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We consider a simple random walk in an i.i.d. non-negative potential on the ddimensional integer lattice Z d , d ≥ 3. We study Lyapunov exponents, and present a probabilistic proof of its continuity when the potentials converge in distribution.

Introduction

Let S n , n ∈ N be the simple random walk on Z d , d ≥ 3. We denote by P x and E x the probability measure and the expectation, respectively, of the random walk starting from position x. Independently of the random walk, we give ourselves a family of non-negative random variables V (x, ω), x ∈ Z d that we call the potentials. We suppose that the potentials are independent and identically distributed, with distribution function F , defined on a probability space (Ω, F , P) (and associated expectation E).

We denote by D the set of distribution functions F which assign zero measure to the half-line ] -∞, 0[ and F (0) < 1. And D 1 denotes the subset of D which contains all distribution functions of finite mean. For y ∈ Z d , let us write H(y) for the hitting time of the walk at site y: H(y) := inf{n ≥ 0 :

S n = y}, (1) 
with the convention that inf ∅ = +∞. Let V be a potential with distribution function F ∈ D.

For any x, y ∈ Z d , ω ∈ Ω we define:

e(x, y, ω) := E x [exp(-

H(y)-1 m=0 V (S m , ω)), H(y) < ∞] (e(x, y, ω) = 1 if x = y) (2) 
Consider a Markov chain on the extended state space Z d ∪ {△} where △ is an absorbing state. At each step, the walk jumps to △ from x with probability 1e -V (x) . Otherwise, it behaves as a simple symmetric random walk on Z d . The path measure of this random walk starting at x in a fixed potential V (x, ω) will be denoted by Px,ω . One can think of e(x, y, ω) as the probability that the random walk reaches y before being killed: e(x, y, ω) = Px,ω (H(y) < ∞). Let us now introduce for ω ∈ Ω and x, y ∈ Z d the quenched path measure:

P y x,ω (•) := Px,ω (• | H(y) < ∞), (3) 
and the annealed path measure:

Py x (•) := Px (• | H(y) < ∞) where Px (•) = E Px,ω (•). (4) 
The expectation with respect to P y x,ω and Py x are denoted by Êy x,ω and Êy x , respectively. Let us define: a(x, y, ω) :=ln e(x, y, ω)

∈ [0, ∞[, (5) 
and b(x, y) :=ln E(e(x, y, ω)).

When we want to emphasize the law of potential, we write a(x, y, F, ω), b(x, y, F ), Êy x,F instead of a(x, y, ω), b(x, y), Êy

x , respectively. The quantity a(x, y, ω) can be interpreted as the weighted average over all the paths from x to y of the random walk in the potential V . The following result is contained in [START_REF] Martin | Directional decay of the Green's function for a random nonnegative potential on Z d[END_REF]:

Theorem A. Let F ∈ D 1 .
There is a non-random norm α F (x) on R d , such that P-a.s and in L 1 (P), for all x ∈ Z d : lim 

The norm α F is called the quenched Lyapunov exponent. Moreover, α F is monotone with respect to the potential: if F 1 , F 2 ∈ D 1 and F 1 ≥ F 2 (that is F 1 (t) ≥ F 2 (t) for all t ∈ R), then α F1 ≤ α F2 .

Flury [START_REF] Flury | Large deviations and phase transition for random walks in random nonnegative potentials[END_REF] proved:

Theorem B. Let F ∈ D.
There is a non-random norm β F (x) on R d , such that for all x ∈ Z d : lim

n→∞ 1 n b(0, nx) = inf n∈N 1 n b(0, nx) = β F (x). (8) 
The norm β F is called the annealed Lyapunov exponent. β F is monotone with respect to the potential: that is if

F 1 ≥ F 2 , then β F1 ≤ β F2 .
The norm β F inherits from b(0, x) the following upper and lower bounds:

-ln e -t dF (t) ≤ b(0, x) |x| ≤ ln 2d -ln e -t dF (t). ( 9 
)
About the relation between these two Lyapunov exponents, we have by Jensen's equality: β F ≤ α F . Moreover, it was showed by Zygouras [START_REF] Zygouras | Lyapounov norms for random walks in low disorder and dimension greater than three[END_REF] that for every λ > 0 there is γ * (λ) > 0 such that for all γ ∈]0, γ * (λ)[ : α F = β F (where F is the distribution function of the potential λ + γV ).

Theorems A and B are analogous to the existence of the time constant in first passage percolation. The analogy between first passage percolation and Brownian motion in Poissonian potential was first described by Sznitman [START_REF] Sznitman | Shape theorem, Lyapounov exponents, and large deviations for Brownian motion in a Poissonian potential[END_REF]. In particular, he proved an analogue of the shape theorem of Cox and Durrett [START_REF] Cox | Some limit theorems for percolation processes with necessary and sufficient conditions[END_REF]. Zerner showed some relations between quenched Lyapunov exponent of random walk in random potential and first passage percolation (see Proposition 9 in [START_REF] Martin | Directional decay of the Green's function for a random nonnegative potential on Z d[END_REF]). Recently, Sodin [START_REF] Sodin | Positive temperature versions of two theorems on first-passage percolation[END_REF] proved two theorems on concentration inequalities for random walk in random potential which are counterparts of Talagrand [START_REF] Talagrand | Concentration of measure and isoperimetric inequalities in product spaces[END_REF] and Benjamini-Kalai-Schramm [START_REF] Benjamini | First passage percolation has sublinear distance variance[END_REF].

We want to study in this article the continuity of Lyapunov exponents with respect to the law of the potential. For random walk in random potential as a model of random polymers, when the potential is a function of an ergodic environment and steps of the walk, lemma 3.1 of [START_REF] Rassoul-Agha | Quenched free energy and large deviations for random walks in random potentials[END_REF] has showed the L p continuity (p > d) of the quenched point-to-point free energy with respect to the law of potential. For first-passage percolation, Cox [START_REF] Cox | The time constant of first-passage percolation on the square lattice[END_REF] proved the continuity of the time constant with respect to the law of the passage time. Scholler [START_REF] Scholler | On the time constant in a dependent first passage percolation model[END_REF] also studied this question for a random coloring model which is a dependent first passage percolation model.

