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ANALYSIS OF OPERATOR SPLITTING IN THE

NON-ASYMPTOTIC REGIME FOR NONLINEAR REACTION

DIFFUSION EQUATIONS. APPLICATION TO THE DYNAMICS OF

PREMIXED FLAMES∗

STÉPHANE DESCOMBES†‖, MAX DUARTE†∗∗, THIERRY DUMONT‡ , FRÉDÉRIQUE

LAURENT§ , VIOLAINE LOUVET‡ , AND MARC MASSOT§

Abstract. In this paper we mathematically characterize through a Lie formalism the local errors
induced by operator splitting when solving nonlinear reaction-diffusion equations, especially in the
non-asymptotic regime. The non-asymptotic regime is often attained in practice when the splitting
time step is much larger than some of the scales associated with either source terms or the diffusion
operator when large gradients are present. In a series of previous works the order reduction related to
very short time scales in the nonlinear source term has been studied, as well as that associated with
large gradients but for linearized equations. This study provides a key theoretical step forward since
it characterizes the numerical behavior of splitting errors within a more general nonlinear framework,
for which new error estimates can be derived by coupling Lie formalism and regularizing effects of
the heat equation. The validity of these theoretical results is then assessed in the framework of
two numerical applications, a KPP-type reaction wave where the influence of stiffness on local error
estimates can be thoroughly investigated; and a much more complex problem, related to premixed
flame dynamics in the low Mach number regime with complex chemistry and detailed transport, for
which the present theoretical study shows to provide relevant insights.
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1. Introduction. Operator splitting techniques [35, 28], also called fractional
steps methods [36, 37, 39], were introduced with the main objective of saving com-
putational costs. A complex and potentially large problem could be then split into
smaller or subproblems of different nature with an important reduction of the algo-
rithmic complexity and computational requirements. The latter characteristics were
largely exploited over the past years to carry out numerical simulations in several
domains going from biomedical models, to combustion or air pollution modeling ap-
plications. Moreover, these methods continue to be widely used mainly because of
their simplicity of implementation and their high degree of liberty in terms of choice
of dedicated numerical solvers for the split subproblems. They are in particular suit-
able for stiff problems, for which a special care must be addressed to choose adequate
and stable methods that properly handle and damp out fast transients inherent, for
instance, to the reaction [38] or diffusion [30] equations. In most applications first
and second order splitting schemes are implemented for which a general mathematical
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background is available (see, e.g., [16] for ODEs and [20] for PDEs). Even though
these schemes are usually efficient for the solution of time dependent equations, it is
well known that they might suffer from order reduction in the stiff case, and some
studies were conducted to explain this phenomenon. Another potential issue is the
accuracy loss related to the boundary conditions for PDEs with transport opera-
tors, solved in a splitting framework. This problem was investigated, for instance,
in [19, 20] for advection-reaction equations and mathematically described in [18] in
a more general framework for two linear operators generating strongly continuous
semigroups. For stiff applications, several works [2, 40, 34, 31] illustrated perturbing
effects on the accuracy of splitting approximations for multi-scale PDEs. Multi-scale
features in time are commonly related to physical dynamics characterized by a broad
range of time scales, while steep gradients or large higher order spatial derivatives
induce similar phenomena in space. In all these cases the standard numerical analy-
sis of splitting errors remains valid for asymptotically small time steps, and rapidly
becomes insufficient for stiff problems. A better understanding of splitting methods
for such regimes can be thus justified by the fact that practical considerations often
suggest the use of relatively large time steps in order to ease heavy computational
costs related to the numerical simulation of complex applications.

For PDEs disclosing physical time scales much faster than the splitting time step,
a theoretical study was conducted in [33] in the framework of a linear system of
ODEs issued from a reaction-diffusion equation with a linear source term and diago-
nal diffusion. Splitting errors with relatively large splitting time steps were therefore
mathematically described, whereas splitting schemes ending with the stiffest opera-
tor were also shown to be more accurate. Similar conclusions were drawn in [24] for
nonlinear systems of ODEs. A mathematical framework was then introduced in [7]
to describe these errors for nonlinear reaction-diffusion equations. This work further
analyzed order reduction in direct relation to the nonlinearity of the equations, and
in particular confirmed better performances for splitting schemes that finish with the
time integration of the stiffest operator. Other theoretical studies were also conducted
to investigate splitting errors and in particular to derive alternative estimates exhibit-
ing reduction of classical orders. A numerical analysis based on analytic semi-group
theory was first considered in [22] for linear operators, and then in [6] for a system
of ODEs issued from a discretized linear reaction-diffusion equation with solutions
of high spatial gradients. The latter approach, based on the exact representation of
local splitting errors introduced in [8], was then recast in [10] in infinite dimension for
a linearized reaction-diffusion equation. Whether the analysis is performed in finite
or infinite dimension, the resulting estimates predict an effective order reduction for
linear or linearized reaction-diffusion equations. For instance, a Lie approximation
of first order exhibits local order reductions from 2 to 1.5 [6, 10]. Similarly, Strang
approximations degenerate from local order 3 to 2 in infinite dimension [10], or from
3 to 2.5, and potentially 1.5, for the corresponding semi-discretized problem [6].

All of these studies shed some light on the behavior of splitting methods for stiff
PDEs and in particular for non-arbitrarily small splitting time steps. Nevertheless,
a mathematical description in a more general and fully nonlinear framework seems
natural to further investigate these schemes. No rigorous analysis of these configu-
rations is however available so far in the literature. The relevance of such a study is
hence justified not only because most of physical models disclose important stiffness
but because short splitting time steps heavily restrict the efficiency of splitting meth-
ods. A better understanding of these schemes for non-asymptotic regimes, that is, for
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splitting time steps much larger than the fast scales associated with each operator,
seems therefore necessary to enhance the numerical performance of such methods.

