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“On ne trouvera point de Figures dans cet Ouvrage. Les méthodes que j’y expose ne demandent ni
constructions, ni raisonnemens géométriques ou méchaniques, mais seulement des opérations algébriques,
assujetties à une marche réguliere et uniforme. Ceux qui aiment l’Analyse, verront avec plaisir la
Méchanique en divenir une nouvelle branche, et me sauront gré d’en avoir étendu ansi le domaine.”

From the Avertissement of the Méchanique Analitique by Lagrange [85]

1 Abstract

In this paper a stationary action principle is proven to hold for capillary fluids, i.e. fluids for which the deformation
energy has the form suggested, starting from molecular arguments, for instance by Cahn and Hilliard [14, 15].
Remark that these fluids are sometimes also called Korteweg-de Vries or Cahn-Allen. In general continua whose
deformation energy depend on the second gradient of placement are called second gradient (or Piola-Toupin or
Mindlin or Green-Rivlin or Germain or second gradient) continua. In the present paper, a material description for
second gradient continua is formulated. A Lagrangian action is introduced in both material and spatial description
and the corresponding Euler-Lagrange bulk and boundary conditions are found. These conditions are formulated
in terms of an objective deformation energy volume density in two cases: when this energy is assumed to depend on
either C and ∇C or on C−1 and ∇C−1, where C is the Cauchy-Green deformation tensor. When particularized to
energies which characterize fluid materials, the capillary fluid evolution conditions (see e.g. Casal [24] or Seppecher
[139, 142] for an alternative deduction based on thermodynamic arguments) are recovered. A version of Bernoulli
law valid for capillary fluids is found and, in the Appendix B, useful kinematic formulas for the present variational
formulation are proposed. Historical comments about Gabrio Piola’s contribution to continuum analytical mechanics
are also presented. In this context the reader is also referred to Capecchi and Ruta [16].

Part I

Introduction

Since its first formulation, which can be attributed to D’Alembert and Lagrange, continuum mechanics has been
founded on the principle of virtual works. Moreover, since the early modern1 studies on equilibrium and motion
of fluids, the concept of continuous body was considered suitable to model macroscopic mechanical phenomena.
At the opposite Poisson [121, 122, 123] preferred, instead, a treatment based on an atomistic or molecular point
of view. As the actual configuration of a continuous system is characterized by a placement function (see Piola
[116, 117, 119] for one of the first precise presentation of the analytical concepts involved in this statement) one can
clearly see the main mathematical difference between discrete and continuous models: the configuration space is
finite dimensional in the first case and infinite dimensional in the second one. Indeed a configuration is characterized
as a n− tuple of real variables (Lagrange parameters) when introducing discrete models or as a set of fields, defined

1It is well known that Archimedes could formulate a precise theory of the equilibrium of fluids (see e.g. Rorres [129]) and there are
serious hints that a form of Bernouilli law for fluid flow was known to Hellenistic scientists (see e.g. Vailati [167] or Russo [130]).

1

http://arxiv.org/abs/1305.6744v1


in suitably fixed domains, when introducing continuous models. Of course the comparison of the two modeling
approaches has to be based on the different relevant physical aspects of the considered phenomena. The reader is
referred to the vivid discussion of this point already presented by Piola (see infra in the following subsections and
in particular his discussion about the reality as perceived by the animaletti infusorj (i.e. micro-organisms)). It
appeared clear already to Euler, D’Alembert and Lagrange [85] that, in order to formulate an effective model to
describe a large class of physical phenomena occurring in deformable bodies, it can be more convenient to introduce
a set of space-time partial differential equations for a small number of fields (i.e. functions defined in suitably regular
subsets of R3) instead of a set of ordinary differential equations in which the set of unknown functions outnumbers
any imaginable cardinality.

The fundamental conceptual tool used in continuous models is the definition of the so-called Lagrangian con-
figuration, in which any material particle of the considered continuous body is labeled by three real variables, the
material (or Lagrangian) coordinates of the considered particle. As a consequence the motion of a continuous
system is characterized by the time dependence of the chosen set of fields. For both discrete and continuous models
the obvious problem arises, once the space of configurations is fixed and the set of admissible motions chosen, how
to determine the equations of the motion ? In other words: how to model the external interactions between the
external world, the considered body and the internal interactions in order to get some evolution equations which,
once solved, supply a reliable prevision of the body behavior ?

There are different postulation schemes which, during the centuries, have been proposed to that aim. All of these
schemes have their merits and their defects: with a somehow inappropriate simplification we have classified them
into two subgroups (see a subsection infra) gathered under the collective names analytical continuum mechanics
and continuum thermodynamics. It has to be underlined that some remarkable results were obtained by inbreeding
the two approaches: in the present context one has to cite the works by Seppecher [139, 142]. In these papers
the author obtained the evolution equations for capillary fluids by combining the principle of virtual works in the
Eulerian description with the first principle of thermodynamics (also in the case of isothermal motions). This shows
that it can be sometimes useful to use an heuristic procedure in which the principle of virtual powers is reinforced
by additionally requiring also the validity of the balance of mechanical energy. Also interesting in this context are
the results presented in Casal [24], Gavrilyuk and Gouin [66].

In the opinion of the authors the methods of analytical continuum mechanics are the most effective ones (see
also [98]), at least when formulating models for mechanical phenomena involving multiple time and length scales.
The reader is invited to consider, with respect to this particular class of phenomena, the difficulties which are to
be confronted when using continuum thermodynamics, for instance, to describe interfacial phenomena in phase
transition (see e.g. dell’Isola and Romano [39, 40, 41] and dell’Isola and Kosinski [42], or in poroelasticity see e.g.
dell’Isola and Hutter [46]). These difficulties are elegantly overcame when accepting to use as a fundamental tool
the principle of virtual works (as done in Casal and Gouin [25], Seppecher [141] and dell’Isola et al. [53]). Very
relevant phenomena occur during the flow of bubbles surrounded by their liquid phase: it could be interesting to
apply the homogenization techniques presented in Boutin and Auriault [11] to the equations for capillary fluids
presented here.

1.1 It is possible to deduce the evolution equations for capillary fluids and second
gradient solids by using the principle of least action

In the present paper we show that it is possible to deduce from the principle of least action, and without any further
assumption, the whole set of evolution equations (i.e. bulk equations and boundary conditions) for capillary fluids
both in the Lagrangian and Eulerian descriptions. These equations can be seen as the Euler-Lagrange conditions
corresponding to a precisely given action functional. The obtained variational principle will be useful at least when
formulating numerical schemes for studying a large class of flows of capillary fluids. Also a form of Bernoulli law
valid for capillary fluids is here recognized to hold. Moreover we find the complete Lagrangian form of the evolution
equations for second gradient solids when the deformation energy is assumed to depend on the deformation measure
C := FTF (where F is the placement gradient with respect to Lagrangian referential coordinates) or, alternatively,
C−1. The obtained equations are valid in the general case of large deformations and large deformation gradients.
The appropriate boundary conditions which complete the set of bulk equations are also supplied2. The main
computational tool that we use is the Levi-Civita tensor calculus, also applied to embedded submanifolds. It has
to be remarked that the works of Piola, although correct and rigorous, are encumbered by heavy component-wise
notation which made their understanding difficult. Piola’s works are really modern in spirit, except in what concerns

2Some of the found equations are a possible regularization of those proposed e.g. in Yeremeyev et al. [56, 172] for phase transitions
in solids and may give an insight into some of the results presented in Eremeyev and Lebedev [59].
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their difficulty in treating tensorial quantities: the reader will appreciate the enormous economy of thought which
is gained by the use of Levi-Civita formalism.

The same Piola was aware of the difficulties which are to be confronted when formulating new theories, he claims
(see [119], page 1):

“It happens not so seldom that new achievements -by means of which a branch of applied mathematics was
augmented- do not appear immediately, in the concept and in the exposition, free from lengthiness and superfluities.
The complication of analytical procedures can reach such a level that it could seem impossible to proceed: indeed
it is in this moment instead that sometimes a more general point of view can be discovered, many particularities
are concentrated, and a compendious theory is formed which is so well-grounded that it can infuse vigor for further
progresses.”

