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Abstract

A run is an inclusion maximal occurrence in a word (as a subinterval) of a factor
in which the period repeats at least twice. The maximal number of runs in a
word of length n has been thoroughly studied, and is known to be between
0.944n and 1.029n. The proofs are very technical. In this paper we investigate
cubic runs, in which the period repeats at least three times. We show the
upper bound on their maximal number, cubic-runs(n), in a word of length n:
cubic-runs(n) < 0.5n. The proof of linearity of cubic-runs(n) utilizes only simple
properties of Lyndon words and is considerably simpler than the corresponding
proof for general runs. For binary words, we provide a better upper bound
cubic-runs2(n) < 0.48n which requires computer-assisted verification of a large
number of cases. We also construct an infinite sequence of words over a binary
alphabet for which the lower bound is 0.41n.

Keywords: run in a word, Lyndon word, Fibonacci word

1. Introduction

Repetitions and periodicities in words are two of the fundamental topics in
combinatorics on words [2, 14]. They are also important in other areas: lossless
compression, word representation, computational biology etc. Repetitions are
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studied from different points of view: classification of words not containing rep-
etitions of a given exponent, efficient identification of factors being repetitions of
different types and, finally, computing the bounds on the number of repetitions
of a given exponent that a word may contain, which we consider in this paper.
Both the known results in the topic and a deeper description of the motivation
can be found in a survey by Crochemore et al. [5].

The concept of runs (also called maximal repetitions) has been introduced
to represent all repetitions in a word in a succinct manner. The crucial property
of runs is that their maximal number in a word of length n (denoted as runs(n))
is O(n), see Kolpakov & Kucherov [11]. This fact is the cornerstone of any
algorithm computing all repetitions in words of length n in O(n) time. Due to
the work of many people, much better bounds on runs(n) have been obtained.
The lower bound 0.927n was first proved by Franek & Yang [9]. Afterwards,
it was improved by Kusano et al. [13] to 0.944565n employing computer ex-
periments, and recently by Simpson [20] to 0.944575712n. On the other hand,
the first explicit upper bound 5n was settled by Rytter [17], afterwards it was
systematically improved to 3.48n by Puglisi et al. [16], 3.44n by Rytter [19],
1.6n by Crochemore & Ilie [3, 4] and 1.52n by Giraud [10]. The best known
result runs(n) ≤ 1.029n is due to Crochemore et al. [6], but it is conjectured
[11] that runs(n) < n. The maximal number of runs was also studied for special
types of words and tight bounds were established for Fibonacci words [11, 18]
and more generally Sturmian words [1].

The combinatorial analysis of runs is strongly related to the problem of
estimation of the maximal number of squares in a word. In the latter problem
the gap between the upper and lower bound is much larger than for runs [5, 8].
However, a recent paper [12] by some of the authors shows that introduction
of integer exponents larger than 2 may lead to obtaining tighter bounds for the
number of corresponding repetitions.

In this paper we introduce and study the concept of cubic runs, in which
the period is at least three times shorter than the run itself. We describe the
structure of cubic runs in Fibonacci words (Section 3). Then we show the
following bounds on their maximal number, cubic-runs(n), in a word of length n:

0.41n < cubic-runs(n) < 0.5n .

The upper bound is achieved by analyzing Lyndon words (i.e., words that are
primitive and minimal/maximal in the class of their cyclic equivalents) that
appear as periods of cubic runs (Section 4). In Section 6 we improve this bound
for binary words to 0.48n by examining short factors of the word. As for the
lower bound, we describe an infinite family of binary words that contain more
than 0.41n cubic runs (Section 5). In particular, we improve both the lower
and the (binary) upper bound from the conference version of the paper [7].

