
HAL Id: hal-00836795
https://hal.science/hal-00836795v1

Submitted on 21 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blind equalization based on pdf distance criteria and
performance analysis

Souhaila Fki, Malek Messai, Abdeldjalil Aissa El Bey, Thierry Chonavel

To cite this version:
Souhaila Fki, Malek Messai, Abdeldjalil Aissa El Bey, Thierry Chonavel. Blind equalization based
on pdf distance criteria and performance analysis. [Research Report] Dépt. Signal et Communica-
tions (Institut Mines-Télécom-Télécom Bretagne-UEB); Laboratoire en sciences et technologies de
l’information, de la communication et de la connaissance (UMR CNRS 6285 - Télécom Bretagne -
Université de Bretagne Occidentale - Université de Bretagne Sud). 2013, pp.26. �hal-00836795�

https://hal.science/hal-00836795v1
https://hal.archives-ouvertes.fr


 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Collection des rapports de 

Télécom Bretagne 

 

RR-2013-03-SC 

 

Blind Equalization Based on pdf distance 
criteria and Performance Analysis 

Souhaila Fki (Télécom Bretagne) 
Malek Messai(Télécom Bretagne) 
Abdeldjalil Aissa-El-Bey (Télécom Bretagne) 
Thierry Chonavel (Télécom Bretagne) 
 

 

Institut  



Blind Equalization Based on pdf distance criteria

and Performance Analysis

Souhaila Fki*, Graduate Student Member, IEEE, Malek Messai, Abdeldjalil

Aïssa-El-Bey, Senior Member, IEEE, and Thierry Chonavel, Member, IEEE,

Institut Télécom; Télécom Bretagne; UMR CNRS 3192 Lab-STICC

Technopôle Brest Iroise CS 83818 29238 Brest, France

Université européenne de Bretagne

Email: Firstname.Lastname@telecom-bretagne.eu

Abstract

In this report, we address M-QAM blind equalization by fitting the probability density functions (pdf) of

the equalizer output with the constellation symbols. We propose two new cost functions, based on kernel pdf

approximation, which force the pdf at the equalizer output to match the known constellation pdf. The kernel

bandwidth of a Parzen estimator is updated during iterations to improve the convergence speed and to decrease the

residual error of the algorithms. Unlike related existing techniques, the new algorithms measure the distance error

between observed and assumed pdfs for the real and imaginary parts of the equalizer output separately. The advantage

of proceeding this way is that the distributions show less modes, which facilitates equalizer convergence, while as

for multi-modulus methods phase recovery keeps being preserved. The proposed approaches outperform CMA and

classical pdf fitting methods in terms of convergence speed and residual error. We also analyse the convergence

properties of the most efficient proposed equalizer via the ordinary differential equation (ODE) method.

I. INTRODUCTION

In transmissions, multipath propagation introduces intersymbols interference (ISI) that can make it difficult to

recover transmitted data. Thus, an equalizer must be used to reduce the ISI. Without knowledge of the channel, the

first equalization methods rely on periodic transmission of training sequences that are known from the receiver. Then,

adaptation of the equalizer coefficients is done by minimizing a cost function that measures some distance between
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the actual equalizer output and the desired reference sequence. When the transmitter sends a training sequence,

the equalizer taps can be easily adapted by using simple optimization criteria such as the Least Mean Squares

(LMS) criterion that minimizes the expectation of the squared error [1]. However, in many digital communication

systems, the transmission of a bandwidth consuming training sequence is not suitable. In order to avoid training,

blind equalization techniques have been developped to retrieve symbols transmitted through an unknown channel

by only using received data and some knowledge upon the statistics of the original sequence. There exist many

blind algorithms. Sato algorithm [2] was the first blind technique proposed. The Godard algorithm [3] and the

Constant Modulus Algorithm (CMA) [4] which is a particular case of Godard algorithm, are probably the most

popular blind equalization techniques. However, they require a long data sequence to converge and show relatively

high residual error. To overcome these limitations, several approaches have been proposed in the literature like

the Modified Constant Modulus Algorithm (MCMA), that performs blind equalization and carrier phase recovery

simultaneously [5], the Multi-Modulus Algorithm (MMA) that measures the errors of the real part and imaginary

part of the equalizer output separately [6] and the Normalized-CMA (NCMA), that accelerates convergence by

estimating the optimal step size of the algorithm at each iteration [7].

In the last decade, new blind equalization techniques, based on information theoretic criteria and pdf estimation

of transmitted data, have been proposed. These criteria are optimized adaptively, in general by means of stochastic

gradient techniques. Among these techniques, Renyi’s entropy has been used as a cost function [8]. It involves pdf

estimation with the Parzen window kernel method. This equalizer is very sensitive to noise and provides excellent

results for some channels but fails to equalize some others. So, an alternative criterion based on forcing the pdf

at the equalizer output to match the known constellation pdf has been proposed in [9]. As a cost function, it uses

the Kullback-Leibler Divergence (KLD) between the pdfs. The Euclidean distance has also been proposed in [10].

It uses Parzen window with Gaussian kernels for pdf estimation. In [11], a technique based on fitting the pdf

of the equalizer output at some relevant points that are determined by the modulus of the constellation symbols

was proposed. It is known as sampled-pdf fitting. The authors of [11] also proposed in [12] the square quadratic

distance (SQD) algorithm which involves fitting the whole pdf. This method is designed for multilevel modulations

and works at symbol rate.
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Many digital transmission systems with a high number of states use QAM modulations. As the multi-modulus

approaches are well suited for such modulutions, we propose to use these techniques to equalize QAM constellations.

Therefore, in this report, we propose two new blind algorithms based on the SQD fitting, that we call Multi-Modulus

SQD-l2 (MSQD-l2) and MSQD-l1. Unlike the method in [12], MSQD-l2 measures the distance error between

observed and assumed pdfs for the real and imaginary parts of the equalizer output separately. The advantage

of proceeding this way is that involved distributions show less modes, leading thus to reduced complexity, while

preserving phase recovery as for multi-modulus methods. In addition, we benefit from the fact that 1D pdfs can

be accurately estimated with less data than 2D pdfs. MSQD-l1 works like MSQD-l2 but without squaring the real

and the imaginary parts of the equalizer outputs. Instead, their absolute values are considered. Thus, the shape of

equalized constellation modes is Gaussian which is in accordance with the statistical behavior of received data from

a single path propagation, what the equalizer tries to achieve.