We conclude by citing a part of the Introduction of Piola [119] page 5 which is suitable to conclude also the
present one3, when decontextualizing the references to previous works and replacing the word fluids by capillary
fluids:

“While with the present memoir I will aim again to the goal now devised4 I will manage to reach also other ones.
[Indeed] it is rigorously proven in many places the general equation of mechanics, written with the notation of calculus
of variations, in the case of a whatsoever discrete system of bodies regarded as points in which different concentrated
masses are subjected to external active forces and to internal active and passive forces. However, to start from this
last equation [i.e. the equation for a discrete system of points] and to obtain the formulas relative to equilibrium
and motion of bodies with three dimensional extensions [i.e. deformable bodies], it indeed is a step very difficult
for those who are willing to see things clearly and who are not happy to get an incomplete understanding. One
among my first efforts in this subject can be recognized in my Memoir "On the principles of Analytical mechanics by
Lagrange". Published in Milan already in the year 1825, where I presented in this regard some correct ideas but with
many specific technical details either too complex or indeed superfluous. I came back to this point in the memoir
published in T. XXI of these Atti and I believed to have obtained a remarkable improvement by introducing not
negligible abbreviations and simplifications: but thereafter I perceived the possibility of further improvements which
I introduced in the present one. Indeed great advantage can always be obtained when having the care of clarifying
appropriately the ideas concerning the nature of different analytical quantities and the spirit of the methods: [to
establish] if also from this point of view something has been left to be done, I will leave the judgment to intelligent
readers. The scholar will perceive that I propose myself also other aims with the present work, having established
here various formulas, which can serve as a starting point for further investigations. I will not omit to mention one
of these aims and precisely that one which consists in demonstrating anew (Capo V), by adopting the ideas better
founded which are provided by modern Physics about fluids, the fundamental equations of their motions. In as much
as I treated longly in other my works the problems of hydrodynamics (See the first two volumes of Memoirs of I.
R. Istituto Lombardo) it was objected that my deduction could be defective, considered what stated by Poisson about
the equations of ordinary Hydrodynamics. Now I believed to be able to prove that the considerations of the French
Geometer in this circumstance were pushed too far ahead, and that notwithstanding his objections the fundamental
theory of the motions of fluids is well grounded as established by D’Alembert and Euler, and exactly as it was
reproduced by Fourier himself with the addition of another equation deduced with the theory of heat, [equation] to
which, however, it is not necessary to refer in the most obvious questions concerning the science of waters. For
what concerns the motion of fluids, the present Memoir is intended to support and complement the aforementioned
ones.”

In the Appendix B the reader will find various kinematic formulas, which in our opinion will be useful in further
developments of analytical continuum mechanics. The reader should also explicitly remark that already Piola has
stated that the heat equation does not need to be considered when purely mechanical phenomena are involved.

1.2 What we mean with the expressions second gradient continua and capillary fluids

Following Germain [67] we will call second gradient continua those whose Lagrangian volumic deformation energy
depends both on the first and second gradients of the placement field. When using the expression capillary fluids we
will refer to those continua whose Eulerian volumic deformation energy density depends both on their Eulerian mass
density ρ and its gradient ∇ρ. Of course the aforementioned dependences must be independent of the observer
(this requirement was already demanded by Piola [117]). We prefer to avoid to name the introduced class of
fluids after Cahn and Hilliard or Korteweg and de Vries, as done sometimes in the literature (See e.g. Seppecher
[139, 142, 143, 144, 145], Casal and Gouin [25, 26]). This is done in order to avoid ambiguities: Cahn and Hilliard,

3The translation from the original italian text tries to reproduce the English style of the famous works by Maxwell [103], which are
nearly contemporary with Piola’s ones.

4Piola refers here to his intention of deducing all the evolution equations of continuum mechanics from the principle of virtual works.
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for instance, intended the equations which were subsequently named after them to be valid for the concentration
of a solute in motion with respect to a stationary solvent, and deduced them with molecular arguments (and
missed some thermodynamically relevant terms, see Casal and Gouin [25]). On the other hands the Korteweg-de
Vries equations [78] were originally deduced for a completely different class of phenomena: waves on shallow water
surfaces. Later it was discovered that they can also be deduced with an atomistic argument, since the so-called
Fermi-Pasta-Ulam [61] discrete system has Korteweg-De Vries equations as continuum limit. Only in a later paper
(Korteweg [80]) a connection with capillarity phenomena has been established.

The nomenclature capillary fluids is suggestive of many of the most fundamental phenomena which may be
described by the model discussed here: wettability, the formation of interfacial boundary layers, the formation of
liquid of gaseous films close to walls, the formation and the motion of drops or bubbles inside another fluid phase
or the formation of drops pending from or laying on a horizontal plane and many others (see e.g. the papers by
Seppecher [139, 142], dell’Isola et al. [43], Gouin and Casal [25]). Finally, remark that second gradient theories
are strictly related to continuum theories with microstructure (see e.g. Green, Rivlin [70, 71, 72, 73], Mindlin
[104, 105, 106], Kroner [81] and Toupin [162, 163]) as clarified in the note by Bleustein [9] and in the papers by
Forest [63, 62].

2 An interlude: some (apparent?) dichotomies

2.1 Analytical continuum mechanics and continuum thermodynamics

It is natural here to refer to the original sources of analytical continuum mechanics. Some of them are relatively close
in time and, very often, their spirit has been somehow misjudged. Sometimes they were forgotten or considered by
some authors not general enough to found modern mechanics. This is not our opinion. However, instead of looking
for new words to support this point of view, we will continue to cite a champion of analytical mechanics: the Italian
mathematical-physicist Gabrio Piola. Despite his being one of the founders of modern continuum mechanics, his
contribution to it has been most likely underestimated. To our knowledge the appropriate expression analytical
continuum mechanics has not been considered frequently up to now. In Maugin [97] the following statement can
be found

“The road to the analytical continuum mechanics was explored in particular by P.Germain [69], but not in a
variational framework.”

The concept underlying analytical continuum mechanics has to be opposed to those of continuum thermody-
namics. Actually continuum thermodynamics is based on a postulation process which can be summarized as follows
(see e.g. Noll and Truesdell [115], Noll [114]):

• find a set of kinematic fields of relevance in the formulation of the considered continuum model which is
sufficient to describe considered phenomena;

• postulate a suitable number of balance laws having the structure of conservation laws. Specify the physical
meaning of each conserved quantity and introduce for each a flux, a source and a volume density;

• postulate a suitable number of constitutive equations in order to close the formulated mathematical problems:
that is to have enough equations to determine the evolution of the kinematic fields, once suitable initial and
boundary data are assigned;

• as the possible choices of constitutive equations are too large, and many of them are unphysical, choose a
particular balance law, i.e. the balance of entropy, and assume that its source is underdetermined and always
positive. The physically acceptable constitutive equations are those for which all possible motions produce a
positive entropy.

Everybody who has carefully considered the performances of such an approach may agree that:

• when one wants to formulate new models it is difficult to use it as a heuristic tool;

• it is somehow involved and often requires many ad-hoc assumptions.

A clear and elegant5comparative analysis of the advantages obtained by using instead the principle of virtual works
(or the principle of least action) is found in Hellinger [75]. Actually even a more elegant discussion of this point can
be found in Piola (Memoir [119] page 1) where one can read the following words:

5and also relatively old: but older does not mean always worse! (see [130])
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“[By means of the concepts of Analytical mechanics] a compendious theory is formed which is so well-grounded
that it can infuse vigor for further progresses. It should be desirable that this could happen also for the last additions
made by the modern Geometers to Rational mechanics: and in my opinion I should say that the true method
suitable to succeed we have in our own hands: it has to be seen if others will be willing to share my opinion. I wrote
many times that it does not seem to me needed to create a new mechanics, departing from the luminous method
of Lagrange’s Analytical mechanics, if one wants to describe the internal phenomena occurring in the motion of
bodies: [indeed it is my opinion that] it is possible to adapt those methods to all needs of modern Mathematical
physics : [and that] this is, nay, the true route to follow because, being well grounded in its principles, it leads
to reliable consequences and it promises ulterior and grandiose achievements. However I had -and still nowadays
I have- as opposers well respectable authorities, in front of which I should concede the point, if the validity of a
scientific opinion had to be based on an argument concerning the scientific value of its supporter. Nevertheless,
as I cannot renounce to my persuasion, I believed it was suitable to try another effort, gathering in this memoir
my thoughts about the subject and having care to expose them with the accuracy needed to assure to them the due
attention of Geometers. [...] Even more than for its elegance and the grandiosity of its analytical processes, the true
reason for which I prefer to all the other methods in mechanics those methods due to Lagrange is that I see in them
the expression of that wise philosophy thought to us by Newton, which starts from the facts to rise up to the laws
and then [starting from established laws] goes down again to the explanation of other facts.”

