D∆+Df )Id

)

(Y su0) dr ds

=−
∫ t

0

∫ s

0

(

D{∆,f}e
(s−r)D∆e(t−s)(D∆+Df )Id

)

(XrY su0) dr ds

=−
∫ t

0

∫ s

0

(

e(s−r)D∆e(t−s)(D∆+Df )Id
)′

(XrY su0){∆, f}(XrY su0) dr ds.

Since
(

e(s−r)D∆e(t−s)(D∆+Df )Id
)

(v0) = T t−sXs−rv0, we obtain that

Et
L1
u0 = −

∫ t

0

∫ s

0

DT t−s(XsY su0)DXs−r(XrY su0){∆, f}(XrY su0) dr ds. (2.21)

Formula (2.19) follows from (2.21) as a consequence of (2.15). By formally exchanging
f and ∆ (and thus Y and X) we infer from (2.17) and (2.6) that

Et
L2
u0 = −

∫ t

0

∫ s

0

DT t−s(Y sXsu0)DY s−r(Y rXsu0){f,∆}(Y rXsu0) dr ds. (2.22)

Given w0, the derivative of the solution of (2.12), Y sw0(x), with respect to the initial
condition, denoted by DY s(w0), satisfies

∂sDY s(w0) = f ′(Y sw0)DY s(w0),

DY 0(w0) = 1,

}

and since f is a scalar function

DY s(w0) = exp

(
∫ s

0

f ′(Y σw0)dσ

)

. (2.23)

Similarly, ∂xY
sw0 satisfies

∂s∂xY
sw0 = f ′(Y sw0)∂xY

sw0,

∂xY
0w0 = ∂xw0,

}

and hence

∂xY
sw0 = exp

(
∫ s

0

f ′(Y σw0)dσ

)

∂xw0, (2.24)

which along with (2.15) and (2.23) into (2.22), prove (2.20).
Notice that both error representations (2.4) and (2.6) are equivalent, neverthe-

less we will see in the following that the second one, used in Theorem 2.3, is more
convenient because operators of type ∂x are applied only on the split solutions Xtv0
and Y tw0 of (2.11) and (2.12). A rigorous proof for (2.21) and (2.22) for two general
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nonlinear operators was also proposed in [9]. Furthermore, using Duhamel’s formula
we have for equation (2.8):

T su0 = Xsu0 +

∫ s

0

Xs−rf(T ru0) dr,

and hence

DT s(u0) = Xs +

∫ s

0

Xs−rf ′(T ru0)DT r(u0) dr. (2.25)

In particular using Gronwall’s lemma we can also demonstrate that

DT s(u0) = Xs

(

1 +

∫ s

0

f ′(T ru0) exp

(
∫ s

r

Xs−σf ′(T σu0) dσ

)

dr

)

,

and hence have explicit expressions for both (2.19) and (2.20). We introduce now the
following notation: for a scalar continuous function g and a real a, we denote

‖g‖[−a,a] = sup
r∈[−a,a]

|g(r)|.

Using the results of Theorem 2.3, the following bounds can be obtained for both Lie
local errors (2.16) and (2.17).

Theorem 2.4. For t ∈ [0,T) and u0 in C∞
b (R), with κ = max(‖u0‖∞, 1), we

have

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤ t2 exp

(

2t‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

2
‖∂xu0‖2∞ , (2.26)

and

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤ t2 exp

(

2t‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

2
‖∂xu0‖2∞ . (2.27)

Proof. Taking norms for (2.21), we obtain

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤
∫ t

0

∫ s

0

∥

∥DT t−s(XsY su0)
∥

∥

∞
‖f ′′(XrY su0)‖∞ ×

∥

∥

∥
(∂xX

rY su0)
2
∥

∥

∥

∞
dr ds.

From (2.25), assumption (2.9), and hence (2.10), we see that

‖DT s(u0)‖∞ ≤ 1 +

∫ s

0

‖f ′(T ru0)DT r(u0)‖∞ dr

≤ 1 +

∫ s

0

‖f ′‖[−κ,κ] ‖DT r(u0)‖∞ dr.

Gronwall’s lemma then yields

‖DT s(u0)‖∞ ≤ exp
(

s‖f ′‖[−κ,κ]

)

.
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We thus have

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤
∫ t

0

∫ s

0

exp
(

(t− s)‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ] ‖∂xXrY su0‖2∞ dr ds.

