M Crochemore
email: maxime.crochemore@kcl.ac.uk

C Iliopoulos

M Kubica
email: kubica@mimuw.edu.pl

J Radoszewski

W Rytter
email: rytter@mimuw.edu.pl

T Waleń
email: walen@mimuw.edu.pl

The Maximal Number of Cubic Runs in a Word

Keywords: run in a word, Lyndon word, Fibonacci

A run is an inclusion maximal occurrence in a word (as a subinterval) of a factor in which the period repeats at least twice. The maximal number of runs in a word of length n has been thoroughly studied, and is known to be between 0.944 n and 1.029 n. The proofs are very technical. In this paper we investigate cubic runs, in which the period repeats at least three times. We show the upper bound on their maximal number, cubic-runs(n), in a word of length n: cubic-runs(n) < 0.5 n. The proof of linearity of cubic-runs(n) utilizes only simple properties of Lyndon words and is considerably simpler than the corresponding proof for general runs. For binary words, we provide a better upper bound cubic-runs 2 (n) < 0.48 n which requires computer-assisted verification of a large number of cases. We also construct an infinite sequence of words over a binary alphabet for which the lower bound is 0.41 n.

Introduction

Repetitions and periodicities in words are two of the fundamental topics in combinatorics on words [START_REF] Berstel | Combinatorics on words: a tutorial[END_REF][START_REF] Lothaire | Combinatorics on Words[END_REF]. They are also important in other areas: lossless compression, word representation, computational biology etc. Repetitions are studied from different points of view: classification of words not containing repetitions of a given exponent, efficient identification of factors being repetitions of different types and, finally, computing the bounds on the number of repetitions of a given exponent that a word may contain, which we consider in this paper. Both the known results in the topic and a deeper description of the motivation can be found in a survey by Crochemore et al. [START_REF] Crochemore | Repetitions in strings: Algorithms and combinatorics[END_REF].

The concept of runs (also called maximal repetitions) has been introduced to represent all repetitions in a word in a succinct manner. The crucial property of runs is that their maximal number in a word of length n (denoted as runs(n)) is O(n), see Kolpakov & Kucherov [11]. This fact is the cornerstone of any algorithm computing all repetitions in words of length n in O(n) time. Due to the work of many people, much better bounds on runs(n) have been obtained. The lower bound 0.927 n was first proved by Franek & Yang [START_REF] Franek | An asymptotic lower bound for the maximal number of runs in a string[END_REF]. Afterwards, it was improved by Kusano et al. [START_REF] Kusano | New lower bounds for the maximum number of runs in a string[END_REF] to 0.944565 n employing computer experiments, and recently by Simpson [START_REF] Simpson | Modified Padovan words and the maximum number of runs in a word[END_REF] to 0.944575712 n. On the other hand, the first explicit upper bound 5 n was settled by Rytter [START_REF] Rytter | The number of runs in a string: Improved analysis of the linear upper bound[END_REF], afterwards it was systematically improved to 3.48 n by Puglisi et al. [START_REF] Puglisi | How many runs can a string contain?[END_REF], 3.44 n by Rytter [START_REF] Rytter | The number of runs in a string[END_REF], 1.6 n by Crochemore & Ilie [START_REF] Crochemore | Analysis of maximal repetitions in strings[END_REF][START_REF] Crochemore | Maximal repetitions in strings[END_REF] and 1.52 n by Giraud [START_REF] Giraud | Not so many runs in strings[END_REF]. The best known result runs(n) ≤ 1.029 n is due to Crochemore et al. [START_REF] Crochemore | Towards a solution to the "runs" conjecture[END_REF], but it is conjectured [START_REF] Kolpakov | Finding maximal repetitions in a word in linear time[END_REF] that runs(n) < n. The maximal number of runs was also studied for special types of words and tight bounds were established for Fibonacci words [START_REF] Kolpakov | Finding maximal repetitions in a word in linear time[END_REF][START_REF] Rytter | The structure of subword graphs and suffix trees in Fibonacci words[END_REF] and more generally Sturmian words [START_REF] Baturo | The number of runs in Sturmian words[END_REF].