In our context, this problem is mentioned in section 11 of Mourrat [START_REF] Mourrat | Lyapunov exponents, shape theorems and large deviations for the random walk in random potential[END_REF]. Here our proof is based on the argument of [START_REF] Cox | The time constant of first-passage percolation on the square lattice[END_REF]. The most difficult part is to show that lim inf α Fn ≥ α F and lim inf

β Fn ≥ β F if F n w → F .
It brings us to the questions of the ballisticity of the random walk under the conditional quenched and annealed path measure. By adapting the techniques used by Sznitman [START_REF] Sznitman | Crossing velocities and random lattice animals[END_REF] for the Brownian motion in a Poissonian potential we obtain a similar result for the quenched path measure. Note however that the boundedness condition on W is not needed in the discrete case. And theorem 1.1 in [START_REF] Kosygina | Crossing velocities for an annealed random walk in a random potential[END_REF] showed that the velocity under annealed path measure of the walk that reaches y is bounded above as |y| → ∞. Independently of [START_REF] Kosygina | Crossing velocities for an annealed random walk in a random potential[END_REF], [START_REF] Ioffe | Self-attractive random walks: the case of critical drifts[END_REF] used a different method but it also implies the same conclusion (see Theorem C in [START_REF] Ioffe | Self-attractive random walks: the case of critical drifts[END_REF]). But none of these two papers gives an explicit expression for the constant. When d ≥ 3, by a simpler argument, we can control this constant in order to prove the continuity of the annealed Lyapunov exponent with respect to the law of potential (part (ii) of Theorem 4). We now state our main results.

Theorem 1 Assume that (F n ) is a sequence of distribution functions such that F n ∈ D and there is a distribution function G ∈ D 1 , G ≤ F n for all n. Furthermore, suppose that there exists a constant λ > 0 satisfying F n (λ) = 0 for all n if d = 2. Then lim n→∞ α Fn (x) = α F (x) for all

x ∈ Z d if F n w → F .
Theorem 2 Assume that (F n ) is a sequence of distribution functions such that F n ∈ D, F n w → F , F ∈ D and F assigns probability 1 to [0, +∞[. Furthermore, suppose that there exists a constant λ > 0 satisfying F n (λ) = 0 for all n if d = 2. Then lim n→∞ β Fn (x) = β F (x) for all x ∈ Z d . Remark 1 The condition involving G in the theorem 1 ensures that all distribution functions have finite means. But in the case of annealed Lyapunov exponent, β F exists even when tdF (t) = +∞. This is the reason that we don't require that the means are finite in Theorem 2.

Remark 2

The additional condition when d = 2 in boths theorems above means that all potentials are bounded below. It is useful for our technique. But we do not think that this hypothesis is necessary for the continuity of Lyapunov exponents.

The proof of Theorem 1 is divided in two parts. The first step is to prove that lim sup α Fn (x) ≤ α F (x) and then the proof of lim inf α Fn (x) ≥ α F (x). It is surprising that the proof of lim sup is relatively easy, while the proof of lim inf is more difficult. We state below in great generality the main results of Cox [START_REF] Cox | The time constant of first-passage percolation on the square lattice[END_REF]. It combines the results of Proposition 4.4, lemma 4.7 and proof of theorem 1.14 in [START_REF] Cox | The time constant of first-passage percolation on the square lattice[END_REF]. It gives a sufficient condition for lim inf α Fn (x) ≥ α F (x) to hold.

Theorem 3 (An abstract theorem on the continuity of the time constant) Let µ: D 1 -→ R + , F → µ(F ) be a map that satisfies the following three conditions:

(i) µ(F ) ≤ µ(G) if F ≥ G.
(ii) For all F ∈ D 1 , there exists c 1 (F ) > 0 and f 1 (F ) > 0 such that:

(1) c 1 (F ) ≤ c 1 (G) if F ≥ G, (2) lim n→∞ f 1 (F n ) = f 1 (F ) for all F n ∈ F such that F n w → F , (3) µ(F * G) ≤ µ(F ) + c 1 (F )f 1 (F ) tdG(t) for all G ∈ F.
(iii) For all F ∈ D 1 , t 0 > 0 there exists c 2 (F ) > 0 and f 2 (t 0 , F ) such that :

(1) c 2 (F ) ≤ c 2 (G) if F ≥ G, (2) lim n→∞ f 2 (t 0 , F n ) = 0 for all F n ∈ F such that lim n→∞ F n (t 0 -) = 0, (3) |µ(F t0 ) -µ(F )| ≤ c 2 (F )f 2 (t 0 , F ) where: F t0 (t) := 0 if t < t 0 F (t) if t ≥ t 0 ( 10 
)
Then lim inf n→∞ µ(F n ) ≥ µ(F ) if F n w → F .
Condition (i) is the monotonicity property of Lyapunov exponent refered to in theorem A. It is a key tool for proving our continuity results. Because of this property, when dealing with F n w → F , it suffices to consider only two cases: F n ≤ F for all n and F n ≥ F for all n. To see this, define

F n (t) = min{F n (t), F (t)} and F n (t) = max{F n (t), F (t)}, so that F n ≤ F n (t) ≤ F n (t). Then α F n ≤ α Fn ≤ α F n , α F n ≤ α F ≤ α F n and both F n , F n w → F whenever F n w → F .
Condition (ii) will be proved in Proposition 1 and Condition (iii) will follow from Corollary 1.

As in [START_REF] Cox | On the continuity of the time constant of first-passage percolation[END_REF], the proof of Theorem 2 is done in two steps. First, we will show the continuity of β F under the same hypothesis of theorem 1 and the proof of it is totally similar to the case α F . Next, to eliminate the condition of finite mean, with t 0 > 0 arbitrary, in the theorem 7 of this paper, we prove that βt 0 F → β F when t 0 → ∞, where t0 F is the distribution function obtained by truncating below at t 0 (see (55) for the definiton of t0 F ). 

(i) If F ∈ D 1 , there is a set Ω of full P probability and a constant κ(d, F ) ∈]0, ∞[ such that for all ω ∈ Ω, lim sup |y|→∞ Êy 0,ω (H(y)) |y| < κ. ( 11 
) (ii) If F ∈ D, there exists a constant D(d) such that for all y ∈ Z d , y = 0: Êy 0 (H(y)) |y| ≤ D(d) 1 -ln exp(-t)dF (t) ln 2d -ln exp(-t)dF (t) . ( 12 
)
2 Proof of theorem 4

Proof of part (i) of the theorem 4.

Brownian motion in a Poissonian potential under the quenched law was treated in [START_REF] Sznitman | Crossing velocities and random lattice animals[END_REF]. We show how to adapt these arguments to prove part (i) of theorem 4. Let d ≥ 3 and y ∈ Z d be the "target point". For A ⊂ Z d , H(A) denotes the entrance time of S n in A: H(A) := inf{n ≥ 0 : S n ∈ A}. By convention inf ∅ = +∞.

Choose some δ = δ(F ) > 0 such that ρ = P(V (0) ≥ δ) > 0. We fix a large even integer l = l(d, F ). We will explain how to choose l after equation ( 21).

Let us now introduce a partition of Z d , namely {C(q), q ∈ Z d } where C(q) is the cube of side length l and center lq:

C(q) = (lq + [-l/2, l/2) d ) ∩ Z d . ( 13 
)
Let us recall the definitions of an "occupied set" and an "empty set" used in [START_REF] Kosygina | Crossing velocities for an annealed random walk in a random potential[END_REF]. Given an environment ω ∈ Ω and a target point y ∈ Z d , we say that a set A ⊂ Z d is occupied if there exists z ∈ A, z = y such that V (z, ω) ≥ δ. We say that A is empty otherwise.