Indeed, analytical continuum mechanics has a much simpler postulation process since one has to

• postulate the form of a suitable action functional;

• postulate the form of a suitable dissipation Hamilton-Rayleigh functional, and calculate its first variation with
respect to velocity fields;

• assume that in conservative motions the action is stationary, and to determine these motions calculate the
first variation of action and equate it to zero for every infinitesimal variation of motion;

• equate, for non-conservative motions, the first variation of action functional (on the infinitesimal variations of
motion) to the first variation of Hamilton-Rayleigh functional with respect to Lagrangian velocities (estimated
on the same infinitesimal variations of motion).

The true difficulty in analytical continuum mechanics is that it strongly relies on the methods and on the ideas of
the calculus of variations. Most likely it is for avoiding the mathematical abstraction required by the calculus of
variations that many opposers reject Lagrangian mechanics. Again we give voice to Piola ([119] page 4):

“Somebody could here object that this [i.e. the variational foundations of Analytical mechanics] is a very old
knowledge, which does not deserve to be newly promulgated by me: however [it seems that my efforts are needed]
as my beautiful theories [after being published] are then criticized, because Poisson has assured (Mémoires Institut
de France T. VIII. pag. 326, 400; Journal Ecole polyt. cah. XX. pag 2) that the Lagrangian method used for
writing the effects of the forces by means of constrains equations (method which is proclaimed here as the only
one really idoneous to take into accounts facts instead of causes) is too abstract; that it is necessary to develop a
Science closer to the reality of things; that such analysis [the Lagrangian one] extended to the real bodies must be
rejected as insufficient. I respond that I also recognize the difficult question to be in these considerations. If it is
well founded or not the statement that the Lagrangian methods are sufficient to the description of all mechanical
Phenomena, and are so powerful that they are suitable for all further possible researches, this is what will be decided
later, and before rebutting my point of view, it will be fair to leave me to expose all arguments which I have gathered
to defend my point of view. I hope to clarify in the following Memoir that the only reason for which the Analytical
mechanics seemed to be insufficient in the solution of some problems, is that Lagrange, while writing the conditions
for equilibrium and motion of a three dimensional body, did not detailed his model by assigning the equations relative
to every material point belonging to it. If he had done this, and he could very well do it without departing from the
methods imparted in his book, he would have obtained easily the same equations at which the French Geometers of
our times arrived very painfully, [equations] which now are the foundation of new theories. However those results
which Lagrange could not obtain, because death subtracted him to sciences before he could complete his great oeuvre,
those results can be obtained by others.”

2.2 Least (or stationary) action principle and the principle of virtual works

Let consider a physical system denoted S, the set of the possible states this system is mathematically described
by a space of configurations C. The time evolution of S is modeled by a suitably regular function of the time
variable whose values belong to C. In the following this function will be called motion function (or shortly motion).
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Therefore a well-posed mathematical model for S can be specified only by starting with the choice of a space of
configurations and a set of conditions which determine the motions.

Least action principle:

The motions in a time interval [t0, t1] can be characterized as those motion functions which minimize

(or which are stationary for) a suitably defined action functional in a specified set of admissible motions.

Indeed it is very important, in order to have a well-posed minimization (or stationarity) problem, to precisely
specify the set of admissible motions among which these minimizers have to be searched. Following Lagrange it
is generally assumed that the set of admissible motions is included in the set of isochronous motions between the
instants t0 and t1, i.e. motions which start from a given configuration at instant t0 and arrive to another given
configuration at the instant t1. When differential calculus is applicable to the action functional, the first variation of
this functional (in the sense of Taylor series) can be estimated. This first variation is a linear continuous functional
defined on the set of isochronous infinitesimal variations of motion. In this case, the stationarity condition can be
formulated by a differential equation. This equation requires that the first variation vanishes for every infinitesimal
variation of motion.

Lagrange studied a particular class of action functionals and gave a method for calculating their first variation
under suitable regularity conditions on the action functional and the searched motions. The resulting equations
of motion are sufficient conditions for the stationarity of a given action. This method allows for the consideration
of both finite and infinite dimensional configuration spaces, hence the action principle can be formulated in both
cases. Lagrangian action functionals are given in terms of a suitable Lagrange function, whose integration in time
(and also in space if the configuration space is constituted by spatial fields) is required for calculating the action
relative to a given motion. The form of such a function can be regarded as a conjectural choice, whose validity has
to be experimentally tested. One can say that a constitutive choice is implicit in the choice of a Lagrange function.

However, given a configuration space C, one can postulate, instead of a least action principle, a principle of
virtual works. This principle states that the motion of the considered system is characterized by assuming that
for every (admissible) variation the sum of three linear continuous functionals is vanishing. These functionals are,
respectively, the internal work, the external work and the inertial work. Their choice has a nature similar to the
one which leads to choose a Lagrange function and is also conjectural in nature. As previously, the validity of these
constitutive equations has to be experimentally tested. It has to be remarked that if a Lagrange action functional
can be split into three addends, i.e. into the sum of inertial, internal and external terms, the stationarity of action
implies the validity of a virtual work principle. However it is clear that, in general, a linear continuous functional of
infinitesimal variations of motions is not the first variation of a functional whatsoever. In this sense the principle of
virtual works is more general than the principle of least action. The principle of virtual works include the principle
of least action as modified by Hamilton and Rayleigh.

Therefore, and contrary to what is sometimes stated, both the principle of least action and the principle of
virtual works depend on fundamental constitutive assumptions: those which lead to the choice of, respectively,
either the three work functionals or the Lagrange function. The principle of virtual works is, once the configuration
space is fixed, able to produce a wider class of motions. In particular it seems to be able to describe a wider class
of dissipative phenomena (see e.g. Santilli [131]). However, it has to be remarked that

i) there are dissipative systems which are governed by a least action principle (see e.g. Moiseiwitsch [111] or
Vujanovic and Jones [168]);

ii) it is conceivable, by a suitable embedding into a larger space of configuration, to find Lagrangian forms for
systems which are initially not Lagrangian (see again Santilli [131] or Carcaterra and Akay [21, 22]).

The physical insight gained using the principle of least action (or the principle of virtual works) cannot be
underestimated. For a deeper discussion of this point we limit ourselves to cite here, among the vast literature,
the textbooks Landau and Lifshitz [83], Lanczos [84], Soper [146], Bedford [7], Kupershmidt [82], Kravchuk and
Neittaanmaki [79], Lemons D.S. [88] and the methodological essay by Edwards [54]. Some results of interest in
continuum mechanics and structural engineering are gathered in Leipholz [87], Lippmann [89], while in Luongo and
Romeo [91], Luongo et al. [90, 92], are presented some interesting results in nonlinear dynamics of some structural
members.

2.3 Discrete and continuous models

In many works (see e.g. Truesdell [164]) it is stated that the principle of least action is suitable to derive the
evolution equations for finite dimensional systems only. Moreover, in some époques and some cultural environments,
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the atomistic vision prevailed in physics to the point that continuum models where considered inappropriate simply
for philosophical reasons. Indeed already Poisson bitterly criticized the first works of Piola (see e.g. the introduction
of [119]) in which the foundations of modern continuum mechanics are laid based on the principle of virtual works.
Actually in Poisson’s opinion the true physical reality was atomistic and the most fundamental concept in mechanics
was the concept of force, whose balance was bound to lead to the evolution equations of every mechanical systems.
As a consequence and in order to respond to the objections of Poisson, even if Piola was aware that a variational
deduction of the searched evolution equations for continuous systems was possible, in the first half of XIX century
he decided to found the continuum theory as the limit of a discrete system. It is interesting to remark that, only
few years later, a similar controversy arose between Mach and Boltzmann, based on Mach’s rejection of atomistic
point of view in thermodynamics. We prefer to leave Piola ([119] page 2) explain his (and our) point of view:

“In my opinion it is not safe enough to found the primordial formulas [of a theory] upon hypotheses which,
even being very well-thought, do not receive support if not for a far correspondence with some observed phenomena,
correspondence obtained particularizing general statements, [in my opinion] this should be as coming back in a
certain sense to the philosophy of Descartes and Gassendi: indeed the magisterium of nature [the experimental
evidence] at the very small scale in which we try to conceive the effect of molecular actions will perhaps actually be
very different from what we can mentally realize by means of the images impressed in our senses when experiencing
their effects in a larger scale. Even let us assume that this difference be very small: a deviation quite insensitive
in the fundamental constituents [of matter] -which one needs to consider as multiplied by millions and by billions
before one can reach sensible dimensions- can be the ultimate source of notable errors. On the contrary, by using
Lagrangian methods, one does not consider in the calculations the actions of internal forces but [only] their effects,
which are well-known and are not at all influenced by the incertitude about the effects of prime causes, [so that]
no doubt can arise regarding the exactitude of the results. It is true that our imagination may be less satisfied,
as [with Lagrangian methods] we do not allow to it to trace the very fundamental origins of the internal motions
in bodies: does it really matters? A very large compensation for this deprivation can be found in the certitude of
deductions. I could here repeat, if they were not very well-known, the wise documents with which Newton summoned
to the science of facts those philosophers who before him had left a too free leap to their imagination. It has to
be remarked that I do not intend for this reason to proscribe the dictation of modern Physics about the internal
constitution of bodies and the molecular interactions; I think, nay, to render to them the greater of services. When
the equations of equilibrium and motion will be established firmly upon indisputable principles, because one has
calculated certain effects rather than hypothetical expression of forces, I believe to be licit to try to reconstruct anew
these equations by means of [suitable] assumptions about such molecular interactions: and if we manage in this way
to get results which are identical to those we already know to be true, I believe that these hypotheses will acquire
such a high degree of likeliness which one could never hope to get with other methods. Then the molecular Physics
will be encouraged to continue with its deductions, under the condition that, being aware of the aberrations of some
bald ancient thinkers, it will always mind to look carefully in the experimental observation those hints [coming by
the application of Lagrangian macroscopic methods] which are explicit warnings left there to indicate every eventual
deviations.”

Regarding the concept of characteristic scale lengths relevant in physical phenomena Piola had crystal clear
ideas, expressed by him with such an elegance that even nowadays his words can be used (Piola [119] page 13):

“Scholium. The admissibility of the principle [i.e. the principle which assume the existence of a characteristic
length σ determining the average distance among the molecules microscopically constituting the considered contin-
uum] refers to the true condition of the human being, placed, as said by Pascal in his Thoughts (Part I. Art.IV) at
immense distances both from infinity and the zero: distances in which one can imagine many orders of magnitude,
of which one [order of magnitude] can be regarded as the whole when compared with the one which is preceding it,
and nearly nothing when compared with [the order of magnitude] which follows it. Therefore it results that the same
quantities which are asserted to be negligible for us without being afraid of being wrong, could be great and not at all
negligible quantities for beings which could be, for instance, capable to perceive the proportions which are relevant
for the structure of micro-organisms . For those beings those bodies which appear to us to be continuous could
appear as bunches of sacks: water, which for us is a true liquid, could appear as for us [appears] millet or a flowing
bunch of lead pellets. But also for these beings there would exist true fluids, relative to which for them the same
consequences which we deduce relatively to water should be considered as true. There are therefore quantities which
are null absolutely for all orders of beings, as the analytical elements used in the Integral Calculus, and there are
quantities which are null only for beings of a certain order, and these quantities would not be null for other beings,
as some elements which are considered in mechanics. As I was educated by Brunacci to the school of Lagrange, I
always opposed to the metaphysical infinitesimal, as I believe that for the analysis and the geometry (if one wants
to achieve clear ideas) it has to be replaced by the indeterminately small when it is needed: however I accept the
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physical infinitesimal, of which the idea is very clear. It is not an absolute zero, it is nay a magnitude which for
other beings could be appreciable, but it is a zero relatively to our senses, for which everything which is below them
is exactly as if it were not existing.

The reader should remark that the original formulations which lead to the Cahn-Hilliard equations [14, 15]
and to capillary fluid equations (see e.g. van Kampen [166], Evans [55], De Gennes [38]) were based on atomistic
arguments. However these arguments may lead sometimes to equations (see for more details Casal and Gouin
[25]) which are thermodynamically inconsistent. This circumstance was already clear to Piola, who suggests to
use macroscopic theories (based on the principle of virtual works) to drive and confirm the correct deductions
from atomistic arguments. This good scientific practice is nowadays generally accepted. Many efforts have been
dedicated to deduce from an atomistic scale discrete model the macroscopic form of the deformation energies which
depend on first or higher gradients of deformation starting from the works of Piola [119]. The reader is referred
to Esposito and Pulvirenti [60] for an extensive review about the results available for fluids. It is suggestive to
conjecture that the macro-models for fluid flows discussed e.g. in [6, 27, 76], which involve some micro-macro
identification procedure and more than one lenght scale, may be framed in the general scheme which is put forward
here. In solid mechanics also, multiscale models have attracting the interest of many authors: we may refer, for
instance, to Sunyk and Steinmann [148], Alibert et al. [1], Steinmann et al. [159], Rinaldi et al. [128], Misra and
Chang [107], Yang and Misra [169][170], Yang et al. [171], Misra and Singh [109], Misra and Ching [110] for some
other interesting results concerning granular solids. In the same context the results presented in Boutin and Hans
[13], Auriault et al. [3], Chesnais et al. [29, 28], Soubestre [147] and Boutin [12, 11] have also to be cited. In these
papers the authors, although starting in their procedure from balance laws valid at a microscopic level, proceed in
a spirit very similar to the one found in the pioneering works by Piola.

Part II

Deduction of evolution equations for continuous

systems using the least action principle

In this part, starting from the least action principle, we present the formal deduction of the evolution equations
which govern the motion of i) first gradient continua, in particular Euler fluids, and of ii) second gradient continua,
in particular capillary fluids. Although the content of the following subsection is well-know (even if more or less
consciously ignored in some literature) it was written pursuing a twofold aim: i) to prepare the notation and
calculation tools to be used in the subsequent sections; ii) to rephrase there, in a modern notation, the results of
Piola [116, 120]. It has to be remarked that in the literature the least action principle in continuum mechanics is
presented in a very clear way in Berdichevsky [8]. It is evident that the Soviet school (see e.g. Sedov [136, 137],
which developed, improved and elaborated it in several aspects), was aware of the content of Piola’s contribution
to continuum mechanics6, even if it is not so clear how the information managed to reach Soviet scientists. To
establish the ways in which such connections are established is a scientific problem by itself, whose importance has
been underestimated up to now.

3 First gradient continua

In this section we reproduce, by introducing more recent notations and by extensively using Levi-Civita absolute
tensor calculus, the arguments used by Piola for founding the classical continuum mechanics. The reader will remark
by simple comparison (see Piola [116, 117, 118, 119, 120]) that the use of tensor calculus makes the presentation
dramatically shorter. Moreover, as we will see in a subsequent subsection, by means of its use the calculations
needed to deal with second gradient fluids become feasible. Another difference with Piola’s presentation consists in
our use of the least action principle instead of the principle of virtual works (see e.g. dell’Isola and Placidi [52]).
However we keep the distinction among inertial, internal and external actions. Notations used in the following are
detailed in the Appendices.

6To be honest it cannot be excluded logically that Piola could have sources which we could not find. However his works fix a date
from which certain concepts start to appear in published-printed form.
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3.1 Action functional

Let us introduce the following action functional:

A =

ˆ t1

to

ˆ

B

(
1

2
ρ0v

2 −W (χ, F,X)

)

dV dt+

ˆ t1

to

ˆ

∂B

(−WS(χ,X)) dAdt

where :

• the field χ denotes the placement field between the referential (or Lagrangian) B and the spatial (or Eulerian)
χ (B) ⊂ E configurations

χ : B → E

• the field ρ0(X) refers to the Lagrangian time-independent mass density, so that the Eulerian mass density is
given by

ρ = detF−1 (ρ0)
−→
(E)

where the used notation is carefully defined in Appendix A;

• the placement gradient F = ∇Xχ is a Lagrangian tensor field, i.e. a tensor field defined in B;

• the velocity field v = ∂χ
∂t , associated to the placement field χ, is a Lagrangian field of Eulerian vectors;

• the potential W (χ, F,X) is relative to the volumic density of action inside the volume B;

• the potential WS(χ,X) is relative to the actions externally applied at the boundary ∂B.

The results valid for infinite dimensional Lagrangian models (see e.g. dell’Isola and Placidi [52] and references
therein) applied to the introduced action, leads to the following Euler-Lagrange equations (which hold at every
internal point of B):

−
∂

∂t
(ρ0vi) +

∂

∂XA

(
∂W

∂F i
A

)

−
∂W

∂χi
= 0

and, if the boundary ∂B is suitably smooth, the following boundary conditions7

−
∂W

∂F i
A

NA −
∂WS

∂χi
= 0.

which hold at every point P belonging to the (Lagrangian) surface ∂B whose normal field is denoted N(P ) or, in
components, NM (P ). In the former expressions and throughout the paper, Lagragian indices are written in upper
case while Eulerian indices are written in lower case. Furthermore the classical Einstein convention is applied and
the summed indices are taken in the beginning of the alphabet.