We conduct in this study the numerical analysis of splitting errors for time de-
pendent PDEs in the case of nonlinear reaction-diffusion equations. The approach
adopted is based on previous analyses carried out with linear operators and analytic
semi-group theory, as well as the exact representation of splitting errors. The inherent
nonlinearity of the equations is handled through the Lie formalism. In this work we
limit the study to diagonal diffusion terms as a first step, and we neglect as well the
influence of boundary conditions of the PDEs. We derive local error bounds that con-
sistently describe classical orders, as well as order reductions in the non-asymptotic
regime. In particular for large splitting times and problems modeling steep fronts,
such a mathematical characterization shows that order reductions also involve lower
numerical errors than the ones expected with the asymptotic orders. The resulting
theoretical estimates are then evaluated for PDEs modeling traveling waves, for which
stiffness can be easily introduced in the equations and thus allows us to systematically
investigate various stiff scenarios. To further assess these theoretical findings for more
complex and realistic applications, we investigate splitting errors for the simulation
of premixed flame dynamics in the low Mach number regime with complex chemistry
and detailed transport. We therefore introduce a new splitting method compatible
with the low Mach number constraint and show how the theoretical results we have
obtained allow us to gain fundamental insight in the analysis of splitting errors, thus
paving the way for further theoretical studies as well as new numerical algorithms.

The paper is organized as follows. We carry out the numerical analysis of operator
splitting in Section 2, for nonlinear reaction-diffusion equations. We then evaluate in
Section 3 the previous theoretical estimates in the context of PDEs modeling traveling
waves, in particular with a KPP-type of nonlinearity. A counterflow premixed flame
is studied in Section 4, in the low Mach number regime with complex chemistry and
detailed transport, for which a new operator splitting technique is introduced and
analyzed within the current theoretical framework.

2. Numerical analysis of operator splitting errors in the non-asymptotic

regime. In this section we conduct a mathematical description of splitting local errors
for nonlinear reaction-diffusion equations. We first recall some previous theoretical
results for operator splitting in a linear framework. We then investigate the nonlinear
case by considering the Lie formalism in order to introduce a rigorous characterization
of splitting order reduction in the non-asymptotic regime.

2.1. Error formula in the linear framework. Let us consider two general
linear operators A and B, for which the exponentials e−tA and e−tB can be understood
as a formal series. The first order Lie and the second order Strang splitting formulas
to approximate e−t(A+B) are, respectively, given by

L(t) = e−tAe−tB , S(t) = e−tA/2e−tBe−tA/2. (2.1)

The following results were proved in [6] and [8], and give an exact representation of
the difference between e−t(A+B), and its Lie and Strang approximations (2.1). We
introduce the following notations: ∂AB denotes the commutator between A and B,

∂AB = [A,B] = AB −BA, (2.2)

and thus

∂2
AB =

[

A, [A,B]
]

, ∂2
BA =

[

B, [B,A]
]

. (2.3)
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Theorem 2.1. The following identities hold

L(t) = e−t(A+B) +

∫ t

0

∫ s

0

e−(t−s)(A+B)e−(s−r)A
(

∂AB
)

e−rAe−sB dr ds, (2.4)

S(t) = e−t(A+B)

+
1

4

∫ t

0

∫ s

0

(s− r)e−(t−s)(A+B)e−(s−r)A/2
(

∂2
AB

)

e−rA/2e−sBe−sA/2 dr ds

− 1

2

∫ t

0

∫ s

0

(s− r)e−(t−s)(A+B)e−sA/2e−rB
(

∂2
BA

)

e−(s−r)Be−sA/2 dr ds. (2.5)

Additionally, we have the following equivalent representations which turn out to be
more convenient in the nonlinear case.

Corollary 2.2. Considering (2.4) and (2.5), the following identities hold

L(t) = e−t(A+B) +

∫ t

0

∫ s

0

e−sAe−rB
(

∂AB
)

e−(s−r)Be−(t−s)(A+B) dr ds, (2.6)

S(t) = e−t(A+B)

+
1

4

∫ t

0

∫ s

0

(s− r)e−sA/2e−sBe−rA/2
(

∂2
AB

)

e−(s−r)A/2e−(t−s)(A+B) dr ds

− 1

2

∫ t

0

∫ s

0

(s− r)e−sA/2e−(s−r)B
(

∂2
BA

)

e−rBe−sA/2e−(t−s)(A+B) dr ds. (2.7)

Proof. It suffices to compute the adjoint of (2.4) and (2.5), and noticing that ac-
cording to the definition of exponentials, we have

(

etA
)∗

= etA
∗

,
(

etAetB
)∗

= etB
∗

etA
∗

,

and with (2.2) and (2.3): (∂AB)
∗
= ∂B∗A∗,

(

∂2
AB

)∗
= ∂2

A∗B∗, and
(

∂2
BA

)∗
= ∂2

B∗A∗.

2.2. Order reduction for nonlinear reaction-diffusion equations. We con-
sider the scalar reaction-diffusion equation

∂tu− ∂2
xu = f(u), x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.

}

(2.8)

Considering the maximum norm ‖ ‖∞, we denote by Cb(R) the space of functions
bounded over R, and by C∞

b (R) the functions of class C∞ bounded over R. We
assume that f is a function of class C∞, such that f(u) > 0 for all u in (0, 1) and
f(0) = f(1) = 0, and that for |u| ≥ 1 we have that u f(u) ≤ 0. If u0 belongs to
C∞

b (R), it can be then shown that equation (2.8) has a unique solution [4], and we
represent the solution u(t, .) as T tu0, where T t is the semi-flow associated with (2.8).
Moreover for all T > 0, function u is infinitely differentiable over R × (0,T), and
belongs to Cb(R); and the following estimate holds [4],

∥

∥T tu0

∥

∥

∞
≤ max (‖u0‖∞, 1) . (2.9)

Given v0 and w0 in Cb(R), we consider the following equations:

∂tv − ∂2
xv = 0, x ∈ R, t > 0,

v(x, 0) = v0(x), x ∈ R,

}

(2.10)
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and

∂tw = f(w), x ∈ R, t > 0,

w(x, 0) = w0(x), x ∈ R.

}

(2.11)

We denote by Xtv0 and Y tw0, respectively, the solutions of (2.10) and (2.11). No-
tice that property (2.9) holds naturally for Xt, while it also holds for Y t if there
is a compact set K, K ⊆ [0, 1], that contains initial conditions w0(·) in (2.11), and
that remains invariant under the action of the semi-flow Y t. The Lie approximation
formulas are defined by

Lt
1u0 = XtY tu0, Lt

2u0 = Y tXtu0, (2.12)

whereas the two Strang approximation formulas [35] are given by

St
1u0 = Xt/2Y tXt/2u0, St

2u0 = Y t/2XtY t/2u0. (2.13)

In what follows we investigate the error between the exact solution of equation
(2.8), and the corresponding Lie approximations (2.12). Results for Strang local errors
can be found in Appendix A. To perform these computations, we use formulas (2.6)
and (2.7) from Corollary 2.2, and Lie derivative calculus (see, for example, [16] Sect.
III.5 or [20] Sect. IV.1.4 for an introduction to this topic). Lie calculus was also
considered in [26, 9] and in [5] to study splitting schemes for, respectively, nonlinear
Schrödinger equations and nonlinear reaction-diffusion equations. Let us briefly recall
in the following the definition and some properties of Lie derivatives.