Define:

C 1 = {q ∈ Z d : C(q) is occupied }. ( 14 
)
C 2 = {q ∈ Z d : C(q) is empty}. ( 15 
)
Accordingly, we define:

H i := q∈Ci H(y)-1 m=0 1 {Sm∈C(q)} , i = 1, 2. (16) 
That is, H i is the time spent by process in boxes indexed by the class C i until it reaches y. Now we shall estimate H 1 by the following lemma, which is totally like lemma 2.1 in [START_REF] Kosygina | Crossing velocities for an annealed random walk in a random potential[END_REF].

Lemma 1 There exists a constant C 1 = C 1 (d, F ) and a set Ω 1 of full P-measure such that for all ω ∈ Ω 1 and for all y ∈ Z d \{0},

Êy 0,ω (H 1 ) ≤ C 1 |y|.
Proof We use the same argument as in lemma 2.1 of [START_REF] Kosygina | Crossing velocities for an annealed random walk in a random potential[END_REF]. Then we don't repeat here. But we remark that with:

σ 1 := inf{n ≥ 0 : S n ∈ ∪ q∈C1 C(q)}, σ m+1 := inf{n ≥ σ m + dl : S n ∈ ∪ q∈C1 C(q)}, Y := {m : ∃n ∈ [σ m , σ m + dl] such that V (S n ) ≥ δ} ,
and ǫ ∈ (0, 1) arbitrary, we have by the Markov property:

P0,ω (σ m < H(y) < ∞) = P0,ω (σ m < H(y) < ∞, Y ≥ (m -1)ǫ) + P0,ω (σ m < H(y) < ∞, Y < (m -1)ǫ) ≤ exp(-(m -1)ǫδ) + P (Z < (m -1)ǫ), ( 17 
)
where Z is a binomial random variable with parameters (m -1) and (2d) -dl . Note that we use here:

P (∃n ∈ [σ m , σ m + dl], n < H(y) : V (S n ) ≥ δ) ≥ (2d) -dl
. Moreover, we can find α 0 > 0 such that e(0, y, ω) ≥ exp(-α 0 |y|) since lim n→∞ -ln e(0,ny,ω) n = α(y) > 0 (Theorem A). Then we are now ready to follow the argument of lemma 2.1 in [START_REF] Kosygina | Crossing velocities for an annealed random walk in a random potential[END_REF].

We shall now estimate the total number of cubes visited by the random walk S m up to time H(y). The argument we follow is very similar to [START_REF] Sznitman | Crossing velocities and random lattice animals[END_REF]. We define:

A 1 = {q ∈ Z d : H(C(q)) < H(y)}. (18) 
Now P y 0,ω -a.s. H(y) is finite and, therefore, P y 0,ω -a.s. A 1 is a lattice animal (i.e, a finite connected set) of

Z d containing 0, ( 19 
)
where we use the standard adjacency relation for which q, q ′ are adjacent if |qq ′ | ≤ 1. Let us now explain how to choose the side length l of the cubes. We consider P-probability that there exists an lattice animal Γ containing 0, of size n and such that:

q∈Γ 1 {C(q,l/4) is occupied } ≤ n/2, (20) 
where C(q, l/4) denotes the cube of side length l/4 and center lq. We first note that there are less than (2d) 2n distinct animals Γ in Z d of cardinality n containing lq. To see this, we use a spanning tree of Γ with n vertices and n-1 nearest neighbor edges. We have "the number of lattice animals of cardinality n and contain lq" is less than "the number of nearest neighbor paths starting at lq of length at most 2n walking around the spanning tree". With the definition of adjacent vertices above, the number of these paths does not exceed (2d) 2n (see also [START_REF] Cox | Greedy lattice animals. I. Upper bounds[END_REF]). By the definition of an occupied cube, we have:

p = P(C(q, l/4) is occupied ) = 1 -P(C(q, l/4) is empty ) = 1 -(1 -ρ) (l d /4 d ) . Then, P ∃ an lattice animal Γ : 0 ∈ Γ, |Γ | = n, q∈Γ 1 {C(q,l/4) is occupied } ≤ n/2 ≤ (2d) 2n p n (l, d),
where p n (l, d) stands for the probability that a binomial variable with parameters n and p = 1 -(1ρ) (l d /4 d ) takes a value smaller than n/2. Note that if l is large, p is close to 1. We choose l large enough such that:

∞ n=1 (2d) 2n p n (l, d) < ∞, (21) 
That such a choice of l is possible follows from standard exponential estimates on the binomial distribution with success probability p close to 1.

By Borel-Cantelli lemma, there is a set Ω 2 of full P-measure such that: for all ω ∈ Ω 2 , there is n 0 (ω) so that for all n ≥ n 0 (ω) and

Γ a lattice animal containing 0, with |Γ | = n, q∈Γ 1 {C(q,l/4) is occupied } ≥ n/2. ( 22 
)
Let us explain the strategy underlying the proof of an exponential estimate under P y 0,ω on the size of A 1 . The idea is to use (22), so that for typical configurations ω and large A 1 , the number of occupied sites in A 1 represents a nonvanishing fraction of |A 1 |. Lemma 2 below plays the role of theorem 1.3 of [START_REF] Sznitman | Crossing velocities and random lattice animals[END_REF]. We don't present its demonstration in detail.

Lemma 2 There exists a set Ω 2 of full P measure and

C 2 (d, F ) > 0 such that, for ω ∈ Ω 2 , sup y e(0, y, ω) Êy 0,ω exp(C 2 |A 1 |) < ∞. ( 23 
)
The constant C 2 is chosen as:

C 2 = 1 2 • 3 d ln(1/χ) > 0, (24) 
where:

χ = sup ||z||≤l/2,C(0,l/4) is occupied E z (exp(- T1-1 m=0 V (S m ))),
and T 1 is the time of travel of S at • distance 3l/4 defined by:

T 0 = 0, T 1 = inf{m ≥ 0, ||S m -S 0 || ≥ 3l/4}.
We want to explain why χ chosen above is strictly smaller than 1 and hence C 2 > 0. If C(0, l/4) is occupied, there exists z 0 = y, z 0 ∈ C(0, l/4) such that V (z 0 , ω) ≥ δ. When ||z|| ≤ l/2 and C(0, l/4) is occupied, by the strong Markov property, we have:

E z exp(- T1-1 m=0 V (S m )) = Pz,ω (T 1 < ∞) = Pz,ω (T 1 < H(z 0 )) + Pz,ω (H(z 0 ) ≤ T 1 < ∞) = Pz,ω (T 1 < H(z 0 )) + Pz,ω (H(z 0 ) ≤ T 1 ) Pz0,ω (T 1 < ∞) ≤ P z (T 1 < H(z 0 )) + P z (H(z 0 ) ≤ T 1 ) exp(-δ) ≤ 1 + (e -δ -1)P z (H(z 0 ) ≤ T 1 ) ≤ 1 + (e -δ -1)(2d) --3ld 2 < 1, (25) 
where we now use l/2 + l/8 < 3l/4 so that z 0 is strictly within • distance 3l/4 from z and consequently P z (H(z 0 ) ≤ T 1 ) > (2d) --3ld 2 . By using (22) and the choice of C 2 in (24), it is now easy to follow the argument as in theorem 1.3 of [START_REF] Sznitman | Crossing velocities and random lattice animals[END_REF] to obtain (23).

