M Crochemore
email: maxime.crochemore@kcl.ac.uk

C S Iliopoulos
email: c.iliopoulos@kcl.ac.uk

T Kociumaka
email: kociumaka@mimuw.edu.pl

M Kubica
email: kubica@mimuw.edu.pl

J Pachocki
email: pachocki@mimuw.edu.pl

J Radoszewski

W Rytter
email: rytter@mimuw.edu.pl

W Tyczyński
email: w.tyczynski@mimuw.edu.pl

T Waleń
email: walen@mimuw.edu.pl

A Note on Efficient Computation of All Abelian Periods in a String

Keywords: algorithms, Abelian period, Abelian square

We derive a simple efficient algorithm for Abelian periods knowing all Abelian squares in a string. An efficient algorithm for the latter problem was given by Cummings and Smyth in 1997. By the way we show an alternative algorithm for Abelian squares. We also obtain a linear time algorithm finding all "long" Abelian periods. The aim of the paper is a (new) reduction of the problem of all Abelian periods to that of (already solved) all Abelian squares which provides new insight into both connected problems.

Introduction

We present an efficient reduction of the Abelian period problem to the Abelian square problem. For a string of length n the latter problem was solved in O(n 2) by Cummings and Smyth [START_REF] Cummings | Weak repetitions in strings[END_REF]. The best previously known algorithms for the Abelian periods, see [START_REF] Fici | Computing Abelian periods in words[END_REF], worked in O(n 2 m) time (where m is the alphabet size) which for large m is O(n 3). Our algorithm works in O(n 2) time, independently of the alphabet size. As a by-product we obtain an alternative O(n 2) time algorithm finding all Abelian squares and an O(n) time algorithm finding a compact representation of all Abelian periods of length greater than n/2, in particular, the shortest such period.

Abelian squares were first studied by Erdös [START_REF] Erdös | Some unsolved problems[END_REF], who posed a question on the smallest alphabet size for which there exists an infinite Abelian-squarefree string. An example of such a string over five-letter alphabet was given by Pleasants [START_REF] Pleasants | Non-repetitive sequences[END_REF] and afterwards the best possible example over four-letter alphabet was shown by Keränen [START_REF] Keränen | Abelian squares are avoidable on 4 letters[END_REF].

Quite recently there have been several results on Abelian complexity in words [START_REF] Avgustinovich | On shortest crucial words avoiding Abelian powers[END_REF][START_REF] Cassaigne | Avoiding Abelian powers in binary words with bounded Abelian complexity[END_REF][START_REF] Currie | A cyclic binary morphism avoiding Abelian fourth powers[END_REF][START_REF] Currie | Long binary patterns are Abelian 2avoidable[END_REF][START_REF] Domaratzki | Abelian primitive words[END_REF] and partial words [START_REF] Blanchet-Sadri | Abelian square-free partial words[END_REF][START_REF] Blanchet-Sadri | Avoiding Abelian powers in partial words[END_REF] and on Abelian pattern matching [START_REF] Cicalese | Searching for jumbled patterns in strings[END_REF][START_REF]Developments in Language Theory -15th International Conference, DLT 2011[END_REF][START_REF] Moosa | Indexing permutations for binary strings[END_REF]. Abelian periods were first defined and studied by Constantinescu and Ilie [START_REF] Constantinescu | Fine and Wilf's theorem for Abelian periods[END_REF].

We say that two strings are (commutatively) equivalent, and write x ≡ y, if one can be obtained from the other by permuting its symbols. In other words, the Parikh vectors P(x), P(y) are equal, where the Parikh vector gives frequency of each symbol of the alphabet in a given string. Parikh vectors were introduced already in [START_REF] Constantinescu | Fine and Wilf's theorem for Abelian periods[END_REF] for this problem.

A string w is an Abelian k-power if w = x 1 x 2 . . . x k , where

x 1 ≡ x 2 ≡ . . . ≡ x k
The size of x 1 is called the base of the k-power. In particular w is an Abelian square if and only if it is an Abelian 2-power.