Let us consider function f as a vector field in C∞
b (R). For any vector field G in

C∞
b (R) with Fréchet derivative G′, the corresponding Lie derivative Df maps G into

a new operator DfG such that for any u0 in C∞
b (R):

(DfG) (u0) = ∂tG(Y tu0)|t=0 = G′(u0)f(u0). (2.14)

Hence

(

etDfG
)

(u0) = G(Y tu0), (2.15)

and for G = Id, we have the following representation of the flow of (2.11):

(

etDf Id
)

(u0) = Y tu0. (2.16)

Similarly, we can write the flow associated with (2.10) by considering the correspond-
ing Lie derivative D∆. We finally recall that the commutator of Lie derivatives of two
vector fields is the Lie derivative of the Lie bracket of the vector fields in reversed
order. For instance, the Lie bracket for ∆ and f is defined for any u0 in C∞

b (R) by

{∆, f}(u0) =
(

∂2
xu0

)′
f(u0)− f ′(u0)∂

2
xu0, (2.17)

and thus we have

([Df , D∆]Id) (u0) =
(

D{∆,f}Id
)

(u0) = {∆, f}(u0). (2.18)

Considering now the Lie splitting approximations (2.12) together with Lie deriva-
tive calculus, we have

T tu0 − Lt
1u0 =

(

et(D∆+Df )Id
)

(u0)−
(

etDf etD∆Id
)

(u0), (2.19)
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and

T tu0 − Lt
2u0 =

(

et(D∆+Df )Id
)

(u0)−
(

etD∆etDf Id
)

(u0), (2.20)

which yield the following exact representations of the local error, in which ∂2 denotes
the derivative with respect to the initial condition.

Theorem 2.3. For t ≥ 0 and u0 in C∞
b (R), we have

T tu0 −XtY tu0 =−
∫ t

0

∫ s

0

∂2T
t−s(XsY su0)X

s−rf ′′(XrY su0) (∂xX
rY su0)

2
dr ds,

(2.21)

and

T tu0 − Y tXtu0 =

∫ t

0

∫ s

0

∂2T
t−s(Y sXsu0) exp

(
∫ s−r

0

f ′(Y σ+rXsu0) dσ

)

×

f ′′(Y rXsu0) exp

(

2

∫ r

0

f ′(Y σXsu0) dσ

)

(∂xX
su0)

2
dr ds. (2.22)

Proof. Considering (2.6) we have

T tu0 −XtY tu0 =
(

et(D∆+Df )Id
)

(u0)−
(

etDf etD∆Id
)

(u0)

=−
∫ t

0

∫ s

0

(

esDf erD∆ [Df , D∆]e
(s−r)D∆e(t−s)(D∆+Df )Id

)

(u0) dr ds

=−
∫ t

0

∫ s

0

(

erD∆ [Df , D∆]e
(s−r)D∆e(t−s)(D∆+Df )Id

)

(Y su0) dr ds

=−
∫ t

0

∫ s

0

(

D{∆,f}e
(s−r)D∆e(t−s)(D∆+Df )Id

)

(XrY su0) dr ds

=−
∫ t

0

∫ s

0

(

e(s−r)D∆e(t−s)(D∆+Df )Id
)′

(XrY su0){∆, f}(XrY su0) dr ds.

Since
(

e(s−r)D∆e(t−s)(D∆+Df )Id
)

(v0) = T t−sXs−rv0, we obtain that

T tu0 −XtY tu0 =−
∫ t

0

∫ s

0

∂2T
t−s(XsY su0)∂2X

s−r(XrY su0){∆, f}(XrY su0) dr ds.

(2.23)

From (2.17) a simple computation shows that for any v0 in C∞
b (R),

{∆, f}(v0) = ∂2
xf(v0)− f ′(v0)∂

2
xv0 = f ′′(v0)(∂xv0)

2, (2.24)

and thus yields (2.21) in (2.23). Similar computations for (2.20) and considering also
(2.6) lead to

T tu0 − Y tXtu0 =−
∫ t

0

∫ s

0

∂2T
t−s(Y sXsu0)∂2Y

s−r(Y rXsu0){f,∆}(Y rXsu0) dr ds.

(2.25)
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Moreover, given w0 and w(s, x) = Y sw0(x), solution of (2.11), the derivative of w
with respect to the initial condition, denoted by ∂2Y

t(w0), satisfies

∂s∂2Y
s(w0) = f ′(Y sw0)∂2Y

s(w0),

∂2Y
0(w0) = 1,

}

and thus

∂2Y
s(w0) = exp

(
∫ s

0

f ′(Y σw0)dσ

)

. (2.26)

Similarly, ∂xY
sw0 satisfies

∂s∂xY
sw0 = f ′(Y sw0)∂xY

sw0,

∂xY
0w0 = ∂xw0,

}

and hence

∂xY
sw0 = exp

(
∫ s

0

f ′(Y σw0)dσ

)

∂xw0, (2.27)

which along with (2.24) and (2.26) into (2.25), prove (2.22).
Notice that both error representations (2.4) and (2.6) are equivalent, neverthe-

less we will see in the following that the second one, used in Theorem 2.3, is more
convenient because operators of type ∂x are applied only on the split solutions Xtv0
and Y tw0 of (2.10) and (2.11). A rigorous proof for (2.23) and (2.25) for two general
nonlinear operators was also proposed in [9]. Furthermore, using Duhamel’s formula
we have for system (2.8):

T su0 = Xsu0 +

∫ s

0

Xs−rf(T ru0) dr, (2.28)

and hence

∂2T
s(u0) = Xs +

∫ s

0

Xs−rf ′(T ru0)∂2T
r(u0) dr. (2.29)

We can then also demonstrate that

∂2T
s(u0) = Xs

(

1 +

∫ s

0

f ′(T ru0) exp

(
∫ s

r

Xs−σf ′(T σu0) dσ

)

dr

)

,

and thus have explicit expressions for both (2.21) and (2.22).
Without loss of generality we assume that ‖u0‖∞ ≤ 1, and hence ‖T tu0‖∞ ≤

1 following (2.9). Moreover we have that ‖Xtu0‖∞ ≤ 1, and also ‖Y tu0‖∞ ≤ 1,
assuming a compact set K, u0(·) ∈ K ⊆ [0, 1], invariant under Yt. Using the results
of Theorem 2.3, the following bounds can be obtained for both Lie local errors (2.19)
and (2.20).