Lemma 3 There exists a constant C 3 = C 3 (d, F ) < ∞ and a set Ω 2 of full P measure such that for all ω ∈ Ω 2 :

lim sup |y|→∞ Êy 0,ω (H 2 (y)) |y| < C 3 . ( 26 
)
Proof Using the strong Markov property, we have:

Êy 0,ω (H 2 (y)) = q∈C2 Êy 0,ω H(y)-1 m=0 1 {Sm∈C(q)} = q∈C2 Êy 0,ω Êy 0,ω H(y)-1 m=0 1 {Sm∈C(q)} |F (H(C(q))) = q∈C2 Êy 0,ω H(C(q)) < H(y), Êy S H(C(q)) ,ω H(y)-1 m=0 1 {Sm∈C(q)} . (27) 
For z ∈ C(q), we consider:

Êy z,ω H(y)-1 m=0 1 {Sm∈C(q)} = z ′ ∈C(q) Êy z,ω H(y)-1 m=0 
1 {Sm=z ′ } = 1 e(z, y, ω) z ′ ∈C(q) E z H(y)-1 m=0 1 {Sm=z ′ } exp - H(y)-1 m=0 V (S m ) , H(y) < ∞ = 1 e(z, y, ω) z ′ ∈C(q) +∞ k=0 E z 1 {S k =z ′ } exp - H(y)-1 m=0 V (S m ) , k < H(y) < ∞ = 1 e(z, y, ω) z ′ ∈C(q) +∞ k=0 E z 1 {S k =z ′ } exp(- k-1 m=0 V (S m )), k < H(y) Pz ′ ,ω (H(y) < ∞) ≤ z ′ ∈C(q)
e(z ′ , y, ω) e(z, y, ω)

+∞ k=0 E z 1 {S k =z ′ } . ( 28 
)
If z, z ′ ∈ C(q) and C(q) is empty, then:

e(z, z ′ , ω) = E z exp(- H(z ′ )-1 m=0 V (S m )), H(z ′ ) < ∞ ≥ E z exp(- H(z ′ )-1 m=0 V (S m )), S m follows a path from z to z ′ in C(q) of length ≤ dl ≥ exp(-dlδ)(2d) -dl = const. ( 29 
)
By proposition 2 in [START_REF] Martin | Directional decay of the Green's function for a random nonnegative potential on Z d[END_REF], for all z, z ′ , y ∈ Z d , we have: e(z ′ ,y,ω) e(z,y,ω) ≤ 1 e(z,z ′ ,ω) . If C(q) is empty, from (29), we can find a constant K(d, F ) such that:

e(z ′ , y, ω) e(z, y, ω) ≤ K(d, F ) for all z, z ′ ∈ C(q), y ∈ Z d . (30) 
From ( 27), ( 28) and (30), we obtain:

Êy 0,ω (H 2 (y)) ≤ q∈C2 K(d, F ) P y 0,ω [H(C(q)) < H(y)] sup z∈C(q) z ′ ∈C(q) +∞ k=0 E z 1 {S k =z ′ } .
For d ≥ 3, the simple walk is transient, sup z∈C(q) z ′ ∈C(q)

+∞ k=0 E z 1 {S k =z ′ } = const(d) < ∞, we see that: Êy 0,ω [H 2 (y)] ≤ C 4 (d, F ) Êy 0,ω [|A 1 |],
where the definition of A is given by [START_REF] Zygouras | Lyapounov norms for random walks in low disorder and dimension greater than three[END_REF]. By lemma 2, there exists a set Ω 2 of full P measure and C 5 (ω) ∈ (0, ∞) which depends only on ω such that for all ω ∈ Ω 2 :

lim sup |y|→∞ Êy 0,ω C 2 |A 1 | |y| ≤ lim sup |y|→∞ ln Êy 0,ω exp C 2 |A 1 | |y| ≤ lim sup |y|→∞ ln C5(ω) e(0,y,ω) |y| ≤ sup |e|=1 α F (e) = const.
We finally obtain (26).

With the notations of ( 16), we know that:

Êy 0,ω (H(y)) = Êy 0,ω (H 1 ) + Êy 0,ω (H 2 ). ( 31 
)
By lemma 1 and lemma 3, part (i) of theorem 4 is now proved. Proof of part (ii) of the theorem 4.

Let y ∈ Z d , y = 0. By the strong Markov property, we have:

E 0 [H(y) exp(- H(y)-1 m=0 V (S m )), H(y) < ∞] = z ′ ∈Z d E 0 H(y)-1 m=0 1 {Sm=z ′ } exp(- H(y)-1 m=0 V (S m )), H(y) < ∞ = z ′ ∈Z d E 0 H(z ′ ) < H(y), exp(- H(z ′ )-1 m=0 V (S m )) × E z ′ H(y)-1 m=0 1 {Sm=z ′ } exp(- H(y)-1 m=0 V (S m )), H(y) < ∞ = z ′ ∈Z d E 0 H(z ′ ) < H(y), exp(- H(z ′ )-1 m=0 V (S m )) e(z ′ , y, ω) × 1 e(z ′ , y, ω) E z ′ H(y)-1 m=0 1 {Sm=z ′ } exp(- H(y)-1 m=0 V (S m )), H(y) < ∞ = z ′ ∈Z d E 0 H(z ′ ) < H(y), exp(- H(y)-1 m=0 V (S m )), H(y) < ∞ × Êy z ′ ,ω ( H(y)-1 m=0 1 {Sm=z ′ } ) (32) 
Still by the Markov property:

Êy z ′ ,ω ( H(y)-1 m=0 1 {Sm=z ′ } ) = 1 e(z ′ , y, ω) E z ′ H(y)-1 m=0 1 {Sm=z ′ } exp - H(y)-1 m=0 V (S m ) , H(y) < ∞ = 1 e(z ′ , y, ω) +∞ k=0 E z ′ 1 {S k =z ′ } exp - H(y)-1 m=0 V (S m ) , k < H(y) < ∞ = 1 + 1 e(z ′ , y, ω) +∞ k=1 E z ′ 1 {S k =z ′ } exp(- k-1 m=0 V (S m )), k < H(y) Pz ′ ,ω (H(y) < ∞) ≤ +∞ k=0 E z ′ (1 {S k =z ′ } ) := D(d) < ∞.
(33) since the simple random walk is transient on Z d , d ≥ 3. We now attach to each trajectory (S m ) m≥0 which starts at 0, the lattice animal:

A 2 (0, y, (S m ) m≥0 ) = {z ∈ Z d : H(z) < H(y)}. (34) 
From ( 32), ( 33) and (34):

Êy 0 (H(y)) = EE 0 [H(y) exp(- H(y)-1 m=0 V (S m )), H(y) < ∞] Ee(0, y, ω) ≤ D Êy 0 (|A 2 (0, y)|). (35) 
To estimate Êy 0 (|A 2 (0, y)|), we argue as in lemma 3 in [START_REF] Martin | Directional decay of the Green's function for a random nonnegative potential on Z d[END_REF]. Take d 1 :=ln e -t dF (t) = ln E(e -V (0) ). By Jensen's equality and independence of V (x), x ∈ Z d :

d 1 Êy 0 (|A 2 (0, y)|) ≤ ln Êy 0 (exp(d 1 |A 2 (0, y)|)) ≤ b(0, y) + ln EE 0 [exp(d 1 |A 2 (0, y)| - s∈A2(0,y) V (s)), H(y) < ∞] ≤ b(0, y) + ln E 0 s∈A2(0,y) E(exp(d 1 -V (s))) = b(0, y) (36) 
From ( 35), (36) and ( 9):

Êy 0 (H(y)) |y| ≤ D d 1 b(0, y) |y| ≤ D -ln exp(-t 1 )dF (t) ln 2d -ln exp(-t)dF (t) (37) 
The proof of (ii) in theorem 4 is now complete.

Continuity of Lyapunov exponents

The following proposition is a main ingredient in the proof of the continuity of Lyapunov exponent. It verifies the condition (ii) of Theorem 3. We learned the idea from theorem 7.12. in [START_REF] Smythe | First-passage percolation on the square lattice[END_REF]. F * G denotes the convolution of F and G.

Proposition 1 Let d ≥ 3. For any distribution function F ∈ D 1 , there exists c 1 (F ) > 0 and f 1 (F ) > 0 such that:

(1) c 1 (F ) ≤ c 1 (G) for all F, G ∈ D 1 such that F ≥ G, (2) lim n→∞ f 1 (F n ) = f 1 (F ) for F n ∈ D 1 , F n w → F , (3) α F * G (x) ≤ α F (x) + c 1 (F )f 1 (F ) tdG(t)|x| for all F, G ∈ D 1 and x ∈ Z d .
Proof Let V (x), x ∈ Z d be i.i.d random potentials with distribution F ; W (x), x ∈ Z d be i.i.d random potentials with distribution G such that the two sequences defined on a same probability space (Ω, F , P) are independent of each other . Then, (V + W )(x), x ∈ Z d are i.i.d random potentials with distribution F * G. We have for x ∈ Z d , x = 0, ω ∈ Ω:

a(0, nx, F * G, ω) = -ln E 0 [exp(- H(nx)-1 m=0 V (S m ) - H(nx)-1 m=0 W (S m )), H(nx) < ∞] = -ln E 0 exp(- H(nx)-1 m=0 V (S m ) - H(nx)-1 m=0 W (S m )), H(nx) < ∞ E 0 [exp(- H(nx)-1 m=0 V (S m )), H(nx) < ∞] • E 0 [exp(- H(nx)-1 m=0 V (S m )), H(nx) < ∞] = -ln Ênx 0,ω exp(- H(nx)-1 m=0 W (S m )) -ln E 0 [exp(- H(nx)-1 m=0 V (S m )), H(nx) < ∞]
(where Êy x,ω (X) =

Ex[X exp(-

H(y)-1 m=0 V (Sm)),H(y)<∞]
Ex[exp(-

H(y)-1 m=0 V (Sm)),H(y)<∞]
is defined below ( 4))

=ln Ênx 0,ω exp(-

H(nx)-1 m=0 W (S m )) + a(0, nx, F, ω) ≤ Ênx 0,ω H(nx)-1 m=0 W (S m ) + a(0, nx, F, ω). ( 38 
)
Note that the last inequality is obtained by the Jensen's inequality: ln E(exp(X)) ≥ E(X). We use now Fubini's theorem and the independence of (W (x)) and (V (x)):

E Ênx 0,ω H(nx)-1 m=0 W (S m ) = E E 0 H(nx)-1 m=0 W (S m ) exp(-H(nx)-1 m=0 V (S m )), H(nx) < ∞ E 0 (exp(- H(nx)-1 m=0 V (S m )), H(nx) < ∞) = E 0 E H(nx)-1 m=0 W (S m ) exp(-H(nx)-1 m=0 V (S m )), H(nx) < ∞ E 0 (exp(- H(nx)-1 m=0 V (S m )), H(nx) < ∞) = E 0 E( H(nx)-1 m=0 W (S m ))E exp(- H(nx)-1 m=0 V (S m )), H(nx) < ∞ E 0 (exp(- H(nx)-1 m=0 V (S m )), H(nx) < ∞) = E 0 H(nx)E(W (0))E exp(- H(nx)-1 m=0 V (S m )), H(nx) < ∞ E 0 (exp(- H(nx)-1 m=0 V (S m )), H(nx) < ∞) = tdG(t) • E Ênx 0,ω (H(nx)). ( 39 
)
Apply the argument as (32), we have:

Ênx 0,ω (H(nx)) ≤ z ′ ∈Z d P nx 0,ω (H(z ′ ) < H(nx)) Ênx z ′ ,ω ( H(nx)-1 m=0 1 {Sm=z ′ } ). ( 40 
)
Use (33) and the definition of A 2 (0, y, (S m ) m≥0 ) given in (34):

Ênx 0,ω (H(nx)) ≤ D Ênx 0,ω (|A 2 (0, nx)|). ( 41 
)
Thanks to Lemma 3 in Zerner [START_REF] Martin | Directional decay of the Green's function for a random nonnegative potential on Z d[END_REF], we have:

E Ênx 0,ω (|A 2 (0, nx)|) ≤ ln 2d + tdF (t) -ln e -t dF (t) |nx|. ( 42 
)
Substitute ( 38) in (39) and take the expectation:

E(a(0, nx, F * G, ω)) n ≤ E(a(0, nx, F, ω)) n + tdG(t) • E Ênx 0,ω (H(nx)) n ≤ E(a(0, nx, F, ω)) n + tdG(t) • D ln 2d + tdF (t) -ln e -t dF (t) |x|. ( 43 
)
Remark that the last inequality is from ( 41) and (42). Therefore,

α F * G (x) ≤ α F (x) + c 1 (F )f 1 (F ) tdG(t)|x|.
where c 1 (F ) = D ln 2d + tdF (t) and

f 1 (F ) = 1 -ln e -t dF (t)
. Obviously, c 1 (F ) and f 1 (F ) above also satisfy the conditions ( 1) and ( 2) of this Proposition.