The combinatorial analysis of runs is strongly related to the problem of estimation of the maximal number of squares in a word. In the latter problem the gap between the upper and lower bound is much larger than for runs [START_REF] Crochemore | Repetitions in strings: Algorithms and combinatorics[END_REF][START_REF] Crochemore | Squares, cubes, and time-space efficient string searching[END_REF]. However, a recent paper [START_REF] Kubica | On the maximal number of cubic subwords in a string[END_REF] by some of the authors shows that introduction of integer exponents larger than 2 may lead to obtaining tighter bounds for the number of corresponding repetitions.

In this paper we introduce and study the concept of cubic runs, in which the period is at least three times shorter than the run itself. We describe the structure of cubic runs in Fibonacci words (Section 3). Then we show the following bounds on their maximal number, cubic-runs(n), in a word of length n:

0.41 n < cubic-runs(n) < 0.5 n .
The upper bound is achieved by analyzing Lyndon words (i.e., words that are primitive and minimal/maximal in the class of their cyclic equivalents) that appear as periods of cubic runs (Section 4). In Section 6 we improve this bound for binary words to 0.48 n by examining short factors of the word. As for the lower bound, we describe an infinite family of binary words that contain more than 0.41 n cubic runs (Section 5). In particular, we improve both the lower and the (binary) upper bound from the conference version of the paper [START_REF] Crochemore | On the maximal number of cubic runs in a string[END_REF].

Preliminaries

We consider words u over a finite alphabet Σ, u ∈ Σ * ; the empty word is denoted by ε; the positions in u are numbered from 1 to |u|. By Σ n we denote We say that a positive integer q is the (shortest) period of a word u = u 1 . . . u n (notation: q = per(u)) if q is the smallest positive number, such that u i = u i+q holds for all 1 ≤ i ≤ n -q.

If u = w k (k is a non-negative integer), that is u = ww . . . w (k times), then we say that u is the k th power of the word w. A square is the 2 nd power of some non-empty word. The primitive root of a word u, denoted root(u), is the shortest word w such that w k = u for some positive integer k. We call a word u primitive if root(u) = u, otherwise it is called non-primitive. We say that words u and v are cyclically equivalent (or that one of them is a cyclic rotation of the other) if u = xy and v = yx for some x, y ∈ Σ * . It is a simple and well-known observation, that if u and v are cyclically equivalent then |root(u)| = |root(v)|.

A run (also called a maximal repetition) in a word u is an interval [i .

. j] such that:

• the period q of the associated factor u[i . . j] satisfies 2q ≤ j -i + 1,

• the interval cannot be extended to the left nor to the right, without violating the above property, that is,

u[i -1] = u[i + q -1] and u[j -q + 1] = u[j + 1]
, provided that the respective letters exist.

By R(u) we denote the set of runs in u, additionally runs(u) = |R(u)|.

A cubic run is a run [i . . j] for which the shortest period q satisfies 3q ≤ j -i + 1. By CR(u) we denote the set of cubic runs in u, additionally denote cubic-runs(u) = |CR(u)|. For positive integer n, by cubic-runs(n) we denote the maximum of cubic-runs(u) for all u ∈ Σ n , and by cubic-runs 2 (n) we denote the maximum over all such binary words.

For simplicity, in the rest of the text we sometimes refer to runs or cubic runs as to occurrences of corresponding factors of u.

Example. All cubic runs for an example Fibonacci word are shown in Figure 1.

n cubic-runs 2 (n) u 3 1

Fibonacci Words

Let us start by analyzing the behavior of function cubic-runs for a very common benchmark in text algorithms, i.e., the Fibonacci words, defined recursively as:

F 0 = a, F 1 = ab, F n = F n-1 F n-2 for n ≥ 2 .
Denote by Φ n = |F n |, the n th Fibonacci number (we assume that for n < 0, Φ n = 1) and by g n the word F n with the last two letters removed.

Lemma 1. [START_REF] Mignosi | Repetitions in the Fibonacci infinite word[END_REF][START_REF] Rytter | The structure of subword graphs and suffix trees in Fibonacci words[END_REF] Each run in F n is of the form

F k • F k • g k-1 (short runs) or F k • F k • F k • g k-1
(long runs), and has a period Φ k .

