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GEOMETRY AND SPECTRUM IN 2D MAGNETIC WELLS

NICOLAS RAYMOND AND SAN VŨ NGO. C

Abstract. This paper is devoted to the classical mechanics and spectral analysis of a pure mag-
netic Hamiltonian in R2. It is established that both the dynamics and the semiclassical spectral
theory can be treated through a Birkhoff normal form and reduced to the study of a family of one
dimensional Hamiltonians. As a corollary, recent results by Helffer-Kordyukov are extended to
higher energies.

1. Introduction

We consider in this article a charged particle in R2 moving under the action of a non-
vanishing, time-independent magnetic field which is orthogonal to the plane. We will study
both the classical and quantum (non relativistic) cases, in a regime where the energy is low but
the magnetic field is strong.

This problem has given rise to many semiclassical investigations in the last fifteen years. Most
of them are motivated by the study of the Ginzburg-Landau functional and its third critical field
HC3 which can be related to the lowest eigenvalue of the magnetic Laplacian (see [9]). Many
cases involving the geometry of the possible boundary and the variations of the magnetic field
have been analyzed (see [24, 15, 16, 17, 12, 26, 10, 13, 14]). Due to the initial motivation, most
of the papers provide only asymptotic expansions of the lowest eigenvalue and do not provide
the corresponding approximation for the eigenfunctions. The only paper which explicitly tack-
les the approximation of the eigenfunctions and their microlocal properties is [8], where the
authors combine pseudo-differential techniques and a Grushin reduction. More recently, the
contributions [27, 7, 25] display that the magnetic 2-form and the geometry combine in the
semiclassical limit to produce very fine microlocalization properties for the eigenfunctions. In
particular, it is shown, in various geometric and magnetic settings, that a normal form proce-
dure can reveal a double scale structure of the magnetic Laplacian, which is reminiscent of the
famous Born-Oppenheimer approximation. It also established that an effective electric operator
generates asymptotic series for the lowest eigenpairs. Such results suggest the fact that a full
Birkhoff normal form analysis in the spirit of [33, 3, 34] could be implemented for the magnetic
Laplacian.

This is a remarkable fact that the Birkhoff procedure has never been implemented to enlighten
the effect of magnetic fields on the low lying eigenvalues of the magnetic Laplacian. A reason
might be that, compared to the case of a Schrödinger operator with an electric potential, the
magnetic case presents a major difficulty: the symbol itself is not enough to confine the dynamics
in a compact set. Therefore, it is not possible to start with a simple harmonic approximation at
the principal level. This difficulty can be seen in the recent papers by Helffer and Kordyukov [13]
(dimension two) and [14] (dimension three) which treat cases without boundary. In dimension
three they provide accurate constructions of quasimodes, but do not establish the asymptotic
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2 NICOLAS RAYMOND AND SAN VŨ NGO. C

expansions of the eigenvalues which is still an open problem. In dimension two, they prove that
if the magnetic field has a unique and non-degenerate minimum, the j-th eigenvalue admits an
expansion in powers of ~1/2 of the form:

λj(~) ∼ ~ min
q∈R2

B(q) + ~2(c1(2j − 1) + c0) +O(~5/2),

where c0 and c1 are constants depending on the magnetic field. In this paper, we extend their
result by obtaining a complete asymptotic expansion — without odd powers of ~1/2 (see Corol-
lary 1.7)— which actually applies to more general magnetic wells — see for instance Corol-
lary 1.8.

Let us describe now the methods and results of the paper. As we shall recall below, a particle
in a magnetic field has a fast rotating motion, coupled to a slow drift. It is of course expected
that the long-time behaviour of the particle is governed by this drift. We show in this article
that it is indeed the case, and that the drift motion can be obtained by a one degree of freedom
Hamiltonian system, both in the classical or the quantum setting. What’s more, the effective
Hamiltonian is, for small energies, approximated by the magnetic field itself.

In order to achieve this, we obtain a normal form that explicitly reduces the study of the
original system to a one degree of freedom Hamiltonian. In the classical case, this gives an
approximation of the dynamics for long times, of order O(1/E∞), where E is the energy. In
the quantum case, this gives a complete asymptotic expansion of the eigenvalues up to O(~∞),
where ~ is the semiclassical parameter (Planck’s constant).

Classical dynamics. Let (e1, e2, e3) be an orthonormal basis of R3. Our configuration space
is R2 = {q1e1 + q2e2; (q1, q2) ∈ R2}, and the magnetic field is ~B = B(q1, q2)e3. For the moment
we only assume that q := (q1, q2) belongs to an open set Ω where B does not vanish.

With appropriate constants, Newton’s equation for the particle under the action of the
Lorentz force writes

(1.1) q̈ = 2q̇ ∧ ~B.

The kinetic energy E = 1
4 ‖q̇‖

2 is conserved. If the speed q̇ is small, we may linearize the system,
which amounts to have a constant magnetic field. Then, as is well known, the integration of
Newton’s equations gives a circular motion of angular velocity θ̇ = −2B and radius ‖q̇‖ /2B.
Thus, even if the norm of the speed is small, the angular velocity may be very important. Now,
if B is in fact not constant, then after a while, the particle may leave the region where the
linearization is meaningful. This suggests a separation of scales, where the fast circular motion
is superposed with a slow motion of the center (Figure 1).

It is known that the system (1.1) is Hamiltonian. In fact, the Hamiltonian is simply the
kinetic energy, but the definition of the phase space requires the introduction of a magnetic
potential. Let A ∈ C∞(R2,R2) such that

~B = ∇∧A.

We may identify A = (A1, A2) with the 1-form A = A1dq1 + A2dq2. Then, as a differential
2-form, dA = (∂A2

∂q1
− ∂A1

∂q2
)dq1 ∧ dq2 = Bdq1 ∧ dq2. Thus, by Poincaré lemma we see that, given

any smooth magnetic function B(q1, q2), such a potential A always exists.
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Figure 1. This photograph shows the motion of an electron beam in a non-uniform
magnetic field. One can clearly see the fast rotation coupled with a drift. In the magnetic
literature, the turning point (here on the right), due to the projection of the phase space
motion onto the position space, is called a mirror point. Credits: Prof. Reiner Stenzel,
http://www.physics.ucla.edu/plasma-exp/beam/BeamLoopyMirror.html

In terms of canonical variables (q, p) ∈ T ∗R2 = R4 the Hamiltonian of our system is

(1.2) H(q, p) = ‖p−A(q)‖2 .
We use here the Euclidean norm on R2, which allows the identification of R2 with (R2)∗ by

(1.3) ∀(v, p) ∈ R2 × (R2)∗, p(v) = 〈p, v〉.
Thus, the canonical symplectic structure ω on T ∗R2 is given by

(1.4) ω((Q1, P1), (Q2, P2)) = 〈P1, Q2〉 − 〈P2, Q1〉.

It is easy to check that Hamilton’s equations for H imply Newton’s equation (1.1). In partic-
ular, through the identification (1.3) we have q̇ = 2(p−A).

Main results. We can now state our main results. We consider first large time classical dy-
namics. Indeed, while it is quite easy to find an approximation of the dynamics for finite time,
the large time problem has to face the issue that the conservation of the energy H is not enough
to confine the trajectories in a compact set: the set H−1(E) is not bounded.

The first result shows the existence of a smooth symplectic diffeomorphism that transforms
the initial Hamiltonian into a normal form, up to any order in the distance to the zero energy
surface.

Theorem 1.1. Let

H(q, p) := ‖p−A(q)‖2 , (q, p) ∈ T ∗R2 = R2 × R2,

where the magnetic potential A : R2 → R2 is smooth. Let B := ∂A2
∂q1
− ∂A1

∂q2
be the corresponding

magnetic field. Let Ω ⊂ R2 be an open set where B does not vanish. Then there exists a
symplectic diffeomorphism Φ, defined in an open set Ω̃ ⊂ Cz1 ×R2

z2, with values in T ∗R2, which
sends the plane {z1 = 0} to the surface {H = 0}, and such that

(1.5) H ◦ Φ = |z1|2 f(z2, |z1|2) +O(|z1|∞),

http://www.physics.ucla.edu/plasma-exp/beam/BeamLoopyMirror.html
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where f : R2 × R→ R is smooth. Moreover, the map

(1.6) ϕ : Ω 3 q 7→ Φ−1(q,A(q)) ∈ ({0} × R2
z2) ∩ Ω̃

is a local diffeomorphism and
f ◦ (ϕ(q), 0) = |B(q)| .