3.2 Objective deformation energy

We now assume that the energy W can be split into two addends, the first one representing the deformation energy,
the second one an external (conservative) action of a bulk load

W (χ, F,X) = W def(C,X) + U ext(χ,X)

where C := FTF is the right Cauchy-Green tensor which, in components, has the following expressions:

CMN = gNAF
A
a F a

M = FNaF
a
M = gabF

b
MF a

N ,

where gMN and gij denotes, respectively, the metric tensors over B and E . The Euler-Lagrange stationarity
conditions are the so-called balance of linear momentum, or balance of forces, represented by the equations

−
∂

∂t
(ρ0vi) +

∂

∂XC

(
∂W def

∂CAB

∂CAB

∂F i
C

)

−
∂U ext

∂χi
= 0. (1)

7To avoid any misunderstanding, in the expression WS it is worth noting that S refers to “Surface” and is not an index.
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Remark that the equality concerns Eulerian vectors, but the fields are expressed in terms of the Lagrangian variables,
therefore the differential operators are Lagrangian. Let us now observe that as:

∂CMN

∂F i
P

= gab
∂

∂F i
P

(
F b
MF a

N

)
= gab

(
∂F b

M

∂F i
P

F a
N + F b

M

∂F a
N

∂F i
P

)

=
(
δPMFiN + FiM δPN

)

we get
∂W def

∂CAB

∂CAB

∂F i
P

= 2
∂W def

∂CPA
FiA

and the balance (1) becomes

− ρ0
∂vi
∂t

+
∂

∂XA

(

2FiB
∂W def

∂CAB

)

−
∂U ext

∂χi
= 0. (2)

The tensor

PM
i := 2FiA

∂W def

∂CAB
gBM

is the Piola stress tensor. It appears also in the boundary conditions which are deduced from

∂W def

∂F i
A

NA = −
∂WS

∂χi
(3)

In Piola [119] the requirement of objectivity (i.e. the invariance under changes of observer) of Piola stress is clearly
stated and analytically formulated. However, due to the lack of conceptual tools supplied by tensor calculus, in his
results he cannot achieve the same clarity allowed by the tensorial formalism.

3.3 The Eulerian form of force balance

Using the Piola transformation (see Appendices), the equations (2), which represent the equations of the motion
become

−

(

ρ0
∂vi
∂t

∣
∣
∣
∣
X

)−→
(E)

+ J
−→
(E) ∂

∂xa



2J−1

(

FiA
∂W def

∂CAB
F a
B

)
−→
(E)


−

(
∂U ext

∂χi

)
−→
(E)

= 0.

We remark here that J−1 = det
(
F−1

)
, consequently J−1 has to be considered as an Eulerian quantity. Multiplying

this expression by J−1 one gets

− J−1

(

ρ0
∂vi
∂t

∣
∣
∣
∣
X

)−→
(E)

+
∂

∂xa



2J−1

(

FiA
∂W def

∂CAB
F a
B

)
−→
(E)


− J−1

(
∂U ext

∂χi

)
−→
(E)

= 0. (4)

This is recognized to be the celebrated balance equations of linear momentum of classical continuum mechanics,
once one introduces:

1. the Cauchy stress tensor (which is self-adjoint)

T j
i := 2J−1

(

FiA
∂W def

∂CAB
F j
B

)
−→
(E)

(5)

2. the material Eulerian time derivative of a Lagragian field Φ as

(
∂Φ

∂t

∣
∣
∣
∣
X

)−→
(E)

3. the field

bext := −J−1

(
∂U ext

∂χi

)
−→
(E)

which can be called the Eulerian volume force density for considered bulk loads.
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Finally, in order to transport the boundary conditions (3) into the Eulerian configuration, we introduce the following
notations, assumptions and results:

1. The body boundary ∂B, whose unit normal field is denoted N , is mapped by the placement χ onto the
Eulerian surface χ(∂B) whose unit normal field is denoted n;

2. Particularizing the relations (43) and (44) provided in the appendix, we obtain that

N
−→
(E)
M =

(
J−1

(
FT
)a

M

)
na

∥
∥
∥

(

J−1 (FT )
b
A

)

nb

∥
∥
∥

(6)

and that

dAE

dAB

=

(∥
∥
∥

(

J−1
(
FT
)a

A

)

na

∥
∥
∥

−1
)−→

(B)

=
∥
∥
∥

(

J
(
F−T

)A

a

)

NA

∥
∥
∥ (7)

3. The Lagrangian conditions (3) imply

2
∂W def

∂CAB
FiANB = −

∂WS

∂χi

which, by using (6), become

2FiA
∂W def

∂CAB
F a
B

(
J−1na

)
−→
(B)

= −
∂WS

∂χi

∥
∥
∥

(

J
(
F−T

)A

a

)

NA

∥
∥
∥

These last equations, by using (5) and (7), allows us to obtain the well-known Eulerian boundary conditions

T a
i na =

(

−
dAE

dAB

∂WS

∂χi

)−→
(E)

(8)

3.4 Euler fluids

We now continue to parallel Piola ([119] Capo V pages 111-146). However our treatment differs since we charac-
terize the material symmetry of Euler fluids by assuming the equation (9), while Piola imposes it to the Eulerian
transformation of Piola stress. Let us assume that

W def(C) = Ψ(ρ
−→
(B)(C)) = W eul(F ) (9)

and recall the following relations:

ρ
−→
(B) = ρ0 (detF )

−1
; (detF )2 = det(FTF ) = det(C); ρ

−→
(B) = ρ0 (detC)

−
1
2

To particularize (4) we need to determine the particular form assumed by Cauchy tensor for Euler fluids. This is
done by using:

1. The equality (47) given in the appendices

∂ρ
−→
(B)

∂CMN
= −

ρ
−→
(B)

2

(
F−1

)Ma (
F−1

)N

a

2. The equality

T j
i = 2J−1

(

FiA
∂Ψ

∂ρ
−→
(B)

∂ρ
−→
(B)

∂CAB
F j
B

)
−→
(E)

= −J−1ρ
∂Ψ

∂ρ
δai δ

j
a = −ρ2

∂

(

Ψ/ρ
−→
(E)
0

)

∂ρ
δji (10)

3. The definition of the constitutive equation giving the pressure as a function of density

p(ρ) := ρ2
∂

(

Ψ/ρ
−→
(E)
0

)

∂ρ
(11)
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In conclusion, by using (11) and (10), the Eulerian force balance equations assume the form:

−ρ
−→
(E)
0 J−1

(
∂vi
∂t

∣
∣
∣
∣
X

)−→
(E)

−
∂p(ρ)

∂xi
− J−1

(
∂U

∂χi

)−→
(E)

= 0.

By considering the external potential energy per unit mass, the last equation reads

−ρ

(
∂vi
∂t

∣
∣
∣
∣
X

)−→
(E)

−
∂p(ρ)

∂xi
− ρ

(
∂ (U/ρ0)

∂χi

)−→
(E)

= 0.

Finally, using the formula for calculating the material derivative of velocity we obtain

−ρ




∂v

−→
(E)
i

∂t
+

∂v
−→
(E)
i

∂xa
(va)

−→
(E)



 −
∂p(ρ)

∂xi
− ρ

(
∂ (U/ρ0)

∂χi

)−→
(E)

= 0.

The expression (10) for Cauchy stress, which is valid for Euler fluids, together with the boundary condition (8)
implies that:

Not all externally applied actions can be sustained by Euler fluids. Indeed Euler fluids cannot
sustain surface tractions (as pressure is always positive) nor surface shear forces.

This statement, which can be already found in Piola [119] (see equation (37) page 136 and the subsequent discussion),
implies that:

“The assumptions about the internal deformation energy determine the capability of the considered body to sustain
externally applied actions. Therefore: the expression of the internal deformation energy characterizes the class of
admissible external actions of a continuous body.”

We will return on this point in the next sections.