Obviously, in Lemma 1 only runs of the form F 3 k • g k-1 are cubic runs. Denote by #occ(u, v) the number of occurrences (as a factor) of a word u in a word v. Lemma 2. For every k, n ≥ 0:

#occ(F 3 k • g k-1 , F n) = #occ(F 3 k , F n) .
Proof. Each occurrence of F 3 k within F n must be followed by g k-1 , since otherwise it would form a run different from those specified in Lemma 1. Lemma 3. For every k ≥ 2 and m ≥ 0:

a) #occ(F 3 k , F m+k) = #occ(aaba, F m), b) #occ(aaba, F m) = Φ m-3 -1.
Proof. Recall the Fibonacci morphism ϕ:

ϕ(a) = ab, ϕ(b) = a .
Recall that F n = ϕ n (a). The following claim provides a useful tool for the proof of items (a) and (b).

Claim 4. Assume F n = uvw, where u, v, w ∈ {a, b} * , v[1] = a and either w[1] = a or w = ε.
Then there exist unique words u , v , w such that:

u = ϕ(u), v = ϕ(v), w = ϕ(w), F n-1 = u v w .
And conversely, if v is a factor of some

F n-1 and v = ϕ(v) then v is a factor of F n .
Proof. It is a straightforward consequence of the definition of ϕ and the fact that

F n = ϕ(F n-1
).

Now we proceed to the actual proof of the lemma. We prove item (a) by induction on k. For k = 2 we show the following equalities:

#occ(abaabaaba, F m+2) = #occ(ababaa, F m+1) = #occ(aaba, F m) . (1)
As for the first of the equalities (1), the occurrence of F 3 2 within F m+2 cannot be followed by the letter a (since this would imply a larger run, contradicting Lemma 1) and cannot be a suffix of F m+2 (since either F 4 or F 5 is a suffix of F m+2). Thus: #occ(abaabaaba, F m+2) = #occ(abaabaabab, F m+2) = #occ(ababaa, F m+1) .

The latter of the above equalities holds due to Claim 4, which applies here since no occurrence of abaabaabab in F m+2 can be followed by the letter b (bb is not a factor of any Fibonacci word).

To prove the second equality (1), we apply a very similar approach: ababaa is not a suffix of F m+1 and its occurrence cannot be followed by the letter a, since no Fibonacci word contains the factor aaa. Hence, by Claim 4:

#occ(ababaa, F m+1) = #occ(ababaab, F m+1) = #occ(aaba, F m) .
Finally, the inductive step for k ≥ 3 also follows from Claim 4. Indeed, F 3 k starts with the letter a and any of its occurrences in F m+k is followed by the letter a, since, by Lemma 1, it is a part of a larger run

F 3 k • g k-1 . Thus: #occ(F 3 k , F m+k) = #occ(F 3 k-1 , F m+k-1) .
The proof of item (b) goes by induction on m. For m ≤ 3 one can easily check that #occ(aaba, F m) = 0, and there is exactly one occurrence of aaba in F 4 . The inductive step is a conclusion of the fact that for m ≥ 5 the word F m contains all occurrences of aaba from F m-1 and F m-2 and one additional occurrence overlapping their concatenation: This concludes the proof of the lemma. Lemma 5. For n > 5, the word F n contains (see Fig. 1):

• Φ n-5 -1 cubic runs F 3 2 • g 1 • Φ n-6 -1 cubic runs F 3 3 • g 2 . . . • Φ 1 -1 cubic runs F 3 n-4 • g n-5 .
Words F 0 , F 1 , . . . , F 5 do not contain any cubic runs.

Proof. It is easy to check that words F n for n ≤ 5 do not contain any cubic runs. Let n > 5 and k ∈ {2, 3, . . . , n -4}. Denote m = n -k. Combining the formulas from Lemmas 2 and 3, we obtain that: We are now ready to describe the behaviour of the function cubic-runs(F n). The following theorem not only provides an exact formula for it, but also shows a relationship between the number of cubic runs and the number of distinct cubes in Fibonacci words. This relationship is similar to the corresponding relationship between the number of (ordinary) runs and the number of (distinct) squares in Fibonacci words, which always differ exactly by 1, see [START_REF] Mignosi | Repetitions in the Fibonacci infinite word[END_REF][START_REF] Rytter | The structure of subword graphs and suffix trees in Fibonacci words[END_REF].