These techniques are designed for multilevel modulations, work at the symbol rate and admit a simple stochastic

gradient-based implementation. For pdf estimation, we use the Parzen window. The proposed methods outperform

CMA and classical pdf fitting approaches, in terms of convergence speed and residual error. As much as possible,

it is interesting to analyze the convergence properties of blind equalizers to better understand their performance.

In this report, we focus on performance anlysis of the MSQD-l1 which is the most efficient of both algorithms

that we present. To this goal, we employ the Ordinary Differential Equation (ODE) method. Indeed, the ODE

approach supplies a solid theoretical framework for such a task [13]. The exact convergence analysis of adaptive

blind equalization algorithms is often difficult because they are derived from nonlinear criteria. Therefore, the

convergence analysis of the MSQD-l1 is conducted under some usual assumptions that are commonly met in the

related literature. The contributions of this work to the field of blind equalization include:

1) Two new blind equalization algorithms, MSQD-l1 and MSQD-l2, that converge faster than the CMA and the

classical SQD pdf fitting [12] and achieve lower residual error;

2) Convergence and performance analysis of the most effective MSQD-l1 algorithm based on the ODE method.

This report is organized as follows. In section II, we explain why to use pdfs for blind equalization. In section

III, we present the blind equalization problem and some techniques, in the literature, based on pdfs. In section IV,
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we propose the new cost functions and their corresponding stochastic gradient expressions. The convergence and

performance analysis of the MSQD-l1 algorithm is developed in section V. Simulations are presented in section

VI and conclusions of our work are given in section VII.

II. STATE OF THE ART ABOUT BLIND EQUALIZATION BASED ON PROBABILITY DENSITY FUNCTIONS

A. Why to use probability density functions for blind equalization channels?

Most blind equalization methods are based on statistical informations upon the transmitted symbols. The goal

is to find a cost function that enables to adapt the equalizer in such a way that it produces a signal that has the

same statistical properties as the emitted sequence. To extract much or ideally full statistical information from the

signal of interest, the equalizer has to use high order statistics (HOS). However, a good quality of HOS estimators

can not be achieved when calculated from a limited data set. That’s why an order of less than or equal to fourth

order statistics is usually considered. But, data distribution contains more information than the statistical properties

employed in classical blind equalization methods such as the CMA that uses the fourth order statistic. Then,

finding other criteria for blind equalization that better exploit statistical information about transmitted data would

be interesting. Moreover, the statistics of a random variable are obtained from its distribution. Thus, it can be thought

that blind equalization using probability density functions of transmitted data could achieve better performance than

blind equalization based on statistical properties. Indeed, it has been shown that blind equalization methods based

on probability density functions of observed and transmitted signals are more efficient than methods based on a

limited set of statistical features. The idea behind blind equalization channels using pdfs is simple: knowing the

target pdf of transmitted data (pdf of a constellation) in the ideal case when propagating signal is only corrupted

by an additive white Gaussian noise (AWGN), we can look for an equalizer that outputs data with the same noisy

constellation pdf. In the case of an AWGN channel and independent identically distributed transmitted symbols,

the target pdf is a mixture of Gaussian modes that have the same probability. Fig.1 bellow summarizes the idea of

blind equalization based on pdf fitting.

In the next section, we introduce the signal model and recall some blind equalization methods based on pdf

fitting that can be found in the literature.
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Fig. 1. The idea behind blind equalization based on pdf fitting

B. Kernel density function estimation

Let us consider any random variable with probability density function f . Kernel density estimation supplies a

density function estimate f̂ from observed data x1, ..., xn drawn from f , that has the form bellow [14]:

f̂(x) =
1

nh

n∑

i=1

K(
x− xi

h
) =

1

n

n∑

i=1

Kh(x− xi) (1)

where, Kh(t) = h−1K(h−1t). The kernel estimate is a mixture density, which has n identical component densities

shifted around the data points. Any probability density may be chosen as a kernel. In this report, we use the Parzen

estimator of pdfs [15] that involves a Gaussian kernel, as shown hereafter.

III. SIGNAL AND EQUALIZER MODELS

A. Signal model

To transmit digital data, a sequence {s(n)}n∈Z of independent identically distributed (i.i.d) complex symbols

belonging to a digital modulation constellation is sent through a propagation channel. Transmitted data are affected

by multipath propagation, resulting in intersymbol interference (ISI) at the receiver side. To combat the ISI, an

equalizer is used. In our work, we are interested in blind equalization, that only requires knowledge of the modulation
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used to send the data. The basic scheme of a blind equalization system is described in Fig.2. We assume that the

symbols {s(n)}n∈Z are drawn from a symmetric QAM constellation.

Transmitter Channel h +

b(n)

Equalizer w
s(n) x(n) y(n)

Fig. 2. Basic scheme of a blind equalization system

Fig.2 summarizes the transmission model, where the channel is modeled by its impulse response h = [h0, h1, ..., hLh−1]
T ,

with (.)T denotes the transpose operator. b = {b(n)}n∈Z is a circular complex additive white Gaussian noise,

independent from s with variance σ2
b = E

[
|b(n)|2

]
, x = {x(n)}n∈Z is the equalizer input, w = [w0, w1, ..., wLw−1]

T

is the equalizer impulse response, with length Lw and y(n) is the equalized signal at time n.

x(n) and y(n) can be modeled as

x(n) =

Lh−1∑

i=0

hi s(n− i) + b(n) (2)

and

y(n) =

Lw−1∑

i=0

wi x(n− i) = w(n)Tx(n) (3)

where x(n) = [x(n), x(n− 1), ..., x(n− Lw + 1)]T .

The weights of the equalizer will be adapted by using a stochastic gradient algorithm in the form

w(n+ 1) = w(n)− µ∇wJ(w) (4)

where µ is the step size and J(w) is the cost function to be minimized.

The most popular blind algorithms are the family of Godard algorithms [3], which are stochastic gradient descent

methods for minimizing the cost functions

JG(w) = E[(|y(n)|p −Rp)
2] p = 1, 2, ... (5)

where, Rp = E[|s(n)|2p]
E[|s(n)|p] and E[.] denotes mathematical expectation. For the particular case where p = 2, JG(w)

is the cost function of the CMA [4], which was independently developed using the idea of penalizing the output

samples that do not have the constant modulus property. With a stochastic gradient optimization approach, the CMA
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update can be written as:

w(n+ 1) = w(n)− µ (|y(n)|2 −R2)y(n)x(n)
∗ (6)

where, the subscript ∗ denotes complex conjugate.