In the following theorem we denote by K = |z1|2 f(z2, |z1|2)◦Φ−1 the (completely integrable)
normal form of H given be Theorem 1.1 above. Let ϕtH be the Hamiltonian flow of H, and let
ϕtK be the Hamiltonian flow of K. Since K has separated variables, it is easy to compute its
flow. The following result ensures that ϕtK is a very good approximation to ϕtH for large times.

Theorem 1.2. Assume that the magnetic field B > 0 is confining: there exists C > 0 and
M > 0 such that B(q) > C if ‖q‖ >M . Let C0 < C. Then

(1) The flow ϕtH is uniformly bounded for all starting points (q, p) such that B(q) 6 C0 and
H(q, p) = O(ε) and for times of order O(1/εN ), where N is arbitrary.

(2) Up to a time of order Tε = O(|ln ε|), we have

(1.7)
∥∥ϕtH(q, p)− ϕtK(q, p)

∥∥ = O(ε∞)

for all starting points (q, p) such that B(q) 6 C0 and H(q, p) = O(ε).

It is interesting to notice that, if one restricts to regular values of B, one obtains the same
control for a much longer time, as stated below.

Theorem 1.3. Under the same confinement hypothesis as Theorem 1.2, let J ⊂ (0, C0) be
a closed interval such that dB does not vanish on B−1(J). Then up to a time of order T =
O(1/εN ), for an arbitrary N > 0, we have∥∥ϕtH(q, p)− ϕtK(q, p)

∥∥ = O(ε∞)

for all starting points (q, p) such that B(q) ∈ J and H(q, p) = O(ε).

It is possible that the longer time T = O(1/εN ) reached in (1.7) could apply as well for some
types of singularities of B; this seems to be an open question at the moment.

We may now describe the magnetic dynamics in terms of a fast rotating motion with a slow
drift. In order to do this, we introduce the adiabatic action

I := |z1|2 =

∫
γ
pdq,

where γ is the loop corresponding to the fast motion (which we can obtain by using a local
approximation by a constant magnetic field). Since {I,K} = 0, I is a constant of motion for
the flow ϕtK . Moreover, the Hamiltonian flow of I generates a 2π-periodic S1 action on the level
set {I = const}. For I 6= 0, the reduced symplectic manifold ΣI := {I = const}/S1 may be
identified with Σ := I−1(0) = H−1(0), endowed with the symplectic form dξ2 ∧ dx2. (As we
shall see in Lemma 2.1 below, we may also identify Σ with R2

(q1,q2) endowed with the symplectic
form Bdq1 ∧ dq2.) Then, for each value of I, the function K defines a Hamiltonian hI on Σ:

hI(z2) := If(z2, I).

In the next statement, we assume that B is confining and we denote by T (ε) the time given by
Theorems 1.2 or 1.3, depending on the initial value ofB. In view of the fact that the Hamiltonian
vector field of K splits into the sum of commuting vector fields

XK = fXI + IXf(z2,I),
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we immediately obtain the following corollary, which is illustrated by Figure 2.

Figure 2. Numerical simulation of the flow of H when the magnetic field is
given by B(x, y) = 2 + x2 + y2 + x3

3 + x4

20 , and ε = 0.05, t ∈ [0, 500]. The picture
also displays in red some level sets of B.

Corollary 1.4 (fast/slow decomposition). Let N > 0. There exists a small energy E0 > 0 such
that, for all E < E0, for times t 6 T (E), the magnetic flow ϕtH at kinetic energy H = E is, up
to an error of order O(E∞), the Abelian composition of two motions:

• [fast rotating motion] a periodic flow around the S1-orbits, with frequency 1
2π

∂K
∂I ;

• [slow drift] the Hamiltonian flow of hI on Σ ' ΣI .

Thus, we can informally describe the motion as a coupling between a fast rotating motion
around a center c(t) ∈ H−1(0) and a slow drift of the point c(t). The rotating motion depends
smoothly on E; in terms of the original variables (q1, q2), it has a small radius

r =
E

B(q)
+O(E2)

and a fast angular velocity
θ̇ = −2B(q) +O(E).

The motion of c(t), up to an error of order O(E∞), is given by the effective 1D Hamiltonian hI ,
depending smoothly on the adiabatic action I, of the form

hI(x2, ξ2) = IB(q) +O(I2),
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where q and z2 = (x2, ξ2) are related by (1.6). Notice that, at first order, the flow of hI is given
by the flow of IB; thus, modulo an error of order E2, the trajectories follow the level sets of the
magnetic field; Figure 2 gives a striking numerical evidence of this.

Under additional hypothesis on hI , one can of course say much more. For instance, if hI has
no critical points at a given energy (as in Theorem 1.3), then the trajectories are diffeomorphic
to circles; then we can introduce a second adiabatic invariant. In this case, it could be interesting
to improve the estimates using KAM/Nekhoroshev methods.

We turn now to the quantum counterpart of these results. Let H~,A = (−i~∇ − A)2 be
the magnetic Laplacian on R2, where the potential A : R2 → R2 is smooth, and such that
H~,A ∈ S(m) for some order function m on R4 (see [6, Chapter 7]). We will work with the Weyl
quantization; for a classical symbol a = a(x, ξ) ∈ S(m) , it is defined as:

Opw~ aψ(x) =
1

(2π~)2

∫ ∫
ei(x−y)·ξ/~a

(
x+ y

2
, ξ

)
ψ(y) dy dξ, ∀ψ ∈ S(R2).

The first result shows that the spectral theory of H~,A is governed at first order by the mag-
netic field itself, viewed as a symbol.

Theorem 1.5. Assume that the magnetic field B is non vanishing (Ω = R2). Let H0
~ =

Opw~ (H0), where H0 = B(ϕ−1(z2))|z1|2 and the diffeomorphism ϕ is defined in (1.6). Then
there exists a bounded classical pseudo-differential operator Q~, such that

• Q~ commutes with Opw~ (|z1|2);
• Q~ is relatively bounded with respect to H0

~ with an arbitrarily small relative bound;
• its Weyl symbol is Oz2(~2 + ~ |z1|2 + |z1|4),

so that the following holds. Assume that the magnetic field is confining: there exist constants
C̃1 > 0, M0 > 0 such that

(1.8) B(q) > C̃1 for |q| >M0.

Let 0 < C1 < C̃1. Then the spectra of H~,A and N~ := H0
~ +Q~ in (−∞, C1~] are discrete. We

denote by 0 < λ1(~) 6 λ2(~) 6 · · · the eigenvalues of H~,A and by 0 < µ1(~) 6 µ2(~) 6 · · · the
eigenvalues of N~. Then for all j ∈ N∗ such that λj(~) 6 C1~ and µj(~) 6 C1~, we have

|λj(~)− µj(~)| = O(~∞).

The proof of Theorem 1.5 relies on the following theorem, which provides in particular an
accurate description of Q~. In the statement, we use the notation of Theorem 1.1; we recall that
Σ is the zero set of the classical Hamiltonian H.

Theorem 1.6. For ~ small enough there exists a Fourier Integral Operator U~ such that

U∗~Uh = I + Z~, U~U
∗
h = I + Z ′~,

where Z~, Z
′
~ are pseudo-differential operators that microlocally vanish in a neighborhood of

Ω̃ ∩ Σ, and

(1.9) U∗~H~,AU~ = I~F~ +R~,

where

(1) I~ := −~2 ∂2

∂x21
+ x2

1;
(2) F~ is a classical pseudo-differential operator in S(m) that commutes with I~;
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(3) For any Hermite function hn(x1) such that I~hn = ~(2n−1)hn, the operator F (n)
~ acting

on L2(Rx2) by

hn ⊗ F (n)
~ (u) = F~(hn ⊗ u)

is a classical pseudo-differential operator in SR2(m) with principal symbol

F (n)(x2, ξ2) = B(q),

where (0, x2 + iξ2) = ϕ(q) as in (1.6);
(4) Given any classical pseudo-differential operator D~ with principal symbol d0 such that

d0(z1, z2) = c(z2)|z1|2 +O(|z1|3), and any N > 1, there exist classical pseudo-differential
operators S~,N and KN such that:

(1.10) R~ = S~,N (D~)N +KN +O(~∞),

with KN compactly supported away from a fixed neighborhood of |z1| = 0.
(5) I~F~ = N~ = H0

~ +Q~, where H0
~ = Opw~ (H0), H0 = B(ϕ−1(z2))|z1|2, and the operator

Q~ is relatively bounded with respect to H0
~ with an arbitrarily small relative bound.

We recover the result of [13], adding the fact that no odd power of ~1/2 can show up in the
asymptotic expansion.