A string x is an Abelian factor of y if P(x) ≤ P(y), that is, each element of P(x) is smaller than the corresponding element of P(y). The pair (i, p) is an Abelian period of w = w [1, n] if and only if w[i + 1, j] is an Abelian k-power with base p (for some k) and w [1, i] In Section 2 we introduce two auxiliary tables that we use in computing Abelian squares and powers. Next in Section 3 we show new O(n 2) time algorithms for all Abelian squares and all Abelian periods in a string and a reduction between these problems.

Finally in Section 4 we present an O(n) time algorithm finding a compact representation of all "long" Abelian periods. Define

MinLong(i) = min{p > n/2 : (i, p) is an Abelian period of w}.
If no such p exists, we set MinLong(i) = ∞. All long Abelian periods are of the form (i, p) where p ≥ MinLong(i), the table MinLong is a compact O(n) space representation of potentially quadratic set of long Abelian periods.

Auxiliary tables

Let w be a string of length n. Assume its positions are numbered from 1 to n, w = w 1 w 2 . . . w n . By w[i, j] we denote the factor of w of the form w i w i+1 . . . w j . Factors of the form w [1, i] are called prefixes of w and factors of the form w[i, n] are called suffixes of w.

We introduce the following table:

head (i, j) = minimum k such that P(w[i, j]) ≤ P(w[j + 1, j + k]
). If no such k exists, we set head (i, j) = ∞, and if j < i, we set head (i, j) = 0. In the algorithm below we actually compute a slightly modified table head ′ (i, j) = j + head (i, j). We show how to compute the head ′ table in O(n 2) time. The computation is performed in row-order of the table using the fact that it is non-decreasing:

Observation 2. For any 1 ≤ i ≤ j < n, head ′ (i, j) ≤ head ′ (i, j + 1).
We assume that the alphabet of w is Σ = {1, 2, . . . , m} where m ≤ n. For a Parikh vector Q, by Q[i] for i = 1, 2, . . . , m we denote the number of occurrences of the letter i. For two Parikh vectors Q and R, we define their Parikh difference, denoted as Q -R, as a Parikh vector:

(Q -R)[i] = Q[i] -R[i].
In the algorithm we store the difference ∆ j = P(y j)-P(x j) of Parikh vectors of x j = w[i, j] and y j = w[j + 1, k] where k = head ′ (i, j). Note that ∆ j [a] ≥ 0 for any a = 1, 2, . . . , m.

Assume we have computed head ′ (i, j -1) and ∆ j-1 . When we proceed to j, we move the letter w[j] from y to x and update ∆ accordingly. Thus at most one element of ∆ might have dropped below 0. If there is no such element, we conclude that head ′ (i, j) = head ′ (i, j -1) and that we have obtained ∆ j = ∆. Otherwise we keep extending y to the right with new letters and updating ∆ until all its elements become non-negative. We obtain the following algorithm Compute-head . Lemma 3. The head table can be computed in O(n 2) time.

Proof. The time complexity of the algorithm Compute-head is O(n 2). Indeed, the total number of steps of the while-loop for a fixed value of i is O(n), since each step increases the variable k. ✷ We also use the following tail table that is analogical to the head table:

tail (i, j) = minimum k such that P(w[i, j]) ≤ P(w[i -k, i -1]).
for j := i to n do ∆[w[j]] := ∆[w[j]] -2; while (k < n) and (∆[w[j]] < 0) do k := k + 1; ∆[w[k]] := ∆[w[k]] + 1; if ∆[w[j]] < 0 then k := ∞;
head ′ (i, j) := k; head (i, j) := head ′ (i, j) -j;

Abelian squares and Abelian periods

In this section we show how Abelian periods can be inferred from Abelian squares in a string.

