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ABSTRACT

This paper proposes to investigate the impact of the channel
model for authentication systems based on codes that are
corrupted by a physically unclonable noise such as the one
emitted by a printing process. The core of such a system is
the comparison for the receiver between an original binary
code, an original corrupted code and a copy of the original
code. We analyze two strategies, depending on whether or
not the receiver use a binary version of its observation to
perform its authentication test. By deriving the optimal test
within a Neyman-Pearson setup, a theoretical analysis shows
that a thresholding of the code induces a loss of performance.
This study also highlights the fact that the probability of
the type I and type II errors can be better approximated,
by several orders of magnitude, computing Chernoff bounds
instead of the Gaussian approximation. Finally we evaluate
the impact of an uncertainty for the receiver on the opponent
channel and show that the authentication is still possible
whenever the receiver can observe forged codes and uses
them to estimate the parameters of the model.

Categories and Subject Descriptors

K.6.5.0 [Management of Computing and Information
Systems]: Computer Security and Protection—Authentica-
tion

; H.1.1 [Models and Principles]: Systems and Informa-
tion Theory—Information theory
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1. INTRODUCTION

Authentication of physical products such as documents,
goods, drugs, jewels, is a major concern in a world of global
exchanges. According to the Organization for Economic Co-
operation and Development (OECD), international trade in
counterfeit and pirated goods reached more than US $250
billion in 2009 [10], additionally the World Health Orga-
nization in 2005 claimed that nearly 25% of medicines in
developing countries are forgeries [9].

One way to perform authentication of physical products
is to rely on the stochastic structure of the material that
composes the product. Authentication can be performed
for example by recording the random patterns of the fiber
of a paper [6], but such a system is practically heavy to
deploy since each product needs to be linked to its high def-
inition capture stored in a database. Another solution is to
rely on the degradation induced by the interaction between
the product and a physical process such as printing, mark-
ing, embossing, carving ... Because of both the defaults of
the physical process and the stochastic nature of the mater,
this interaction can be considered as a Physically Unclon-
able Function (PUF) [12] that cannot be reproduced by the
forger and can consequently be used to perform authentica-
tion. In [5], the authors measure the degradation of the inks
within printed color-tiles, and use discrepancy between the
statistics of the authentic and print-and-scan tiles to per-
form authentication. Other marking techniques can also be
used, in [11] the authors propose to characterize the ran-
dom profiles of laser marks on materials such as metals (the
technique is called LPUF for Laser-written PUF) and to use
them as authentication features.

We study in this paper an authentication system which
uses the fact that a printing process at very high resolution
can be seen as a stochastic process due to the nature of differ-
ent elements such as the paper fibers, the ink heterogeneity,



or the dot addressability of the printer. Such an authenti-
cation system has been proposed by Picard et al. [8, 7] and
uses 2D pseudo random binary codes that are printed at the
native resolution of the printer (2400 dpi on a standard off-
set printer or 812 dpi on digital HP Indigo printer). The
whole system is depicted on Fig. 1: once printed on a pack-
age to be authenticated, the degraded code can be scanned
and thresholded by an opponent (the forger). Note that at
this stage the thresholding is necessary because the indus-
trial printers can only print dots, e.g. binary versions of the
scanned code. The opponent will produce a printed copy of
the original code to manufacture his forgery and the receiver
will compare the scanned (and potentially post-processed)
version of the original code with the scanned (and poten-
tially post-processed) version of the copied code in order to
perform authentication. One advantage of this system over
previously cited ones is that it is easy to deploy since the au-
thentication process needs only a scan of the graphical code
under scrutiny and the seed used to generate the original
one, no fingerprint database is required.

Legitimate

Thresholding

—  Main Channel
XN = Opponent Channel

Opponent

Print &
Scan

Copied
Code
(Binary)
XN
Print &
Scan
Copied

7N Printed Code

Authentication
Test

N Xz
Receiver

Figure 1: Principle of authentication using graphical
codes.