B. Blind equalization techniques based on pdf fitting in the litterature

1) Blind equalization with Renyi’s entropy [16]: Instead of minimizing the squared error deviations from the

desired constant modulus property as with the CMA, the authors of [16] proposed to minimize the entropy of the

deviations. They considered that Shannon’s entropy, the most widely known definition of entropy, was too hard

to estimate and minimize and proposed alternatively to minimize the order-α Renyi’s entropy which for a random

variable with pdf f , is defined as [17]

Hα(f) =
1

1− α
log

(∫ +∞

−∞
f(x)αdx

)
(7)

The following family of entropy-based cost functions was used in [16]:

Jp
α(w) = Hα(y(n)

p −Rp) p = 1, 2, ... (8)

Since the entropy does not depend on the mean of the signal, the following simple criteria were used equivalently:

Jp
α(w) = Hα(y(n)

p) p = 1, 2, ... (9)

The authors of [16] focussed on the case p = 2. It was shown in [16] that the minimization of the entropy cost

function Eq.(9) is equivalent, for α > 1, to the maximization of Vα(w) = E[f(|y(n)|2)α−1]. Using a window of

N samples formed by the current and the past N − 1 outputs of the equalizer, the information potential can be

estimated by substituting the expectation by a sample mean:

Vα(w) ≈ 1

N

∑

j

f(|y(j)|2)α−1 (10)

Then, the coefficients of the equalizer are updated by

w(n+ 1) = w(n) + µ
∂Vα(w)

∂w
(11)

where µ is the stepsize of the algorithm. The authors of [16] showed that the use of quadratic entropy (α = 2) and

a short window (N = 2) is recommended since in this case an algorithm with a computational cost similar to that

of the CMA, but with a much faster convergence, is obtained.
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2) Blind equalization with the Kullback-Leibler Divergence (KLD) [18]: The idea behind this technique is to

compare the KLD between the observed pdf and the target one. With an ideal linear equalizer, the output of the

equalizer can be written as

y(n) = (Hs(n) + b(n))Twideal

= sT (n)gideal + b(n)

= s(n− δ) + b(n) (12)

where, gideal is the ideal system response, δ is the system delay thus s(n − δ) is the transmitted symbol at time

n − δ and b(n) is a random variable assumed to be Gaussian. From the last equation Eq.(12), it is clear that the

pdf of the signal at the optimal equalizer output is a mixture of equiprobable Gaussian distributions with the same

variance σ2
b = E

[
|b(n)|2

]
. Then, the target pdf is also a mixture of equiprobable Gaussians:

pY,ideal(y) =
1

Ns

√
2πσ2

b

Ns∑

i=1

e
−|y(n)−s(i)|2

2σ2
b (13)

where, Ns is the number of complex symbols in the constellation. Thus, the equalization criterion is constructed

in such a way that it forces the adaptive filter to produce signals with the same pdf than the ideal one. In order

to use the KLD, the authors of [18] constructed a parametric model of Gaussian mixture, like that one in Eq.(13).

Thus, the observed pdf was estimated by the following parametric model as it was explained in [18]:

φ(y, σ2
r ) =

1

Ns

√
2πσ2

r

Ns∑

i=1

e
− |y(n)−ai|

2

2σ2
r (14)

where, σ2
r is the variance of each Gaussian in the model which is different from σ2

b until the optimal equalizer is

not yet reached. Then, the KLD is expressed by:

DpY,ideal(y)||φ(y,σ2
r)

=

∫ ∞

−∞
pY,ideal(y)ln

(pY,ideal(y)

φ(y, σ2
r )

)
dy (15)

For simplicity, instead of minimizing the KLD, the authors of [18] minimized only the φ(y, σ2
r ) dependent term.

They considered then the following cost function:

JFP (w) = −E
{
ln[φ(y, σ2

r )]
}

= −E
{
ln
[ 1

Ns

√
2πσ2

r

Ns∑

i=1

e
− |y(n)−ai|

2

2σ2
r

]}
(16)
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and, the equalizer was adapted by

w(n+ 1) = w(n)− µ∇wJFP (w) (17)

3) SQD pdf fitting using Parzen Estimator [12]: As it was mentioned in the last section when using the KLD

criterion, the first term of the KLD was dropped from the cost function, since it can not be easily evaluated

or estimated. By dropping it, important statistical information about the pdf of the actual random variable Y is

eliminated. To avoid this drawback, a stochastic algorithm based on pdf fitting was proposed. Equalization techniques

based on pdf matching intend to minimize some distance between the data distribution at the equalizer output and

some target distribution. Transmitted symbols have a discrete distribution. But, since they are affected by additive

Gaussian noise at the receiver side, it can be assumed that after removing channel multipath effects, the equalizer

output should consist of a Gaussian mixture, with Gaussian modes centered at the constellation points. So, a

target distribution of this form can be chosen. In [12], a quadratic distance between pdfs for the cost function was

proposed. It is given by

J(w) =

∫ ∞

−∞

(
fY p(z)− fSP (z)

)2
dz (18)

where, Y p = {|y(n)|p}, Sp = {|s(n)|p} and fZ(z) denotes the pdf of Z at z. Thus, J(w) is intended to match

pth moment distributions between the equalizer output and the noisy constellation.

The Parzen window method is used to estimate the current data pdf. Using this nonparametric pdf estimator with

the L last symbols, the estimates of the pdfs at time n are given by:

f̂Y p(z) =
1

L

L−1∑

k=0

Kσ0
(z − |y(n− k)|p)

f̂Sp(z) =
1

Ns

Ns∑

k=1

Kσ0
(z − |s(k)|p) (19)

where Ns is the number of complex symbols in the constellation and Kσ0
is a Gaussian kernel with standard

deviation σ0, also known as the kernel bandwidth:

Kσ0
(x) =

1√
2πσ0

e
− x2

2σ2
0 . (20)

According to [12], for p = 2 and L = 1, the expression of the cost function is given by

J(w) =
1

N2
s

Ns∑

k=1

Ns∑

l=1

Kσ(|s(l)|2 − |s(k)|2)−
2

Ns

Ns∑

k=1

Kσ(|y(n)|2 − |s(k)|2). (21)
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where, σ =
√
2σ0. Then, the gradient of J(w) with respect to the equalizer weights is given by

∇wJ(w) = − 1

Ns

Ns∑

k=1

K
′

σ(|y(n)|2 − |s(k)|2) y(n)x∗(n) (22)

where K
′

σ(x) = − x√
2πσ3

exp(−x
2

2σ2 ) is the derivative of Kσ(x) and (.)∗ denotes the complex conjugation operator.