Corollary 1.7 (Low lying eigenvalues). Assume that B has a unique non-degenerate minimum.
Then there exists a constant c0 such that for any j, the eigenvalue λj(~) has a full asymptotic
expansion in integral powers of ~ whose first terms have the following form:

λj(~) ∼ ~minB + ~2(c1(2j − 1) + c0) +O(~3),

with c1 =

√
det(B”◦ϕ−1(0))

2B◦ϕ−1(0)
, where the minimum of B is reached at ϕ−1(0).

Proof. The first eigenvalues of H~,A are equal to ~ times the eigenvalues of F (1)
~ (in point (3) of

Theorem 1.6). Since B has a non-degenerate minimum, the symbol of F (1)
~ has a non-degenerate

minimum, and the spectral asymptotics of the low-lying eigenvalues for such a 1D pseudo-
differential operator are well known. We get

λj(~) ∼ ~minB + ~2(c1(2j − 1) + c0) +O(~3),

with c1 =
√

det(B ◦ ϕ−1)”(0)/2. One can easily compute

c1 =

√
det(B” ◦ ϕ−1(0))

2 |det(Dϕ−1(0))|
=

√
det(B” ◦ ϕ−1(0))

2B ◦ ϕ−1(0)
.

�

Under reasonable assumptions on B, Theorems 1.6 and 1.5 should yield precise asymptotic
expansions even in the regime of energies larger than c~, where c > minB. For instance, we
obtain the following result.

Corollary 1.8 (Magnetic excited states). Let c < C̃1 be a regular value of B, and assume
that the level set B−1(c) is connected. Then there exists ε > 0 such that the eigenvalues of the
magnetic Laplacian lying in the interval [~(c− ε), ~(c+ ε)] have the form

λj(~) = (2n− 1)~f~(~n(j), ~k(j)) +O(~∞), (n(j), k(j)) ∈ Z2,
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where f~ = f0 +~f1 +· · · admits an asymptotic expansion in powers of ~ with smooth coefficients
fi ∈ C∞(R2;R) and ∂1f0 = 0, ∂2f0 6= 0. Moreover, the corresponding eigenfunctions are
microlocalized in the annulus B−1([c− ε, c+ ε]).

In particular, if n = 1 and c ∈ (minB, 3 minB), the eigenvalues of the magnetic Laplacian in
the interval [~(c− ε), ~(c+ ε)] have gaps of order O(~2).

Proof. As before, the spectrum of H~,A below C1~ is the union of the eigenvalues below C1~ of
(2n−1)~F (n)

~ , n ∈ N∗. For each n, the usual Bohr-Sommerfeld rules for 1D semiclassical pseudo-
differential operators (see for instance [32] and the references therein) state that the eigenvalues
of F (n)

~ in the interval [c− ε, c+ ε] admit a complete asymptotic expansion of the form

f
(n)
0 (~j) + ~f (n)

1 (~j) + · · · ,

where f (n)
0 , f

(n)
1 , . . . , are smooth functions and f

(n)
0 = f0 does not depend on n and satisfies

(f
(n)
0 )′ 6= 0 (precisely, 2πf−1

0 (c) is the area of the curve B−1(c) viewed in Σ, up to a constant).
�

• Comments on Theorem 1.6. When finishing to write this paper, we discovered that Theorem
1.6 appears in a close form in [19, Theorem 6.2.7]. However, several differences have to be men-
tioned. Our proof uses a deformation argument à la Moser which relies on a global symplectic
parameterization of Σ and an intrinsic description of the symplectic normal bundle NΣ. Both
the classical and quantum Birkhoff normal forms are obtained simultaneously by endowing the
space of formal series with the semiclassical Weyl product, instead of the usual product. Actu-
ally, the particular grading in (z1, ~) that we use is tightly linked to the physical nature of the
problem. The result itself is different since we obtain a uniform remainder R~ which vanishes to
any order in that grading.

• Higher dimensions. In [14], the asymptotic expansion of the eigenvalues is not proved. We
believe that the methods presented in our paper are likely to apply in their context and should
help prove their conjecture.

Organization of the paper. The paper is organized as follows. Section 2 is devoted to the proof
of Theorems 1.1 and 1.6. Then, we prove Theorems 1.2 and 1.3 in Section 3. Finally in Section
4 we provide the proof of Theorem 1.5.

2. Magnetic Birkhoff normal form

In this section we prove Theorem 1.1.

2.1. Symplectic normal bundle of Σ. We introduce the submanifold of all particles at rest
(q̇ = 0):

Σ := H−1(0) = {(q, p); p = A(q)}.
Since it is a graph, it is an embedded submanifold of R4, parameterized by q ∈ R2.

Lemma 2.1. Σ is a symplectic submanifold of R4. In fact,

j∗ω�Σ = dA ' B,
where j : R2 → Σ is the embedding j(q) = (q, A(q)).
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Proof. We compute j∗ω = j∗(dp1 ∧ dq1 + dp2 ∧ dq2) = (−∂A1
∂q2

+ ∂A2
∂q1

)dq1 ∧ dq2 6= 0. �

Since we are interested in the low energy regime, we wish to describe a small neighborhood of
Σ in R4, which amounts to understanding the normal symplectic bundle of Σ. For any q ∈ Ω, we
denote by TqA : R2 → R2 the tangent map of A. Then of course the vectors (Q,TqA(Q)), with
Q ∈ TqΩ = R2, span the tangent space Tj(q)Σ. It is interesting to notice that the symplectic
orthogonal Tj(q)Σ⊥ is very easy to describe as well.

Lemma 2.2. For any q ∈ Ω, the vectors

u1 :=
1√
|B|

(e1, tTqA(e1)); v1 :=

√
|B|
B

(e2, tTqA(e2))

form a symplectic basis of Tj(q)Σ⊥.

Proof. Let (Q1, P1) ∈ Tj(q)Σ and (Q2, P2) with P2 = tTqA(Q2). Then from (1.4) we get

ω((Q1, P1), (Q2, P2)) = 〈TqA(Q1), Q2〉 − 〈tTqA(Q2), Q1〉
= 0.

This shows that u1 and v1 belong to Tj(q)Σ⊥. Finally

ω(u1, v1) =
1

B
(〈tTqA(e1), e2〉 − 〈tTqA(e2), e1〉)

=
1

B
〈e1, (TqA− tTqA)(e2)〉

=
1

B
〈e1, ~B ∧ e2〉 = −B

B
〈e1, e1〉 = −1.

�

Thanks to this lemma, we are able to give a simple formula for the transversal Hessian of H,
which governs the linearized (fast) motion:

Lemma 2.3. The transversal Hessian of H, as a quadratic form on Tj(q)Σ⊥, is given by

∀q ∈ Ω, ∀(Q,P ) ∈ Tj(q)Σ⊥, d2
qH((Q,P )2) = 2‖Q ∧ ~B‖2.

Proof. Let (q, p) = j(q). From (1.2) we get

dH = 2〈p−A, dp− TqA ◦ dq〉.

Thus
d2H((Q,P )2) = 2‖(dp− TqA ◦ dq)(Q,P )‖2 + 〈p−A,M((Q,P )2)〉,

and it is not necessary to compute the quadratic form M , since p−A = 0. We obtain

d2H((Q,P )2) = 2‖P − TqA(Q)‖2

= 2‖(tTqA− TqA)(Q)‖2 = 2‖Q ∧ ~B‖2.

�
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We may express this Hessian in the symplectic basis (u1, v1) given by Lemma 2.2:

(2.1) d2H�Tj(q)Σ⊥ =

(
2 |B| 0

0 2 |B|

)
.

Indeed, ‖e1 ∧ ~B‖2 = B2, and the off-diagonal term is 1
B 〈e1 ∧ ~B, e2 ∧ ~B〉 = 0.

2.2. Proof of Theorem 1.1. We use the notation of the previous section. We endow Cz1×R2
z2

with canonical variables z1 = x1 + iξ1, z2 = (x2, ξ2), and symplectic form ω0 := dξ1 ∧ dx1 +
dξ2 ∧ dx2. By Darboux’s theorem, there exists a diffeomorphism g : Ω→ g(Ω) ⊂ R2

z2 such that
g(q0) = 0 and

g∗(dξ2 ∧ dx2) = j∗ω.