The security of this system solely relies on the use of a
PUF, i.e. the impossibility for the opponent to accurately
estimate the original binary code. Different security analysis
have already been performed w.r.t. this authentication sys-
tem, or to very similar ones. In [1], the authors have studied
the impact of multiple printed observations of same graphi-
cal codes and the authors have shown that the power of the

noise due to the printing process can be reduced in this par-
ticular setup. In [3], the authors use machine learning tools
in order to try to infer the original code from an observation
of the printed code, their study shows that the estimation
accuracy can be increased without recovering perfectly the
original code. In [2], the authors consider the security analy-
sis in the rather similar setup of passive fingerprinting using
binary fingerprints under informed attacks (the channel be-
tween the original code and the copied code is assumed to be
a Binary Symmetric Channel), they show that the security
increase with the code length and they propose a practical
threshold when type I error (original detected as a forgery)
and type II error (forgery detected as an original) are equal.

The goal of this paper is to analyze what are the different
strategies for the receiver with respect to the post-processing
step. We assume that the strategy of the opponent is fixed
and that the copied binary code suffers a binary input binary
output channel. We show that it is in the receiver’s interest
to process directly the scanned grayscale code instead of a
binary version and we evaluate the impact of the Gaussian
approximation of the test with respect to its asymptotic ex-
pression. We also investigate the impact of the estimation of
the opponent printing channel over the authentication per-
formances.

2. AUTHENTICATION CHANNEL

2.1 Notations

We designate sets by calligraphic font e.g. X and random
variables (RV) ranging over these sets by the same italic
capitals e.g. X. The cardinality of the set X is denoted
by |X|. The sequence of N variables (X1, X2,...., Xn) is
denoted X%,

2.2 The setup

The authentication sequence is a binary sequence X cho-
sen at random from the message set X'V, and is shared se-
cretly with the legitimate receiver. In our authentication
model, X" is published as a noisy version Y, taking values
in the set of points YN (see Fig. 1). An opponent may ob-
serve YV and, naturally, tries to retrieve the original authen-
tication sequence. He obtains an estimated sequence X%
and prints it to forge a fake sequence Z¥ hoping that it will
be accepted by the receiver as coming from the legitimate
source. The receiver observes then a sequence @Y which
may be one of the two possible sequences Y or ZV, and
has to decide whether it comes from the legitimate source
or not.

The authentication model may then be viewed as a secret
communication problem involving two channels X — (), Z),
where unreliable communication is desired for one of them
(the opponent channel), and perfect communication for the
second one (the main channel). We define the main chan-
nel as the channel between the legitimate source and the
receiver, and the opponent channel as the channel between
the legitimate source and the receiver but passing through
the counterfeiter channel (see Fig. 1).

2.3 Channel modeling

Let Py, x be the generic transition matrix modeling the
whole physical processes used here, precisely printing and
scanning devices. The entries of this matrix are conditional
probabilities Py, x (v/x) relating the input alphabet X' and



the output alphabet V of the whole processes. In practi-
cal and realistic situations, X is a binary alphabet standing
with black (0) and white (1) elements of a digital code and
the channel output set V stands for the set of gray level
values with cardinality K (for printed and scanned images,
K = 256 ). Transition matrix Py ,x may be any discrete
distribution over the set V. In our global authentication
model, the two channels X — (Y, Z) are considered being
discrete and memoryless with conditional probability dis-
tribution Py z,x (y, z/x). The marginal channels Py, x and
Pz,x constitute the transition probability matrices of the
main channel and the opponent channel respectively. While
Py/x = Pv,x , Pz/x depends on the opponent processing.
We aim here at expressing this marginal distribution consid-
ering that the opponent tries to restore the original sequence
before publishing his fraudulent sequence ZV.

When performing a detection to obtain an estimated se-
quence XN of the original code, the opponent undergoes
errors. These errors are evaluated with probabilities P. w
when confusing an original white dot with a black and P. p
when confusing an original black dot with a white. This
distinction is due to the fact that the channel distribution
Py, x of the physical devices is arbitrary and not necessarily
symmetric. Let Dy, and D5, be respectively the optimal
decision regions for decoding white or black, obtained after
using classical maximum likelihood decoding. As the oppo-
nent observes YV (we assume that all the physical processes
involved are identical for the main channel and the opponent
channel), the decision regions will be defined as:

Dw={veV: Pyx(v/X=1)>Py/x(v/X =0)}. (1)

Recalling that Py, x = Py, x , error probabilities P, w and
P. 5 are equal to:

Pow= Z Py/x(v/X =1), 2)
P.s = Z PY/X(U/X:O)‘ (3)

The channel X — X can be modeled as a Binary Input
Binary Output channel (BIBO) with transition probability
matrix Py

{ 1-P.p Py }

Pow 1—Poy (@)

As we can see in Fig. 1, the opponent channel X — Z is
a physically degraded version of the main channel. Thus,
X — X — Z forms a Markov chain with the relation
Pgy x(@,2/x) = Pg,x(2/2)P 4 %(2/2). Components of
the marginal channel matrix Pz, x are:

Pzyx(Z =v/x) = Z Piyyx (&, Z =v/x)

£=0,1

= Z Py /x(@/2)P 4 3 (Z = v/%).

#=0,1

()

If we assume that the physical processes are identical for the
main channel and the opponent channel (PZ/;( =Py/x =

Py/x) the components of the marginal channel matrix P, x

will be expressed as:
Pz/X(Z:U/X:O): (1—Pe’B)Pv/X(U/X:0)
+P. sPy;x(v/X =1),

(6)

Pz/x(Z:’U/X:].): (1—Pew)Pv/X(’U/X:1)

+PE,WP‘//X(U/X = O) (7)

2.4 Receiver’s strategies

Two strategies are possible for the receiver.

2.4.1 Binary thresholding:

As a first strategy the receiver decodes the observed se-
quence OV using maximum likelihood criterion and restores
a binary version X% of the original message X~. Error
probabilities in the main channel, i.e. when OY =Y are
the same as (2) and (3). In the opponent channel, i.e. when
OY = ZN | these probabilities are:

Pow= Y Pzx(v/X =1), (8)

C
vEDyy,

o
z
I

, > (1= Pow)Py/x(v/X =1)
vEDYy,
+ Peywpv/x(’l)/XZO).
Finally we have:

Pow=(1-P.w)Pow+ Pew(l—P.5). 9)

The same development yields:

Pe,B =(1-P.pg)P.s+P.c(1—P.w) (10)

For this first strategy, the opponent channel may be viewed
as the cascade of two binary input/binary output channels:

1-P.p P
Pow 1-Pew

1-P.s FPes 1-P.s P. s
|: Pe,W 1_Pe,W:|X|: Pe,W 1_P8,W:|. (11)

When the channel distribution Py, x is symmetric, we
have P.w = P. s = p, and expressions (9) and (10) are
unified giving p = 2p(1 — p). We recognize here the cross
over probability of two cascaded binary symmetric channels
with cross probability p. As we will see in the next section,
the test that the receiver will perform to decide whether the
observed decoded sequence X comes from the legitimate
source or not is tantamount to counting the number of errors
in this case.

2.4.2  Grey level observations:

In the second strategy, the receiver performs his test di-
rectly on the received sequence OV without any given de-
coding. We will see in the next section that this strategy is
better than the previous one for authentication.

3. HYPOTHESIS TESTING

As the observed sequence may come from the legitimate
receiver or from a counterfeiter, the receiver considers two
hypothesis Hyp and H; corresponding respectively to each of
the former cases. This problem is formulated by the fact
that the observed sequence may be described by two prob-
abilities, say Qo and Q1. A decision rule will assign one of



the two hypothesis for each possible observed sequence and
the observed sequence space will then be partitioned into
two regions Ho and Hi. Accepting hypothesis Hy while it
is actually a fake (H: is true) leads to an error of type II
having probability 8. Rejecting hypothesis Hy while actu-
ally the observed sequence comes from the legitimate source
(Ho is true) leads to an error of type I with probability a.
An optimal decision rule will be given by the Neyman Pear-
son criterion. The eponymous theorem states that under the
constraint a < o™, 8 is minimized when the choice of Hy is
done if only if the following log-likelihood test is verified:

Qo(v™)
Q1(vN)

where 7 is a threshold verifying the constraint o < .

log >, (12)

3.1 Binary thresholding:

In the first strategy, the final observed data is X~V and
the original sequence X% is a side information containing
two types of data (”0” and ”71”). The distribution of each
component (X;, X;) of the sequence (XV, XV) is the same
for each of these types. We derive now the probabilities that
describe X¥ for each of the two possible hypothesis. Under
hypothesis Hj, 7 € {0, 1}, these probabilities are expressed
conditionally to the known original code:

Np

[] P@i/xi=o0, H))

i/X;=0

P(XN =iV /xN =2V, Hj)

Nw
x [ P@i/x:=1, Hy),

i/X;=1

where N and Nw are respectively the number of black and
white components in the original code.

e Under hypothesis Ho the channel X — X has distri-
butions given by (2) and (3) and we have:
P(/e Ha) = (Ps)™ (1 Pg) e e
X (o) (1= Po )N

where ne, 5 and ne,w are the number of errors (Z; # x;) when
black is decoded into white and when white is decoded into
black respectively.

e Under hypothesis Hi, the channel X — X has distri-
butions given by (9) and (10) and we have:

P (:zN/xN H1) — (Bop)"eB(1— P, g)Nemen
X (pﬂ)w)"e,w (1 - ﬁng)NW_ne’W.

Applying now the Neyman Pearson criterion (12) the test is
expressed as:

H1
2y (13
HO

H1
*W)> >\, (14)
w HO

where \y = v — Np log(i:}}ig) — Nw log(iix). For

symmetric channels, this expression is simplified by
H1
Ne,B +nc,W Z )\1. (15)
HO
This expression of the test has the practical advantage to
only count the number of errors in order to perform the au-
thentication task without even knowing the opponent chan-
nel, but at a cost of a loss of optimality.

3.2 Grey level observations:

In the second strategy, the observed data is OF. Here
again, the distribution of each component (O;, X;) of the
sequence (O, X is the same for each type of data of X.
The Neyman Pearson test is expressed as:

Ly =1 Z A 16
2 =108 poN — N XN = oV ) 2 16
which can be developed as
Nw
Pz/x(oi = U/Xi = 1)
Ly = 1 17
- LR e yxoy 07
el Py;x(0i=v/X;=0) f0
i/X;=0
Ny wa<o1v/0>>
Loy = log(1—P.w + P., +
’ i/)%:l & ( v " Pyyx(0i/1)
Ngp Pv/x(©¢/1)> H1
log|1=Pep+Pesps 73—y | 2 A2
z‘/)%::o & ( K " Py;x(0i/0) 70 2
(18)

Note that here the expressions of the channel models
Py, x(0i/X;) are required in order to perform the optimal
test.

3.3 Performance of hypothesis testing

3.3.1 The Gaussian approximation

In the previous section we have expressed the Neyman-
Pearson test for the two proposed strategies resumed by (14)
and (18). These tests may then be practically performed on
the observed sequence in order to make a decision about
its authenticity. We aim now at expressing the error prob-
abilities of type I and II, and comparing the two possible
strategies described previously. Let m = 1, 2 be the index
denoting the strategy, a straightforward calculation gives

am =Y Pu,(l/H), (19)

I>Xm

B =Y Pr, (I/Hn). (20)

I<Am

As the length N of the sequence is generally large, we use
the central limit theorem to study the distributions Pr,,,
m=1, 2.

For the binary thresholding strategy, the observed sequence
is XN. In (14) n.,w and n. 5 are binomial random variables,



with parameters depending on the source of the observed se-
quence, i.e. if it comes from the legitimate source or from
the counterfeiter. Let N, and P, stand respectively for
the number data of type x in the original code and the cross
over probabilities of the BIBO channels (4) and (11). When
N is large enough, the binomial random variables are ap-
proximated with a Gaussian distribution. We have:

Ne,x NN(NIEPE,IEy sze,z(lfpe,z)) (21)

One can obviously now deduce the parameters of the normal
approximation describing the log-likelihood L;.

For the second strategy, i.e. when the receiver tests di-
rectly the observed gray level sequence, the log-likelihood
Ly Eq. (18) may be expressed as two sums of i.i.d. and
becomes:

Ny Np H1
Ly = > llos 1)+ Y Lo 0) 2 X, (22)
i/X;=1 i/X;=0 HO

where ¢(v; x) is a function ¢ : V —R with parameter z =
0, 1 and having some distribution with mean and variance
equal to:

pe = El(V; z) | Hj] =Y (v, z)Py/x(v/z),  (23)

vEV

and

var[((V; @) | Hj] = Y (b(v, @) = pa)* Pyyx (v/z),  (24)

vEV

with Py x = Py,x (resp. Py,x = Pz/x ) for j = 0 (resp.
1) . The central limit theorem is then used again for the
distribution of L2 to compute the type I and type II error
probabilities.