Remark 3

We use the same argument as in Proposition 1 for the annealed path measure to obtain the analogous result about β F . The constants chosen here are c 1 (F ) = Dβ F and f 1 (F ) =

1

-ln e -t dF (t)

.

Proposition 2 Let d ≥ 3. For any distribution function F ∈ D 1 and for all t 0 > 0 such that p := P(V (0) < t 0 ) < 1, we have:

lim sup |y|→∞ E Êy 0,ω H(y)-1 m=0 1 {V (Sm)<t0} |y| ≤ D(d) ln 2d + +∞ 0 tdF (t) • 1 ln 1-(1-p)e -t 0 p ( 44 
)
where D(d) is a constant that depends only on d.

Proof We have as in (32):

Êy 0,ω H(y)-1 m=0 1 {V (Sm)<t0} = z ′ :V (z ′ ,ω)<t0 Êy 0,ω H(y)-1 m=0 
1 {Sm=z ′ } = z ′ :V (z ′ ,ω)<t0 P y 0,ω (H(z ′ ) < H(y)) Êy z ′ ,ω ( H(y)-1 m=0 1 {Sm=z ′ } ). (45) 
From ( 45) and (33):

Êy 0,ω H(y)-1 m=0 1 {V (Sm)<t0} ≤ D Êy 0,ω z∈A2(0,y) 1 {V (z)<t0} . (46) 
We recall that

D = ∞ k=1 E z ′ (1 {S k =z ′ } ) < ∞ and the definition of A 2 (0, y, (S m ) m≥0
) is given by (34). Take c = c(t 0 , F ) := ln 1-(1-p)e -t 0 p . Note that c > 0. We use Jensen's inequality and independence as follows:

cE Êy 0,ω [ z∈A2(0,y) 1 {V (z)<t0} ] ≤ E ln Êy 0,ω [exp(c z∈A2(0,y) 1 {V (z)<t0} ]
≤ E a(0, y, ω)+

+ ln E 0 exp c z∈A2(0,y) 1 {V (z)<t0} - z∈A2(0,y) V (z) , H(y) < ∞ ≤ E[a(0, y, ω)] + ln E 0 z∈A2(0,y) E[exp(c1 {V (z)<t0} -V (z))] . (47) 
We remark that:

0 < E[exp(c1 {V (z)<t0} -V (z))] ≤ E[exp(c1 {V (z)<t0} -t 0 1 {V (z)≥t0} )] = exp(-t 0 )E exp (c + t 0 )1 {V (z)<t0} = exp(-t 0 ) exp(c + t 0 )P(V (z) < t 0 ) + P(V (z) ≥ t 0 ) = exp(c)p + (1 -p) exp(-t 0 ) = 1. (48) 
From ( 47) and ( 48):

E Êy 0,ω [ z∈A2(0,y) 1 {V (z)<t0} ] ≤ E[a(0, y, ω)] c . (49) 
Combine this with (46), we obtain:

lim sup |y|→∞ E Êy 0,ω H(y)-1 m=0 1 {V (Sm)<t0} |y| ≤ D lim sup |y|→∞ E Êy 0,ω [ z∈A2(0,y) 1 {V (z)<t0} ] |y| ≤ D c lim sup |y|→∞ E(a(0, y, ω)) |y| ≤ D sup |e|=1 α F (e) 1 ln 1-(1-p)e -t 0 p ≤ D ln 2d + +∞ 0 tdF (t) 1 ln 1-(1-p)e -t 0 p . (50) 
It therefore implies (44).

Remark 4 It is easy to obtain an estimation of annealed path measure as in Proposition 2:

lim sup |y|→∞ Êy 0 H(y)-1 m=0 1 {V (Sm)<t0} |y| ≤ D(d) ln 2d -ln +∞ 0 e -t dF (t) • 1 ln 1-(1-p)e -t 0 p (51) 
We use the following corollary to check the condition (iii) of Theorem 3.

Corollary 1 Let d ≥ 3. For any F ∈ D 1 , x ∈ Z d , t 0 > 0, there exist c 2 (F ) > 0 and f 2 (t 0 , F ) > 0 such that: (1) c 2 (F ) ≤ c 2 (G) for all distributions F, G ∈ D 1 such that F ≥ G, ( 2 
) lim n→∞ f 2 (t 0 , F n ) = 0 for F n ∈ D 1 such that lim n→∞ F n (t 0 -) = 0, ( 3 
) |α F t 0 (x) -α F (x)| ≤ c 2 (F )f 2 (t 0 , F )|x|
, where the definition of F t0 is given in [START_REF] Rassoul-Agha | Quenched free energy and large deviations for random walks in random potentials[END_REF].

Proof Let {V (x)} x∈Z d be i.i.d random variables with distribution function F . Define:

W (x) = V (x)1 {V (x)≥t0} + t 0 1 {V (x)<t0} .
Then {W (x)} x∈Z d are i.i.d random variables with distribution function F t0 .

For x ∈ Z d and ω ∈ Ω, we have:

a(0,nx, F t0 , ω) = -ln E 0 [exp(- H(nx)-1 m=0 (V (S m )1 {V (Sm)≥t0} + t 0 1 {V (Sm)<t0} )), H(nx) < ∞] = -ln E 0 [exp(-( H(nx)-1 m=0 V (S m )1 {V (Sm)≥t0} + t 0 1 {V (Sm)<t0} )), H(nx) < ∞] E 0 [exp(- H(nx)-1 m=0 V (S m )), H(nx) < ∞] + a(0, nx, F, ω) ≤ -ln Ênx 0,ω [exp(- H(nx)-1 m=0 t 0 1 {V (Sm)<t0} )] + a(0, nx, F, ω) ≤ t 0 Ênx 0,ω [ H(nx)-1 m=0
1 {V (Sm)<t0} ] + a(0, nx, F, ω).

Take the expectation, we obtain:

Ea(0, nx, F t0 , ω) n ≤ t 0 E Ênx 0,ω [ H(nx)-1 m=0 1 {V (Sm)<t0} ] n + Ea(0, nx, F, ω) n α F t 0 (x) ≤ t 0 lim sup n→∞ E Ênx 0,ω [ H(nx)-1 m=0 1 {V (Sm)<t0} ] n + α F (x) α F t 0 (x) ≤ t 0 |x|D ln 2d + +∞ 0 tdF (t) 1 ln 1-(1-p)e -t 0 p + α F (x). ( 52 
)
For the last inequality above, we applied the proposition 2. Recall here p = F (t 0 -). Since F t0 ≤ F , by the monotonicity of Lyapunov exponent, we have: α F t 0 ≥ α F . Combine this with (52), we obtain: → F , we consider first lim sup α Fn (x) ≤ α F (x) and then lim inf α Fn (x) ≥ α F (x). The inverse of a distribution function G is defined in the usual way, G -1 (t) = inf{u ∈ R : G(u) > t}, t ∈ R. We will need the following lemma from [START_REF] Cox | The time constant of first-passage percolation on the square lattice[END_REF].

|α F t 0 (x) -α F (x)| ≤ c 2 (F )f 2 (t 0 , F )
Lemma 4 If (F n ) ∈ D such that F n ≤ F and F n w → F , then F -1 n → F -1 pointwise on [0, 1).
The proof of the following theorem is analogous to the proof of theorem 1.13 in [START_REF] Cox | The time constant of first-passage percolation on the square lattice[END_REF].