(We identify g with ϕ in the statement of the theorem.) In other words, the new embedding
̃ := j ◦ g−1 : R2 → Σ is symplectic. In fact we can give an explicit choice for g by introducing
the global change of variables:

x2 = q1, ξ2 =

∫ q2

0
B(q1, s) ds.

Consider the following map Φ̃:

C× Ω
Φ̃−→ NΣ(2.2)

(x1 + iξ1, z2) 7→ x1u1(z2) + ξ1v1(z2),(2.3)

where u1(z2) and v1(z2) are the vectors defined in Lemma 2.2 with q = g−1(z2). This is an
isomorphism between the normal symplectic bundle of {0} × Ω and NΣ, the normal symplec-
tic bundle of Σ: indeed, Lemma 2.2 says that for fixed z2, the map z1 7→ Φ̃(z1, z2) is a linear
symplectic map. This implies, by a general result of Weinstein [35], that there exists a symplec-
tomorphism Φ from a neighborhood of {0}×Ω to a neighborhood of ̃(Ω) ⊂ Σ whose differential
at {0} × Ω is equal to Φ̃. Let us recall how to prove this.

First, we may identify Φ̃ with a map into R4 by

Φ̃(z1, z2) = ̃(z2) + x1u1(z2) + ξ1v1(z2).

Its Jacobian at z1 = 0 in the canonical basis of Tz1C×Tz2Ω = R4 is a matrix with column vectors
[u1, v1, Tz2 ̃(e1), Tz2 ̃(e2)], which by Lemma 2.2 is a basis of R4: thus Φ̃ is a local diffeomorphism
at every (0, z2). Therefore if ε > 0 is small enough, Φ̃ is a diffeomorphism of B(ε) × Ω into its
image.

(B(ε) ⊂ C is the open ball of radius ε).

Since ̃ is symplectic, Lemma 2.2 implies that the basis [u1, v1, Tz2 ̃(e1), Tz2 ̃(e2)] is symplectic
in R4; thus the Jacobian of Φ̃ on {0} ×Ω is symplectic. This in turn can be expressed by saying
that the 2-form

ω0 − Φ̃∗ω0

vanishes on {0} × Ω.

Lemma 2.4. Let us consider ω0 and ω1 two 2-forms on R4 which are closed and non degenerate.
Let us assume that ω1|x̂1=0 = ω0|x̂1=0. There exist a neighborhood of (0, 0, 0, 0) and a change of
coordinates ψ1 such that:

ψ∗1ω1 = ω0 and ψ1 = Id +O(x̂2
1).
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Proof. The proof of this relative Darboux lemma is standard but we recall it for completeness
(see [23, p. 92]).

• Relative Poincaré Lemma. Let us begin to recall how we can find a 1-form σ defined in a
neighborhood of ẑ1 = 0 such that:

τ := ω1 − ω0 = dσ and σ = O(x̂2
1).

We introduce the family of diffeomorphisms (φt)0<t61 defined by:

φt(x̂1, x̂2, ξ̂1, ξ̂2) = (tx̂1, x̂2, ξ̂1, ξ̂2)

and we let:
φ0(x̂1, x̂2, ξ̂1, ξ̂2) = (0, x̂2, ξ̂1, ξ̂2).

We have:

(2.4) φ∗0τ = 0 and φ∗1τ = τ ;

Let us denote by Xt the vector field associated with φt:

Xt =
dφt
dt

(φ−1
t ) = (t−1x̂1, 0, 0, 0) = t−1x̂1e1,

with e1 := (1, 0, 0, 0). Let us compute the Lie derivative of τ along Xt: d
dtφ
∗
t τ = φ∗tLXtτ. From

the Cartan formula, we have: LXt = ι(Xt)dτ + d(ι(Xt)τ). Since τ is closed on R4, we have
dτ = 0. Therefore it follows:

(2.5)
d

dt
φ∗t τ = d(φ∗t ι(Xt)τ).

We consider the 1-form σt := φ∗t ι(Xt)τ = x̂1τφt(x̂1,x̂2,ξ̂1,ξ̂2)(e1,∇φt(·)) = O(x̂2
1). We see from (2.5)

that the map t 7→ φ∗t τ is smooth on [0, 1]. To conclude, let σ =
∫ 1

0 σt dt; it follows from (2.4)
and (2.5) that:

d

dt
φ∗t τ = dσt and τ = dσ.

• Conclusion. We use a standard deformation argument due to Moser. For t ∈ [0, 1], we let:
ωt = ω0+t(ω1−ω0). The 2-form ωt is closed and non degenerate (up to choosing a neighborhood
of ẑ1 = 0 small enough). We look for ψt such that:

ψ∗t ωt = ω0.

For that purpose, let us determine a vector field Yt such that:
d

dt
ψt = Yt(ψt).

By using again the Cartan formula, we get:

0 =
d

dt
ψ∗t ωt = ψ∗t

(
d

dt
ωt + ι(Yt)dωt + d(ι(Yt)ωt)

)
.

This becomes:
ω0 − ω1 = d(ι(Yt)ωt).

We are led to solve:
ι(Yt)ωt = −σ.

By non degeneracy of ωt, this determines Yt. Choosing a neighborhood of (0, 0, 0, 0) small
enough, we infer that ψt exists until the time t = 1 and that it satisfies ψ∗t ωt = ω0. Since
σ = O(x̂2

1), we get ψ1 = Id +O(x̂2
1). �
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Lemma 2.5. There exists a map S : B(ε) × Ω → B(ε) × Ω, which is tangent to the identity
along {0} × Ω, such that

S∗Φ̃∗ω = ω0.

Proof. It is sufficient to apply Lemma 2.4 to ω1 = Φ̃∗ω0. �

We let Φ := Φ̃ ◦ S; this is the claimed symplectic map.

Let us now analyze how the HamiltonianH is transformed under Φ. The zero-set Σ = H−1(0)
is now {0} × Ω, and the symplectic orthogonal T̃(0,ẑ2)Σ

⊥ is canonically equal to C × {ẑ2}.
By (2.1), the matrix of the transversal Hessian of H ◦ Φ in the canonical basis of C is simply

(2.6) d2(H ◦ Φ)�C×{ẑ2} = d2
Φ(0,ẑ2)H ◦ (dΦ)2 =

(
2
∣∣B(g−1(ẑ2))

∣∣ 0
0 2

∣∣B(g−1(ẑ2))
∣∣) .

Therefore, by Taylor’s formula in the ẑ1 variable (locally uniformly with respect to the ẑ2 vari-
able seen as a parameter), we get

H ◦ Φ(ẑ1, ẑ2) = H ◦ Φ�ẑ1=0 + dH ◦ Φ�ẑ1=0(ẑ1) +
1

2
d2(H ◦ Φ)�ẑ1=0(ẑ2

1) +O(|ẑ1|3)

= 0 + 0 +
∣∣B(g−1(ẑ2))

∣∣ |ẑ1|2 +O(|ẑ1|3).

In order to obtain the result claimed in the theorem, it remains to apply a formal Birkhoff
normal form in the ẑ1 variable, to simplify the remainder O(ẑ3

1). This classical normal form
is a particular case of the semiclassical normal form that we prove below (Proposition 2.7);
therefore we simply refer to this proposition, and this finishes the proof of the theorem, where,
for simplicity of notation, the variables (z1, z2) actually refer to (ẑ1, ẑ2).

2.3. Semiclassical Birkhoff normal form. We follow the spirit of [3, 34]. In the coordinates
x̂1, ξ̂1, x̂2, ξ̂2, the Hamiltonian takes the form:

(2.7) Ĥ(ẑ1, ẑ2) = H0 +O(|ẑ1|3), where H0 = B(g−1(ẑ2))|ẑ1|2.

Let us now consider the space of the formal power series in x̂1, ξ̂1, ~ with coefficients smoothly
depending on (x̂2, ξ̂2) : E = C∞

x̂2,ξ̂2
[x̂1, ξ̂1, ~]. We endow E with the Moyal product (compatible

with the Weyl quantization) denoted by ? and the commutator of two series κ1 and κ2 is defined
as:

[κ1, κ2] = κ1 ? κ2 − κ2 ? κ1.

Notation 2.6. The degree of x̂α1 ξ̂
β
1 ~l is α + β + 2l. DN denotes the space of the monomials of

degree N . ON is the space of formal series with valuation at least N .

Proposition 2.7. Given γ ∈ O3, there exist formal power series τ, κ ∈ O3 such that:

ei~
−1adτ (H0 + γ) = H0 + κ,

with: [κ,H0] = 0.

Proof. Let N > 1. Assume that we have, for N > 1 and τN ∈ O3:

eih
−1adτN (H0 + γ) = H0 +K3 + · · ·+KN+1 +RN+2 +ON+3,

where Ki ∈ Di commutes with |ẑ1|2 and where RN+2 ∈ DN+2.
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Let τ ′ ∈ DN+2. A computation provides:

e
ih−1adτN+τ ′ (H0 + γ) = H0 +K3 + · · ·+KN+1 +KN+2 +ON+3,

with:

KN+2 = RN+2 +B(g−1(ẑ2))i~−1adτ ′ |ẑ1|2 = RN+2 −B(g−1(ẑ2))i~−1ad|ẑ1|2τ
′.