#occ(F 3 k • g k-1 , F n) = #occ(F 3 k • g k-1 , F m+k) = #occ(F 3 k , F m+k) = #occ(aaba, F m) = Φ m-3 -1 = Φ n-k-3 -1 .
Theorem 6. a) cubic-runs(F n) = Φ n-3 -n + 2. b) lim n→∞ cubic-runs(Fn) |Fn| = 1 φ 3 ≈ 0.2361, where φ = 1+ √ 5 2
is the golden ratio.

c) The total number of cubic runs in F n equals the number of distinct cubes in F n .

Proof. a) From Lemma 5 we obtain:

cubic-runs(F n) = n-5 i=1 (Φ i -1) = Φ n-3 -3 -(n -5) = Φ n-3 -n + 2 .
b) It is a straightforward application of the formula from (a):

lim n→∞ cubic-runs(F n) |F n | = lim n→∞ Φ n-3 -n + 2 Φ n = 1 φ 3 .
c) It suffices to note that the number of distinct cubes of length 3Φ k+1 in

F 3 k+1 • g k is |g k | + 1 = Φ k -1
, and thus the total number of distinct cubes in F n equals:

n-5 k=1 (Φ k -1) = Φ n-3 -n + 2 = cubic-runs(F n).

Upper Bound of 0.5 n

Let u ∈ Σ n . Let us denote by I = {p 1 , p 2 , . . . , p n-1 } the set of inter-positions in u that are located between pairs of consecutive letters of u. To show the upper bound of 0.5 n on the number of cubic runs in u, we will assign to each cubic run a set of interpositions from I (called a handle of the cubic run later on, formal definitions follow), so that these sets for different cubic runs are disjoint and each such set contains at least two elements. Clearly, this will imply that there are at most n-1 2 cubic runs in u. Assume that Σ is totally ordered by ≤, which induces a lexicographical order on Σ * , also denoted by ≤. We say that λ ∈ Σ * is a Lyndon word if it is primitive and minimal or maximal in the class of words that are cyclically equivalent to it. It is known (see [START_REF] Lothaire | Combinatorics on Words[END_REF]) that a Lyndon word has no non-trivial prefix that is also its suffix. Definition 7. We say that F : R(u) → subsets(I) is a handle function for the runs in word u if the following conditions hold:

F (v 1) ∩ F (v 2) = ∅ for any v 1 = v 2 .
(2)

|F (v)| ≥ 2 for any v ∈ CR(u). (3)
We say that F (v) is the set of handles of the run v.

Obviously, if a word u ∈ Σ n admits a handle function then cubic-runs(u) ≤ n-1 2 . We define a function H : R(u) → subsets(I) as follows. Let v be a run with period q and let w be the prefix of v of length q. Let w min and w max be the minimal and maximal words (in lexicographical order) cyclically equivalent to w. H(v) is defined as follows: As for the property (P1), by the definition of w min and w max we know that these words are lexicographically minimal and maximal respectively, hence it suffices to show that both words are primitive. This follows from the fact that, due to the minimality of q, w is primitive and that w min and w max are cyclically equivalent to w.

We show property (P2) by contradiction. Assume that |w min | ≥ 2. By property (P1), w min = w max is a Lyndon word. Therefore it contains at least two distinct letters, let us say: a = w min [START_REF] Baturo | The number of runs in Sturmian words[END_REF]

and b = w min [i] = a. If b < a (b > a)
then the cyclic rotation of w min = w max by i -1 letters is lexicographically smaller than w min (greater than w max) and w min = w max -a contradiction. Hence, the above assumption is false and

|w min | = 1.
Using properties (P1) and (P2), in the following two claims we show that H satisfies conditions (2) and (3). Proof. Assume, to the contrary, that p i ∈ H(v 1) ∩ H(v 2) is a handle of two different runs v 1 and v 2 . By the definition of H and properties (P1) and (P2), p i is located in the middle of two squares of Lyndon words: w 2 1 and w 2 2 , where |w 1 | = per(v 1) and |w 2 | = per(v 2). Note that w 1 = w 2 , since otherwise runs v 1 and v 2 would be the same. Without the loss of generality, we can assume that |w 1 | < |w 2 |. Thus the word w 1 is both a prefix and a suffix of w 2 (see Fig. 3), which contradicts the fact that w 2 is a Lyndon word. Claim 10. For any v ∈ CR(u), we have