(2.28)

Taking into account that ‖∂xXrY su0‖2∞ = ‖Xr∂xY
su0‖2∞ ≤ ‖∂xY su0‖2∞ and with

(2.24), we finally obtain

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤
∫ t

0

∫ s

0

exp
(

(t+ s)‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ] ‖∂xu0‖2∞ dr ds

≤ t2 exp
(

2t‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

2
‖∂xu0‖2∞ ,

which proves (2.26). Proof for (2.27) follows the same procedure which yields

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤
∫ t

0

∫ s

0

exp
(

(t+ r)‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ] ‖∂xXsu0‖2∞ dr ds

≤
∫ t

0

exp
(

2t‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ] ‖∂xXsu0‖2∞ s ds, (2.29)

and proves (2.27) by considering that ‖∂xXsu0‖2∞ = ‖Xs∂xu0‖2∞ ≤ ‖∂xu0‖2∞.
Notice that both Lie schemes are bounded by the same expression in Theorem

2.4, and for sufficiently small t these estimates involve the classical second order local
error for Lie splitting. Considering now the Gauss-Weierstrass formula for the heat
semi-group associated with (2.11), and the Young’s inequality for convolutions, we
have for all u0 in C∞

b (R) and t > 0, the following regularizing effect of the Laplace
operator:

∥

∥∂xX
tu0

∥

∥

∞
≤ 1√

πt
‖u0‖∞. (2.30)

The following bounds can be then derived.
Theorem 2.5. For t ∈ [0,T) and u0 in C∞

b (R), with κ = max(‖u0‖∞, 1), we
have

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤ 4κ t

√
t exp

(

t‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

3
√
π

‖∂xu0‖∞ (2.31)

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤ 2 t

√
t exp

(

2t‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

3
√
π

‖u0‖∞ ‖∂xu0‖∞ , (2.32)

and

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤ t exp

(

2t‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

π
‖u0‖2∞ . (2.33)

Proof. Proof of (2.31) comes from considering the regularizing effect of the Lapla-
cian (2.30) and that

‖∂xXrY su0‖2∞ ≤ ‖∂xXrY su0‖∞ ‖Xr∂xY
su0‖∞

≤ max(‖u0‖∞ , 1)× exp
(

s‖f ′‖[−κ,κ]

)

‖∂xu0‖∞√
πr

,
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into (2.28), where assumption (2.9) has been considered and hence (2.10) for ‖Y su0‖∞.
Similarly,

‖∂xXsu0‖2∞ ≤ ‖∂xXsu0‖∞ ‖Xs∂xu0‖∞ ≤ ‖u0‖∞ ‖∂xu0‖∞√
πs

,

and

‖∂xXsu0‖2∞ ≤ ‖u0‖2∞
πs

,

yield, respectively, (2.32) and (2.33) into (2.29).
Theorem 2.5 provides then with alternative estimates for both Lie methods. To

summarize, and using (2.18), we have the following results for u0 in C∞
b (R) and t > 0:

∥

∥Et
L1
u0

∥

∥

∞
∝ min

(

‖∂xu0‖2∞t2,max(‖u0‖∞, 1)× ‖∂xu0‖∞t1.5
)

,

and

∥

∥Et
L2
u0

∥

∥

∞
∝ min

(

‖∂xu0‖2∞t2, ‖u0‖∞‖∂xu0‖∞t1.5, ‖u0‖2∞t
)

.

For sufficiently small time steps, we thus recover the classical second order O(t2) for
local errors in accordance to the asymptotic behavior of both Lie splitting schemes.
For larger time steps, however, the alternative estimates that behave like O(t1.5) or
O(t) might become more relevant, which apparently entail a loss of accuracy of the
splitting approximations. It is nevertheless important to highlight the impact of the
multiplying constants in the different estimates, and in particular the nature of the
initial condition and its derivatives, especially for non-asymptotic regimes defined by
relatively large time step. Considering, for instance, solutions with high spatial gradi-
ents, the multiplying factor for the classical estimates in t2 is of order O

(

‖∂xu0‖2∞
)

, of
smaller order O (max(‖u0‖∞, 1)× ‖∂xu0‖∞) for t1.5, and of potentially much smaller
O
(

‖u0‖2∞
)

for t. Therefore, the alternative bounds given in Theorem 2.5 should de-
scribe much better the numerical behavior of the approximations, which in this case
yield smaller local errors than those predicted by the classical estimates in t2, ini-
tially derived in Theorem 2.4. The same discussion is valid for the Strang local error
estimates detailed in Appendix A.

3. Application to traveling waves. In this part we evaluate the previous
theoretical study in the context of reaction-diffusion problems that admit self-similar
traveling wave solutions. The main interest of considering this kind of configuration
is that the featured stiffness can be tuned using a space-time scaling. Therefore,
it provides the right framework to perform a complete numerical validation of the
theoretical local error estimates. Moreover, a detailed study can be conducted on the
impact of the stiffness featured by propagating fronts with steep spatial gradients as
performed, for instance, in [11]. In what follows, we first recast previous estimates
in the context of reaction traveling waves, and then we will illustrate them with the
numerical solution of a KPP model.