We can write:
RN+2 = KN+2 +B(g−1(ẑ2))i~−1ad|ẑ1|2τ

′.

Since B(g−1(ẑ2)) 6= 0, we deduce the existence of τ ′ and KN+2 such that KN+2 commutes with
|ẑ1|2. Note that i~−1ad|ẑ1|2 = {|ẑ1|2, ·}. �

2.4. Proof of Theorem 1.6. Since the formal series κ given by Proposition 2.7 commutes with
H0, we can write it as a polynomial in |ẑ1|2:

κ =
∑
k>0

∑
2l+m=k

~lcl,m(ẑ2)|ẑ1|2m.

This formal series can be reordered by using the monomials (|ẑ1|2)?m for the product law ?:

κ =
∑
k>0

∑
2l+m=k

~lc?l,m(ẑ2)(|ẑ1|2)?m.

Thanks to the Borel lemma, there exists a smooth function with compact support f?(~, |ẑ1|2, ẑ2)
such that the Taylor expansion with respect to (~, |ẑ1|2) of f?(~, |ẑ1|2, ẑ2) is given by κ and:

(2.8) σT,w (Opw~ (f?(~, I, z2))) = κ,

where σT,w means that we consider the formal Taylor series of the Weyl symbol with respect
to (~, ẑ1). The operator Opw~ (f?(~, I, z2)) has to be understood as the Weyl quantization with
respect to ẑ2 of an operator valued symbol. We can write it in the form:

Opw~ f
?(~, I~, ẑ2) = I~Opw~ f̃?(~, I~, ẑ2)

so that, up to choosing the support of f? small enough, there exists η0 such that for η ∈ (0, η0),
we have, for all ψ ∈ C∞0 (R2),

(2.9) |〈Opw~ f?(~, I~, ẑ2)ψ,ψ〉| 6 η‖I1/2
~ ψ‖2.

Moreover we can also introduce a smooth symbol a~ with compact support such that σT,w(a~) =
τ . Using (2.7) and applying the Egorov theorem (see [22, Theorems 5.5.5 and 5.5.9], [29] or [36]),
we can find a microlocally unitary Fourier Integral Operator V~ such that:

V ∗~ H~,AV~ = C0~ +H0 + Opw~ (r~), with H0 = Opw~ (H0)

so that σT,w (Opw~ (r~)) = γ ∈ O3. In fact, one can choose V~ such that the subprincipal
symbol is preserved by conjugation (see for instance [18, Appendix A]), which implies that
C0 = 01. It remains to use Proposition 2.7 and again the Egorov theorem to notice that
ei~
−1Opw~ (a~)Opw~ (r~)e−i~

−1Opw~ (a~) is a pseudo-differential operator such that the formal Taylor
series of its symbol is κ. Therefore, recalling (2.8), we have found a microlocally unitary Fourier
Integral Operator U~ such that:

(2.10) U∗~H~,AU~ = H0 + Opw~ (f?(~, I, z2)) +R~,

1We give another proof of this fact in Remark 2.8 below.
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where R~ is a pseudo-differential operator such that σT,w(R~) = 0. It remains to prove the
division property expressed in the last statement of item (4) of Theorem 1.6. By the Morse
Lemma, there exists in a fixed neighborhood of z1 = 0 in R4 a (non symplectic) change of
coordinates z̃1 such that d0 = c(z2) |z̃1|2. It is enough to prove the result in this microlocal
neighborhood. Now, for any N > 1, we proceed by induction. We assume that we can write R~
in the form:

R~ = Opw~

(
s0 + ~s1 + · · ·+ ~ksk

)
DN

~ +O(~k+1),

with symbols sj which vanish at infinite order with respect to ẑ1. We look for sk+1 such that:

R~ = Opw~

(
s0 + ~s1 + · · ·+ ~ksk + ~k+1sk+1

)
DN

~ +O(~k+2)R̃~,k.

We are reduced to find sk+1 such that:

r̃0,k = dN0 sk+1.

Since r̃0,k vanishes at any order at zero we can find a smooth function φk such that:

r̃0,k = |z̃1|2Nφ.

We have sk+1(z̃1, z2) = φk(z̃1,z2)
c(z2)N

.

This ends the proof of Theorem 1.6.

Remark 2.8. It is well known that (see [16, Theorem 1.1]), when B > 0, the smallest eigenvalue
λ1(~) of H~,A has the following asymptotics

λ1(~) ∼ ~ min
q∈R2

B(q).

We will see in Section 4.1 that the corresponding eigenfunctions are microlocalized on Σ at the
minima of B. Therefore the normal form would imply, by a variational argument, that

(2.11) λ1(~) > C0~ + µ1(~) + o(~),

where µ1(~) is the smallest eigenvalue of N~ := H0 + Opw~ (f?(~, I, z2)). Similarly, we will see
in 4.2 that the lowest eigenfunctions of N~ are also microlocalized in ẑ1 and ẑ2, and therefore

λ1(~) ∼ C0~ + µ1(~).

By Gårding’s inequality and point (5) of Theorem 1.6, µ1(~) ∼ ~minB. Comparing with (2.11),
we see that C0 = 0.

3. Long time dynamics at low energy

The goal of this section is to prove Theorems 1.2 and 1.3. We shall rely on the following
localization lemma.

We work in the open set Ω equipped with the coordinates (z1, z2) given by the normal form
of Theorem 1.1; thus, we may write H(z1, z2) = K + R, where K = |z1|2 f(z2, |z1|2) and the
Taylor series of R with respect to z1 vanishes for all z2. On Ω, the magnetic field B has a fixed
sign. For notational simplicity we may assume that B > 0. We denote by ϕtH the Hamiltonian
flow of H, I = |z1|2, and I(t) := I ◦ ϕtH . We also denote z2(t) := z2 ◦ ϕtH .



GEOMETRY AND SPECTRUM IN 2D MAGNETIC WELLS 15

Lemma 3.1. Let Cf > 0, M > 0 be such that

(3.1) f(z2, 0) > Cf , ∀ |z2| > M.

Let 0 < c̃0 < c0 < C0 < C̃0 < Cf . For any ε > 0 we define the bounded open set

(3.2) Uε :=
{

(z1, z2); |z1|2 <
ε

2
, c0 < f(z2, 0) < C0

}
,

which is contained in the compact set

(3.3) Vε :=
{

(z1, z2); |z1|2 6 ε, c̃0 6 f(z2, 0) 6 C̃0

}
.

Let

Tε := sup{T > 0; ∀t ∈ [−T, T ], ϕtH exists and (z1(t), z2(t)) ∈ Vε for any starting point in Uε}.
Then for any N > 0, there exists ε0 > 0 and a constant C > 0 such that

∀ε 6 ε0, Tε >
C

εN
.

Proof. Let N > 1/2. Since Vε is compact, we have Tε > 0; moreover, there exists ε0 such that
Uε ⊂ Ω for all ε 6 ε0. Since the z1-Taylor series of R vanishes, we can write R = INRN , where
RN is smooth. Thus

{H, I} = IN{RN , I},
which implies

|{H, I}| 6 2IN+1/2 ‖∇RN‖ .
Therefore, we get, on Uε,

∀ |t| < Tε,

∣∣∣∣ ddtI(t)

∣∣∣∣ =
∣∣{H, I} ◦ ϕtH ∣∣ 6 2CNI(t)N+1/2,

where CN := supVε0 ‖∇RN‖. By integration, we get

(3.4) ∀ |t| < T, |I(t)− I(0)| 6 2CN |t| εN+1/2.

We apply a similar argument for K(t) := K ◦ ϕtH . We have {H,K} = {INRN ,K} =
IN{RN ,K}. Thus we get, on Uε, ∣∣∣∣ ddtK(t)

∣∣∣∣ 6 IN+1/2C ′N ,

with C ′N := 3 supVε0 |{RN ,K/I}|. Therefore |K(t)−K(0)| 6 C ′NIN+1/2 |t|, which implies, since
K = If(z2, I),

(3.5) |f(z2(t), I(t))− f(z2(0), I(0))| 6 C ′NIN−1/2 |t| 6 C ′N εN−1/2 |t| .

We may write f(z2, I) = f(z2, 0) + If̃ , for some smooth function f̃ .