|H(v)| ≥ 2.
Proof. Let v be a cubic run. Recall that 3q ≤ |v|, where q = per(v). If w max = w min , then, by property (P2),

|w min | = 1 and |H(v)| = |v| -1 ≥ 2.
If w max = w min , then it suffices to note that the first occurrences of each of the words w min and w max within v start no further than q positions from the beginning of v. Of course, they start at different positions. Hence, w 2 min and w 2 max are both factors of v and contribute different handles to H(v).

Thus we have showed that H satisfies both conditions of a handle function, which concludes the proof of the lemma. Theorem 11.

1. cubic-runs(n) < 0.5 n.

2.

For infinitely many n we have: 0.4 n ≤ cubic-runs(n).

Proof. The upper bound is a corollary of Lemma 8. As for the lower bound, define:

u = 0 3 1 3 , v = 1 3 2 3 , w = 2 3 0 3 , x k = (u 2 0 3 v 2 1 3 w 2 2 3) k .
Observe that for any k ≥ 1, the word x k contains at least 18k -1 cubic runs. Indeed, we have 15k cubic runs with period 1, of the form 0 3 , 1 3 or 2 3 . Moreover, there are 3k -1 cubic runs with period 6: 2k cubic runs of the form 0 3 1 3 3 or 1 3 2 3 3 , fully contained within each occurrence of x 1 in x k = (x 1) k , and k -1 cubic runs of the form 2 3 0 3 3 , overlapping the concatenations of consecutive x 1 's.

Note that for k ≥ 3, the whole word x k forms an additional cubic run. Hence, in this case the word x k has length 45k and contains at least 18k cubic runs. Thus:

cubic-runs(x k) ≥ 0.4 |x k | = 0.4n for k ≥ 3.
The lower bound can be improved in two ways: restricting words to be over binary alphabet and improving 0.4 to 0.41. The coefficient in the upper bound will be also slightly improved, for the case of binary alphabet (decreased by 1 50). However even such small improvements require quite technical proofs.

n |w n | cubic-runs(w n)/|w n | w n 0 1 0.16667 0 2 1 3 0 1 3 0.23077 0 2 1 3 0 4 1 3 0 2 5 0.26316 0 2 1 3 0 4 1 3 0 3 1 3 0 3 10 0.31250 0 2 1 3 0 4 1 3 0 3 1 3 0 3 1 3 0 4 1 3 0 4 17 0.33333 0 2 1 3 0 4 1 3 0 3 1 3 0 3 1 3 0 4 1 3 0 3 1 3 0 4 1 3 0 3 1

Improving the Lower Bound

In this section we show an example sequence of binary words which gives the bound of 0.41 n. For this, we use the following morphism, which was found experimentally using a genetic algorithm:

ψ(a) = 001110, ψ(b) = 0001110 .
Recall that F n is the n-th Fibonacci word.

It appears that a sequence defined as w n = ψ(F n) consists of cubic-run-rich words, see also Table 3. In particular, it can be checked experimentally that the word w 20 (further denoted as w for brevity) of length 113 031 contains 46 348 cubic runs, hence cubic-runs(w) > 0.41 |w|. Below we show that for infinitely many words of the form w k , the density of cubic runs is more than 0.41.

Theorem 12 (Improved Lower Bound).