Theorem 5 Let d ≥ 1. Let (F n ) ∈ D such that F n ≥ G for all n and for some G ∈ D 1 . If F n w → F , then lim sup n→∞ α Fn (x) ≤ α F (x) for all x ∈ Z d .
Proof As mentioned in the Introduction after theorem 3, there are only two cases to consider. If F n ≥ F , by the monotonicity property, α Fn (x) ≤ α F (x) for all n, hence lim sup α Fn (x) ≤ α F (x).

For the rest of the proof we shall assume F n ≤ F . Let ξ(x), x ∈ Z d be an i.i.d family of uniform random variables on (0, 1). Let V (x) := F -1 (ξ(x)), V n (x) := F -1 n (ξ(x)) and W (x) = G -1 (ξ(x)). Then V (x), V n (x) and W (x) are i.i.d. families of, respectively, F -distributed, F n -distributed et G-distributed random variables. Furthermore, for each x ∈ Z d :

V (x) ≤ V n (x) ≤ W (x) a.s.
and by lemma 4: lim n→∞ V n (x) = V (x) a.s.

For x ∈ Z d and for k ∈ N, we have:

a(0, kx, F, ω) = -ln E 0 (exp(- H(kx)-1 m=0 V (S m )), H(kx) < ∞).
a(0, kx, F n , ω) =ln E 0 (exp(-

H(kx)-1 m=0 V n (S m )), H(kx) < ∞).
For a fixed path of the simple random walk, we have: exp(-

H(kx)-1 m=0 V n (S m ))1 {H(kx)<∞} → exp(- H(kx)-1 m=0 V (S m ))1 {H(kx)<∞} ,
lim inf n→∞ α Fn (x) ≥ α F (x). Combine this with lim sup n→∞ α Fn (x) ≤ α F (x) given by theorem 5 to obtain finally theorem 1.

Case d = 2. First, we note that if there exists λ > 0 such that V ≥ λ, then Êy z ′ ,ω ( H(y)-1 m=0

1 {Sm=z ′ } ) ≤ D(λ) < ∞ for all z ′ ∈ Z d . Indeed, from (33), we have:

Êy z ′ ,ω ( H(y)-1 m=0 1 {Sm=z ′ } ) ≤ 1 + +∞ k=1 E z ′ 1 {S k =z ′ } exp(- k-1 m=0 V (S m )) ≤ +∞ k=0 exp(-kλ) = 1 1 -exp(-λ) < ∞ (53) 
With (53), we can now repeat all argument used in the case d ≥ 3 to show that Proposition 1, Corollary 1 and then Theorem 1 also hold when d = 2.

In first passage percolation, [START_REF] Smythe | First-passage percolation on the square lattice[END_REF] truncates the distribution function below and above at t 0 > 0 and shows the continuity of time constant in these two cases. By the theorem 1, we obtain the similar results for Lyapunov exponent as its corollaries.

Corollary 2 Let F t0 be the distribution function obtained by truncating F below at t 0 > 0(see [START_REF] Rassoul-Agha | Quenched free energy and large deviations for random walks in random potentials[END_REF] for the definition). Then, if

F ∈ D 1 , for all x ∈ Z d : lim t0→0 α F t 0 (x) = α F (x). (54) 
Corollary 3 Let t0 F be the distribution function obtained by truncating above at t 0 > 0, i.e:

t0 F (t) := F (t) if t < t 0 1 if t ≥ t 0 , (55) 
Then, if F ∈ D 1 , for all x ∈ Z d :

lim t0→∞ αt 0 F (x) = α F (x). ( 56 
)
We now consider the annealed Lyapunov exponent. The following theorem parallels lemma 2 of [START_REF] Cox | On the continuity of the time constant of first-passage percolation[END_REF] and theorem 7.12 of [START_REF] Smythe | First-passage percolation on the square lattice[END_REF] in the context of first passage percolation. This is a tool to eliminate the condition of finite mean. As in [START_REF] Flury | Large deviations and phase transition for random walks in random nonnegative potentials[END_REF], we define for z ∈ Z d , n ∈ N the number of visits to the site z by the random walk up to time n:

ℓ z (n) := |{m ∈ N 0 : m < n, S m = z}|.
This notation is useful in the proof of theorem 7.

Theorem 7 Let d ≥ 3. Let F ∈ D such that F assigns probability 1 to [0, +∞[. Then for all x ∈ Z d : lim t0→∞ βt 0 F (x) = β F (x), ( 57 
)
where t0 F is defined in (55).

Proof Let V 1 (x) and V 2 (x), x ∈ Z d be two families of i.i.d random potentials with distribution F , independent of one another. Then, W t0 (x) := min{V 1 (x); t 0 }, x ∈ Z d are i.i.d random potentials with distribution function t0 F . Define a distribution function t0 F by:

t0 F :=      0 if t < 0 F (t 0 ) if 0 ≤ t ≤ t 0 F (t) if t > t 0 (58) Take U t0 (x) = V 2 (x)1 {V2(x)>t0} . Hence U t0 (x), x ∈ Z d is an i.i.d family of random potentials with distribution function t0 F . (W t0 + U t0 )(x), x ∈ Z d are i.i.d random potentials with distribution function t0 F * t0 F . Moreover, b(0, nx, t0 F * t0 F ) = -ln EE 0 [exp(- H(nx)-1 m=0 W t0 (S m ) - H(nx)-1 m=0 U t0 (S m )), H(nx) < ∞] = -ln EE 0 exp(-H(nx)-1 m=0 W t0 (S m ) -H(nx)-1 m=0 U t0 (S m )), H(nx) < ∞ Ee(0, nx, ω, t0 F ) • Ee(0, nx, ω, t0 F ) = -ln EE 0 exp(- H(nx)-1 m=0 W t0 (S m ) - H(nx)-1 m=0 U t0 (S m )), H(nx) < ∞ Ee(0, nx, ω, t0 F ) + b(0, nx, t0 F ). (59) 
Since two sequences (W t0 (x)) x∈Z d and (U t0 (x)) x∈Z d independent of each other, the first term in right hand side of (59) is equal to:

ln E 0 E[exp(- W t0 (S m ))], H(nx) < ∞ Ee(0, nx, ω, t0 F ) =ln Ênx 0, t 0 F (E(exp(-U t0 (0))) H(nx) ) ≤ (-ln E(exp(-U t0 (0)))) Ênx 0, t 0 F (H(nx)).