Let us fix ` > 0 such that C0 +
Cf−C0

` < C̃0 and c0 −
Cf−C0

` > c̃0. Assume that ε0 is small
enough so that

(3.6) sup
Vε0

f̃ 6 (Cf − C0)/(2`ε0).

Assume by contradiction that there exists ε 6 ε0 such that

(3.7) C ′N ε
N−1/2Tε 6 (Cf − C0)/(2`),
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and

(3.8) 2CN ε
N+1/2Tε 6 ε/3.

By (3.2), Equations (3.8) and (3.4) imply I(t) 6 ε/2 + ε/3 = 5ε/6. Equations (3.7) and (3.5)
imply f(z2(t), I(t)) 6 C0 + (Cf − C0)/(2`), and hence, by (3.6),

f(z2(t), 0) 6 C̃0 −
(
C̃0 − C0 −

Cf − C0

`

)
= C̃1 < C̃0 < Cf .

In the same way we find

f(z2(t), 0) > c0 −
Cf − C0

`
= c̃1 > c̃0.

Now we remark that, by definition of Tε, the flow ϕtH is uniformly bounded for all |t| < Tε;
therefore, there exists T ′ > Tε for which the flow ϕtH is defined for all |t| < T ′. Since I(t) 6 5ε/6

and c̃1 6 f(z2(t), 0) 6 C̃1 for all t < Tε, we can find T ′ > Tε such that z(t) ∈ Vε which
contradicts the definition of Tε.

Therefore one of (3.7) or (3.8) must be false. In both cases, we find a constant C > 0 such
that

∀ε < ε0, Tε >
C

εN−1/2
,

which gives the result. �

3.1. Proof of Theorems 1.2 and 1.3. The confining assumption on B implies (3.1) — with
different constants. Hence, we may apply Lemma 3.1 to H and K which implies that the flows
ϕtH and ϕtK remain in the region Vε for times of order ε−N , and starting position in Uε. This
proves the first point of Theorem 1.2.

Now, let N ′ > N . Writing H = K + IN
′
RN ′ , we see that the Hamiltonian vector fields XH

and XK differ by O(εN
′−1/2). Let F(t) = ϕtH − ϕtK ; dF/dt = XH ◦ ϕtH − XK ◦ ϕtK . By Taylor,

we get
dF
dt

= XH−K ◦ ϕtH +O(ϕtK − ϕtH),

where the O is given by the derivatives of XK and thus is uniform for |t| < Tε. Thus there exist
constants C1, C2 such that ∥∥∥∥dFdt

∥∥∥∥ 6 C1ε
N ′−1/2 + C2 ‖F(t)‖ .

Here we use ‖·‖ for the Euclidean norm in R4. Therefore, since F(0) = 0, the Gronwall lemma
provides

‖F(t)‖ 6 C1ε
N ′−1/2

C2
(eC2|t| − 1).

Thus, if |t| 6 C3 |ln ε| we get ‖F(t)‖ 6 C1C
−1
2 εN

′−1/2−C2C3 , which proves (1.7) since N ′ is
arbitrary, thereby establishing Theorem 1.2.

The naive estimate used above in the proof of Theorem 1.2 cannot yield the stronger conclu-
sion of Theorem 1.3, because it does not take into account the commutation {H,K} = 0. For
this we consider the composition ϕtK ◦ϕ

−t
H . Notice that, thanks to Lemma 3.1, ϕ−tH sends Uε into

Vε for times of order O(ε−N ), and that Vε is globally invariant by ϕtK for all times. Thus, the
composition ϕtK ◦ ϕ

−t
H is well defined on Uε and takes values in Vε, for times of order O(ε−N ).
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Let us fix an arbitrary smooth function z : R4 → R and introduce, on Uε, the family of
functions

D(t) := z ◦ ϕtK ◦ ϕ−tH .
Using, among others, the equivariance of the Poisson bracket under symplectomorphism, we get

dD(t)

dt
= −{H,D}+ {K ◦ ϕ−tH ,D} = {−R ◦ ϕ−tH ,D} = −{R, z ◦ ϕtK} ◦ ϕ−tH .

The goal is now to estimate {R, z ◦ ϕtK} on Vε. We have

XK = fXI + IXf(z2,I),

and since {I, f(z2, I)} = 0, the flow of K can be written as

ϕtK = ϕtfI ◦ ϕ
It
f(z2,I)

,

and I is constant along this flow. We use now the assumptions of Theorem 1.3; thus, dz2f(z2, 0)
does not vanish on the annulus c0 6 f(z2, 0) 6 C0, where J = [c0, C0]. This implies that the
same holds for dz2f(z2, I), when I < ε0 is small enough. Therefore, for each value of I one
can apply the action-angle theorem to the Hamiltonian z2 7→ f(z2, I): there exists a symplectic
change of coordinates (r, θ) = ψI(z2), with (r, θ) ∈ R× S1, such that

ϕtf(z2,I)
(r, θ) = (r, θ + tg(I, f)),

where g is smooth. This yields the following formula for the flow of K in the variables (z1, r, θ):

ϕtK(z1, r, θ) = (e−2itfz1, r, θ + tIg(I, f)).

From this we obtain the estimate for the spacial derivative:∥∥dϕtK∥∥ 6 C(|t|+ 1) on Vε,

for some constant C > 0 (involving the C1-norms of f and g on Vε), and for any t ∈ R. Now, as
above, we write R = IN

′
RN ′ and get

{R, z ◦ ϕtK} = IN
′{RN ′ , z ◦ ϕtK}+N ′RN ′I

N ′−1{I, z ◦ ϕtK},

hence ∣∣{R, z ◦ ϕtK}∣∣ 6 CN ′IN ′−1/2
∥∥dϕtK∥∥ 6 C̃N ′IN ′−1/2(1 + |t|).

Thus, if |t| 6 Tε = O(ε−N ), we obtain, on Uε,

|D(t)−D(0)| 6 ĈN,N ′IN
′−N−1/2.

Taking z to be any coordinate function, we get, for m ∈ Uε,∥∥ϕtK ◦ ϕ−tH (m)−m
∥∥ 6 CN,N ′εN ′−N−1/2.

Notice that an estimate of the same kind is also valid for m ∈
◦
V ε. For any m′ ∈ Uε we may let

m = ϕtH(m′), which yields ∥∥ϕtK(m′)− ϕtH(m′)
∥∥ 6 CN,N ′εN ′−N−1/2.

This gives the conclusion of Theorem 1.3 by choosing N ′ large enough.
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4. Spectral theory

This section is devoted to the proof of Theorem 1.5. The main idea is to use the eigenfunctions
of H~,A and N~ as test functions in the pseudo-differential identity (1.9) given in Theorem 1.6
and to apply the variational characterization of the eigenvalues given by the min-max principle.
In order to control the remainders we shall prove the microlocalization of the eigenfunctions of
H~,A and N~ thanks to the confinement assumption (1.8).

4.1. Localization and microlocalization of the eigenfunctions of H~,A. The space lo-
calization of the eigenfunctions of H~,A, which is the quantum analog of Theorem 1.2, is a
consequence of the so-called Agmon estimates.

Proposition 4.1. Let us assume (1.8). Let us fix 0 < C1 < C̃1 and α ∈ (0, 1
2). There exist

C, ~0, ε0 > 0 such that for all 0 < ~ 6 ~0 and for all eigenpair (λ, ψ) of H~,A such that λ 6 C1~,
we have: ∫

|eχ(q)~−α|q|ψ|2 dq 6 C‖ψ‖2,

where χ is zero for |q| 6 M0 and 1 for |q| > M0 + ε0. Moreover, we also have the weighted H1

estimate: ∫
|eχ(q)~−α|q|h∇ψ|2 dq 6 C~‖ψ‖2.

Proof. Let us denote by q~,A the quadratic form associated with the magnetic Laplacian H~,A.
We write the Agmon formula (see [1, 2]) for the eigenpair (λ, ψ) with λ 6 C1~:

q~,A(eΦψ) = λ‖eΦψ‖+ ~2‖∇ΦeΦ‖2.
We recall that:

q~,A(eΦψ) >
∫

~B(q)|eΦψ|2 dq

so that: ∫ (
~B(q)− C1~− ~2‖∇Φ‖2

)
|eΦψ|2 dq 6 0.

We split this integral into two parts:∫
|q|>M0

(
~B(q)− C1~− ~2‖∇Φ‖2

)
|eΦψ|2 dq 6

∫
|q|6M0

(
−~B(q) + C1~ + ~2‖∇Φ‖2

)
|eΦψ|2 dq.

Let us choose Φ:
Φ = χ(q)~−α|q|.