2. Preliminaries

We consider words u over a finite alphabet Σ, u ∈ Σ∗; the empty word is
denoted by ε; the positions in u are numbered from 1 to |u|. By Σn we denote
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n 3 4 5 6 7 8 9 10 11
cubic-runs2(n) 1 1 1 2 2 2 3 3 3

n 12 13 14 15 16 17 18 19 20
cubic-runs2(n) 4 4 5 5 5 6 7 7 7

n 21 22 23 24 25 26 27 28 29
cubic-runs2(n) 8 8 8 9 9 10 10 10 11

Table 1: The maximum number cubic-runs2(n) of cubic runs in a binary word of length n for
n = 3, . . . , 29. Example binary words for which the maximal number of cubic runs is attained
are shown in the following Table 2.

the set of all words of length n from Σ∗. By uR we denote the reversed word
u. By Alph(u) we denote the set of all letters of u. For u = u1u2 . . . un, let us
denote by u[i . . j] a factor of u equal to ui . . . uj (in particular u[i] = u[i . . i]).
Words u[1 . . i] are called prefixes of u, and words u[i . . n] are called suffixes of
u.

We say that a positive integer q is the (shortest) period of a word u =
u1 . . . un (notation: q = per(u)) if q is the smallest positive number, such that
ui = ui+q holds for all 1 ≤ i ≤ n− q.

If u = wk (k is a non-negative integer), that is u = ww . . . w (k times), then
we say that u is the kth power of the word w. A square is the 2nd power of
some non-empty word. The primitive root of a word u, denoted root(u), is the
shortest word w such that wk = u for some positive integer k. We call a word u
primitive if root(u) = u, otherwise it is called non-primitive. We say that words
u and v are cyclically equivalent (or that one of them is a cyclic rotation of the
other) if u = xy and v = yx for some x, y ∈ Σ∗. It is a simple and well-known
observation, that if u and v are cyclically equivalent then |root(u)| = |root(v)|.

A run (also called a maximal repetition) in a word u is an interval [i . . j]
such that:

• the period q of the associated factor u[i . . j] satisfies 2q ≤ j − i+ 1,

• the interval cannot be extended to the left nor to the right, without vio-
lating the above property, that is, u[i− 1] 6= u[i+ q− 1] and u[j− q+ 1] 6=
u[j + 1], provided that the respective letters exist.

By R(u) we denote the set of runs in u, additionally runs(u) = |R(u)|.
A cubic run is a run [i . . j] for which the shortest period q satisfies 3q ≤

j − i + 1. By CR(u) we denote the set of cubic runs in u, additionally denote
cubic-runs(u) = |CR(u)|. For positive integer n, by cubic-runs(n) we denote the
maximum of cubic-runs(u) for all u ∈ Σn, and by cubic-runs2(n) we denote the
maximum over all such binary words.

For simplicity, in the rest of the text we sometimes refer to runs or cubic
runs as to occurrences of corresponding factors of u.

Example. All cubic runs for an example Fibonacci word are shown in Figure 1.
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n cubic-runs2(n) u
3 1 000
6 2 000111
9 3 000111000
12 4 000100010001
14 5 00010001000111
17 6 00010001000111000
18 7 000111000111000111
21 8 000111000111000111000
24 9 000111000111000111000111
26 10 00010001000111000111000111
29 11 00010001000111000111000111000

Table 2: Lexicographically smallest binary words u ∈ {0, 1}n, for which cubic-runs(u) =
cubic-runs2(n) (see also Table 1).

3. Fibonacci Words

Let us start by analyzing the behavior of function cubic-runs for a very com-
mon benchmark in text algorithms, i.e., the Fibonacci words, defined recursively
as:

F0 = a, F1 = ab, Fn = Fn−1Fn−2 for n ≥ 2 .

Denote by Φn = |Fn|, the nth Fibonacci number (we assume that for n < 0,
Φn = 1) and by gn the word Fn with the last two letters removed.

Lemma 1. [15, 18] Each run in Fn is of the form Fk · Fk · gk−1 (short runs)
or Fk · Fk · Fk · gk−1 (long runs), and has a period Φk.