Theorem 2.4. For t ∈ [0,T) and u0 in C∞
b (R) such that ‖u0‖∞ ≤ 1, we have

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤ t2 exp

(

2t‖f ′‖[0,1]
)

‖f ′′‖[0,1]
2

‖∂xu0‖2∞ , (2.30)

and

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤ t2 exp

(

2t‖f ′‖[0,1]
)

‖f ′′‖[0,1]
2

‖∂xu0‖2∞ . (2.31)
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Proof. Taking norms for (2.23), we obtain

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤
∫ t

0

∫ s

0

∥

∥∂2T
t−s(XsY su0)

∥

∥

∞
‖f ′′(XrY su0)‖∞ ×

∥

∥

∥
(∂xX

rY su0)
2
∥

∥

∥

∞
dr ds.

From (2.29) we see that

‖∂2T s(u0)‖∞ ≤ 1 +

∫ s

0

‖f ′(T ru0)∂2T
r(u0)‖∞ dr ≤ 1 +

∫ s

0

‖f ′‖[0,1] ‖∂2T r(u0)‖∞ dr,

considering that ‖T ru0‖∞ remains into [0, 1]. Gronwall’s lemma then yields

‖∂2T s(u0)‖∞ ≤ exp
(

s‖f ′‖[0,1]
)

,

where ‖f ′‖[0,1] = maxu∈[0,1] f
′(u). We thus have

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤

∫ t

0

∫ s

0

exp
(

(t− s)‖f ′‖[0,1]
)

‖f ′′‖[0,1] ‖∂xXrY su0‖2∞ dr ds.

(2.32)

Taking into account that ‖∂xXrY su0‖2∞ = ‖Xr∂xY
su0‖2∞ ≤ ‖∂xY su0‖2∞ and with

(2.27), we finally obtain

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤

∫ t

0

∫ s

0

exp
(

(t+ s)‖f ′‖[0,1]
)

‖f ′′‖[0,1] ‖∂xu0‖2∞ dr ds

≤ t2 exp
(

2t‖f ′‖[0,1]
)

‖f ′′‖[0,1]
2

‖∂xu0‖2∞ ,

which proves (2.30). Proof for (2.31) follows the same procedure which yields

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤

∫ t

0

∫ s

0

exp
(

(t+ r)‖f ′‖[0,1]
)

‖f ′′‖[0,1] ‖∂xXsu0‖2∞ dr ds

≤
∫ t

0

exp
(

2t‖f ′‖[0,1]
)

‖f ′′‖[0,1] ‖∂xXsu0‖2∞ s ds, (2.33)

and proves (2.31) by considering that ‖∂xXsu0‖2∞ = ‖Xs∂xu0‖2∞ ≤ ‖∂xu0‖2∞.
Notice that both Lie schemes are bounded by the same expression in Theorem

2.4, and for sufficiently small t these estimates involve the classical second order local
error for Lie splitting. Considering now the Gauss-Weierstrass formula for the heat
semi-group associated with (2.10), and the Young’s inequality for convolutions, we
have for all u0 in C∞

b (R) and t > 0, the following regularizing effect of the Laplacian
operator

∥

∥∂xX
tu0

∥

∥

∞
≤ 1√

πt
‖u0‖∞. (2.34)

The following bounds can be then derived.
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Theorem 2.5. For t ∈ (0,T) and u0 in C∞
b (R) such that ‖u0‖∞ ≤ 1, we have

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤ 4 t

√
t exp

(

t‖f ′‖[0,1]
)

‖f ′′‖[0,1]
3
√
π

‖∂xu0‖∞ , (2.35)

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤ 2 t

√
t exp

(

2t‖f ′‖[0,1]
)

‖f ′′‖[0,1]
3
√
π

‖∂xu0‖∞ , (2.36)

and

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤ t exp

(

2t‖f ′‖[0,1]
)

‖f ′′‖[0,1]
π

. (2.37)

Proof. Proof of (2.35) comes from considering the regularizing effect of the Lapla-
cian (2.34) and that

‖∂xXrY su0‖2∞ ≤ ‖∂xXrY su0‖∞ ‖Xr∂xY
su0‖∞ ≤ exp

(

s‖f ′‖[0,1]
)

‖∂xu0‖∞√
πr

,

into (2.32). Similarly,

‖∂xXsu0‖2∞ ≤ ‖∂xXsu0‖∞ ‖Xs∂xu0‖∞ ≤ ‖∂xu0‖∞√
πs

,

and

‖∂xXsu0‖2∞ ≤ 1

πs
,

yield, respectively, (2.36) and (2.37) into (2.33).
To summarize, denoting the local errors by

Et
L1
u0 = T tu0 − Lt

1u0, Et
L2
u0 = T tu0 − Lt

2u0, (2.38)

we have the following results for u0 in C∞
b (R) and t > 0:

Et
L1
u0 ∝ min

(

‖∂xu0‖2∞t2, ‖u0‖∞‖∂xu0‖∞t1.5
)

, (2.39)

and

Et
L2
u0 ∝ min

(

‖∂xu0‖2∞t2, ‖u0‖∞‖∂xu0‖∞t1.5, ‖u0‖2∞t
)

. (2.40)

Theorem 2.5 then illustrates an order reduction for both Lie methods, and in par-
ticular further reductions for the L2-scheme finishing with the reaction step. It is
nevertheless important to notice that the multiplying constant in the estimates is also
decreasing, that is, for standard second order (t2) the multiplying factor is of order
O
(

‖∂xu0‖2∞
)