H(nx)-1 m=0 U t0 (S m ))]E[exp(- H(nx)-1 m=0 W t0 (S m ))], H(nx) < ∞ Ee(0, nx, ω, t0 F ) = -ln E 0 E[exp -z∈Z d ℓ z (H(nx))U t0 (z) ]E[exp(-H(nx)-1 m=0 W t0 (S m ))], H ( 
(60)

For the first inequality of (60), we remark that for all z ∈ Z d : E(exp(-ℓ z (H(nx)U t0 (z)))) ≥ [E exp(-U t0 (z))] ℓz (H(nx)) .

This inequality is obvious if ℓ z (H(nx)) = 0, and follows from Jensen's inequality if ℓ z (H(nx)) ≥ 1. From (37) (in the proof of part (ii) of theorem 4): 

We get finally theorem 7.

Remark 6 In the case of d = 2, beside the hypothesis of Theorem 7, we further assume that there exists λ > 0 such that F (λ) = 0, then Theorem 7 also holds. The argument we use here is as the proof of the case d ≥ 3 with remark that: Ênx 0, t 0 F (H(nx)) ≤ 1 1exp(-λ)

• 1 ln E exp(-W t0 (0)) b(0, nx, t0 F ),

We are now ready to prove Theorem 2.

Proof of theorem 2.

Case d = 1. It is similar to the case quenched Lyapunov exponent.

Case d ≥ 3. First, remark that by the same arguments we used to prove Theorem 1, we also have that: let (F n ) is a sequence of distribution functions such that there is a distribution function G with finite mean such that G ≤ F n for all n. If F n w → F , then lim n→∞ β Fn (x) = β F (x) for all x ∈ Z d . Now, fix t 0 > 0 which is a continuity point of F . Define a distribution function G:

G(t) := 0 if t < t 0 1 if t ≥ t 0 , (64) 
Clearly tdG(t) = t 0 and G(t) ≤ t0 F n (t) for all n. Using the result above to have lim n→∞ βt 0 Fn = βt 0 F . Furthermore lim inf n→∞ β Fn ≥ lim inf n→∞ βt 0 Fn = βt 0 F since t0 F n ≥ F n for all n. Now let t 0 → ∞ through continuity points of F , and apply Theorem 7, lim inf n→∞ β Fn ≥ lim t0→∞ βt 0 F = β F . Combine this with lim sup n→∞ β Fn ≤ β F given by Theorem 6 to obtain finally Theorem 2.

Case d = 2. If we further suppose that there exists λ > 0 such that F n (λ) = 0 for all n, we can use Remark 6 and follow the arguments as the case d ≥ 3 to obtain Theorem 2.

  nx, ω)] = α F (x).

ForTheorem 4

 4 y = (y 1 , y 2 , ..., y d ) ∈ Z d , |y| denotes the ℓ 1 -norm of y: |y| = |y 1 | + |y 2 | + • • • |y d | while y designates the ℓ ∞ of y: y = max 1≤i≤d |y i |. And |A| is the cardinality of the set A. Let d ≥ 3 and V be a potential with distribution function F ,

Remark 5

 5 |x|, where c 2 (F ) = D ln 2d + +∞ 0 tdF (t) and f 2 (t 0 , F ) = t0 ln 1-(1-p)e -t 0 p . Obviously, c 2 (F ) and f 2 (t 0 , F ) satisfy the conditions (1) and (2) of this Corollary. The analogous result for the annealed Lyapunov exponent holds with c 2 (F ) = D ln 2dln +∞ 0 e -t dF (t) and f 2 (t 0 , F ) = t0 ln 1-(1-p)e -t 0 p . To prove the continuity of Lyapunov exponent, that is lim n→∞ α Fn (x) = α F (x) if F n w

  nx) < ∞ Ee(0, nx, ω, t0 F ) =ln E 0 z∈Z d E[expℓ z (H(nx))U t0 (z) ]E[exp(-H(nx)-1 m=0 W t0 (S m ))], H(nx) < ∞ Ee(0, nx, ω, t0 F ) ≤ln E 0 z∈Z d [E exp(-U t0 (z))] ℓz(H(nx)) E[exp(-H(nx)-1 m=0 W t0 (S m ))], H(nx) < ∞ Ee(0, nx, ω, t0 F ) =ln E 0 [E exp(-U t0 (0))] H(nx) E[exp(-H(nx)-1 m=0

Ênx 0 ,

 0 t 0 F (H(nx)) ≤ D ln E exp(-W t0 (0)) b(0, nx, t0 F ).(61)From (59), (60) and (61), for all x ∈ Z d :b(0, nx, t0 F * t0 F ) n ≤ (-ln E(exp(-U t0 (0)))) D ln E exp(-W t0 (0)) b(0, nx, t0 F ) n + b(0, nx, t0 F ) n βt 0 F * t 0 F (x) ≤ (-ln E(exp(-U t0 (0)))) D ln E exp(-W t0 (0)) βt 0 F (x) + βt 0 F (x)(62)Note that lim t0→∞ (-ln E(exp(-U t0 (0)))) = 0 and lim t0→∞ln E exp(-W t0 (0)) =ln E exp(-V 1 (0) = const. It is clear that t0 F ≥ F ≥ t0 F * t0 F . Then, βt 0 F (x) ≤ β F (x) ≤ βt 0 F * t 0 F (x).Combine this with (62):lim sup t0→∞ βt 0 F (x) ≤ β F (x) ≤ lim t0→∞ (-ln E(exp(-U t0 (0)))) D ln E exp(-W t0 (0)) β F (x) + lim inf t0→∞ βt 0 F (x)≤ lim inf t0→∞ βt 0 F (x).
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when n → ∞. Furthermore, exp(-

V n (S m ))1 {H(kx)<∞} < 1, for all n. By the dominated convergence theorem: a(0, kx, F n , ω) → a(0, kx, F, ω) when n → ∞.

With k and x fixed, we have:

for all n since V n (z) ≤ W (z) for all n and for all z ∈ Z d . Moreover:

Apply again the dominated convergence theorem:

We have hence for all n ≥ N :

Therefore, lim sup α Fn (x) ≤ α F (x) + 2ǫ. Now let ǫ → 0, we have the result.

The proof of this theorem is very similar to the theorem 5. We only want to remark that b(0, kx, F n ) always converge to b(0, kx, F ) with k and x fixed when n → ∞ (without the condition of finite mean). Proof of theorem 1: Case d = 1. Thanks to Proposition 10 in Zerner [START_REF] Martin | Directional decay of the Green's function for a random nonnegative potential on Z d[END_REF] and the proof of theorem 5, we have for all m ∈ N:

Case d ≥ 3. By the monotonicity property of Lyapunov exponent, proposition 1 and corollary 1, we see that all the conditions of theorem 3 in the Introduction are satisfied, we have then