Obviously, in Lemma 1 only runs of the form F 3
k · gk−1 are cubic runs.

Denote by #occ(u, v) the number of occurrences (as a factor) of a word u in a
word v.

Lemma 2. For every k, n ≥ 0:

#occ(F 3
k · gk−1, Fn) = #occ(F 3

k , Fn) .

Proof. Each occurrence of F 3
k within Fn must be followed by gk−1, since oth-

erwise it would form a run different from those specified in Lemma 1. �

Lemma 3. For every k ≥ 2 and m ≥ 0:

a) #occ(F 3
k , Fm+k) = #occ(aaba, Fm),

b) #occ(aaba, Fm) = Φm−3 − 1.

4



Proof. Recall the Fibonacci morphism ϕ:

ϕ(a) = ab, ϕ(b) = a .

Recall that Fn = ϕn(a). The following claim provides a useful tool for the proof
of items (a) and (b).

Claim 4. Assume Fn = uvw, where u, v, w ∈ {a, b}∗, v[1] = a and either
w[1] = a or w = ε. Then there exist unique words u′, v′, w′ such that:

u = ϕ(u′), v = ϕ(v′), w = ϕ(w′), Fn−1 = u′v′w′ .

And conversely, if v′ is a factor of some Fn−1 and v = ϕ(v′) then v is a factor
of Fn.

Proof. It is a straightforward consequence of the definition of ϕ and the fact
that Fn = ϕ(Fn−1). �

Now we proceed to the actual proof of the lemma. We prove item (a) by
induction on k. For k = 2 we show the following equalities:

#occ(abaabaaba, Fm+2) = #occ(ababaa, Fm+1) = #occ(aaba, Fm) . (1)

As for the first of the equalities (1), the occurrence of F 3
2 within Fm+2 cannot

be followed by the letter a (since this would imply a larger run, contradicting
Lemma 1) and cannot be a suffix of Fm+2 (since either F4 or F5 is a suffix of
Fm+2). Thus:

#occ(abaabaaba, Fm+2) = #occ(abaabaabab, Fm+2) = #occ(ababaa, Fm+1) .

The latter of the above equalities holds due to Claim 4, which applies here since
no occurrence of abaabaabab in Fm+2 can be followed by the letter b (bb is not
a factor of any Fibonacci word).

To prove the second equality (1), we apply a very similar approach: ababaa
is not a suffix of Fm+1 and its occurrence cannot be followed by the letter a,
since no Fibonacci word contains the factor aaa. Hence, by Claim 4:

#occ(ababaa, Fm+1) = #occ(ababaab, Fm+1) = #occ(aaba, Fm) .

Finally, the inductive step for k ≥ 3 also follows from Claim 4. Indeed, F 3
k

starts with the letter a and any of its occurrences in Fm+k is followed by the
letter a, since, by Lemma 1, it is a part of a larger run F 3

k · gk−1. Thus:

#occ(F 3
k , Fm+k) = #occ(F 3

k−1, Fm+k−1) .

The proof of item (b) goes by induction on m. For m ≤ 3 one can easily
check that #occ(aaba, Fm) = 0, and there is exactly one occurrence of aaba
in F4. The inductive step is a conclusion of the fact that for m ≥ 5 the word
Fm contains all occurrences of aaba from Fm−1 and Fm−2 and one additional
occurrence overlapping their concatenation:
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. . . ab a | aba︸ ︷︷ ︸ ab . . .
The case of 2 - m.

. . . ab aab | a︸ ︷︷ ︸ ba . . .
The case of 2 | m.

This concludes the proof of the lemma. �

Lemma 5. For n > 5, the word Fn contains (see Fig. 1):

• Φn−5 − 1 cubic runs F 3
2 · g1

• Φn−6 − 1 cubic runs F 3
3 · g2

...

• Φ1 − 1 cubic runs F 3
n−4 · gn−5.

Words F0, F1, . . . , F5 do not contain any cubic runs.