3.3.2  Asymptotic expression

One important problem is the fact that the Gaussian ap-
proximation proposed previously provides inaccurate error
probabilities when the threshold A, in (19) and (20) is far
from the mean of the random variable L,,. Chernoff bound
and asymptotic expression are preferred in this context as
very small error probabilities of type I and II may be de-
sired [4]. Given a real number s the Chernoff bound on type
I and II errors may be expressed for m = 1, 2 as:

Um = Pr(Ly > Ap) < e " g (s) for any s > 0, (25)

B = Pr(Lm < Am) < e gy, (s) for any s < 0, (26)

where the function gr,, (s) is the moment generating func-
tion of L,, defined as:

gu. (s)=EyL.,. [eSLm] : (27)

These bounds are significant for A, far from E [L,,], namely
when bounding the tails of a distribution. The tightest
bound is obtained by finding the value of s that provides
the minimum of the RHS of (25) and (26), i.e. the min-
imum of e"**mg, (s). Taking the derivative, the value s
that provides the tightest bound is such that®:

dgr,, (s)
)\m — ds
ILm (s)

—SAm

_ % Inge, (s). (28)

!(one can show that e Jr.. (8) is convex)

Reminding that L,, is a sum of N independant random vari-
ables, asymptotic analysis in probability theory (when N is
large enough) shows that bounds similar to (25) and (26) are
much more appropriate for estimating a., and B, than the
Gaussian approximation. To make this more clear, we will
introduce the semi-invariant moment generating function af-
ter an acute observation of the identity (28). The semi-
invariant moment generating function of L., is uz,,(s) =
Ingr,,(s). This function has many interesting properties
that ease the extraction of an asymptotic expression for (25)
and (26) [4]. For instance, this function is additive for the
sum of independant random variables, which yields for ex-
ample for m = 2:

ﬂLz(S): Z /“Mq‘,/1(s)+ Z 1“‘571/0(8)7 (29)

i/X;=1 i/X;=0

where fi¢, /. () is the semi-invariant moment generating func-
tion of the random variable ¢;/, = ¢(0;; x). In addition,
the s optimizing the bound and obtained from (28) may be
driven from the sum of the derivatives:

Am = Z fe, /1 (s) + Z He;/0(8). (30)

i/ X;=1 i/X;=0
Chernoff bounds on type I and II errors (25) and (26) may
then be expresses as:
am = Pr(Lm > Am)

Nw

> (e i (s) = spe; 1 (5)) (31)

i/X;=1

< exp

Np
+ > (pes0(s) = spe,1(s)) | for any s> 0,
i/X;=0

and

Nw

exp | D (1 (s) = s, 0(s)) (32)

i/X;=1

IA

Np

+ Z (1re; /0(s) = spie, ;1 (s)) | for any s < 0.
i/X;=0

The distribution of each component (O;, X;) of the sequence
(ON, XY is the same for each type of data of X, and
te;/2(8) = pes(s) is independent from ¢ for a given type
of data = 0, 1. The RHS in (31) and (32) can be simpli-
fied as:

exp [NW (He/l(s) - 5//*2/1(5)) + Np (HZ/O(S) — 5#2/0(8))] .
(33)
The asymptotic expression is evaluated (see [4], Appendix

5A) for the sum of i.i.d and for large N we have (for Np =
Nw =~ N/2), for s > 0:

Qm = Pr(Lm > Am)
(34)

1 N ’
e T e ) — o))

and for s < 0:



Pr(Lm < Am)
1 N , (35)
Ve T oS Duels) — sui(s)]}-

where f1,(s) = preso(8) + pesr(s) 5 p'e(s) = pio(s) + 1/ (s),
and g (s) = pigs(s) 4+ pys1(s) is the second derivative of
the semi invariant moment generating function of random
variable £(v; z) defined by:

l(v; 0) = log (1 et Pﬂw%) ’
lv; 1) = log (1 et Peﬁ%) '

Fig. 2 illustrates the gap between the estimation of o and /3
using the Gaussian approximation and the asymptotic ex-
pression. The Monte-Carlo simulations confirm the fact that
the derived Chernoff bounds are tight.
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Figure 2: Comparison between the Gaussian ap-

proximation, the asymptotic expression and Monte-
Carlo simulations (10° trials) for the second strategy,
N = 2000, o = 50.