We get: ∫
|q|>M0

(
~B(q)− C1~− ~2‖∇Φ‖2

)
|eΦψ|2 dq 6 Ch‖ψ‖2.

Then we have: ∫
|q|>M0

(
~C1 − C1~− C̃~2−2α

)
|eΦψ|2 dq 6 Ch‖ψ‖2.

We infer that: ∫
|q|>M0

|eΦψ|2 dq 6 C‖ψ‖2,
∫
|eχ(q)~−α|q|ψ|2 dq 6 C‖ψ‖2

and then:
qh,A(eΦψ) 6 C~‖ψ‖2.
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�

Remark 4.2. This estimate is interesting when |x| > M0 + ε0. In this region, we deduce by
standard elliptic estimates that ψ = O(h∞) in suitable norms (see for instance [11, Proposition
3.3.4] or more recently [28, Proposition 2.6]). Therefore, the eigenfunctions are localized in space
in the ball of center (0, 0) and radius M0 + ε0.

We shall now prove the microlocalization of the eigenfunctions near the zero set of the mag-
netic Hamiltonian Σ.

Proposition 4.3. Let us assume (1.8). Let us fix 0 < C1 < C̃1 and consider δ ∈
(
0, 1

2

)
. Let

(λ, ψ) be an eigenpair of H~,A with λ 6 C1~. Then, we have:

ψ = χ1

(
~−2δH~,A

)
χ0(q)ψ +O(~∞),

where χ0 is smooth cutoff function supported in a compact set in the ball of center (0, 0) and
radius M0 + ε0 and where χ1 a smooth cutoff function being 1 near 0.

Proof. In view of Proposition 4.1, it is enough to prove that

(4.1)
(

1− χ1

(
~−2δH~,A

))
(χ0(q)ψ) = O(h∞).

By the space localization, we have:

H~,A(χ0(q)ψ) = λχ0(q)ψ +O(~∞).

Then, we get:(
1− χ1

(
~−2δH~,A

))
H~,A(χ0(q)ψ) = λ

(
1− χ1

(
~−2δH~,A

))
(χ0(x)ψ) +O(~∞).

This implies:

~2δ‖
(

1− χ1

(
~−2δH~,A

))
(χ0(q)ψ)‖2 6 q~A

((
1− χ1

(
~−2δH~,A

))
H~,A(χ0(q)ψ)

)
6 C1~‖

(
1− χ1

(
~−2δH~,A

))
(χ0(q)ψ)‖2 +O(~∞)‖ψ‖2.

Since δ ∈
(
0, 1

2

)
, we deduce (4.1). �

4.2. Microlocalization of the eigenfunctions of N~. The next two propositions state the
microlocalization of the eigenfunctions of the normal form N~.

Proposition 4.4. Let us consider the pseudo-differential operator:

N~ = H0
~ + Opw~ f

?(~, I~, ẑ2).

We assume the confinement assumption (1.8). We can consider M̃0 > 0 such that B ◦ϕ−1(ẑ2) >
C̃1 for |ẑ2| > M̃0. Let us consider C1 < C̃1 and an eigenpair (λ, ψ) of N~ such that λ 6 C1~.
Then, for all ε0 > 0 and for all smooth cutoff function χ supported in |ẑ2| > M̃0 + ε0, we have:

Opw~ (χ(ẑ2))ψ = O(~∞).

Proof. We notice that:

N~Op
w
~ (χ(ẑ2))ψ = λOpw~ (χ(ẑ2))ψ + ~R~ψ,
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where the symbol of R~ is supported in compact slightly smaller than the support of χ. We may
consider a cutoff function χ which is 1 on a small neighborhood of this support. We get:

〈N~Op
w
~ (χ(ẑ2))ψ,Opw~ (χ(ẑ2))ψ〉 6 λ‖Opw~ (χ(ẑ2))ψ‖2 +C~‖Opw~

(
χ(ẑ2)

)
ψ‖‖Opw~ (χ(ẑ2))ψ‖

Thanks to the Gårding inequality, we have:

〈H0
~Op

w
~ (χ(ẑ2))ψ,Opw~ (χ(ẑ2))ψ〉 >(C̃1 − C~)‖Opw~ (χ(ẑ2)) I1/2

~ ψ‖2

>(C̃1 − C~)~‖Opw~ (χ(ẑ2))ψ‖2.

We can consider Opw~ f
?(~, I~, ẑ2) as a perturbation of H0

~ (see (2.9)). Since C1 < C̃1 we infer
that:

‖Opw~ (χ(ẑ2))ψ‖ 6 C~‖Opw~
(
χ(ẑ2)

)
ψ‖.

Then a standard iteration argument provides Opw~ (χ(ẑ2))ψ = O(~∞). �

Proposition 4.5. Keeping the assumptions and the notation of Proposition 4.4, we consider
δ ∈

(
0, 1

2

)
and an eigenpair (λ, ψ) of N~ with λ 6 C1~. Then, we have:

ψ = χ1

(
~−2δI~

)
Opw~ (χ0(ẑ2))ψ +O(~∞),

for all smooth cutoff function χ1 supported in a neighborhood of zero and all smooth cutoff
function χ0 being 1 near zero and supported in the ball of center 0 and radius M̃0 + ε0.

Proof. The proof follows the same lines as for Proposition 4.4 and Proposition 4.3. �

4.2.1. Proof of Theorem 1.5. As we proved in the last section, each eigenfunction of H~,A or N~
is microlocalized. Nevertheless we do not know yet if all the functions in the range of the spectral
projection below C1h are microlocalized. This depends on the rank of the spectral projection.
The next two lemmas imply that this rank does not increase more than polynomially in ~−1

(so that the functions lying in the range of the spectral projection are microlocalized). We will
denote by N(M, λ) the number of eigenvalues ofM less than or equal to λ.

Lemma 4.6. There exists C > 0 such that for all ~ > 0, we have:

N(H~,A, C1~) 6 C~−1.

Proof. We notice that:

N(H~,A, C1~) = N(H1,~−1A, C1~−1)

and that, for all ε ∈ (0, 1):

q1,~−1A(ψ) > (1− ε)q1,~−1A(ψ) + ε
B(x)

~
‖ψ‖2

so that we infer:

N(H~,A, C1~) 6 N(H1,~−1A + ε(1− ε)−1~−1B(x), (1− ε)−1C1~−1).
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Then, the diamagnetic inequality 2 jointly with a Lieb-Thirring estimate (see the original paper
[21]) provides for all γ > 0 the existence of Lγ,2 > 0 such that for all ~ > 0 and λ > 0:

N(H1,~−1A+ε(1−ε)−1~−1B(x),λ)∑
j=1

∣∣∣λ̃j(~)− λ
∣∣∣γ 6 Lγ,2 ∫

R2

(ε(1− ε)−1~−1B(x)− λ)1+γ
− dx.

We apply this inequality with λ = (1 + η)(1− ε)−1C1~−1, for some η > 0. This implies that:
Nε,~,η∑
j=1

∣∣∣λ̃j(~)− λ
∣∣∣γ 6 Lγ,2 ∫

B(x)6(1+η)C1/ε
(λ− ε(1− ε)−1~−1B(x))1+γ dx

with Nε,~,η := N(H1,~−1A + ε(1− ε)−1~−1B(x), (1− ε)−1C1~−1), so that:

(η(1 − ε)−1C1~−1)γNε,~,η 6 Lγ,2(~(1 − ε))−1−γ
∫
B(x)6 (1+η)C1

ε

((1 + η)C1 − εB(x))1+γ dx.

For η small enough and ε is close to 1, we have (1 + η)ε−1C1 < C̃1 so that the integral is finite,
which gives the required estimate. �

Lemma 4.7. There exists C > 0 and ~0 > 0 such that for all ~ ∈ (0, ~0), we have:

N(N~, C1~) 6 C~−1.

Proof. Let ε ∈ (0, 1). By point (5) of Theorem 1.6, it is enough to prove that N(H0
~,
C1~
1−ε ) 6

Ch−1. The eigenvalues and eigenfunctions of H0
~ can be found by separation of variables: H0

~ =

I~ ⊗ Opw~ (B ◦ ϕ−1), where I~ acts on L2(Rx1) and B̂~ := Opw~ (B ◦ ϕ−1) acts on L2(Rx2). Thus,

N(H0
~, ~C1,ε) = #{(n,m) ∈ (N∗)2; (2n− 1)~γm(~) 6 ~C1,ε},

where C1,ε := C1
1−ε , and γ1(~) 6 γ2(~) 6 · · · are the eigenvalues of B̂~. A simple estimate gives

N(H0
~, C1,ε) 6

(
1 +

⌊
1

2
+

C1,ε

2γ1(~)

⌋)
·#{m ∈ N∗; γm(~) 6 C1,ε}.