Proof. It is easy to check that words Fn for n ≤ 5 do not contain any cubic
runs. Let n > 5 and k ∈ {2, 3, . . . , n − 4}. Denote m = n − k. Combining the
formulas from Lemmas 2 and 3, we obtain that:

#occ(F 3
k · gk−1, Fn) = #occ(F 3

k · gk−1, Fm+k) = #occ(F 3
k , Fm+k)

= #occ(aaba, Fm) = Φm−3 − 1
= Φn−k−3 − 1 .

�

abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaabaababaababaabaababaabaab

abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaabaababaababaabaababaabaab

abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaabaababaababaabaababaabaab

abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaabaababaababaabaababaabaab

Figure 1: The structure of cubic runs in the Fibonacci word F9. The cubic runs are distributed
as follows: 1 run F 3

5 · g4, 2 runs F 3
4 · g3, 4 runs F 3

3 · g2, and 7 runs F 3
2 .

We are now ready to describe the behaviour of the function cubic-runs(Fn). The
following theorem not only provides an exact formula for it, but also shows a
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relationship between the number of cubic runs and the number of distinct cubes
in Fibonacci words. This relationship is similar to the corresponding relationship
between the number of (ordinary) runs and the number of (distinct) squares in
Fibonacci words, which always differ exactly by 1, see [15, 18].

Theorem 6.

a) cubic-runs(Fn) = Φn−3 − n+ 2.

b) limn→∞
cubic-runs(Fn)

|Fn| = 1
φ3 ≈ 0.2361, where φ = 1+

√
5

2 is the golden ratio.

c) The total number of cubic runs in Fn equals the number of distinct cubes in
Fn.

Proof. a) From Lemma 5 we obtain:

cubic-runs(Fn) =
n−5∑
i=1

(Φi − 1) = Φn−3 − 3− (n− 5) = Φn−3 − n+ 2 .

b) It is a straightforward application of the formula from (a):

lim
n→∞

cubic-runs(Fn)
|Fn|

= lim
n→∞

Φn−3 − n+ 2
Φn

=
1
φ3

.

c) It suffices to note that the number of distinct cubes of length 3Φk+1 in
F 3
k+1 · gk is |gk|+ 1 = Φk − 1, and thus the total number of distinct cubes in
Fn equals:

n−5∑
k=1

(Φk − 1) = Φn−3 − n+ 2 = cubic-runs(Fn).

�

4. Upper Bound of 0.5 n

Let u ∈ Σn. Let us denote by I = {p1, p2, . . . , pn−1} the set of inter-positions
in u that are located between pairs of consecutive letters of u. To show the upper
bound of 0.5n on the number of cubic runs in u, we will assign to each cubic
run a set of interpositions from I (called a handle of the cubic run later on,
formal definitions follow), so that these sets for different cubic runs are disjoint
and each such set contains at least two elements. Clearly, this will imply that
there are at most n−1

2 cubic runs in u.
Assume that Σ is totally ordered by ≤, which induces a lexicographical order

on Σ∗, also denoted by ≤. We say that λ ∈ Σ∗ is a Lyndon word if it is primitive
and minimal or maximal in the class of words that are cyclically equivalent to
it. It is known (see [14]) that a Lyndon word has no non-trivial prefix that is
also its suffix.
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Definition 7. We say that F : R(u)→ subsets(I) is a handle function for the
runs in word u if the following conditions hold:

F (v1) ∩ F (v2) = ∅ for any v1 6= v2. (2)

|F (v)| ≥ 2 for any v ∈ CR(u). (3)

We say that F (v) is the set of handles of the run v.

Obviously, if a word u ∈ Σn admits a handle function then cubic-runs(u) ≤ n−1
2 .