Then, the equalizer coefficients are updated at symbol rate by inserting Eq.(22) in Eq.(4). This algorithm is initialized

with a tap-centered equalizer. In [12], the squared modulus of the symbols for the kernel variables (p = 2) is used

to design J(w). But, squaring does not preserve Gaussianity around noisy constellation points. With a view to make

the criterion statistically more meaningful we propose, in this report, to also address the case p = 1. Indeed, when

p = 1, since constellation points are apart from the axes, at convergence |y(n)| will be roughly distributed according

to a mixture of gaussian distributions around the constellation points that are in the positive quadrant of the complex

plane. This is true provided the SNR remains in usual ranges for QAM modulations under consideration. In addition,

it is well known that multimodulus approaches such as MMA [19], that decompose equalization criteria into an

in-phase term and a quadrature one, are more efficient than criteria such as the CMA [4], that handle in-phase and

quadrature parts together. In the same way, the criteria that we propose are made of a sum of two terms related to

in-phase and quadrature parts of the equalizer output. This will lead to criteria that we name Multimodulus-SQD

(MSQD). More specifically, for p = 1 and p = 2 we get MSQD-l1 and MSQD-l2.

IV. MSQD ALGORITHMS

A. MSQD-ℓp algorithm

MSQD family consists of algorithms based on cost functions in the form:

J(w) =

∫ ∞

−∞
(f̂|yr|p(z)− f̂|sr|p(z))

2dz +

∫ ∞

−∞
(f̂|yi|p(z)− f̂|si|p(z))

2dz (23)

where yr = ℜ{y}, yi = ℑ{y} and the pdf estimates are in the form

f̂x(z) =
1

Nx

Nx∑

k=1

Kσ0
(z − xk) (24)
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x is equal to |sr|p, |si|p, |yr|p or |yi|p. Nx = Ns for x = |sr,i|p and Nx = L for x = |yr,i|p.

For fixed p, we denote the corresponding criterion by MSQD-ℓp. Expending Eq.(23), we get

J(w) =

∫ ∞

−∞
f̂|yr|p(z)

2 dz − 2

∫ ∞

−∞
f̂|yr|p(z) f̂|sr|p(z) dz +

∫ ∞

−∞
f̂|sr|p(z)

2 dz +

∫ ∞

−∞
f̂|yi|p(z)

2dz

− 2

∫ ∞

−∞
f̂|yi|p(z)f̂|si|p(z) dz +

∫ ∞

−∞
f̂|si|p(z)

2 dz (25)

Then, according to Eq.(24), we obtain the following expression for J(w)

J(w) =
1

L2

L−1∑

k=0

L−1∑

l=0

∫ ∞

−∞
Kσ0

(z − |yr(n− k)|p)Kσ0
(z − |yr(n− l)|p) dz

− 2

NsL

Ns∑

k=1

L−1∑

l=0

∫ ∞

−∞
Kσ0(z − |yr(n− l)|p)Kσ0(z − |sr(k)|p) dz

+
1

N2
s

Ns∑

k=1

Ns∑

l=1

∫ ∞

−∞
Kσ0

(z − |sr(k)|p)Kσ0
(z − |sr(l)|p) dz

+
1

L2

L−1∑

k=0

L−1∑

l=0

∫ ∞

−∞
Kσ0(z − |yi(n− k)|p)Kσ0(z − |yi(n− l)|p) dz

− 2

NsL

Ns∑

k=1

L−1∑

l=0

∫ ∞

−∞
Kσ0(z − |yi(n− l)|p)Kσ0(z − |si(k)|p) dz

+
1

N2
s

Ns∑

k=1

Ns∑

l=1

∫ ∞

−∞
Kσ0(z − |si(k)|p)Kσ0(z − |si(l)|p) dz (26)

In a stochastic gradient optimization approach, in general only instantaneous statistics are involved in the criterion.

Thus, we consider a window length L = 1 as in [12]. Then, since for Gaussian kernels we have

∫ ∞

−∞
Kσ0

(y − C1)Kσ0
(y − C2)dy =

1

2
Kσ0

√
2(C1 − C2), (27)

Thus, J(w) becomes

J(w) = − 1

Ns

Ns∑

k=1

Kσ(|yr(n)|p − |sr(k)|p)−
1

Ns

Ns∑

k=1

Kσ(|yi(n)|p − |si(k)|p) + Cst. (28)

On another hand, y(n) = w(n)Tx(n) rewrites as

y(n) = [wT
r xr(n)−wT

i xi(n)] + j[wT
r xi(n) +wT

i xr(n)], (29)
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which leads to
∂y(n)
∂wr

= x(n) and
∂y(n)
∂wi

= j x(n).

Therefore, the derivative of J(w) with respect to equalizer weights is

∇wJ(w) =
∂J(w)

∂wr
+ j

∂J(w)

∂wi

=
1

2

[
∂J(w)

∂yr(n)

∂yr(n)

∂wr
+

∂J(w)

∂yi(n)

∂yi(n)

∂wr
+ j

(
∂J(w)

∂yr(n)

∂yr(n)

∂wi
+

∂J(w)

∂yi(n)

∂yi(n)

∂wi

)]

=
1

2

[
∂J

∂yr(n)
xr(n) +

∂J

∂yi(n)
xi(n) + j

( −∂J
∂yr(n)

xi(n) +
∂J(w)

∂yi(n)
xr(n)

)]

=
1

2

[(
∂J

∂yr(n)
+ j

∂J

∂yi(n)

)
x∗(n)

]

=
p

2
√
2πNsσ3

Ns∑

k=1

(
sign (yr(n)) |yr(n)|p−1 (|yr(n)|p − |sr(k)|p) e−

(|yr(n)|p−|sr(k)|p)2

2σ2

+ j sign (yi(n)) |yi(n)|p−1 (|yi(n)|p − |si(k)|p) e−
(|yi(n)|p−|si(k)|p)2

2σ2

)
x∗(n).