, of smaller order O (‖u0‖∞‖∂xu0‖∞) for t1.5, and of potentially much

smaller O
(

‖u0‖2∞
)

for t. Since the resulting local error is set by both t and the cor-
responding constant, for sufficiently large t and also high values of ‖∂xu0‖∞, we can
thus expect smaller local errors for the L2-scheme although the latter suffers from
a stronger order reduction, according to Theorem 2.5. On the contrary, we retrieve
equivalent asymptotic behaviors for both schemes at small splitting times t, following
Theorem 2.4. The key point of this illustration is that a progressive order reduction
is taking place for non-asymptotic regimes. More important, for large splitting times
the error is shown to remain bounded and moreover increases at a lower rate with
respect to the asymptotic order.
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3. Application to traveling waves. In this part we evaluate the previous the-
oretical study in the context of reaction-diffusion problems that admit self-similar
traveling wave solutions. The main advantages of considering this kind of configu-
rations are that analytic solutions exist and that the featured stiffness can be tuned
using a space-time scaling. Therefore, it provides the right framework to perform a
complete numerical validation of the theoretical local error estimates. Moreover, a
detailed study can be conducted on the impact of the stiffness featured by propagating
fronts with steep spatial gradients as performed, for instance, in [10]. In what follows,
we first recast previous estimates in the context of reaction traveling waves, to then
illustrate them in practice through the numerical solution of a KPP model.

3.1. Numerical estimates. We consider the propagation of self-similar waves
modeled by parabolic PDEs of type:

∂tu−D∂2
xu = kf(u), x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R,

}

(3.1)

with solution u(x, t) = u0(x − ct), where c is the steady speed of the wavefront, and
D and k stand, respectively, for diffusion and reaction coefficients. Introducing the
Lie splitting solutions (2.12) for system (3.1), we obtain the following estimates.

Corollary 3.1. For t ∈ [0,T) and u0 in C∞
b (R) such that ‖u0‖∞ ≤ 1, we have

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤ t2 exp

(

2kt‖f ′‖[0,1]
)

‖f ′′‖[0,1]
2

‖∂xu0‖2∞ , (3.2)

and

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤ t2 exp

(

2kt‖f ′‖[0,1]
)

‖f ′′‖[0,1]
2

‖∂xu0‖2∞ . (3.3)

Corollary 3.2. For t ∈ (0,T) and u0 in C∞
b (R) such that ‖u0‖∞ ≤ 1, we have

∥

∥T tu0 −XtY tu0

∥

∥

∞
≤ 4 t

√
t exp

(

kt‖f ′‖[0,1]
)

‖f ′′‖[0,1]
3
√
πD

‖∂xu0‖∞ , (3.4)

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤ 2 t

√
t exp

(

2kt‖f ′‖[0,1]
)

‖f ′′‖[0,1]
3
√
πD

‖∂xu0‖∞ , (3.5)

and

∥

∥T tu0 − Y tXtu0

∥

∥

∞
≤ t exp

(

2kt‖f ′‖[0,1]
)

‖f ′′‖[0,1]
πD

. (3.6)

In the context of traveling wave solutions, the diffusion and reaction coefficients,
D and k, might be seen as scaling coefficients in time and space. A dimensionless
analysis of a traveling wave can be then conducted, as shown in [15], by considering
dimensionless time τ and space r:

τ = kt, r = (k/D)1/2x. (3.7)

As a consequence, a steady velocity of the wavefront can be derived

c = dtx ∝ (Dk)1/2, (3.8)
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whereas the sharpness of the wave profile is measured by

dxu0|max = ‖∂xu0‖∞ ∝ (k/D)1/2. (3.9)

Condition Dk = 1 then involves waves of constant velocity, but greater k (or smaller
D) yields wavefronts with higher spatial gradients, and thus stiffer configurations.

By considering the Lie local errors (2.38), the bounds from Corollary 3.1 and 3.2,
and the measure of the wave gradient (3.9), we have that for u0 in C∞

b (R) and t > 0:

Et
L1
u0 ∝ min

(

k2t2, ‖u0‖∞k1.5t1.5
)

, (3.10)

and

Et
L2
u0 ∝ min

(

k2t2, ‖u0‖∞k1.5t1.5, ‖u0‖2∞kt
)

. (3.11)

Although these bounds are not sufficient to determine precisely the various order
intervals for t, i.e., the actual time steps for which order reductions are exhibited, for
solutions with high spatial gradients it is very likely to start having order reductions
even for small splitting time steps of about ‖∂xu0‖−1

∞ (or k−1 following (3.9)). Similar
conclusions can be drawn from Strang local error estimates.

3.2. Numerical illustration: 1D KPP equation. Recalling the classical Kol-
mogorov-Petrovskii-Piskunov model [23] with f(u) = u(1 − u), we consider in this
study a higher order KPP nonlinearity with f(u) = u2(1− u) (often referred also as
Zeldovich nonlinearity). The description of the dimensionless model and the structure
of the analytical solution for this case can be found, for instance, in [15], where a
theoretical analysis shows that in the case with D = k = 1, the velocity of the self-
similar traveling wave is c = 1/

√
2 in (3.8), and the maximum gradient value reaches

1/
√
32 in (3.9). Notice that for this KPP nonlinearity there is a single isolated value

of the speed for which the front exists, contrary to the monostable, classical KPP
equation. In particular the case f(u) = u2(1 − u) verifies the assumptions on f(u),
considered in §2.2. The key point of this illustration is that the velocity of the traveling
wave is proportional to (kD)1/2, whereas the maximum gradient is proportional to
(k/D)1/2. Hence, we consider the case kD = 1 for which one may obtain steeper
gradients with the same speed of propagation.

For the numerical approximations, we consider a 1D discretization with 5001
points over a region of [−70, 70] with homogeneous Neumann boundary conditions,
for which we have negligible spatial discretization errors with respect to the ones
coming from the numerical time integration. The exact solution T tu0 will be approx-
imated by a reference or quasi-exact solution given by the numerical solution of the
coupled reaction-diffusion equation performed by the Radau5 solver [17] with a fine
tolerance, ηRadau5 = 10−10. All splitting approximations are computed with the split-
ting technique introduced in [11], with Radau5 for the reactive term, and the ROCK4
method [1] for the diffusion problem. In order to properly discriminate splitting errors
from those coming from the temporal integration of the subproblems, we consider the
following fine tolerances, ηRadau5 = ηROCK4 = 10−10. Figure 3.1 shows the numerical
quasi-exact solutions at t = 0 and t = 45 for k = 1, 10, and 100. In what follows,
10001 points of discretization are considered for k = 100 instead of 5001 in order to
better represent the wavefront, as illustrated in Figure 3.1.