3.1. Theoretical estimates. We consider the propagation of self-similar waves
modeled by parabolic PDEs of type:

∂tu−D∂2
xu = kf(u), x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R,

}

(3.1)
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with solution u(x, t) = u0(x − ct), where c is the steady speed of the wavefront,
and D and k stand, respectively, for diffusion and reaction coefficients. Introducing
the Lie splitting solutions (2.13) for equation (3.1) and taking into account that the
corresponding Lie bracket is now defined as {D∆, kf} = kD{∆, f}, we obtain the
following estimates.

Corollary 3.1. For t ∈ [0,T) and u0 in C∞
b (R), with κ = max(‖u0‖∞, 1), we

have

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤ kD t2 exp

(

2kt‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

2
‖∂xu0‖2∞ ,

and

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤ kD t2 exp

(

2kt‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

2
‖∂xu0‖2∞ .

Furthermore, with the regularizing effect of the Laplacian:

‖∂xXtu0‖∞ ≤ 1√
πDt

‖u0‖∞,

the following bounds can be derived.
Corollary 3.2. For t ∈ [0,T) and u0 in C∞

b (R), with κ = max(‖u0‖∞, 1), we
have

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤ 4κ kD t

√
t exp

(

kt‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

3
√
πD

‖∂xu0‖∞

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤ 2kD t

√
t exp

(

2kt‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

3
√
πD

‖u0‖∞ ‖∂xu0‖∞ ,

and

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤ k t exp

(

2kt‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

π
‖u0‖2∞ .

In the context of traveling wave solutions, the diffusion and reaction coefficients,
D and k, might be seen as scaling coefficients in time and space. A dimensionless
analysis of a traveling wave can be then conducted, as shown in [18], by considering
dimensionless time τ and space r:

τ = kt, r = (k/D)1/2x.

As a consequence, a steady velocity of the wavefront can be derived

c = dtx ∝ (Dk)1/2, (3.2)

whereas the sharpness of the wave profile is measured by

dxu0|max = ‖∂xu0‖∞ ∝ (k/D)1/2. (3.3)

Condition Dk = 1 then involves waves of constant velocity, but greater k (or smaller
D) yields wavefronts with higher spatial gradients, and thus stiffer configurations.
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By considering the Lie local errors (2.18), the bounds from Corollary 3.1 and 3.2,
and the measure of the wave gradient (3.3) together with condition Dk = 1, we have
that for u0 in C∞

b (R) and t > 0:

∥

∥Et
L1
u0

∥

∥

∞
∝ min

(

k2t2,max(‖u0‖∞, 1)× k1.5t1.5
)

,

and

∥

∥Et
L2
u0

∥

∥

∞
∝ min

(

k2t2, ‖u0‖∞k1.5t1.5, ‖u0‖2∞kt
)

.

Even though these bounds are not sufficient to determine precisely the various inter-
vals of numerical behavior depending on t, i.e., the actual time steps for which each
bound becomes relevant, for solutions with high spatial gradients it is very likely to
start having transitions from one behavioral regime to another even for small splitting
time steps of about ‖∂xu0‖−1

∞ (or k−1 following (3.3) with Dk = 1), based on a simple
comparison of the multiplying coefficients in the estimates. Similar conclusions can
be drawn from Strang local error estimates.

3.2. Numerical illustration: 1D KPP equation. Recalling the classical Kol-
mogorov-Petrovskii-Piskunov model [27] with f(u) = u(1 − u), we consider in this
study a higher order KPP nonlinearity with f(u) = u2(1 − u) (often referred to as
Zeldovich nonlinearity). The description of the dimensionless model and the structure
of the analytical solution for this case can be found, for instance, in [18], where a
theoretical analysis shows that in the case with D = k = 1, the velocity of the self-
similar traveling wave is c = 1/

√
2 in (3.2), and the maximum gradient value reaches

1/
√
32 in (3.3). Notice that for this KPP nonlinearity there is a single isolated value

of the speed for which the front exists, contrary to the monostable, classical KPP
equation. In particular the case f(u) = u2(1 − u) verifies the assumptions on f(u),
considered in §2.2. The key point of this illustration is that the velocity of the traveling
wave is proportional to (kD)1/2, whereas the maximum gradient is proportional to
(k/D)1/2. Hence, we consider the case kD = 1 for which one may obtain steeper
gradients with the same speed of propagation.