4 Second gradient continua

In this section we generalize the expression for deformation energy used up to now to take the second gradient of
the displacement field into account. It has to be remarked that in Piola ([119] page 152) a first (and persuasive!)
argument supporting the possible importance of dependence of internal work functional on higher gradients of
displacement field is put forward. This point deserves a deeper discussion and is postponed to further investigations.
To our knowledge Piola is the first author who analyzed such a dependence. Therefore we propose to name after
him the obtained generalized continuum theories. It is assumed that second gradient materials have a deformation
energy which depends both on the Cauchy-Green tensor and on its first gradient. The more general Lagragian
density function to be considered has the following shape

L =
1

2
ρ0v

2 − (W I(χ, F,X) +W II(χ, F,∇F,X)). (12)

4.1 Piola-type second gradient deformation energy

The expression (12) will be assumed in the sequel. The term W I(χ, F,X) coincides with the first order term
previously considered, while W II(χ, F,∇F,X) stands for an additive term in which the first order derivative of the
gradient F appears. As a consequence, we need to compute the first variation of the following functional

AII =

ˆ

B

−W II(χ, F,∇F,X)dV

Paralleling the style of presentation used by Piola, while developing the calculations we comment on the results as
soon as they are obtained. Because of the assumed structure of the added deformation energy, we have

δAII = δχA
II + δFA

II + δ∇FA
II

=

ˆ

B

−

(
∂W II(χ, F,∇F,X)

∂χ
δχ+

∂W II(χ, F,∇F,X)

∂F
δF +

∂W II(χ, F,∇F,X)

∂∇F
δ∇F

)

dV
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It can be observed that the first two terms can be treated exactly how done for the first gradient action. The
following addend in bulk equation will be obtained

DIVX

(
∂W II

∂F

)

−
∂W II

∂χ
(13)

together with the following addend to boundary conditions

−
∂W II

∂F
·N (14)

On the contrary, new difficulties appear when calculating the first variation δ∇FA. However, the techniques devel-
oped by Mindlin, Green, Rivlin, Toupin and Germain (see also dell’Isola et al. [53]) allow us to treat this term
efficiently and elegantly. Starting from (the comma indicates partial differentiation)

δ∇FA
II =

ˆ

B

−

(

∂W II

∂F a
A,B

δF a
A,B

)

dV

we perform a first integration by parts. Indeed remarking that

∂

∂XB

(

∂W II

∂F a
A,B

δF a
A

)

=
∂

∂XB

(

∂W II

∂F a
A,B

)

δF a
A +

∂W II

∂F a
A,B

δF a
A,B

and applying the divergence theorem (recall that we denote by NM the components of the unit normal to the surface
∂B), we obtain

δ∇FA
II =

ˆ

B

−

(

∂W II

∂F a
A,B

δF a
A,B

)

dV = −

ˆ

B

∂

∂XB

(

∂W II

∂F a
A,B

δF a
A

)

dV +

ˆ

B

(

∂

∂XB

(

∂W II

∂F a
A,B

)

δF a
A

)

dV

= −

ˆ

∂B

(

∂W II

∂F a
A,B

NB

)

δF a
AdA+

ˆ

B

(

∂

∂XB

(

∂W II

∂F a
A,B

)

δF a
A

)

dV (15)

Let us observe that the second addend of the previous expression has exactly the same form as the first variation
in the case of first gradient action. Therefore this addend becomes

ˆ

B

(

∂

∂XB

(

∂W II

∂F a
A,B

)

δF a
A

)

dV =

ˆ

B

∂

∂XA

(

∂

∂XB

(

∂W II

∂F a
A,B

)

δχa

)

dV −

ˆ

B

(

∂2

∂XA∂XB

(

∂W II

∂F a
A,B

)

δχa

)

dV

=

ˆ

∂B

(

NA
∂

∂XB

(

∂W II

∂F a
A,B

))

δχadA−

ˆ

B

(

∂2

∂XA∂XB

(

∂W II

∂F a
A,B

)

δχa

)

dV

which implies that to (13) and (14) the following terms must, respectively, be added to the bulk and surface
Euler-Lagrange conditions

−DIVX

(

DIVX

(
∂W II

∂∇F

))

; DIVX

(
∂W II

∂∇F

)

·N

4.2 First gradient surface stress

We now have to treat the first addend in (15), performing a surface integration by parts we obtain

−

ˆ

∂B

(

∂W II

∂F a
A,B

NB

)

δF a
AdA. (16)

Remark that in dell’Isola et al. [53] the factor

(

∂W II

∂F a
A,B

NB

)
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appearing in a virtual work functional of the kind given in (16) was called first gradient surface stress. To proceed
in the calculations we need to use some results from Gaussian differential geometry (see e.g. Appendices for more
details). The main tool we use consists in the introduction of two projector fields P and Q in the neighborhood
of the surface ∂B. The operator P projects onto its tangent plane, while Q projects on the normal. The used
integration-by-parts techniques reached us by means of Seppecher [138]. They are developed in the framework of
Levi-Civita absolute tensor calculus, however it is clear that the sources of Berdichevsky [8] systematically employed
these techniques. With their help, the expression (16) is transformed in the following way

−

ˆ

∂B

(

∂W II

∂F a
A,B

NB

)

δχa
,AdA = −

ˆ

∂B

(

∂W II

∂F a
A,B

NB

)

δχa
,Cδ

C
AdA = −

ˆ

∂B

(

∂W II

∂F a
A,B

NB

)

δχa
,C

(
QC

A + PC
A

)
dA

= −

ˆ

∂B

(

∂W II

∂F a
A,B

NB

)

δχa
,CQ

C
DQD

AdA−

ˆ

∂B

(

∂W II

∂F a
A,B

NB

)

δχa
,CP

C
DPD

A dA (17)

In the following subsections, each elementary term will be processed.

4.3 External and contact surface double forces

Considering that
QC

D := NCND

the first addend in equation (17) is rewritten

−

ˆ

∂B

(

∂W II

∂F a
A,B

NB

)

δχa
,CQ

C
DQD

AdA = −

ˆ

∂B

(

∂W II

∂F a
A,B

NB

)

δχa
,CN

CNDNDNAdA = −

ˆ

∂B

(

∂W II

∂F a
A,B

NBNA

)

(
δχa

,CN
C
)
dA

or, in a more compact form,

−

ˆ

∂B

(
∂W II

∂∇F
· (N ⊗N)

)

·

(
∂δχ

∂N

)

dA. (18)

This last expression cannot be reduced anymore, and makes clear the appearance of a new kind of boundary
condition. This quantity represents the work expended on the kinematical (independent at the boundary ∂B !)
quantity

∂δχ

∂N

by its dual action, which is sometimes called a double force (see e.g Germain [67])

∂W II

∂∇F
· (N ⊗N) .

Actually the appearance of the work functional (18) justifies the following statement, which fits in the spirit of Piola
[119] and is reaffirmed in Berdichevsky [8]:

Second gradient continua can sustain external surface double forces, i.e. external actions expending work on
virtual normal gradient of displacement fields.
As a consequence, in the action functional, one is allowed to add a term of the kind:

AII
S =

ˆ t1

to

ˆ

∂B

(

−W II
S (χ,

∂χ

∂N
,X)

)

dAdt

where the potential W II
S (χ, ∂χ

∂N , X) can be called surface external double potential.

4.4 Edge contact forces

The addend expressing the work expended on virtual displacement fields parallel to the tangent space to ∂B

ˆ

∂B

δχa
,CP

C
DPD

A

(

∂W II

∂F a
A,B

NB

)

dA

can be reduced by means of an integration by parts in the submanifold ∂B
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ˆ

∂B

(

δχa
,CP

D
A

∂W II

∂F a
A,B

NB

)

PC
D dA =

ˆ

∂B

∂

∂XC

(

PD
A

∂W II

∂F a
A,B

NBδχ
a

)

PC
D dA−

ˆ

∂B

∂

∂XC

(

PD
A

∂W II

∂F a
A,B

NB

)

δχaPC
D dA.

(19)
Surface divergence theorem is then applied to the first addend, resulting in the following equality (see Appendices
or dell’Isola et al. [53])

ˆ

∂B

∂

∂XC

(

PD
A

∂W II

∂F a
A,B

NBδχ
a

)

PC
DdA =

ˆ

∂∂B

(

∂W II

∂F a
A,B

NBδχ
a

)

PC
A νCdL =

ˆ

∂∂B

δχa

(

∂W II

∂F a
A,B

NBνA

)

dL (20)

When the surface ∂B is orientable and C1, the boundary ∂∂B is empty. At the opposite, if ∂B is piecewise C1 then
∂∂B is the union of the edges of ∂B and the found expression represents the work expended by contact edge forces
on the virtual displacement δχ. To the boundary conditions it is therefore necessary to add on ∂∂B the following
terms, which balance external line forces

∂W II

∂F i
A,B

NBνA

Once again, the appearance of the work functional (20) justifies for the following statement:

Second gradient continua can sustain external line forces, i.e. external actions expending work on

virtual displacement fields on the edges of the boundary ∂B.