Define by maxpower (i, p) the maximal size of a prefix of w[i, n] which is an Abelian k-power with base p (for some k). Define square(i, p) = 1 if and only if maxpower (i, p) ≥ 2p. Cummings and Smyth [START_REF] Cummings | Weak repetitions in strings[END_REF] compute an alternative table square ′ (i, p), such that square ′ (i, p) = 1 if and only if w[i -p + 1, i + p] is an Abelian square. These tables are clearly equivalent:

square(i, p) = 1 ⇔ square ′ (i + p -1, p) = 1.
The maxpower (i, p) table can be computed from the square(i, p) table in linear time using a simple dynamic programming recurrence:

maxpower (i, p) = 0 if n -i < p -1 p + square(i, p) • maxpower (i + p, p) otherwise. (1)
An alternative O(n 2) time algorithm for computing the table square(i, p) for a string w of length n is a consequence of the following observation, see also Example 1.

Observation 4. square(i, p) = 1 ⇔ head (i, i + p -1) = p.
Theorem 5. All Abelian squares in a string of length n can be computed in O(n 2) time.

The following observation provides a constant-time condition for checking an Abelian period. Observation 6. (i, p) is an Abelian period of w if and only if p ≥ head (1, i), tail (j, n) where j = i + 1 + maxpower (i + 1, p).

We conclude with the following algorithm for computing Abelian periods. In the algorithm we use our alternative version of computing the table square from head , since the latter table is computed anyway (instead of that Cummings and Smyth's algorithm can be used for Abelian squares).

Algorithm Compute-Abelian-Periods Compute head (i, j), tail (i, j) using algorithm Compute-head ;

Initialize the table maxpower to zero table;

Long Abelian periods

In this section we show how to compute the

[i] c a a b b c a b b c a a a MinLong(i) 7 7 9 8 7 7 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ For a non-decreasing function f : {1, 2, . . . , n+1} → {-∞}∪{1, 2, . . . , n+1} define the function f (i) = min{j : f (j) > i}.
If the minimum is undefined then we set f (i) = ∞.

Observation 8. Let f be a function non-decreasing and computable in constant time. Then all the values of f can be computed in linear time.

Theorem 9. A compact representation of all long Abelian periods can be computed in linear time.

Proof. Let us take f (j) = jtail (j, n). This function is non-decreasing, see also Observation 2. Then for i < n 2 we have:

MinLong (i) = max n 2 + 1, head (1, i), f (i) -i -1
and otherwise MinLong(i) = ∞, see also Fig. 2. Hence the computation of MinLong table is reduced to linear time algorithm for f and the conclusion of the theorem follows from Observation 8. ✷

w[1, i] w[i + 1, j -1] w[j, n] p = j -i -1 head (1, i) tail (j, n)

 and w[j +1, n] are Abelian factors of w[i+1, i+p], see Fig. 1. Here p is called the length of the period.

Figure 1 :

 1 Figure 1: A word of length 25 with an Abelian period (i = 3, p = 6). This period implies two Abelian squares: abacbbbaabcb and baabcbbabcab.

Example 1 .

 1 For the infinite Fibonacci word F = abaababaabaababaababaa . . . the first several values of the table head (1, i) are: i 1 2 3 4 5 6 7 8 9 10 11 . . . F [i] a b a a b a b a a b a . . . head (1, i) 2 3 3 5 5 6 8 8 10 10 11 . . .We have here Abelian square prefixes of lengths6, 10, 12, 16, 20, 22.

Algorithm

 Compute-head (w) for i := 1 to n do ∆ := (0, 0, . . . , 0); ∆[w[i]] := 1; {Boundary condition} k := i;

 for p := 1 to n dofor i := n downto 1 do if i ≤ np + 1 then maxpower (i, p) := p; if head (i, i + p -1) = p then maxpower (i, p) := p + maxpower (i + p, p);for i := 0 to n -1 do for p := 1 to ni do j := i + 1 + maxpower (i + 1, p); if (p ≥ head (1, i)) and (p ≥ tail(j, n)) then Report an Abelian period (i, p); Theorem 7. All Abelian periods of a string of length n can be computed in O(n 2) time.

Figure 2 :

 2 Figure 2: A schematic view of a long Abelian period: p > n 2 , p ≥ head (1, i), tail(j, n).

table

 MinLong (i), see the example in the table below.

	i 0 1 2 3 4 5	6	7	8	9 10 11 12 13
	w				

The author is supported by grant no. N206 566740 of the National Science Centre.