For the numerical approximations, we consider a 1D discretization with 5001
points over a region of [−70, 70] with homogeneous Neumann boundary conditions,
for which we have negligible spatial discretization errors with respect to the ones
coming from the numerical time integration for the relatively large time steps that
have been considered. The Laplacian is discretized using a standard second order,
centered finite differences scheme. The exact solution T tu0 will be approximated by
a reference or quasi-exact solution given by the numerical solution of the coupled
reaction-diffusion equation performed by the Radau5 solver [20] with a fine tolerance,
ηRadau5 = 10−10. Notice that even though an analytic solution exists, we consider
a reference solution corresponding to the semi-discretized problem in order to avoid
including spatial discretization errors in the analysis, that is, both the reference and
splitting solutions are computed on the same grid with the same spatial discretization.
All splitting approximations are computed with the splitting technique introduced in
[12], with Radau5 for the reactive term, and the ROCK4 method [1] for the diffusion
problem. In order to properly discriminate splitting errors from those coming from
the temporal integration of the subproblems, we consider the following fine tolerances,
ηRadau5 = ηROCK4 = 10−10. For this particular problem another option for the
splitting approximation might have taken into account the ODE analytic solution for
the reaction steps, as well as the solution of the discrete heat equation for the diffusion
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Fig. 3.1. 1D KPP. Numerical quasi-exact solutions at t = 0 and t = 45 for k = 1 (top left), 10
(top right) and 100 (bottom left) with a discretization of 5001 points. Bottom right: case k = 100
with 10001 points of discretization.
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Fig. 3.2. 1D KPP with k = 10. Local L2 errors for several splitting time steps ∆t for Lie (left)
and Strang (right) splitting schemes. Dashed lines with slopes 2, 1.5, and 1 (left), and with 3, 2.5,
and 2 (right) are depicted.

subproblems by considering, for instance, Fast Fourier Transforms (FFT). However,
a fully numerical approach is adopted in this study in accordance with more general
and complex configurations envisioned, as the ones presented in [10, 13] and in the
next section. Figure 3.1 shows the numerical quasi-exact solutions at times t = 0 and
t = 45 for k = 1, 10, and 100. In what follows, 10001 points of discretization are
considered for k = 100 instead of 5001 in order to better represent the wavefront, as
illustrated in Figure 3.1.

We first compute the L2 local errors for different splitting time steps ∆t for all Lie
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and Strang splitting schemes, that is, L∆t
1 , L∆t

2 , S∆t
1 , and S∆t

2 in (2.13) and (2.14).
Starting from the same initial solution u0, the local error associated with L∆t

1 u0 is
measured by ‖T∆tu0 − L∆t

1 u0‖L2 , and similarly for the other schemes. Figure 3.2
illustrates these errors for k = 10, for relatively large splitting time steps. A deviation
from the asymptotic behavior is exhibited for all splitting schemes for time steps of
order k−1 or larger. For smaller time steps we retrieve classical orders as established
in Theorems 2.4 and A.2. In this case, L1- and L2-Lie schemes are practically equiv-
alent in terms of accuracy, as established in Theorem 2.4. On the other hand, there
is a slight difference for S1- and S2-Strang schemes, as seen in Theorem A.2. For the
L1-Lie scheme, the dependence on ∆t varies from ∆t2 to ∆t1.5, whereas it attains ∆t
for the L2-Lie scheme, as described in Theorem 2.5. For the Strang schemes, the same
phenomenon occurs from ∆t3 to ∆t2.5 and ∆t2, respectively, for the S1- and S2-Strang
schemes, following the bounds established in Theorem A.3. Notice that in all cases a
better accuracy is achieved in the non-asymptotic regime by splitting schemes ending
with the reaction substep, as previously proved in [7]. In particular the L2-Lie scheme
is even more accurate than a S1-Strang one, for sufficiently large splitting time steps.
Similar conclusions are drawn for a stiffer configuration with k = 100, illustrated in
Figure 3.3. In this case the splitting local errors eventually behave like ∆t. In this
way the bounds introduced in Theorems 2.5 and A.3, as well as the mathematical
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characterization of these errors for non-asymptotic regimes, consistently describe the
numerical accuracy of operator splitting for solutions disclosing high spatial gradients.
Considering the global error for the S2-Strang scheme: ‖T tu0 − (S∆t

2 )nu0‖L2 , where
S∆t
2 has been successively applied n times to u0, such that t = n∆t, Figure 3.4 illus-

trates these errors for the S2-Strang scheme, which perfectly reproduces the behavior
of local errors. The latter is not always the case since there might be some error
compensation and thus a global accuracy better than the one theoretically expected.
This has been shown, for instance, in [25] for a linear configuration but the proofs can-
not be extended to a nonlinear framework. In particular the global error evaluation
in Figure 3.4 was made after a long integration time in order to illustrate the worst
possible configuration. The influence of stiffness is highlighted for increasingly stiffer
configurations corresponding to higher values of k. Notice that for k = 1, a non-stiff
configuration, asymptotic orders are preserved even for relatively large splitting time
steps.