This means that, in the action functional, one is allowed to add a term of the kind:

AII
L =

ˆ t1

to

ˆ

∂∂B

(
−W II

L (χ,X)
)
dLdt

where the potential W II
L (χ,X) can be called line external potential.

4.5 Contact forces depending on curvature of contact surfaces

The second addend of equation (19) produces a further term to be added to surface boundary conditions, which
can be interpreted as a new kind of contact force (as it expends work on virtual displacements). The newly (by
Casal, Mindlin, Green, Rivlin and Germain) found contact force does not obey to the so-called Cauchy postulate,
as it depends not only on the normal of Cauchy cuts but also on their curvature. The surface boundary conditions
have to be complemented by the following terms

−DIV∂B

(

P

(
∂W II

∂∇F
·N

))

.

which depend explicitly on the curvature of the surface ∂B.

4.6 Resumé of terms to be added to Euler-Lagrange equations for second gradient
continua

The Euler-Lagrange conditions found for first gradient action have to be completed by the terms listed below (see
[44, 45]):

• terms to be added to bulk equations

DIVX

(
∂W II

∂F

)

−
∂W II

∂χi
−DIVX

(

DIVX

(
∂W II

∂∇F

))

(21)

• terms to be added to surface boundary conditions

−
∂W II

∂F
·N +DIVX

(
∂W II

∂∇F

)

·N −DIV∂B

(

P

(
∂W II

∂∇F
·N

))

(22)
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• terms to be added to form new edge boundary conditions

∂W II

∂∇F
· (N ⊗ ν)−

∂W II
L (χ,X)

∂χ
(23)

• terms forming new surface boundary conditions (which may be called balance of contact double forces)

∂W II

∂∇F
· (N ⊗N)−

∂W II
S (χ, ∂χ

∂N , X)

∂
(

∂χ
∂N

) (24)

4.7 Objective second gradient energies

Also the added term
W II(χ, F,∇F,X)

must be invariant under the change of the observer in the Eulerian configuration. The use of the Cauchy-Green
deformation tensor ensures that the deformation energy is objective (see e.g. [51]). This requirement is verified by
a deformation energy having one of the forms

Ŵ II(C,∇C,X); W̌ II(C−1,∇C−1, X)

It is interesting to remark that many continuum models of fiber reinforced materials (see e.g Steigmann [149],
Atai and Steigmann [2], Nadler and Steigmann [112], Nadler et al. [113], Haseganu and Steigmann [74]) show
some peculiarities which can be explained by the introduction of second gradient or even higher gradient models.
Therefore, in order to calculate the partial derivatives with respect to F and ∇F appearing in the equations (21),
(22), (23) and (24), it is necessary to calculate the derivatives listed in the following formulas (see Appendix B for
more details ).

• Derivatives of C and ∇C :

∂CMN

∂F i
P

= δPMFiN + FiM δPN

∂CMN,O

∂F i
P

= FiM,Oδ
N
P + FiN,Oδ

M
P

∂CMN,O

∂F i
P,Q

=
(

δPMδQOFNi + δPNδQOFMi

)

• Derivatives of C−1 and ∇C−1 :

∂C−1
MN

∂F i
P

= −
(
F−1

)

Mi

(
F−1

)P

a

(
F−1

)a

N
−
(
F−1

)

Ni

(
F−1

)bP (
F−1

)

bM

∂C−1
MN,O

∂F l
P

= −
(
F−1

)aP
((

F−1
)

Nl

(
F−1

)

Ma,O
+
(
F−1

)

Ml

(
F−1

)

aN,O

)

∂C−1
MN,O

∂F i
P,Q

= −
[(
F−1

)

Mi

(
F−1

)aP (
F−1

)

aN
+
(
F−1

)

Ni

(
F−1

)bP (
F−1

)

bM

]

δOQ

4.8 Capillary fluids

In Poisson [123] pages 5-6: (translated by the authors) one finds the following statements about the region of a
fluid in which a phase transition occurs page 5

“But Laplace omitted, in his calculations, a physical circumstance whose consideration is essential: I refer to the
rapid variation of density which the liquid experiences in proximity of its free surface and of the tube wall, [variation]
without which the capillary phenomena could not occur [....] Actually, in an equilibrium state, each layer infinitely
thin of a liquid is compressed equally on both of its faces by the repulsive actions of all close molecules diminished
by their attractive force [....] and its level of condensation is determined by the magnitude of the compressive force.
At a sensible distance from the surface of the liquid the aforementioned force is exerted by a liquid layer adjacent
to the infinitely thin layer, whose thickness is complete and everywhere constant, i.e. equal to the radius of activity
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of fluid molecules; and for this reason the internal density of the liquid is also constant [...] But when this distance
is less than the radius of molecular activity the thickness of the layer under the layer which we are considering is
also smaller than this radius: the compressive force which is exerted by the said upper layer is therefore decreasing
very rapidly with the distance from the surface and vanishes at the surface itself, where the infinitesimal thin layer
is compressed only by the atmospheric pressure. Consequently, the condensation of the liquid is also decreasing,
following an unknown law, when one is approaching its free surface and its density is very different in that surface
and at a depth which exceeds a small amount the activity radius of its molecules, which is sufficient for having this
density to be equal to the internal density of the liquid. Now it will be proven in the first chapter of this work that if
one neglects this rapid variation of density in the thickness of the interfacial layer8 then the capillary surface should
result to be plane and horizontal and one could not observe neither elevation nor lowering of the liquid level.[...]”

Therefore we can conclude that already Poisson wanted, with some assumptions which probably need to be
clarified, to model the interfacial layer as a thin but three-dimensional layer. It is interesting to remark that it is
only because of the development of the ideas by Piola (ideas which Poisson violently criticized) that the modern
theory of capillary fluids managed to give a precise meaning to the Poisson’s intuitions. What Poisson calls an
unknown law is now explicitly determined by using second gradient continua (see e.g. [23, 139]).

In the spirit of the Piola’s works, we now consider the most simple class of second gradient continua, i.e. capillary
fluids. We recall here that capillary fluids are continua whose Eulerian volumic deformation energy density depends
both on their Eulerian mass density ρ and on its gradient ∇ρ. For capillary fluids an additive extra term in the
part of action related to deformation energy has to be considered:

Acap =

ˆ

E

Ŵ cap (ρ,∇ρ) dv =

ˆ

B

JŴ cap

(

(ρ)
−→
(B) , (∇ρ)

−→
(B)

)

dV

The notations (·)
−→
(B)

and (·)
−→
(E)

introduced in the Appendix A, will be omitted occasionally for making readability
easier. Obviously the dependence of Ŵ cap on ∇ρ must be objective. Therefore (interesting connections can be seen
in this context with the considerations developed in Steigmann [151, 150]) we must have

Ŵ cap (ρ,∇ρ) = W̌ cap (ρ, β) (25)

where we introduced the scalar
β := ∇ρ · ∇ρ.

A particular case of the energy (25) is given by the one discussed by Cahn and Hilliard

W̌ cap (ρ, β) =
1

2
λ (ρ)β =

1

2
λ (ρ) (∇ρ · ∇ρ)

where the function λ (ρ) has been often considered to be constant.