(30)

B. MSQD-ℓ2 and MSQD-ℓ1 algorithms

In the following, we focus on the cases p = 2 and p = 1.

For p = 2, we get from Eq.(30)

∇wJ(w) =
1√

2πNsσ3

Ns∑

k=1

(
yr(n)(|yr(n)|2 − |sr(k)|2) e−

(|yr(n)|2−|sr(k)|2)2

2σ2

+ j yi(n)(|yi(n)|2 − |si(k)|2) e−
(|yi(n)|2−|si(k)|2)2

2σ2

)
x∗(n) (31)

Then, Eq.(4) is used to update equalizer taps.

For p = 1 and for the MSQD-ℓ1 cost function, we get an updating term of the equalizer in the form:

∇wJ(w) =
1

2
√
2πNsσ3

Ns∑

k=1

(
sign(yr(n)) (|yr(n)| − |sr(k)|) e−

(|yr(n)|−|sr(k)|)2

2σ2

+ j sign(yi(n)) (|yi(n)| − |si(k)|) e−
(|yi(n)|−|si(k)|)2

2σ2

)
x∗(n)

= φ(y(n))x∗(n) (32)

In section VI, we will show on simulations that, as expected from the discussion at the end of section III, the

MSQD-ℓ1 algorithm that we propose is more effective than the existing SQD algorithm in terms of mean square

error, especially for larger constellations. Thus, in the following section, we will restrict our interest to performance

analysis of the MSQD-ℓ1 algorithm in terms of stationary stable points and asymptotic steady state.
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V. PERFORMANCE ANALYSIS

In order to analyze asymptotic performance of the MSQD-ℓ1 algorithm, we resort to the ODE method which is

a powerful tool for studying the behavior of stochastic algorithms of the form

θ(n) = θ(n− 1) + µnH
(
θ(n− 1),x(n)

)
(33)

where {x(n)}n∈N is assumed to be a Markov and ergodic process. So, we can assume that there exists a function

h(θ) such that

h(θ) = lim
n→+∞

E
[
H(θ,xn) |θ

]
(34)

Then, the ODE is defined by the following equation

dθ

dt
= h(θ). (35)

We are going to look for stationary points of Eq.(35), that satisfy h(θ) = 0.

A. Stationary Stable Points of the ODE

In this section, we denote by θ(t) the solution of the ODE. It depends on the initial value θ(0) = θ0.

A point θ∗ is a stationary point of the ODE if h(θ∗) = 0 and a stationnary point is said to be

• stable if ∀ ǫ > 0, ∃ ν > 0, such as |θ0 − θ∗| < ν ⇒ ∀t ∈ R+, |θ(t)− θ∗| < ǫ ;

• asymptotically stable if ∃ ν > 0, such as |θ0 − θ∗| < ν ⇒ lim
t→+∞

θ(t) = θ∗ .

1) Stationary points: Let us consider the stochastic MSQD-l1 algorithm:

w(n+ 1) = w(n)− µ∇wJ
(
w(n),x(n)

)
. (36)

Clearly, we have here θ(n) = w(n) and

H
(
θ(n),x(n+ 1)

)
= −∇wJ

(
w(n),x(n)

)
= −∇wJ

(
w, y(n)

)
= −φ

(
y(n)

)
x∗(n). (37)

Then, according to Eq.(34)

h(w) = lim
n→+∞

E
[
H(w,x(n))|w

]

= lim
n→+∞

−E
[
∇wJ(w, y(n))|w

]

= −
∫

R+

∇wJ(w, y)p|Y |(y) dy (38)
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where, p|Y |(y) is the probability density of |y|. To calculate h(w), we begin by calculating F|Y | |s(k)(y) where,

|y| |s(k) = |s(k) + ε| and F|Y | |s(k)(y) is the cumulative distribution of |Y | given s(k):

F(|Y | |s(k))(y) = P
(
|Y | ≤ y |s(k)

)

= P
(
− y ≤ Y ≤ y |s(k)

)

= P
(−y − s(k)

σε
≤ Y − s(k)

σε
≤ y − s(k)

σε
|s(k)

)

= F
(y − s(k)

σε

)
− F

(−y − s(k)

σε

)
(39)

where F is the cumulative distribution function of the N (0, 1) distribution. Indeed, the ISI at the output of the

equalizer can be modelled as a Gaussian distribution [20] and thus y ∼ N (s(k), σ2
ε) where σ2

ε is the variance of

the error (ε) between y and s(k). Then, from Eq.(39),

p(|Y | |s(k))(y) =
1

σε

[
N

(y − s(k)

σε
; 0, 1

)
+N

(y + s(k)

σε
; 0, 1

)]

= N
(
y − s(k); 0, σ2

ε

)
+N

(
y + s(k); 0, σ2

ε

)
. (40)

where, N (y;m,σ2) = 1√
2πσ

e
−(y−m)2

2σ2 . Summing over all possible symbols sk, we find the following expression of

p|Y |(y):

p|Y |(y) =
1

Ns

Ns−1∑

k=0

[
N (y − s(k); 0, σ2

ε) +N (y + s(k); 0, σ2
ε)
]
. (41)

Then, we obtain the following expression of h(w) after replacing J(w, y) by its expression and accounting for

symmetry properties of J(w, y) and p|Y |(y),

h(w) =
1

πN2
s σσε

[
∇w

∫

R+

Ns∑

k=1

e−
(yr−|sr(k)|)2

2σ2

Ns∑

l=1

(
e
− (yr−|sr(l)|)2

2σ2
ε + e

− (yr+|sr(l)|)2

2σ2
ε

)
dyr. (42)

Thus, after calculating the integral,

h(w) =
1

N2
s

√
2π(σ2 + σ2

ε)

[
∇w

Ns∑

k=1

Ns∑

l=1

e
− (|sr(k)|−|sr(l)|)2

2(σ2+σ2
ε)

(
1− erfc(

−|sr(k)|σ2
ε − |sr(l)|σ2

σσε
√

σ2
ε + σ2

√
2

)
)

+ e
− (|sr(k)|+|sr(l)|)2

2(σ2+σ2
ε)

(
1− erfc(

−|sr(k)|σ2
ε + |sr(l)|σ2

σσε
√

σ2
ε + σ2

√
2

)
)]

= ∇wA(σ
2
ε)

=
dA(σ2

ε)

dσ2
ε

∇wσ
2
ε . (43)
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The stationary points w∗ are solutions of h(w∗) = 0.