If ε is small enough, C1,ε < C̃1, and then Weyl asymptotics (see for instance [6, Chapter 9]) for
B̂~ gives

N(B̂~, C1,ε) ∼
1

2π~
vol{B ◦ ϕ−1 6 C1,ε},

and Gårding’s inequality implies γ1(~) > min
q∈R2

B −O(~), which finishes the proof. �

Remark 4.8. With additional hypotheses on the magnetic field, it has been proved that the
O(~−1) estimate is in fact optimal: see for instance [4] and [31, Remark 1]. Actually, it would
likely follow from Theorem 1.5 and Theorem 1.6 that these Weyl asymptotics hold in general
under the confinement assumption.

Let us now consider λ1(~), · · · , λN(H~,A,C1~)(~) the eigenvalues of H~,A below C1~. We can
consider corresponding normalized eigenfunctions ψj such that : 〈ψj , ψk〉 = δkj . We introduce
the N -dimensional space:

V = χ1

(
~−2δH~,A

)
χ0(q) span

16j6N
ψj .

2See [5, Theorem 1.13] and the link with the control of the resolvent kernel in [20, 30].
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Let us bound from above the quadratic form of N~ denoted by Q~. For ψ ∈ span
16j6N

ψj , we let:

ψ̃ = χ1

(
~−2δH~,A

)
χ0(q)ψ

and we can write:

Q~(U∗~ ψ̃) = 〈U~N~U
∗
~ ψ̃, ψ̃〉 = 〈U~U

∗
~H~,AU~U

∗
~ ψ̃, ψ̃〉 − 〈U~R~U

∗
~ ψ̃, ψ̃〉.

Since U~ is microlocally unitary, the elementary properties of the pseudo-differential calculus
yield:

〈U~N~U
∗
~ ψ̃, ψ̃〉 = 〈H~,Aψ̃, ψ̃〉 − 〈U~R~U

∗
~ ψ̃, ψ̃〉+O(~∞)‖ψ̃‖2.

Then, thanks to Proposition 4.3 and Lemma 4.6 we may replace ψ̃ by ψ up to a remainder of
order O(~∞)‖ψ̃‖:

〈U~N~U
∗
~ ψ̃, ψ̃〉 = 〈H~,Aψ,ψ〉 − 〈U~R~U

∗
~ ψ̃, ψ̃〉+O(~∞)‖ψ̃‖2

so that:

〈U~N~U
∗
~ ψ̃, ψ̃〉 6 λN (~)‖ψ‖2 + |〈U~R~U

∗
~ ψ̃, ψ̃〉|+O(~∞)‖ψ̃‖2

and:

〈U~N~U
∗
~ ψ̃, ψ̃〉 6 λN (~)‖U∗~ ψ̃‖2 + |〈U~R~U

∗
~ ψ̃, ψ̃〉|+O(~∞)‖U∗~ ψ̃‖2.

Let us now estimate the remainder term U~R~U
∗
~ ψ̃. We have:

U~R~U
∗
~ ψ̃ = U~R~U

∗
~χ1

(
~−2δH~,A

)
ψ̃ = U~R~U

∗
~χ1

(
~−2δH~,A

)
(U∗~ )−1U∗~ ψ̃ +O(~∞)‖U∗~ ψ̃‖,

where χ1 has a support slightly bigger then the one of χ1. We notice that

U∗~χ1

(
~−2δH~,A

)
(U∗~ )−1 = χ1

(
~−2δU∗~H~,A(U∗~ )−1

)
.

Let us now apply (1.10) with D~ = U∗~H~,A(U∗~ )−1 to get:

R~ = S~,M (U∗~H~,A(U∗~ )−1)M +KN +O(~∞)

so that:

‖U~R~U
∗
~χ1

(
~−2δH~,A

)
ψ̃‖ = O(~2Mδ)‖U∗~ ψ̃‖2.

We infer that:

Q~(U∗~ ψ̃) 6 λN (~)‖U∗~ ψ̃‖2 +O(~2Mδ)‖U∗~ ψ̃‖2.

From the min-max principle, it follows that:

µN (~) 6 λN (~) +O(~2Mδ).

The converse inequality follows from a similar proof, using Proposition 4.5 and Lemma 4.7. This
ends the proof of Theorem 1.5.
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[3] L. Charles and S. Vũ Ngo.c. Spectral asymptotics via the semiclassical Birkhoff normal form. Duke Math. J.,
143(3):463–511, 2008.

[4] Y. Colin de Verdière. L’asymptotique de Weyl pour les bouteilles magnétiques. Comm. Math. Phys., 105(2):327–
335, 1986.

[5] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon. Schrödinger operators with application to quantum me-
chanics and global geometry. Texts and Monographs in Physics. Springer-Verlag, Berlin, study edition, 1987.

[6] M. Dimassi and J. Sjöstrand. Spectral asymptotics in the semi-classical limit, volume 268 of London Mathemat-
ical Society Lecture Note Series. Cambridge University Press, Cambridge, 1999.

[7] N. Dombrowski and N. Raymond. Semiclassical analysis with vanishing magnetic fields. Journal of Spectral
Theory, 3(3):423–464, 2013.

[8] S. Fournais and B. Helffer. Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian. Ann. Inst.
Fourier (Grenoble), 56(1):1–67, 2006.

[9] S. Fournais and B. Helffer. Spectral methods in surface superconductivity. Progress in Nonlinear Differential
Equations and their Applications, 77. Birkhäuser Boston Inc., Boston, MA, 2010.

[10] S. Fournais and M. Persson. Strong diamagnetism for the ball in three dimensions. Asymptot. Anal., 72(1-2):77–
123, 2011.

[11] B. Helffer. Semi-classical analysis for the Schrödinger operator and applications, volume 1336 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin, 1988.

[12] B. Helffer and Y. A. Kordyukov. Spectral gaps for periodic Schrödinger operators with hypersurface magnetic
wells: analysis near the bottom. J. Funct. Anal., 257(10):3043–3081, 2009.

[13] B. Helffer and Y. A. Kordyukov. Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger
operator: the case of discrete wells. In Spectral theory and geometric analysis, volume 535 of Contemp. Math.,
pages 55–78. Amer. Math. Soc., Providence, RI, 2011.

[14] B. Helffer and Y. A. Kordyukov. Eigenvalue estimates for a three-dimensional magnetic schrödinger operator.
Asymptot. Anal., 82:65–89, 2013.

[15] B. Helffer and A. Mohamed. Semiclassical analysis for the ground state energy of a Schrödinger operator with
magnetic wells. J. Funct. Anal., 138(1):40–81, 1996.

[16] B. Helffer and A. Morame. Magnetic bottles in connection with superconductivity. J. Funct. Anal., 185(2):604–
680, 2001.

[17] B. Helffer and A. Morame. Magnetic bottles for the Neumann problem: curvature effects in the case of dimension
3 (general case). Ann. Sci. École Norm. Sup. (4), 37(1):105–170, 2004.

[18] B. Helffer and J. Sjöstrand. Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum.
Mém. Soc. Math. France (N.S.), 39:1–124, 1989.

[19] V. Ivrii. Microlocal analysis and precise spectral asymptotics. Springer Monographs in Mathematics. Springer-
Verlag, Berlin, 1998.

[20] T. Kato. Schrödinger operators with singular potentials. In Proceedings of the International Symposium on
Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), volume 13, pages
135–148 (1973), 1972.

[21] E. Lieb and W. Thirring. Inequalities for the moments of the eigenvalues of the schrödinger hamiltonian and
their relation to sobolev inequalities. Studies in Mathematical Physics, pages 269–303, 1976.

[22] A. Martinez. An introduction to semiclassical and microlocal analysis. Universitext. Springer-Verlag, New York,
2002.

[23] D. McDuff and D. Salamon. Introduction to symplectic topology. Oxford Mathematical Monographs. The Claren-
don Press Oxford University Press, New York, second edition, 1998.

[24] R. Montgomery. Hearing the zero locus of a magnetic field. Comm. Math. Phys., 168(3):651–675, 1995.
[25] N. Popoff and N. Raymond. When the 3D magnetic Laplacian meets a curved edge in the semiclassical limit.

SIAM: Journal on Mathematical Analysis (to appear), 2013.
[26] N. Raymond. Sharp asymptotics for the Neumann Laplacian with variable magnetic field: case of dimension 2.

Ann. Henri Poincaré, 10(1):95–122, 2009.



24 NICOLAS RAYMOND AND SAN VŨ NGO. C
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