We first compute the L2 local errors for all Lie and Strang splitting schemes,
respectively, (2.12) and (2.13). Figure 3.2 illustrates these errors for k = 10, for
relatively large splitting time steps. An order reduction is exhibited for all splitting
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Fig. 3.1. 1D KPP. Numerical quasi-exact solutions at t = 0 and t = 45 for k = 1 (top left), 10
(top right) and 100 (bottom left) with a discretization of 5001 points. Bottom right: case k = 100
with 10001 points of discretization.
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Fig. 3.2. 1D KPP with k = 10. Local L2 errors for several splitting time steps ∆t for Lie (left)
and Strang (right) splitting schemes. Dashed lines with slopes 2, 1.5, and 1 (left), and with 3, 2.5,
and 2 (right) are depicted.

schemes for time steps of order k−1 or larger. For smaller time steps we retrieve
classical asymptotic orders as established in Theorems 2.4 and A.1. In this case, L1-
and L2-Lie schemes are practically equivalent in terms of accuracy, as established in
Theorem 2.4. On the other hand, there is a slight difference for S1- and S2-Strang
schemes, as seen in Theorem A.1. For the L1-Lie scheme, a progressive local or-
der reduction can be seen from 2 to 1.5, whereas it attains order 1 for the L2-Lie
scheme, as described in Theorem 2.5. For the Strang schemes, a local order reduction
takes also place from 3 down to 2.5 and 2, respectively, for the S1- and S2-Strang
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schemes. The minimum orders established in Theorem A.2 are nevertheless not at-
tained. Notice that in all cases a better accuracy is achieved in the non-asymptotic
regime by splitting schemes ending with the reaction substep, as previously proved
in [7]. In particular the L2-Lie scheme is even more accurate than a S1-Strang one,
for sufficiently large splitting time steps. Similar conclusions are drawn for a stiffer
configuration with k = 100, illustrated in Figure 3.3. In this case the splitting orders
for all schemes are eventually reduced to a local order of 1. In this way the bounds
introduced in Theorems 2.5 and A.2, as well as the mathematical characterization of
these errors for non-asymptotic regimes, consistently describe the progressive order
reduction for solutions disclosing high spatial gradients. Figure 3.4 illustrates the pro-
gressive global order reduction for the S2-Strang scheme, which perfectly reproduces
the local order behavior. The latter is not always the case since there might be some
error compensation and thus a global order reduction lower than the one theoretically
expected. This has been shown, for instance, in [21] for a linear configuration but the
proofs cannot be extended to a nonlinear framework. In particular the global error
evaluation in Figure 3.4 was made after a long integration time in order to illustrate
the worst possible configuration. The influence of stiffness in terms of accuracy and
order of the method is highlighted for increasingly stiffer configurations correspond-
ing to higher values of k. Notice that for k = 1, a non-stiff configuration, asymptotic
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orders are preserved.

4. Application to the dynamics of premixed flames. We consider in this
section the simulation of a counterflow premixed methane flame with detailed trans-
port and complex chemistry in the low Mach number regime. These flames have
received an extensive number of studies in both the steady and the pulsated case for
realistic engineering applications (see e.g., [32, 13, 25]). In this study we will consider
the configuration where the flame is pulsated periodically in time through upstream
modulations [3]. In this way we consider a time dependent system of PDEs for which
we introduce a new way to perform operator splitting, compatible with the low Mach
constraint. Taking into account that there is already a validated coupled, fully im-
plicit code, based on [3, 29], that can provide us with the reference dynamics of such
flames, we evaluate the splitting errors introduced by this new approach and analyze
the resulting behavior based on the theoretical study previously conducted. More
details and further extensions of this approach for Low Mach number flames will be
reported in a forthcoming work.

4.1. Governing equations. We consider two premixed flames stabilized in a
symmetric framework where two injections of methane-air mixture occur in a coun-
terflow way (see Figure B.1 in Appendix B). Isobaric flames equations are consid-
ered in the low Mach Number limit [27], so that for x ∈ R

d the pressure reads
p(t, x) = patm + p̃(t, x), where p̃ is a perturbation of the atmospheric pressure. The
counterflow configuration admits a symmetry of revolution and thus the set of equa-
tions can be written as a 2D axisymmetric system. In particular, we consider 1D
similarity solutions of this 2D system of equations for which the density of the gas
ρ, the temperature T , the axial velocity uz, the reduced radial velocity ur/r, and
the mass fractions Yk of the gas species have no radial dependence, and all of them
are functions of the axial coordinate z. Assuming that the perturbation on the at-
mospheric pressure field is given by p̃ = −Jr2/2 + p̂(z), where r denotes the radial
coordinate, the governing equations read

ρcp∂tT + cpV ∂zT − ∂z (λ∂zT ) = −
∑

k∈S

hkmkωk −
∑

k∈S

ρYkcp,kVz,k∂zT, (4.1)

ρ∂tYk + V ∂zYk + ∂z (ρYkVz,k) = mkωk, k ∈ S, (4.2)

∂zJ = 0, (4.3)

ρ∂tU + ρU2 + V ∂zU = J + ∂z (µ∂zU) , (4.4)

∂tρ+ 2ρU + ∂zV = 0, (4.5)

where V = ρuz is the axial mass flux, U the reduced radial velocity, S the set of
species indices, cp the specific heat of the gas mixture, cp =

∑

k∈S Ykcp,k, cp,k the
specific heat of the k-th species, hk its enthalpy, mk its molar mass, λ the heat
conductivity, µ the shear viscosity, J the reduced pressure gradient, ωk the molar
chemical production rate, and Vk,z the axial diffusion velocity of the k-th gas species.
Density ρ is a function of the local temperature and gas composition through the ideal
gas state equation. Full details on this model can be found, for instance, in [14].

Given the symmetry of this configuration, only half domain is considered, z ≥ 0,
with symmetry conditions at z = 0. The top boundary at z = 1.55 cm, coincides with
the fuel injection, and thus fixed values of the temperature, the axial and the reduced
radial velocities, and the gas composition are imposed. Its velocity is of 1.423m/s,
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pulsated with a modulation of 10% at a frequency of 100Hz. The gas is composed of
methane with a mass fraction equal to 3.88%, mixed with air at 293K and atmospheric
pressure. A detailed methane-air chemical kinetic mechanism with 29 species and 150
reactions is considered, whereas transport parameters are computed based on [12].