The equalized symbol y(n) can be expressed by y(n) = wT H̃s(n) +wTb(n) where,

H̃ =




h0 h1 · · · hL−1 0 · · · 0

0 h0 h1 · · · hL−1 0 · · · 0

0
. . . h0 h1 · · · hL−1

...

0
... h0 h1 · · · hL−1 0

0 · · · 0 h0 h1 · · · hL−1




(44)

and s(n) =
[
s(D− 1), ..., s(kn), ..., s(D−L−Lw +1)

]T
where D is the equalizer delay. Then, the error between

y(n) and the value of the transmitted symbol s(kn) received at time n is calculated as follows

σ2
ε = E

[(
y(n)− s(kn)

)(
y(n)− s(kn)

)H]

= E

[(
(wT H̃ − eD)s(n) +wTb(n)

)(
(wT H̃ − eD)s(n) +wTb(n)

)H]
(45)

where, eD = (0, ..., 1, ..., 0)T , eD(i) = δi,D. Then,

σ2
ε = σ2

sw
T H̃H̃Hw∗ − σ2

sw
T H̃eD − σ2

seD
T H̃Hw∗ + σ2

s + σ2
b||w||2 (46)

Thus,

h(w) = 2
dA(σ2

ε)

dσ2
ε

[
wT [σ2

sH̃H̃H + σ2
bILw

]− σ2
seD

T H̃H
]T

But, since in practice |sr(kn)| >> σ2 + σ2
ε , only terms with 0 in the exponential will be non negligible, resulting

in A(σ2
ε) ≈ 1

N2
s

√
2π(σ2+σ2

ε)

∑Ns

k=1

(
1 + erfc( |sr(kn)|√

2

√
1
σ2 + 1

σ2
ε

)
)
. Since at convergence, 1

σ2 >> 1 and 1
σ2
ε

>> 1, it

is easy to check that
dA(σ2

ε)
dσ2

ε

< 0. Thereby, wT
∗ = σ2

seD
T H̃H

[
σ2
sH̃H̃H + σ2

b
ILw

]−1
is the only stationnary point.

The very nice thing is that w∗ is the MMSE filter. Thus, we have proved that the MSQD-ℓ1 algorithm has only one

stationnary point, which is the MMSE filter, when σ2 and σ2
ε are much smaller than constellation point amplitudes.

2) Stability analysis of stationary points: Let us recall that if w∗ is a stationary point of the ODE and

λ1, λ2, ...λLw
are the eigenvalues of

dh(w)
dw

|w=w∗ , the stability of w∗ is determined by the eigenvalues of
dh(w)
dw

|w=w∗ .

Indeed we have the following theorem [21]:
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• If ∀i ∈ [|1;Lw|] ,ℜ(λi) < 0, w∗ is asymptotically stable

• If ∃i ∈ [|1;Lw|] ,ℜ(λi) > 0, w∗ is unstable

• If ∀i ∈ [|1;Lw|] ,ℜ(λi) ≤ 0 and ℜ(λi0) = 0 for i0 ∈ [|1;Lw|], we can not conclude from these values.

So we start by calculating
dh(w)
dw

|w=w∗ .

dh(w)

dw
=

d

dw

[
d

dσ2
ε

A(σ2
ε)∇wσ2

ε

]

=
d2A(σ2

ε)

d(σ2
ε)

2
(∇wσ2

ε)(∇wσ2
ε)

T +
dA(σ2

ε)

dσ2
ε

d
(
∇wσ2

ε

)

dw
. (47)

Here, we are interested in the stability of the stationary point w∗ = σ2
s

[
σ2
sH̃

∗H̃T + σ2
b
ILw

]−1
H̃∗eD. Thus,

dh(w)

dw
|w=w∗ =

dA(σ2
ε)

dσ2
ε

[
σ2
sH̃H̃H + σ2

b
ILw

]T
< 0 (48)

since (σ2
sH̃H̃H + σ2

b
I) is a positive definite matrix and

dA(σ2
ε)

dσ2
ε

< 0. Thus, we have proved that the MMSE equalizer is the

only stationary stable point of the MSQD-ℓ1 algorithm.

B. Asymptotic Steady-State MSE Analysis

1) convergence in mean: The ODE analysis holds for small step size µ. In this section, we study how it should be

selected to guarantee convergence. In practice, µ should be shosen small enough. The maximum possible range for µ depends

on the channel under consideration and its calculation is supplied in the Appendix (VIII-A).

2) MSE equalizer analysis: The asymptotic covariance matrix of the residual error ǫ(n) = (wn − w∗) is denoted by

Σ(n) = E[ǫ(n)ǫ(n)H ]. For small step size µ, we have ȳ(n + D) ≈ s(kn) and according to [13] (p.102 p.103) Σ∞ can be

approximated as the solution of the following matrix equation, called Lyapunov’s equation:

RfΣw(∞) +Σw(∞)RH
f = µRg (49)

where, Rf = d
dw

h(w)|w=w∗
and Rg = −E

[
H(w∗,x(n))H(w∗,x(n))H

]
= −E

[
|φ(ȳ(n+D))|2x∗(n)xT (n)

]
. According

to Eq.(48), we have

Rf =
(dA(σ2

ε)

dσ2
ε

)
[σ2

sH̃H̃H + σ2
bILw]

T . (50)

Let us denote Rx = E[x(n)x(n)H ] = σ2
sH̃H̃H+σ2

b
ILw

= U Λx U
H the eigenvalue decomposition of E[x(n)x(n)H ], where

Λx = diag(λ1, λ2, ...., λLw
). We can easily verify that Rf = U∗

Λf U
T (see Eq.(50)), where

Λf (i, i)i=1..Lw
≃ −λi

2Ns

√
2π(σ2+σ2

ε)
3
2

. We can also write Rg ≃ U∗
Λg U

T and we detail the calculation of the diagonal elements

of Λg in the Appendix (VIII-B). Thus, Eq.(49) becomes:

Λf (U
T
Σw(∞)U∗) + (UT

Σw(∞)U∗)Λf = µΛg (51)
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which shows that UT
Σw(∞)U∗ is also diagonal: Σw(∞) = U∗