4. Application to the dynamics of premixed flames. We now consider
the simulation of a counterflow premixed methane flame with detailed transport and
complex chemistry in the low Mach number regime. These flames have received
an extensive number of studies in both the steady and the pulsated case for realistic
engineering applications (see e.g., [37, 16, 29]). Here we will consider the configuration
where the flame is pulsated periodically in time through upstream modulations [3]. In
this way we consider a time dependent system of PDEs for which we introduce a new
way to perform operator splitting, compatible with the low Mach constraint. Taking
into account that there is already a validated coupled, fully implicit code, based on
[3, 33], that can provide us with the reference dynamics of such flames, we evaluate the
splitting errors introduced by this new approach and analyze the resulting behavior
based on the theoretical study previously conducted.

4.1. Governing equations. We consider two premixed flames stabilized in a
symmetric framework where two injections of methane-air mixture occur in a coun-
terflow way (see Figure B.1 in Appendix B). Isobaric flames equations are consid-
ered in the low Mach Number limit [31], so that for x ∈ R

d the pressure reads
p(t, x) = patm + p̃(t, x), where p̃ is a perturbation of the atmospheric pressure. The
counterflow configuration admits a symmetry of revolution and thus the set of equa-
tions can be written as a 2D axisymmetric system. In particular, we consider 1D
similarity solutions of this 2D system of equations for which the density of the gas
ρ, the temperature T , the axial velocity uz, the reduced radial velocity ur/r, and
the mass fractions Yk of the gas species have no radial dependence, and all of them
are functions of the axial coordinate z. Assuming that the perturbation on the at-
mospheric pressure field is given by p̃ = −Jr2/2 + p̂(z), where r denotes the radial
coordinate, the governing equations read

ρcp∂tT + cpV ∂zT − ∂z (λ∂zT ) = −
∑

k∈S

hkmkωk −
∑

k∈S

ρYkcp,kVz,k∂zT, (4.1)

ρ∂tYk + V ∂zYk + ∂z (ρYkVz,k) = mkωk, k ∈ S, (4.2)

∂zJ = 0, (4.3)

ρ∂tU + ρU2 + V ∂zU = J + ∂z (µ∂zU) , (4.4)

∂tρ+ 2ρU + ∂zV = 0, (4.5)
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where V = ρuz is the axial mass flux, U the reduced radial velocity, S the set of species
indices, cp the specific heat of the gas mixture, cp =

∑

k∈S Ykcp,k, cp,k the specific heat
of the k-th species, hk its enthalpy, mk its molar mass, λ the heat conductivity, µ the
shear viscosity, J the reduced pressure gradient, ωk the molar chemical production
rate, and Vk,z the axial diffusion velocity of the k-th gas species. Density ρ is a
function of the local temperature and gas composition through the ideal gas state
equation. Full details on this model can be found, for instance, in [17].

Given the symmetry of this configuration, only half domain is considered, z ≥ 0,
with symmetry conditions at z = 0. The top boundary at z = 1.55 cm coincides with
the fuel injection and thus fixed values of the temperature, the axial and the reduced
radial velocities, and the gas composition are imposed. Its velocity is of 1.423m/s,
pulsated with a modulation of 10% at a frequency of 100Hz. The gas is composed of
methane with a mass fraction equal to 3.88%, mixed with air at 293K and atmospheric
pressure. A detailed methane-air chemical kinetic mechanism with 29 species and 150
reactions is considered, whereas transport parameters are computed based on [14].

4.2. Introduction of operator splitting. We aim at solving separately the
chemical sources in system (4.1)–(4.5):

ρcp∂tT = −
∑

k∈S

hkmkωk, (4.6)

ρ∂tYk = mkωk, k ∈ S, (4.7)

and then consider the following convection-diffusion problem:

ρcp∂tT + cpV ∂zT − ∂z (λ∂zT ) = −
∑

k∈S

ρYkcp,kVz,k∂zT, (4.8)

ρ∂tYk + V ∂zYk + ∂z (ρYkVz,k) = 0, k ∈ S, (4.9)

∂zJ = 0, (4.10)

ρ∂tU + ρU2 + V ∂zU = J + ∂z (µ∂zU) , (4.11)

∂tρ+ 2ρU + ∂zV = 0. (4.12)

