

Sur le système bore-souffre

Paul Hagenmuller, François Chopin

▶ To cite this version:

Paul Hagenmuller, François Chopin. Sur le système bore-souffre. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 1962, 255, pp.2259-2260. hal-00836342

HAL Id: hal-00836342

https://hal.science/hal-00836342

Submitted on 20 Jun 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CHIMIE MINÉRALE. — Sur le système bore-soufre. Note (*) de MM. Paul Hagenmuller et François Chopin, présentée par M. Paul Pascal.

Le sulfure B_2S_5 est obtenu par synthèse à 590° C en tube scellé. Le sulfure B_2S_5 résulte de l'action sur le bore, au-delà de 600° C, d'un courant H_2S dilué dans H_2 , suivie d'une dissociation à 100° C du composé d'addition BS_2H obtenu. B_2S_5 et B_2S_5 sont caractérisés par leur spectre X, ils s'hydrolysent instantanément à l'air. Ils se subliment sans dissociation.

Les travaux relatifs au système bore-soufre sont anciens et contradictoires. Ne disposant pas des méthodes d'identification physiques, certains auteurs ont abouti à des conclusions d'autant plus erronées que les produits obtenus sont extrêmement fragiles à la vapeur d'eau atmosphérique.

Cinq sulfures ont été signalés : B₂S₅, B₂S₃, BS, B₄S, B₁₂S. La seule référence relative à B₂S₅, due à Moissan, est l'action du soufre sur l'iodure BI₃ en présence de sulfure de carbone; le produit fondrait à 390°C avec dissociation en soufre et B₂S₃ (¹). Celui-ci s'obtiendrait également par action sur le bore du gaz sulfhydrique selon Gauthier (²) et Costeanu (³), de divers sulfures selon Moissan (¹) ou par interaction de B₂O₃ et Al₂S₃ selon Tiede et Thimann (¹); la diversité des propriétés physiques signalées par les auteurs permet de supposer que les produits obtenus n'étaient pas identiques. BS aurait été mis en évidence par Zeemann par voie spectroscopique (⁵); B₄S résulterait de l'action de H₂S sur le bore à basse température, mais se dissocierait totalement dès 390°C (Sabatier) (⁶). B₁₂S, qui serait isotypique de B₁₂P₂, s'obtiendrait, par contre, par synthèse à 1700°C suivie de trempe (Matkovich) (⁷).

Nous avons obtenu un sulfure de formule B₂S₅ par action prolongée en tube scellé à 590°C du soufre en excès sur le bore amorphe, suivie d'une extraction du soufre résiduel au soxhlet. Le bore est titré potentiométriquement, le soufre est dosé sous forme de sulfate, soit après fusion alcaline oxydante, soit après oxydation par H₂O₂ en milieu fortement basique. B₂S₅ se présente sous forme de poudre jaune pâle caractérisée par un spectre X bien défini.

Son hydrolyse à l'air est instantanée et exige une manipulation en boîte sèche :

$$B_2S_5 + 6H_2O \rightarrow 2H_3BO_3 + 3H_2S + 2S.$$

Il se volatilise dès 200°C sans subir aucune dissociation.

Par action entre 600 et 900°C d'un courant de gaz sulfhydrique dilué dans l'hydrogène sur des pastilles de bore, nous obtenons sur les parois froides de l'appareil un dépôt blanc cristallisé en aiguilles de formule BS₂H.

Celui-ci se dissocie dès 100°C avec libération de H₂S et formation de B₂S₃, mis en évidence par analyse chimique :

$$2BS_2H \rightarrow B_2S_3 + H_2S$$

B₂S₃ est une poudre blanche, de spectre X caractéristique, aussi sensible à l'humidité atmosphérique que B₂S₃. Volatil dès 250°C, il fond vers 600°C; le sublimat, dans lequel ni BS ni B₄S n'ont pu être mis en évidence, ne subit en fait aucune dissociation apparente à l'analyse chimique ou radiocristallographique.

L'action en tube scellé à 590°C du soufre sur le bore dans un rapport atomique inférieur à 3/2 donne d'ailleurs un mélange de B₂S₃ mal cristallisé et de bore élémentaire.

1947	B_2S_5 .			. 3	$\mathrm{B_2S_3}.$			
		I		I		I		I
$d(\Lambda)$.		$\overline{I_0}$	$d(\mathbf{A}).$	$\overline{\mathrm{I}_{0}}$.	d(A).	$\overline{\Gamma}_0$.	d(A).	$\overline{\mathbf{I}_{0}}$.
6,04		30	2,412	10	9,4	5	2,245	5
5,24		40	2,316	10	6,99	20	2, 132	5
4,20		20	2,283	10	5,34	30	2,066	5
3,87		40	2,228	10	4,62	5	1,956	5
3,63		20	2,180	10	4,25	10	1,890	5
3,48		100	2,062	15	4,03	10	1,816	5
3,31		5	2,016	5	3,76	20	1,780	5
3,079		15	1,986	10	3,56	100	$_{1},_{751}$	5
3,023		15	1,920	10	3,34	10	1,668	5
2,961		15	1,864	10	3,041	15	1,603	10
2,898		20	1,841	10	2,961	10	1,576	5
2,842		10	1,781	15	2,760	30	1,478	5
2,661		10	1,739	15	2,667	80	****	-
2,616		20	1,683	10	2,530	20	_	
2,570		5	1,615	10	2,372	10	-	-
2,451		40	1,582	10	2,272	5	/ _	_

L'action du gaz sulfhydrique et de l'ammoniac sur B₂S₃ et B₂S₃, ainsi que la formation de thioborates et de thioperborates font actuellement l'objet d'investigations systématiques au laboratoire.

- (*) Séance du 22 octobre 1962.
- (1) H. Moissan, Comptes rendus, 115, 1892, p. 206-272 et Ann. Chim. Phys., 6, 1895, p. 312.
 - (2) GAUTHIER, Comptes rendus, 129, 1899, p. 596 et Ann. Chim. Phys., 18, 1899, p. 363.
 - (3) Costeanu, Comptes rendus, 157, 1913, p. 934.
 - (4) E. TIEDE et M. THIMANN, Ber., 59, 1926, p. 1703.
 - (5) P. B. ZEEMANN, Phys. Rev., 80, 1950, p. 902.
 - (6) P. SABATIER, Bull. Soc. Chim., 6, 1891, p. 216.
 - (7) V. I. MATKOVICH, J. Amer. Chem. Soc., 83, 1961, p. 1804.

(Service de Chimie minérale, Faculté des Sciences, Bordeaux).

Extrait des Comptes rendus des séances de l'Académie des Sciences, t. 255, p. 2259-2260, séance du 29 octobre 1962.

> GAUTHIER-VILLARS & Cie, 55, Quai des Grands-Augustins, Paris (6e), Éditeur-Imprimeur-Libraire. 162513

> > Imprimé en France.