Λw UT with Λw = diag{λw1 , λw2 , ...., λwLw
} and

λwi
≃ µ

Λg(i, i)

Λf (i, i)
≃ 2µNs

√
2π(σ2 + σ2

ε)
3
2E

[
|φ(s(kn))|2

]
. (52)

3) MSE: In this stage, we calculate the MSE. Using the classical assumption that the tap coefficient vector w(n) are

independent from the input data vector x(n) [22] and that the symbols s(n) are independent of the noise b(n), the MSE is

expanded as follows:

σ2
ε(∞) = lim

n→∞
E
[
|y(n)− s(kn)|2

]

= lim
n→∞

E
[
|wT (n)x(n)− s(kn)|2

]

= E
[
|ǫ(∞)Tx(∞) +w∗

Tx(∞)− s(k∞)|2
]

= E
[
ǫ(∞)Tx(∞)x(∞)Hǫ(∞)∗

]
+w∗

T
E
[
x(∞)x(∞)H

]
w∗

∗

+ σ2
s + 2ℜ

[
E
[
ǫ(∞)T

]
E
[
x(∞)x(∞)H

]
w∗

∗ − σ2
s (E [ǫ(∞)] +w∗)

T
H̃eD

]
(53)

As E[ǫ(∞)] = 0 and using the independence between w∗ and x(∞) again, we get:

σ2
ε(∞) = Tr (ΛxΛw) +w∗

TRxw∗
∗ + σ2

s − 2σ2
sℜ[wT

∗ H̃eD] (54)

where Tr (ΛxΛw) is the residual error of the equalizer and w∗TRxw∗∗ + σ2
s − 2σ2

sℜ[wT
∗ H̃eD] is the MMSE error term [1].

VI. SIMULATION RESULTS

A. Evolution law of the kernel size

The kernel size σ of the Parzen window influences the convergence speed of the algorithm and its residual error. At the

beginning of convergence, it is necessary to choose a large kernel size to enable interaction of the equalized symbol with all

the constellation symbols and thus ensure a fast convergence. On the contrary, when approaching the perfect equalization of

transmitted symbols, a small kernel size has to be used to only allow interaction of each equalized symbol with the closest

symbol in the constellation. In [12], the kernel size was adaptively controlled assuming a linear relationship between the kernel

size and the decision error:

σ(n) = aG(n) + b (55)

where, G(n) = αG(n−1)+(1−α) min︸︷︷︸
k=1,...,Ns

(
(|y(n)|2−|sk|2)2

)
, α is a forgetting factor and (a, b) are empirically determined

constants. In the same way, we propose to update the error G(n) by G(n) = αG(n − 1) + (1 − α) min︸︷︷︸
k=1,...,Ns

(
(|yr(n)|2 −

|srk |2)2 + (|yi(n)|2 − |sik |2)2
)

when using MSQD-ℓ2 algorithm and by G(n) = αG(n − 1) + (1 − α) min︸︷︷︸
k=1,...,Ns

(
(|yr(n)| −
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|srk |)2 + (|yi(n)| − |sik |)2
)

when using MSQD-ℓ1 algorithm.

As mentioned in [12], the minimum of the stochastic cost function is a scaled version of the desired constellation. Then, the

original symbols |sk|2 in Eq.(22) are substituted by |sck|2 as follows:

|sck|2 = Q(σ)|sk|2 (56)

where Q(σ) is the compensation factor that depends on the kernel size and is obtained by ensuring that the zero-ISI solution

(y(n) = s(kn)) is a minimum of E [J(w)]:

E [∇wJ(w)] =
1

Ns

Ns∑

k=1

E

[
K
′

σ(|s(kn)|2 −Q(σ)|sk|2)s(kn)x∗(n)
]
= 0 (57)

For MSQD-ℓ2 and MSQD-ℓ1 we adopt the same approach to determine the adequate Q(σ) for each algorithm:

E [∇wJMSQD-ℓ2(w)] = 0→ QMSQD-ℓ2(σ)

E [∇wJMSQD-ℓ1(w)] = 0→ QMSQD-ℓ1(σ).

Thus, the real and imaginary parts of the compensated symbols are related to the true symbols in the constellation as follows:

|scrk |2 = Q(σ)|srk |2 and |scik |2 = Q(σ)|sik |2. Q(σ) is calculated numerically for each modulation. Fig.3 shows the compensation

factor Q(σ) for 16-QAM, 64-QAM and 256-QAM modulations when using the MSQD-ℓ1 algorithm. For the MSQD-ℓ1 and

MSQD-ℓ2, we implement the same steps as the algorithm summarized in [12], using the appropriate cost functions and Q

functions.

B. Results

To compare blind equalization approaches proposed in this report, with others existing in the literature, we choosed the

same channel as the one used in [12]:

h = [0.2258, 0.5161, 0.6452,−0.5161]T . (58)

Performance of the proposed MSQD-ℓ2 and MSQD-ℓ1 methods are compared with those of the CMA and SQD. The latter

was compared with the algorithms of CMA, Benveniste-Goursat (BG), Dual mode (DM)-CMA and its Stop-And-Go extension

(SAG-DM-CMA). It was proved that the SQD method yields better performance. In the following, we show that the performance

of MSQD-ℓ1 and MSQD-ℓ2 are better than those of SQD. Thus, the algorithms that we propose also perform better than the

CMA, BG, DM-CMA and SAG-DM-CMA. For simulations, we employed an equalizer of length Lw = 21 initialized using

the tap-centered strategy. Table (I) below summarizes the parameters which were used to draw the curves in Fig.{4, 5, 6}.

To compare the performance of the proposed algorithms in terms of convergence speed, we fixed the step size µ such as they
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converge with the same speed. Thus, in Fig.4, Fig.5 and Fig.6, we can clearly notice that MSQD-ℓ2 and MSQD-ℓ1 outperform

the SQD and CMA algorithms in terms of residual error for 16-QAM, 64-QAM and 256-QAM modulations. On the other

hand, when we oblige the algorithms to converge to the same MSE in Fig.7 and Fig.8, we notice that MSQD-ℓ2 and MSQD-ℓ1

converge faster. All these figures validate the MSQD-ℓ1 performance analysis that we have conducted, since the experimental

curve of the MSQD-ℓ1 converges to the theoretical one. To study the performance of the proposed algorithms as a function of

the SNR, we draw in Fig.9 the Symbol Error Rate (SER) for the CMA, SQD, MSQD-ℓ2 and MSQD-ℓ1 algorithms between

SNR = 0dB and SNR=20dB for a 16-QAM modulation. It is clear in this figure that the MSQD-ℓ1 algorithm outperforms

the other algorithms in terms of the SER.