4.2. Introduction of operator splitting. We aim at solving separately the
chemical sources in system (4.1)–(4.5):

ρcp∂tT = −
∑

k∈S

hkmkωk, (4.6)

ρ∂tYk = mkωk, k ∈ S, (4.7)

and then consider the following convection-diffusion problem:

ρcp∂tT + cpV ∂zT − ∂z (λ∂zT ) = −
∑

k∈S

ρYkcp,kVz,k∂zT, (4.8)

ρ∂tYk + V ∂zYk + ∂z (ρYkVz,k) = 0, k ∈ S, (4.9)

∂zJ = 0, (4.10)

ρ∂tU + ρU2 + V ∂zU = J + ∂z (µ∂zU) , (4.11)

∂tρ+ 2ρU + ∂zV = 0. (4.12)

In this way, we obtain a decoupled system of ODEs (4.6)–(4.7) on each grid point
of the domain, for which a dedicated stiff ODE solver can be implemented; whereas
the numerical effort required to solve the coupled system (4.8)–(4.12) is also relieved.
However, since density ρ depends on the local temperature and gas composition, its
time variation during the chemistry step (4.6)–(4.7) must be taken into account in
equation (4.12). Deriving in time the ideal gas state equation and considering (4.6)–
(4.7), this variation, denoted as (∂tρ)chem, is given by

(∂tρ)chem =
1

cpT

∑

k∈S

hkmkωk −m
∑

k∈S

ωk. (4.13)

Hydrodynamics are therefore solved, coupled with the transport equations without
chemical source terms for temperature and species, in system (4.8)–(4.11) together
with

∂tρ+ (∂tρ)chem + 2ρU + ∂zV = 0, (4.14)

instead of (4.12).
In this implementation, the corrective term (∂tρ)chem is updated at the beginning

of each splitting time step, and kept constant throughout the time integration of the
current time step. Considering the instantaneous nature of this correction, that affects
especially the solution of the hydrodynamics, both Lie and Strang schemes should
finish with the numerical solution of the convection-diffusion problem (4.8)–(4.11)
plus (4.14). This is also coherent with the idea of always ending the splitting scheme
with the fastest operator [33, 24, 7]. The convection-diffusion system is numerically
solved with the same code considered for the original full problem (4.1)–(4.5). The
method considers implicit time integration of the coupled equations on a dynamically
adapted grid (see details in [32, 3]). On the other hand, the chemical source terms
(4.6)–(4.7) are integrated point-wise with the Radau5 solver [17].
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4.3. Numerical results. To visualize the numerical performance of the split-
ting approximation, the point z = 0.25 cm in the high gradient zone is chosen (see
Figure B.2). The evolution of the temperature is shown in Figure 4.1 for Lie and
Strang approximations with different splitting time steps. The reference, coupled
solution corresponds to the solution of the full problem (4.1)–(4.5), computed with
fine tolerances (see [32]). For the time steps considered the dynamics of the flame is
properly reproduced with the new operator splitting introduced. The same can be
observed even for minor species, as illustrated, for instance, in Figure 4.2 for YOH.

Fig. 4.1. Top: time evolution of temperature at point z = 0.25 cm, with the coupled solution
(black line), and the Lie (blue lines), and Strang (red lines) splitting approximations. Bottom:
difference with respect to the reference, coupled solution with ∆t = 5× 10−7.

Fig. 4.2. Top: time evolution of the mass fraction of OH at point z = 0.25 cm with the
coupled solution (black line), and the Lie (blue lines), and Strang (red lines) splitting approximations.
Bottom: difference with respect to the reference, coupled solution with ∆t = 5× 10−7.
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Figures 4.3 and 4.4 illustrate the local and global errors for the Lie and Strang
splitting approximations, respectively, for relatively large splitting time steps. We con-
sider temperature T , and some main and minor species like YCH4

and YCO2
, and YOH

and YCH, respectively. Global errors are evaluated at time 0.032 s, which corresponds
to a maximum pulsated velocity. For the Lie approximations, an order reduction is
observed locally, from 2 to 1.5 (close to 1 for YCH); and similarly from 3 to 2.5, for
the Strang solutions in Figure 4.4 (about 2 for YCH). Global errors follow approxi-
mately the same behaviors. However, compensations can take place as illustrated, for
instance, by the Strang scheme that displays an accuracy order between 2 and 1.5,
even for very large splitting time steps. The Lie scheme on the other side involves a
global order of about 0.5, and even below 0.5 for very large time steps. In what con-
cerns to the present study we can identify similar behaviors previously observed for
the KPP problem, and predicted by the theoretical study, this time for a much more
complex problem. In particular the progressive loss of order involves better accura-
cies with respect to the asymptotic order of the methods. Moreover, splitting errors
remain bounded even for considerably large time steps of about 10−5 s, compared,
for instance, with some of the chemical time scales, of the order of the nanoseconds.
Complementary analyses on these numerical results will be presented in a future work.
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Fig. 4.3. Local (left) and global (right) L2 errors for the Lie scheme for temperature T and
species YCH4

, YCO2
, YOH, and YCH. Lines with slope of 2 and 1.5 (left), and of 1 and 0.5 (right)

are depicted.
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Fig. 4.4. Local (left) and global (right) L2 errors for the Strang scheme for temperature T and
species YCH4
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, YOH, and YCH. Lines with slope of 3 and 2.5 (left), and of 2 and 1.5 (right)

are depicted.
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5. Concluding remarks. We have introduced in this paper a rigorous mathe-
matical characterization of splitting errors for nonlinear reaction-diffusion equations.
The corresponding error estimates are particularly relevant for relatively large split-
ting time steps, and therefore for many applications modeled by stiff PDEs in which
fast physical or numerical scales usually impose prohibitively expensive time steps.
In this context splitting techniques can become a more efficient alternative to over-
come stability restrictions related to stiff source terms or mesh size, as shown in [11].
Additionally, a theoretical description of splitting errors may also lead to further de-
velopments, as the adaptive splitting scheme introduced in [5]. Understanding the
numerical behavior of splitting schemes, especially for relatively large splitting time
steps, is therefore shown to be of the utmost importance for both theoretical and
practical reasons. Besides, we have illustrated the relevance of the present theoreti-
cal study in the case of self-similar waves with high spatial gradients. This kind of
problem mimics many other applications characterized by the propagation of steep
chemical fronts. In particular we have considered a counterflow premixed flame with
complex chemistry and detailed transport, for which we have also introduced a new
way of implementing operator splitting techniques. In all cases the key point of these
numerical illustrations is that the present theoretical study consistently describes the
behavior of the numerical errors, especially for relatively large splitting time steps. It
can be thus seen how order reductions occur and how they involve better accuracies
with respect to the asymptotic orders in the case of propagating fronts with steep
spatial gradients.