In this way, we obtain a decoupled system of ODEs (4.6)–(4.7) on each grid point
of the domain, for which a dedicated stiff ODE solver can be implemented; whereas
the numerical effort required to solve the coupled system (4.8)–(4.12) is also relieved.
However, since density ρ depends on the local temperature and gas composition, its
time variation during the chemistry step (4.6)–(4.7) must be taken into account in
equation (4.12). Deriving in time the ideal gas state equation and considering (4.6)–
(4.7), this variation, denoted as (∂tρ)chem, is given by

(∂tρ)chem =
1

cpT

∑

k∈S

hkmkωk −m
∑

k∈S

ωk. (4.13)

Hydrodynamics are therefore solved, coupled with the transport equations without
chemical source terms for temperature and species, in system (4.8)–(4.11) together
with

∂tρ+ (∂tρ)chem + 2ρU + ∂zV = 0, (4.14)
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instead of (4.12).

In this implementation, the corrective term (∂tρ)chem is updated at the beginning
of each splitting time step, and kept constant throughout the time integration of the
current time step. Considering the instantaneous nature of this correction that affects
especially the solution of the hydrodynamics, both Lie and Strang schemes should
finish with the numerical solution of the convection-diffusion problem (4.8)–(4.11)
plus (4.14). This is also coherent with the idea of always ending the splitting scheme
with the fastest operator [38, 28, 7]. The convection-diffusion system is numerically
solved with the same code considered for the original full problem (4.1)–(4.5). The
method considers implicit time integration of the coupled equations on a dynamically
adapted grid (see details in [37, 3]). On the other hand, the chemical source terms
(4.6)–(4.7) are integrated point-wise with the Radau5 solver [20].

4.3. Numerical results. To visualize the numerical performance of the splitting
approximation, the point z = 0.25 cm in the high gradient zone is chosen (see Figure
B.2). The evolution of the temperature is shown in Figure 4.1 for Lie and Strang
approximations with different splitting time steps. The reference solution corresponds
to the solution of the full problem (4.1)–(4.5), computed with fine tolerances (see [37]).
For the time steps considered the dynamics of the flame is properly reproduced with
the new operator splitting introduced. The same can be observed even for minor
species, as illustrated, for instance, in Figure 4.2 for YOH.

Fig. 4.1. Top: time evolution of temperature at point z = 0.25 cm, with the reference solution
(black line), and the Lie (blue lines) and Strang (red lines) splitting approximations. Bottom:
difference with respect to the reference solution with ∆t = 10−7.

Figures 4.3 and 4.4 illustrate the local and global errors for the Lie and Strang
splitting approximations, respectively, for relatively large splitting time steps. We
consider temperature T , and some main and minor species like YCH4

and YCO2
, and

YOH and YCH, respectively. Global errors are evaluated at time 0.032 s, which corre-
sponds to a maximum pulsated velocity. For the Lie approximations, the dependence
on the splitting time step ∆t varies from ∆t2 to ∆t1.5 (close to ∆t for YCH); and
similarly from ∆t3 to ∆t2.5, for the Strang solutions in Figure 4.4 (about ∆t2 for
YCH). Global errors follow approximately the same behaviors. However, compensa-
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Fig. 4.2. Top: time evolution of the mass fraction of OH at point z = 0.25 cm with the refer-
ence solution (black line), and the Lie (blue lines) and Strang (red lines) splitting approximations.
Bottom: difference with respect to the reference solution with ∆t = 10−7.
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Fig. 4.3. Local (left) and global (right) L2 errors for the Lie scheme for temperature T and
species YCH4

, YCO2
, YOH, and YCH. Lines with slope of 2 and 1.5 (left), and of 1 and 0.5 (right)

are depicted.

tions can take place as illustrated, for instance, by the Strang scheme that displays
behaviors between ∆t2 and ∆t1.5, even for very large splitting time steps. The Lie
scheme on the other side involves a global accuracy that behaves like ∆t0.5, and even
worse for very large time steps. In what concerns to the present study we can identify
similar behaviors previously observed for the KPP problem, and predicted by the
theoretical study, this time for a much more complex problem. In particular splitting
approximations with relatively large time steps involve better accuracies than those
expected out of the asymptotic bounds. Moreover, splitting errors remain bounded
even for considerably large time steps of about 10−5 s, compared, for instance, with
some of the chemical time scales, of the order of the nanoseconds. Complementary
analyses on these numerical results, as well as more details and further extensions of
this approach for Low Mach number flames will be reported in a forthcoming work.