We define a function H : R(u) → subsets(I) as follows. Let v be a run with
period q and let w be the prefix of v of length q. Let wmin and wmax be the
minimal and maximal words (in lexicographical order) cyclically equivalent to
w. H(v) is defined as follows:

a) if wmin 6= wmax then H(v) contains all inter-positions in the middle of any
occurrence of w2

min in v, and in the middle of any occurrence of w2
max in v,

b) if wmin = wmax then H(v) contains all inter-positions within v.

Example. For a cubic run v1 = (aabab)3aab we have per(v1) = 5, w = v1[1 . . 5] =
aabab = wmin and wmax = babaa, see also Fig. 2a. For a cubic run v2 = b4 we
have per(v2) = 1, w = v2[1] = b = wmin = wmax, see also Fig. 2b.

b a b a a b a b a a b a b a a

wmin

wmax

wmin
wmax

=
aa

v1

b b b b b

v2

(b)(a)

Figure 2: (a) For the cubic run v1 with period greater than 1 we have wmin 6= wmax. (b)
For the cubic run v2 we have wmin = wmax = b (a single-letter word). The inter-positions
belonging to the sets H(v1) and H(v2) are indicated by arrows.

Lemma 8. For any word u ∈ Σ∗, H is a handle function.

Proof. Let us start by showing two simple properties of wmin and wmax.

(P1) wmin and wmax are Lyndon words.

(P2) If wmin = wmax (case (b) of the definition of H(v)), then |wmin| = 1 and
consequently each pi ∈ H(v) is located in the middle of w2

min.
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As for the property (P1), by the definition of wmin and wmax we know that
these words are lexicographically minimal and maximal respectively, hence it
suffices to show that both words are primitive. This follows from the fact that,
due to the minimality of q, w is primitive and that wmin and wmax are cyclically
equivalent to w.

We show property (P2) by contradiction. Assume that |wmin| ≥ 2. By
property (P1), wmin = wmax is a Lyndon word. Therefore it contains at least
two distinct letters, let us say: a = wmin[1] and b = wmin[i] 6= a. If b < a (b > a)
then the cyclic rotation of wmin = wmax by i − 1 letters is lexicographically
smaller than wmin (greater than wmax) and wmin 6= wmax — a contradiction.
Hence, the above assumption is false and |wmin| = 1.

Using properties (P1) and (P2), in the following two claims we show that H
satisfies conditions (2) and (3).

Claim 9. H(v1) ∩H(v2) = ∅ for any two different runs v1 and v2 in u.

Proof. Assume, to the contrary, that pi ∈ H(v1) ∩ H(v2) is a handle of two
different runs v1 and v2. By the definition of H and properties (P1) and (P2),
pi is located in the middle of two squares of Lyndon words: w2

1 and w2
2, where

|w1| = per(v1) and |w2| = per(v2). Note that w1 6= w2, since otherwise runs v1
and v2 would be the same. Without the loss of generality, we can assume that
|w1| < |w2|. Thus the word w1 is both a prefix and a suffix of w2 (see Fig. 3),
which contradicts the fact that w2 is a Lyndon word. �

ip

w2 w2

w1 w1

Figure 3: A situation where pi is in the middle of two different squares w2
1 and w2

2 .

Claim 10. For any v ∈ CR(u), we have |H(v)| ≥ 2.

Proof. Let v be a cubic run. Recall that 3q ≤ |v|, where q = per(v). If
wmax = wmin, then, by property (P2), |wmin| = 1 and |H(v)| = |v| − 1 ≥ 2.

If wmax 6= wmin, then it suffices to note that the first occurrences of each of
the words wmin and wmax within v start no further than q positions from the
beginning of v. Of course, they start at different positions. Hence, w2

min and
w2

max are both factors of v and contribute different handles to H(v). �

Thus we have showed that H satisfies both conditions of a handle function,
which concludes the proof of the lemma. �
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wmin wmin

wmax wmax

wmin

v

.......

v

Case (a)

Case (b)

Figure 4: Illustration of the definition of H and Claim 10. The arrows in the figure point to
the elements of H(v) for cubic runs.

Theorem 11.