3.4 Comparison between the two strategies

In this setup and without loss of generality, we assume
that the print and scan channel is modeled by a discreet non-
symmetric and memoryless channel with binary input alpha-
bet X and grey level outputs V), generated from a normalized

discrete Gaussian distribution Py, (v/xz). For z =0, 1:

exp(=(v — 12)*/20%)
S exp(—(v — z)2/20%)

vEV

Py (v/x) = (36)

Fig. 3 compares the Receiver Operating Characteristic
(ROC) curves associated with the two different strategies,
and the impact of the Gaussian approximation. We can no-
tice that the gap between the two strategies is important,
this is not a surprise since the binary thresholding removes
information about the forged code Y, yet this has a practical
impact because one practitioner can be tempted to use the
weighted bit error rate given in (15) as an authentication
score for its easy implementation.

Moreover, as we will see in the next section, the plain
scan of the graphical code can be used whenever the receiver
needs to estimate the opponent’s channel.
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10712 |--- Thresholding AN
Q.

10—19 . |
10726 - -
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«

Figure 3: ROC curves for the two different strategies
(N = 2000, o = 52).

4. IMPACT OF THE ESTIMATION OF THE
PRINT AND SCAN CHANNEL

The previous scenarios assume that the receiver has a full
knowledge of the print and scan channel. Here we assume
that the receiver has also to estimate the opponent channel
before performing authentication. From the estimated pa-
rameters, the receiver will compute a threshold and a test
according to a Neyman-Pearson strategy. Depending of the
number of observations N,, the estimated model and test
will decrease the performance of the authentication system.

We consider now that the opponent uses different print-
ing device. According to (6) and (7), the parameters to be
estimated are P, w, P. 5, tlo, 1 and o. We use the classical
Expectation Maximization (E.M.) algorithm combined with
the Newton’s method to solve the maximization step.

Fig. 4 shows the authentication performances using model
estimation for N, = 2000 observed symbols. We can notice
that the performance (and the estimated parameters) are
very close to an exact knowledge of the model. This analy-
sis shows also that if the receiver has some assumptions of
the opponent channel and enough observations, he should
perform model estimation instead of using the thresholding
strategy. Fig. 5 shows the importance of model estimation
when comparing it to a blind authentication test when the
receiver assumes that both the opponent channel and his
channel are identical.
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Figure 4: Authentication performance using model
estimation with the EM algorithm (N = 2000, N, =
2000, o = 52, uo = 50, u1 = 150). The asymptotic
expression is used to derive the error probabilities.
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Figure 5: ROC curves comparing different knowl-
edges about the channel while the opponent uses
a different printing process (o = 40, po = 40, p1 =
160). “True model”: the receiver knows exactly this
model, “Blind model”: the receiver uses his printing
process model as the opponent model, “Est. model”:
the receiver estimates the opponent channel using
N, = 2000 observations.

S. CONCLUSIONS AND PERSPECTIVES

This papers brings numerous conclusions on the authen-
tication using binary codes corrupted by a manufacturing
stochastic noise:

e The nature of the receiver’s input is of upmost impor-
tance and thresholding is a bad strategy with respect
to getting an accurate version of the genuine or forged
code, except if the system requires it.

e The Gaussian approximations used to compute the
ROC of the authentication system are not valuable
anymore for very low type I or type II errors. Cher-
noff bounds have to be used instead.

e If the opponent’s print and scan channel remains un-
known for the receiver, he can use estimation tech-
niques such as the E.M algorithm in order to estimate
the channel.

e The proposed methodology is not impacted by the na-
ture of the noise, and can be applied for different mem-
oryless channels that are more realistic for modeling
the printing process.

Our futures works plan to address the potential benefits for
authentication of structured codes such as error-correcting
codes.
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