5. Concluding remarks. We have introduced in this paper a rigorous mathe-
matical characterization of splitting errors for nonlinear reaction-diffusion equations.
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Fig. 4.4. Local (left) and global (right) L2 errors for the Strang scheme for temperature T and
species YCH4
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The corresponding error estimates are particularly relevant for relatively large split-
ting time steps, and therefore for many applications modeled by stiff PDEs in which
fast physical or numerical scales usually impose prohibitively expensive time steps.
In this context splitting techniques can become a more efficient alternative to over-
come stability restrictions related to stiff source terms or mesh size, as shown in [12].
Additionally, a theoretical description of splitting errors may also lead to further de-
velopments, as the adaptive splitting scheme introduced in [5]. Understanding the
numerical behavior of splitting schemes, especially for relatively large splitting time
steps, is therefore shown to be of the utmost importance for both theoretical and
practical reasons. Besides, we have illustrated the relevance of the present theoreti-
cal study in the case of self-similar waves with high spatial gradients. This kind of
problem mimics many other applications characterized by the propagation of steep
chemical fronts. In particular we have considered a counterflow premixed flame with
complex chemistry and detailed transport, for which we have also introduced a new
way of implementing operator splitting techniques. In all cases the key point of these
numerical illustrations is that the present theoretical study consistently describes the
behavior of the numerical errors, especially for relatively large splitting time steps.
It can be thus seen how better accuracies are actually achieved with respect to the
asymptotic bounds in the case of propagating fronts with steep spatial gradients.

Appendix A. Local error estimates for Strang splitting. Based on formula
(2.7) we can also obtain an exact representation of Strang local errors, considering
the same type of computations carried out for the proof of Theorem 2.3 and taking
into account that

([

Df , [Df , D∆]
]

Id
)

(u0) =
(

f ′(u0)f
′′(u0) + f(u0)f

(3)(u0)
)

(∂xu0)
2
, (A.1)

and

([

D∆, [D∆, Df ]
]

Id
)

(u0) =f (4)(u0) (∂xu0)
4
+ 4f (3)(u0) (∂xu0)

2
∂2
xu0

+ 2f ′′(u0)
(

∂2
xu0

)2
. (A.2)
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Theorem A.1. For t ≥ 0 and u0 in C∞
b (R), we have

T tu0 −Xt/2Y tXt/2u0 =− 1

4

∫ t

0

∫ s

0

(s− r)DT t−s(Xs/2Y sXs/2u0)X
(s−r)/2 ×

([

D∆, [D∆, Df ]
]

Id
)

(Xr/2Y sXs/2u0) dr ds

+
1

2

∫ t

0

∫ s

0

(s− r)DT t−s(Xs/2Y sXs/2u0)X
s/2 ×

exp

(
∫ r

0

f ′(Y σ+s−rXs/2u0) dσ

)

×
([

Df , [Df , D∆]
]

Id
)

(Y s−rXs/2u0) dr ds (A.3)

and

T tu0 − Y t/2XtY t/2u0 =− 1

4

∫ t

0

∫ s

0

(s− r)DT t−s(Y s/2XsY s/2u0)×

exp

(

∫ (s−r)/2

0

f ′(Y σ+r/2XsY s/2u0)dσ

)

×

([

Df , [Df , D∆]
]

Id
)

(Y r/2XsY s/2u0) dr ds

+
1

2

∫ t

0

∫ s

0

(s− r)DT t−s(Y s/2XsY s/2u0)×

exp

(

∫ s/2

0

f ′(Y σXsY s/2u0)dσ

)

Xr ×

([

D∆, [D∆, Df ]
]

Id
)

(Xs−rY s/2u0) dr ds (A.4)

The following bounds can be then obtained for the local errors corresponding to
both Strang approximations (2.14), following the procedure considered for the proof
of Theorem 2.4 for (A.3)–(A.4) together with (A.1)–(A.2).

Theorem A.2. For t ∈ [0,T) and u0 in C∞
b (R), with κ = max(‖u0‖∞, 1), we

have

∥

∥

∥
T tu0 −Xt/2Y tXt/2

∥

∥

∥

∞
≤

[

t3‖f (4)‖[−κ,κ]

24
+

t4‖f (3)‖[−κ,κ]‖f ′′‖[−κ,κ]

8
+

t5‖f ′′‖3[−κ,κ]

20

]

exp
(

4t‖f ′‖[−κ,κ]

)

‖∂xu0‖4∞

+

[

t3‖f (3)‖[−κ,κ]

6
+

t4‖f ′′‖2[−κ,κ]

8

]

exp
(

3t‖f ′‖[−κ,κ]

)

‖∂xu0‖2∞
∥

∥∂2
xu0

∥

∥

∞

+
t3 exp

(

2t‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

12

∥

∥∂2
xu0

∥

∥

2

∞

+
t3 exp

(

2t‖f ′‖[−κ,κ]