1. cubic-runs(n) < 0.5n.

2. For infinitely many n we have: 0.4n ≤ cubic-runs(n).

Proof. The upper bound is a corollary of Lemma 8. As for the lower bound,
define:

u = 0313, v = 1323, w = 2303, xk = ( u2 03 v2 13 w2 23 )k .

Observe that for any k ≥ 1, the word xk contains at least 18k − 1 cubic runs.
Indeed, we have 15k cubic runs with period 1, of the form 03, 13 or 23. Moreover,
there are 3k− 1 cubic runs with period 6: 2k cubic runs of the form

(
0313

)3 or(
1323

)3, fully contained within each occurrence of x1 in xk = (x1)k, and k − 1
cubic runs of the form

(
2303

)3, overlapping the concatenations of consecutive
x1’s.

Note that for k ≥ 3, the whole word xk forms an additional cubic run.
Hence, in this case the word xk has length 45k and contains at least 18k cubic
runs. Thus:

cubic-runs(xk) ≥ 0.4 |xk| = 0.4n for k ≥ 3.

�

The lower bound can be improved in two ways: restricting words to be over
binary alphabet and improving 0.4 to 0.41. The coefficient in the upper bound
will be also slightly improved, for the case of binary alphabet (decreased by 1

50 ).
However even such small improvements require quite technical proofs.
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n |wn| cubic-runs(wn)/|wn| wn

0 1 0.16667 02130
1 3 0.23077 021304130
2 5 0.26316 0213041303130
3 10 0.31250 021304130313031304130
4 17 0.33333 021304130313031304130313041303130
5 30 0.36145 . . .
6 49 0.36567
7 83 0.38249

Table 3: Characteristics of a few first elements of the sequence (wn).

5. Improving the Lower Bound

In this section we show an example sequence of binary words which gives
the bound of 0.41n. For this, we use the following morphism, which was found
experimentally using a genetic algorithm:

ψ(a) = 001110, ψ(b) = 0001110 .

Recall that Fn is the n-th Fibonacci word.
It appears that a sequence defined as wn = ψ(Fn) consists of cubic-run-rich

words, see also Table 3. In particular, it can be checked experimentally that the
word w20 (further denoted as w for brevity) of length 113 031 contains 46 348
cubic runs, hence cubic-runs(w) > 0.41 |w|. Below we show that for infinitely
many words of the form wk, the density of cubic runs is more than 0.41.

Theorem 12 (Improved Lower Bound).
There are infinitely many binary words wk, where w = w20, such that:

rk
`k

> 0.41 ,

where rk = cubic-runs(wk), `k = |wk|.

Proof. We start the proof with the following claim, a similar property of the
runs function (with different constants) was proved in [13].

Claim 13. For any k ≥ 3, rk = Ak−B, where A = r4− r3 and B = 3r4− 4r3.

Proof. We will first show that rk+1−rk = r4−r3, i.e., that the increase of the
number of cubic runs when concatenating wk and w equals the corresponding
increase when concatenating w3 and w. Let [i . . j] be a cubic run in wk+1

ending within the last occurrence of w, that is, j > k · |w|. In [13] it is proved
(as Lemma 2) that the only run in wk+1 of length at least 2 · |w| is the run
equal to the word wk+1. Hence, the cubic run [i . . j] either corresponds to the
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whole word wk+1 or satisfies i > (k − 2) · |w|. In both cases the cubic runs
yield the same increase as when concatenating w to w3. (Note that in the first
case the cubic run forms only an extension of a cubic run already present in wk,
therefore it does not increase the number of cubic runs for any k ≥ 3.)

This concludes that rk+1 − rk = r4 − r3. From this formula we obtain that,
for k ≥ 4:

rk = rk−1 + r4 − r3 = rk−2 + 2 · (r4 − r3) = . . .

= r3 + (k − 3) · (r4 − r3) = k · (r4 − r3)− (3r4 − 4r3) .