VII. CONCLUSION

In this report, we have proposed new criteria for kernel based blind equalization techniques that force the pdf of the real

and imaginary parts of the equalizer output to match that of the true constellation real and imaginary parts by employing

the Parzen window method to estimate the data pdf. Performance of the proposed methods has been compared with that of

CMA and SQD. We have shown that they converge faster with a reduced residual error. The behaviour of the MSQD-ℓ1, most

powerful proposed method, has been examined by relating the motion of the parameter estimate errors to a deterministic ODE.

The analysis that we have conducted and simulation results prove that the MSQD-ℓ1 algorithm brings further validation of the

pdf fitting approach for equalization in digital transmission.
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TABLE I

PARAMETER VALUES USED FOR SIMULATIONS

16 QAM CMA SQD MSQD-l2 MSQD-l1

µ 3.5× 10−5 10−4 1.3× 10−4 7.7× 10−4

a - 3.5 3.5 1.5

b - −9.5 −9.5 −1

1− α - 5× 10−3 5× 10−3 5× 10−3

E0 - 7 7 5

64 QAM

µ 3.3× 10−7 1.2× 10−6 9× 10−7 4.7× 10−5

a - 3.5 3 2

b - −2 −18 −10

1− α - 10−3 10−2 10−3

E0 - 5 7 6.5

256 QAM

µ 4× 10−8 1.5× 10−7 1.5× 10−7 7× 10−5

a - 3.5 2.5 4

b - −4.5 −15 −1

1− α - 5× 10−5 10−4 2× 10−4

E0 - 7 20 7
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Fig. 3. Numerically obtained compensation factor Q(σ) in the case of MSQD-l1 algorithm.

Fig. 4. MSE (dB) for 16-QAM and SNR=30 dB.

Fig. 5. MSE (dB) for 64-QAM and SNR=30 dB.
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Fig. 6. MSE (dB) for 256-QAM and SNR=30 dB.

Fig. 7. MSE (dB) for 16-QAM and SNR=30 dB.

Fig. 8. MSE (dB) for 64-QAM and SNR=30 dB.
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Fig. 9. SER for CMA, SQD, MSQD-l2 and MSQD-l1 algorithms.
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VIII. APPENDIX

A. Calculation of the maximum possible range for µ

Let us note ȳ(n) = w∗x(n). At convergence, y(n)− ȳ(n) is small and we can apply the taylor expansion to the function

φ(y(n)) (see Eq.(37)) at ȳ(n). Then,

φ(yn) = φ(ȳ(n)) + φ′(ȳ(n))(y(n)− ȳ(n))

= φ(ȳ(n)) + φ′(ȳ(n))(H̃s(n) + b(n))T ǫ(n) (59)

where ǫ(n) = w(n)−w∗ and H̃s(n) + b(n) = x(n).

In addition, we have

w(n+ 1) = w(n)− µφ(y(n))x(n)
∗
. (60)

RR-2013-03-SC 24



Thus, substracting w∗ in both sides of Eq.(60) and using Eq.(59), we find that

ǫ(n+ 1) = ǫ(n)− µ
(
φ(ȳ(n))x(n)

∗
+ φ′(ȳ(n))(H̃s(n) + b(n))T ǫ(n)(H̃∗s∗(n) + b∗(n))

)
(61)

Taking the expectation on the both side of Eq.(61) and using the independence between ȳ(n) and ǫ(n), as it was assumed in

[22], we get

E [ǫ(n+ 1)] = E [ǫ(n)]− µ
(
E [φ(ȳ(n))x∗(n)]

+ E[(H̃∗s∗(n) + b∗(n))φ′(ỹ(n))(H̃s(n) + b(n))T ]E [ǫn]
)

(62)

In [23], the authors proved that E [φ(ȳ(n))x∗(n)] = 0 when the cost function approaches one of its minima. Thus, Eq.(62)

can be simplified to

E [ǫ(n+ 1)] =
(
ILw − µ(σ2

sH̃
∗F̃ H̃T + σ2

b
E [φ′(ȳn)] ILw)

)
E [ǫ(n)] (63)

where F̃ = 1
σ2
s
E
[
s∗(n)φ′(ȳ(n))s(n)T

]
. Consequently

E [ǫ(n+ 1)] =
(
ILw − µ(σ2

sH̃
∗F̃ H̃T + σ2

b
E{φ′(ỹ(n))}ILw)

)n

E [ǫ(0)] (64)

This yields the following condition upon the step size of the algorithm for convergence of the mean error :

0 < µ <
2

λmax

(65)

where λmax is the largest eigenvalue of σ2
sH̃

∗F̃ H̃T + σ2
b
E [φ′(ȳ(n))] ILw.

B. Diagonalization of Rg in the basis U∗

Rg = −E
[
H(w∗,x(n))H(w∗,x(n))

H
]

= −E
[
φ(s(nk))x

∗(n)xT (n)φ(s(nk))
∗]

= −H∗
E
[
|φ(s(nk))|2s(n)sT (n)

]
HT − E

[
|φ(s(nk))|2b∗(n)bT (n)

]

= −H∗DHT − σ2
bE

[
|φ(s(nk))|2

]
(66)

where, D = diag(d1, ..., d1, d2, d1, ..., d1) with d1 = σ2
sE

[
|φ(s(nk))|2

]
and d2 = E

[
|s(nk)|2|φ(s(nk))|2

]
. We have cheked

numerically that |d2−d1

d1
|2 is very small (around 10−4). Then, we can consider that D ≃ d1IL+Lw−1. Thus, we obtain the
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following expression of Rg:

Rg ≃ −d1H∗IL+Lw−1H
T − σ2

bE
[
|φ(s(nk))|2

]

≃ −E
[
|φ(s(nk))|2

] (
σ2
sH

∗HT + σ2
bILw

)

≃ −E
[
|φ(s(nk))|2

] (
U∗

ΛxU
T
)

≃
(
U∗

ΛgU
T
)

(67)

where Λg(i, i) ≃ −E
[
|φ(s(nk))|2

]
λi.
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