) [

‖f ′‖[−κ,κ]‖f ′′‖[−κ,κ] + ‖f‖[−κ,κ]‖f (3)‖[−κ,κ]

]

12
‖∂xu0‖2∞ ,
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and
∥

∥

∥
T tu0 − Y t/2XtY t/2

∥

∥

∥

∞
≤

[

t3‖f (4)‖[−κ,κ]

12
+

t4‖f (3)‖[−κ,κ]‖f ′′‖[−κ,κ]

8
+

t5‖f ′′‖3[−κ,κ]

40

]

exp
(

2.5t‖f ′‖[−κ,κ]

)

‖∂xu0‖4∞

+

[

t3‖f (3)‖[−κ,κ]

3
+

t4‖f ′′‖2[−κ,κ]

8

]

exp
(

2t‖f ′‖[−κ,κ]

)

‖∂xu0‖2∞
∥

∥∂2
xu0

∥

∥

∞

+
t3 exp

(

1.5t‖f ′‖[−κ,κ]

)

‖f ′′‖[−κ,κ]

6

∥

∥∂2
xu0

∥

∥

2

∞

+
t3 exp

(

2t‖f ′‖[−κ,κ]

) [

‖f ′‖[−κ,κ]‖f ′′‖[−κ,κ] + ‖f‖[−κ,κ]‖f (3)‖[−κ,κ]

]

24
‖∂xu0‖2∞ .

Considering the regularizing effects of the Laplacian (2.30) and

∥

∥∂2
xX

tu0

∥

∥

∞
≤ 1

t
‖u0‖∞,

the next theorem yields alternative estimates as in Theorem 2.5 for the Lie case.
Theorem A.3. For t ∈ (0,T) and u0 in C∞

b (R), with κ = max(‖u0‖∞, 1), we
have
∥

∥

∥
T tu0 −Xt/2Y tXt/2

∥

∥

∥

∞
≤

t exp
(

4t‖f ′‖[−κ,κ]

) [

‖f (4)‖[−κ,κ]‖u0‖4∞ + 4π‖f (3)‖[−κ,κ]‖u0‖3∞ + 2π2‖f ′′‖[−κ,κ]‖u0‖2∞
]

2π2

+
t2 exp

(

4t‖f ′‖[−κ,κ]

)

[

‖f (3)‖[−κ,κ]‖f ′′‖[−κ,κ]‖u0‖4∞ + π‖f ′′‖2[−κ,κ]‖u0‖3∞
]

π2

+
t2 exp

(

2t‖f ′‖[−κ,κ]

) [

‖f ′‖[−κ,κ]‖f ′′‖[−κ,κ] + ‖f‖[−κ,κ]‖f (3)‖[−κ,κ]

]

‖u0‖2∞
4π

+
t3 exp

(

4t‖f ′‖[−κ,κ]

)

‖f ′′‖3[−κ,κ]‖u0‖4∞
3π2

.

and
∥

∥

∥
T tu0 − Y t/2XtY t/2

∥

∥

∥

∞
≤

κ t
√
t exp

(

t‖f ′‖[−κ,κ]

) [

2κ2‖f (4)‖[−κ,κ] + 8πκ‖f (3)‖[−κ,κ] + 4π‖f ′′‖[−κ,κ]

]

3π
√
π

‖∂xu0‖∞

+
κ2 t2 exp

(

1.5t‖f ′‖[−κ,κ]

) [

‖f ′‖[−κ,κ]‖f ′′‖[−κ,κ] + ‖f‖[−κ,κ]‖f (3)‖[−κ,κ]

]

16π
.

Notice that the previous bounds are derived by using the regularizing effects of
the Laplacian as much as possible. Additional bounds could be nevertheless derived
(similar to (2.32) in Theorem 2.5) of O(t2.5), O(t2), and O(t1.5) for the S1-Strang
scheme, and of O(t2.5) and O(t2) for the S2-Strang splitting.

Appendix B. Laminar premixed counterflow flame. The counterflow, pre-
mixed methane flame configuration is illustrated in Figure B.1. Two premixed flames
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are stabilized between two injections of the same mixture of methane and air with an
axial velocity of 1.423m/s. These jets are pulsated with a frequency of 100Hz and
a modulation of 10%, in a synchronized way, so that the plane z = 0 remains in the
symmetry plane. The distance between the injectors and this stagnation planes is
d = 1.55 cm. Figure B.2 illustrates the velocity pulsations on the fuel injection, and
the time variations of temperature profiles, as well as for YCH4

and YOH.

z

r

flame front

fuel + oxidant

fuel + oxidant

stagnation plane

d

Fig. B.1. Schematic configuration of the counterflow, premixed flames.
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