One can easily check that the same formula holds also for k = 3. �

Now we complete the proof of Theorem 12. Using an extensive computer ex-
periment one can obtain that:

r3 = 139 083 and r4 = 185 450, and recall that |w| = 113 031.

By Claim 13, for k > 104·B
|w| we obtain that:

rk
`k

=
A · k
|wk|

− B

|wk|
=

r4 − r3
|w|

− B

|w| · k

>
185 450− 139 083

113 031
− 0.0001 > 0.41 .

This concludes the proof of the theorem. �

6. Improving the Upper Bound in the Case of Binary Alphabet

Let u ∈ {0, 1}n. Recall that I = {p1, p2, . . . , pn−1} is the set of all inter-
positions of u. These are all candidates for handles of cubic runs from CR(u).

Recall also the definition of the handle function H. We have observed that
the maximal number of cubic runs would be obtained when there are n−1

2 cubic
runs, and H assigns to each of them exactly two handles.

Some cubic runs can have more than two handles. Some inter-positions can
be not a handle of any cubic runs, such inter-positions are called here free inter-
positions. The key to the improvement of the upper bound is the localizations
of free inter-positions and cubic runs with more than two handles.

Denote:

Y = { 0, 01, 0001, 0111, 000111, 1, 10, 1000, 1110, 111000 } .

By an internal factor of a word w we mean any factor of w having an occurrence
which is neither a prefix nor a suffix of w. An internal factor can also have an
occurrence at the beginning or at the end of w. For example, ab is an internal
factor of ababa, but not of abab.

Let X be the set of binary words w which satisfy at least one of the proper-
ties:

12



(1) w has an internal factor which is a non-cubic run containing a square of a
word from Y

(2) w has a factor which is a cube of a word from Y \ {0, 1}

(3) w has a factor 0000 or 1111.

The words x ∈ X have several useful properties. For example, if x =
110001000101 then the center of the square 00010001 is a free inter-position
in x, since it could only be a handle of a cubic run with period 4, but the run
with period 4 containing this square is not cubic. The word 1000100010 is a
non-cubic run which is an internal factor of x.

On the other hand, if x contains a factor 000100010001 then it implies a
cubic run with 3 handles — the centers of the squares 00010001 and 10001000
(0001 is the minimal rotation and 1000 is the maximal rotation of the period of
the run).

The words in X can be checked to satisfy the following simple fact.

Observation 14. Let u ∈ {0, 1}n.

(a) If a factor u[i . . j] contains any factor satisfying point (1) of the definition of
X then there is at least one free inter-position in u amongst pi, pi+1, . . . , pj−1.

(b) If a factor u[i . . j] contains any factor satisfying point (2) or (3) then there
are at least 3 inter-positions in u amongst pi, pi+1, . . . , pj−1 which are han-
dles of the same cubic run.

This implies the following result.

Theorem 15 (Improved Upper Bound).

cubic-runs2(n) ≤ 0.48 n .

Proof. Each binary word of length 25 contains a factor from X. It has been
shown experimentally by checking all binary words of size 25.

Let u ∈ {0, 1}n. Let us partition the word u into factors of length 25:
u[1 . . 25], u[26 . . 50], . . . (possibly discarding at most 24 last letters of u). By
Observation 14, it is possible to remove one inter-position from every one of
these factors so that each cubic run in u has at least two handles in the set of
remaining inter-positions.

The total number of inter-positions in u is n− 1 and we have shown that at
least

⌊
n−1
25

⌋
of them can be removed and each cubic run will have at least two

handles among remaining inter-positions. Hence:

cubic-runs(u) ≤ 1
2
·
(
n− 1−

⌊
n− 1

25

⌋)
=

1
2
·
(

24 · (n− 1)
25

+
n− 1

25
−
⌊
n− 1

25

⌋)
≤ 1

2
·
(

24 · (n− 1)
25

+
24
25

)
= 0.48n .
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This completes the proof. �
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