There are infinitely many binary words w k , where w = w 20 , such that:

r k k > 0.41 , where r k = cubic-runs(w k), k = |w k |.
Proof. We start the proof with the following claim, a similar property of the runs function (with different constants) was proved in [START_REF] Kusano | New lower bounds for the maximum number of runs in a string[END_REF]. Proof. We will first show that r k+1 -r k = r 4 -r 3 , i.e., that the increase of the number of cubic runs when concatenating w k and w equals the corresponding increase when concatenating w 3 and w. Let [i . . j] be a cubic run in w k+1 ending within the last occurrence of w, that is, j > k • |w|. In [START_REF] Kusano | New lower bounds for the maximum number of runs in a string[END_REF] it is proved (as Lemma 2) that the only run in w k+1 of length at least 2 • |w| is the run equal to the word w k+1 . Hence, the cubic run [i . . j] either corresponds to the whole word w k+1 or satisfies i > (k -2) • |w|. In both cases the cubic runs yield the same increase as when concatenating w to w 3 . (Note that in the first case the cubic run forms only an extension of a cubic run already present in w k , therefore it does not increase the number of cubic runs for any k ≥ 3.)

This concludes that r k+1 -r k = r 4 -r 3 . From this formula we obtain that, for k ≥ 4:

r k = r k-1 + r 4 -r 3 = r k-2 + 2 • (r 4 -r 3) = . . . = r 3 + (k -3) • (r 4 -r 3) = k • (r 4 -r 3) -(3r 4 -4r 3) .
One can easily check that the same formula holds also for k = 3. Now we complete the proof of Theorem 12. Using an extensive computer experiment one can obtain that: |w| we obtain that:

r k k = A • k |w k | - B |w k | = r 4 -r 3 |w| - B |w| • k > 185 450 -139 083 113 031 -0.0001 > 0.41 .
This concludes the proof of the theorem.

Improving the Upper Bound in the Case of Binary Alphabet

Let u ∈ {0, 1} n . Recall that I = {p 1 , p 2 , . . . , p n-1 } is the set of all interpositions of u. These are all candidates for handles of cubic runs from CR(u).

Recall also the definition of the handle function H. We have observed that the maximal number of cubic runs would be obtained when there are n-1 2 cubic runs, and H assigns to each of them exactly two handles.

Some cubic runs can have more than two handles. Some inter-positions can be not a handle of any cubic runs, such inter-positions are called here free interpositions. The key to the improvement of the upper bound is the localizations of free inter-positions and cubic runs with more than two handles.

Denote: Y = { 0, 01, 0001, 0111, 000111, 1, 10, 1000, 1110, 111000 } .

By an internal factor of a word w we mean any factor of w having an occurrence which is neither a prefix nor a suffix of w. An internal factor can also have an occurrence at the beginning or at the end of w. For example, ab is an internal factor of ababa, but not of abab. Let X be the set of binary words w which satisfy at least one of the properties:

(1) w has an internal factor which is a non-cubic run containing a square of a word from Y

(2) w has a factor which is a cube of a word from Y \ {0, 1}

(3) w has a factor 0000 or 1111.

The words x ∈ X have several useful properties. For example, if x = 110001000101 then the center of the square 00010001 is a free inter-position in x, since it could only be a handle of a cubic run with period 4, but the run with period 4 containing this square is not cubic. The word 1000100010 is a non-cubic run which is an internal factor of x.

On the other hand, if x contains a factor 000100010001 then it implies a cubic run with 3 handles -the centers of the squares 00010001 and 10001000 (0001 is the minimal rotation and 1000 is the maximal rotation of the period of the run).

The words in X can be checked to satisfy the following simple fact.

 . . . ab a | aba ab . . . The case of 2 m. . . . ab aab | a ba . . . The case of 2 | m.

Figure 1 :

 1 Figure 1: The structure of cubic runs in the Fibonacci word F 9 . The cubic runs are distributed as follows: 1 run F 3 5 • g 4 , 2 runs F 3 4 • g 3 , 4 runs F 3 3 • g 2 , and 7 runs F 3 2 .

Figure 2 :Lemma 8 .

 28 Figure 2: (a) For the cubic run v 1 with period greater than 1 we have w min = wmax. (b) For the cubic run v 2 we have w min = wmax = b (a single-letter word). The inter-positions belonging to the sets H(v 1) and H(v 2) are indicated by arrows.

Claim 9 .

 9 H(v 1) ∩ H(v 2) = ∅ for any two different runs v 1 and v 2 in u.

Figure 3 :

 3 Figure 3: A situation where p i is in the middle of two different squares w 2 1 and w 2 2 .

Figure 4 :

 4 Figure 4: Illustration of the definition of H and Claim 10. The arrows in the figure point to the elements of H(v) for cubic runs.