Appendix A. Local error estimates for Strang splitting. Similar to Theo-
rem 2.3 and based on (2.7) we can also obtain an exact representation of Strang local
errors, taking into account that

([

Df , [Df , D∆]
]

Id
)

(u0) =
(

f ′(u0)f
′′(u0) + f(u0)f

(3)(u0)
)

(∂xu0)
2
, (A.1)

and

([

D∆, [D∆, Df ]
]

Id
)

u0 =f (4)(u0) (∂xu0)
4
+ 4f (3)(u0) (∂xu0)

2
∂2
xu0

+ 2f ′′(u0)
(

∂2
xu0

)2
. (A.2)

The following bounds can be then obtained for both Strang local errors (2.13).

Theorem A.1. For t ∈ [0,T) and u0 in C∞
b (R) such that ‖u0‖∞ ≤ 1, we have

∥

∥

∥
T tu0 −Xt/2Y tXt/2

∥

∥

∥

∞
≤

[

t3‖f (4)‖[0,1]
24

+
t4‖f (3)‖[0,1]‖f ′′‖[0,1]

8
+

t5‖f ′′‖3[0,1]
20

]

exp
(

4t‖f ′‖[0,1]
)

‖∂xu0‖4∞

+

[

t3‖f (3)‖[0,1]
6

+
t4‖f ′′‖2[0,1]

8

]

exp
(

3t‖f ′‖[0,1]
)

‖∂xu0‖2∞
∥

∥∂2
xu0

∥

∥

∞

+
t3 exp

(

2t‖f ′‖[0,1]
)

‖f ′′‖[0,1]
12

∥

∥∂2
xu0

∥

∥

2

∞

+
t3 exp

(

2t‖f ′‖[0,1]
) [

‖f ′‖[0,1]‖f ′′‖[0,1] + ‖f‖[0,1]‖f (3)‖[0,1]
]

12
‖∂xu0‖2∞ , (A.3)
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and
∥

∥

∥
T tu0 − Y t/2XtY t/2

∥

∥

∥

∞
≤

[

t3‖f (4)‖[0,1]
12

+
t4‖f (3)‖[0,1]‖f ′′‖[0,1]

8
+

t5‖f ′′‖3[0,1]
40

]

exp
(

2.5t‖f ′‖[0,1]
)

‖∂xu0‖4∞

+

[

t3‖f (3)‖[0,1]
3

+
t4‖f ′′‖2[0,1]

8

]

exp
(

2t‖f ′‖[0,1]
)

‖∂xu0‖2∞
∥

∥∂2
xu0

∥

∥

∞

+
t3 exp

(

1.5t‖f ′‖[0,1]
)

‖f ′′‖[0,1]
6

∥

∥∂2
xu0

∥

∥

2

∞

+
t3 exp

(

2t‖f ′‖[0,1]
) [

‖f ′‖[0,1]‖f ′′‖[0,1] + ‖f‖[0,1]‖f (3)‖[0,1]
]

24
‖∂xu0‖2∞ . (A.4)

Considering the regularizing effect of the Laplacian operator (2.34), the next theorem
yields additional estimates as in the Lie case.

Theorem A.2. For t ∈ (0,T) and u0 in C∞
b (R) such that ‖u0‖∞ ≤ 1, we have

∥

∥

∥
T tu0 −Xt/2Y tXt/2

∥

∥

∥

∞
≤

t exp
(

4t‖f ′‖[0,1]
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‖f (4)‖[0,1] + 4π‖f (3)‖[0,1] + 2π2‖f ′′‖[0,1]
]

2π2

+
t2 exp

(
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)

[

‖f (3)‖[0,1]‖f ′′‖[0,1] + π‖f ′′‖2[0,1]
]

π2

+
t2 exp

(
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]

2π

+
t3 exp

(
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)

‖f ′′‖3[0,1]
3π2

. (A.5)

and
∥

∥

∥
T tu0 − Y t/2XtY t/2

∥

∥

∥

∞
≤

t
√
t exp

(

t‖f ′‖[0,1]
) [

2‖f (4)‖[0,1] + 8π‖f (3)‖[0,1] + 4π‖f ′′‖[0,1]
]

3π
√
π

‖∂xu0‖∞

+
t2 exp

(

1.5t‖f ′‖[0,1]
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‖f ′‖[0,1]‖f ′′‖[0,1] + ‖f‖[0,1]‖f (3)‖[0,1]
]

16π
. (A.6)

A progressive order reduction can be thus seen for both Strang schemes as in
the Lie case. In particular local errors remain bounded and the loss of order is
compensated by potentially smaller multiplying coefficients. The loss of accuracy is
consequently less severe than if the asymptotic order were preserved.

Appendix B. Laminar premixed counterflow flame. The counterflow, pre-
mixed methane flame configuration is illustrated in Figure B.1. Two premixed flames
are stabilized between two injections of the same mixture of methane and air with an
axial velocity of 1.423m/s. These jets are pulsated with a frequency of 100Hz and
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a modulation of 10%, in a synchronized way, so that the plane z = 0 remains in the
symmetry plane. The distance between the injectors and this stagnation planes is
d = 1.55 cm. Figure B.2 illustrates the velocity pulsations on the fuel injection, and
the time variations of temperature profiles, as well as for YCH4

and YOH.

z

r

flame front

fuel + oxidant

fuel + oxidant

stagnation plane

d

Fig. B.1. Schematic configuration of the counterflow, premixed flames.

Fig. B.2. Top: time variations of axial velocity uz (left) and temperature T (right) profiles.
Bottom: mass fraction profiles for YCH4

(left) and YOH (right). Position z = 0.25 cm is indicated.
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