Claim 13 .

 13 For any k ≥ 3, r k = Ak -B, where A = r 4 -r 3 and B = 3r 4 -4r 3 .

r 3 =

 3 139 083 and r 4 = 185 450, and recall that |w| = 113 031. By Claim 13, for k > 10 4 •B

Observation 14 .

 14 Let u ∈ {0, 1} n . (a) If a factor u[i . . j] contains any factor satisfying point (1) of the definition of X then there is at least one free inter-position in u amongst p i , p i+1 , . . . , p j-1 . (b) If a factor u[i . . j] contains any factor satisfying point (2) or (3) then there are at least 3 inter-positions in u amongst p i , p i+1 , . . . , p j-1 which are handles of the same cubic run. This implies the following result. Theorem 15 (Improved Upper Bound). cubic-runs 2 (n) ≤ 0.48 n . Proof. Each binary word of length 25 contains a factor from X. It has been shown experimentally by checking all binary words of size 25. Let u ∈ {0, 1} n . Let us partition the word u into factors of length 25: u[1 . . 25], u[26 .. 50], . . . (possibly discarding at most 24 last letters of u). By Observation 14, it is possible to remove one inter-position from every one of these factors so that each cubic run in u has at least two handles in the set of remaining inter-positions.The total number of inter-positions in u is n -1 and we have shown that at least n-1 25 of them can be removed and each cubic run will have at least two handles among remaining inter-positions. Hence: cubic-runs(u)

Table 1 :

 1 The maximum number cubic-runs 2 (n) of cubic runs in a binary word of length n for n = 3, . . . , 29. Example binary words for which the maximal number of cubic runs is attained are shown in the following Table2.

	Words u[1 . . i] are called prefixes of u, and words u[i . . n] are called suffixes of
	u.

the set of all words of length n from Σ * . By u R we denote the reversed word u. By Alph(u) we denote the set of all letters of u. For u = u 1 u 2 . . . u n , let us denote by u[i . . j] a factor of u equal to u i . . . u j (in particular u[i] = u[i . . i]).

Table 2 :

 2

			000
	6	2	000111
	9	3	000111000
	12	4	000100010001
	14	5	00010001000111
	17	6	00010001000111000
	18	7	000111000111000111
	21	8	000111000111000111000
	24	9	000111000111000111000111
	26	10	00010001000111000111000111
	29	11	00010001000111000111000111000

Lexicographically smallest binary words u ∈ {0, 1} n , for which cubic-runs(u) = cubic-runs 2 (n) (see also Table

1

).

Table 3 :

 3 Characteristics of a few first elements of the sequence (wn).

This completes the proof. Marcin Kubica, Ph.D. in computer science, assistant professor at Institute of Informatics, Department of Mathematics, Informatics and Mechanics, University of Warsaw, lecturer at Polish-Japanese Institute of Information Technology, and scientific secretary of Polish Olympiad in Informatics. His research interests include combinatorial and text algorithms, with special focus on repetitions and periodicities, and computational biology. Jakub Radoszewski, Ph.D. student at Department of Mathematics, Informatics and Mechanics, University of Warsaw, and chair of the Jury of Polish Olympiad in Informatics. His research interests focus on text algorithms and combinatorics, and discrete mathematics. Wojciech Rytter, Professor at University of Warsaw, Poland, Head of the Section on Analysis of Algorithms in the Department of Mathematics, Informatics and Mechanics, University of Warsaw. Prof. Rytter is an author/co-author of more than 100 publications and a co-author of several textbooks on algorithms. His research interests focus on the design and analysis of algorithms and data structures, parallel computations, discrete mathematics, graph theory, algorithms on texts, automata theory and formal languages. Main current interests: text algorithms, algorithms for highly compressed objects (without decompression), automata and formal languages. Tomasz Waleń, Ph.D. in computer science, assistant professor at Institute of Informatics, Department of Mathematics, Informatics and Mechanics, University of Warsaw. His research interests focus on combinatorics and text algorithms, and on their applications to bioinformatics.

The author is supported by grant no. N206 568540 of the National Science Centre. 2 The author is supported by grant no. N206 566740 of the National Science Centre.