4.8.1 Lagrangian expression for the deformation energy of capillary fluids

It is therefore needed to calculate the following first variation

δAcap = δ

(
ˆ

B

JW̌ cap

(

(ρ)
−→
(B)

, (β)
−→
(B)

)

dV

)

Once we have defined (with an abuse of notation)

W cap(F,∇F ) := JW̌ cap

(

(ρ)
−→
(B)

, (β)
−→
(B)

)

=
ρ0

(ρ)
−→
(B)

W̌ cap (26)

it is clear that

δ
(
JW̌ cap

)
=



W̌ capδJ + J
∂W̌ cap

∂ (ρ)
−→
(B)

δ (ρ)
−→
(B) + J

∂W̌ cap

∂ (β)
−→
(B)

δ (β)
−→
(B)





=



W̌ cap ∂J

∂F
δF + J

∂W̌ cap

∂ (ρ)
−→
(B)

∂ (ρ)
−→
(B)

∂F
δF



+
∂W̌ cap

∂ (β)
−→
(B)

J




∂ (β)

−→
(B)

∂F
δF +

∂ (β)
−→
(B)

∂∇F
δ∇F





8This thickness must have a finite value but this value must be absolutely not sensible, because of the hypothesis which was accepted
about the extension of molecular activity. This is confirmed by the experience made by M.Gay-Lussac.
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As a consequence (with another abuse of notation) we have

∂W cap

∂F
=W̌ cap ∂J

∂F
+ J

∂W̌ cap

∂ρ

∂ρ

∂F
+ J

∂W̌ cap

∂β

∂β

∂F
(27)

∂W cap

∂∇F
=J

∂W̌ cap

∂β

∂β

∂∇F
(28)

4.8.2 Eulerian balance equations for capillary fluids

Keeping to follow the original methods introduced by Piola, after having applied the principle of least action or the
principle of virtual works in the Lagrangian description, we must transform the obtained stationarity conditions in
some other conditions which are valid in the Eulerian description. As previously seen, in Lagrangian description
the balance equations for capillary fluids read

−
∂

∂t
(ρ0vi) +DIVX

(
∂W eul

∂F
+

∂W cap

∂F

)

−DIVX

(

DIVX

(
∂W cap

∂∇F

))

= 0 (29)

where W eul and W cap were defined, respectively, in (9) and (26). The terms in (29), which are specific to capillary
fluids, must therefore be estimated. Starting from equation (27) and using the following result (calculated in (B.1.7)
and (B.1.2))

∂J

∂F i
M

= J
(
F−1

)M

i
,

∂ρ

∂F i
M

= −ρ
(
F−1

)M

i
,

∂β

∂F i
M

= −2gab
(

ρ,aρ,i
(
F−1

)M

b
+ ρ,a

(

ρ
(
F−1

)M

i

)

,b

)

we obtain (the notation (·)
−→
(B) has been dropped down for having more readable formulas),

∂W cap

∂F i
M

= −PcapJ
(
F−1

)M

i
− 2

∂W̌ cap

∂β
J
(

gabρ,aρ,i
(
F−1

)M

b
+ β

(
F−1

)M

i
+ gabρ,aρ

(
F−1

)M

i,b

)

(30)

where we have introduced

Pcap := ρ
∂W̌ cap

∂ρ
− W̌ cap

4.8.3 Piola stress decomposition

In the remaining part of the paper, different Piola stress tensors will be considered. Therefore, and in order to avoid
any misunderstanding, some time will be devoted to properly defined these different stress tensors. This discussion
is specific to higher-order continua, since for first gradient continuum these different tensors are either identical or
null. As a starting point we define the bulk Piola stress for capillary fluids

P
M
i :=

∂W eul

∂F i
M

+
∂W cap

∂F i
M

−
∂

∂XA

(

∂W cap

∂F i
M,A

)

(31)

as the quantity that appears in the Lagrangian balance equation

−
∂

∂t
(ρ0vi) +

∂PA
i

∂XA
−

∂U ext

∂χi
= 0

This tensor is an effective tensor (in the following effective tensor are written using blackboard fonts) since it is
composed of tensors of different order

P
M
i := PM

i +
∂

∂XA

(
H

MA
i

)

where PM
i is the classical Piola stress, and HMA

i is third-order Hyper Piola stress defined as

H
MN
i :=

∂W

∂F i
M,N
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It is worth noting that for capillary fluids, the classical Piola stress can be decomposed as

PM
i := (Peul)Mi + (Pcal)Mi

Hence, another effective tensor can be defined

(Pcal)
M

i := (Pcal)Mi +
∂

∂XA

(
H

MA
i

)

resulting in the following additive decomposition of the following bulk Piola stress

P
M
i := (Peul)Mi + (Pcal)

M

i

4.8.4 Piola stress for capillary fluids

Now we will effectively compute the effective bulk Piola tensor. To that aim, we start by calculating the addend by
using (28) and (56)

∂β

∂F i
M,N

= −2gabρρ,a
(
F−1

)M

i

(
F−1

)N

b

−
∂

∂XA

(

∂W̌ cap

∂F i
M,A

)

= −
∂

∂XA

(

J
∂W̌ cap

∂β

∂β

∂F i
M,A

)

=
∂

∂XA

(

ρ02g
abρ,a

∂W̌ cap

∂β

(
F−1

)M

i

(
F−1

)A

b

)

=
∂

∂XA

(

ρ02g
abρ,a

∂W̌ cap

∂β

(
F−1

)M

i

)
(
F−1

)A

b
+ ρ02g

abρ,a
∂W̌ cap

∂β

(
F−1

)M

i

∂

∂XA

((
F−1

)A

b

)

=
∂

∂xb

(

ρ02g
abρ,a

∂W̌ cap

∂β

(
F−1

)M

i

)

+ ρ02g
abρ,a

∂W̌ cap

∂β

(
F−1

)M

i

(
F−1

)A

b,A

Now we use the (42)
(
F−1

)A

i,A
=

ρ,A
ρ

(
F−1

)A

i
=

ρ,i
ρ

to get

−
∂

∂XA

(

∂W cap

∂F i
M,A

)

=
∂

∂xb

(

2
∂W̌ cap

∂β
ρ0g

abρ,a

)
(
F−1

)M

i
+ 2

∂W̌ cap

∂β
ρ0g

abρ,a
(
F−1

)M

i,b
+ 2β

∂W̌ cap

∂β
J
(
F−1

)M

i
(32)

Using (30) and (32) in (31) we obtain

P
M
i =

(

− (p (ρ) + Pcap) + ρ
∂

∂xb

(

2
∂W̌ cap

∂β
gabρ,a

))

J
(
F−1

)M

i
− 2

∂W̌ cap

∂β
gabρ,aρ,iJ

(
F−1

)M

b

where we have used
∂W eul

∂F i
M

= −Jp (ρ)
(
F−1

)M

i

4.8.5 Cauchy stress for capillary fluids

As for the effective bulk Piola stress, we define the effective bulk Cauchy stress as the quantity that appears in the
Eulerian balance equation

−ρ




∂v

−→
(E)
i

∂t
+

∂v
−→
(E)
i

∂xa
(va)

−→
(E)



−
∂

∂xb

(
T
b
i

)
− ρ

(
∂ (Uexp/ρ0)

∂χi

)−→
(E)

= 0

This effective tensor can be decomposed as

T
j
i := Tj

i +
∂

∂xA

(

S
ja
i

)

where Tj
i is the second-order capillary Cauchy stress, and S

jk
i is the third-order capillary Hyper Cauchy stress. As

previously done, the second-order Cauchy stress can be decomposed as
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Tj
i := (Teul)ji + (Tcap)ji

Hence, another effective tensor can be defined

(Tcap)
j
i := (Tcap)ji +

∂

∂xa

(

S
ja
i

)

resulting in the following additive decomposition of the following bulk Cauchy stress

T
j
i := (Teul)ji + (Tcap)

j
i

Let now get back to the explicit determination of Tj
i . By recalling (see Appendix A) the Piola transformation of

tensors from the Lagrangian to the Eulerian description

T
j
i = J−1

(

P
A
i F

j
A

)−→(E)

the bulk Cauchy stress tensor for capillary fluids is obtained

T
j
i =

(

− (p (ρ) + Pcap) + ρ
∂

∂xb

(

2
∂W̌ cap

∂β
gabρ,a

))

δji − 2
∂W̌ cap

∂β
gajρ,aρ,i

In the case of Cahn-Hilliard fluids with a constant λ we have

2
∂W̌ cap

∂β
= λ, W̌ cap = −Pcap =

λ

2
gabρ,aρ,b

so that

T
j
i =

(

−p (ρ) +
λ

2
gabρ,aρ,b + ρ

∂

∂xb

(
λgabρ,a

)
)

δji − λgajρ,aρ,i

which is exactly the result found in the literature (see Seppecher [140] or Casal and Gouin [25, 26]). Let us now
develop the Eulerian divergence of the effective capillary Cauchy tensor

∂

∂xc
(Tc

i ) =
∂

∂xc

((

−p (ρ) +
λ

2
gabρ,aρ,b + ρ

∂

∂xb

(
λgabρ,a

)
)

δci − λgacρ,aρ,i

)

= −
∂

∂xi
p (ρ) + λgabρ,aρ,bi +

∂

∂xi

(
ρλgabρ,ab

)
− λgacρ,acρ,i − λgacρ,aρ,ic

= −
∂

∂xi
p (ρ) + λρ

∂

∂xi

(
gabρ,ab

)

In conclusion the Eulerian balance equation for Cahn-Hilliard fluids is:

−ρ




∂v

−→
(E)
i

∂t
+

∂v
−→
(E)
i

∂xa
(va)

−→
(E)



−
∂

∂xi
p(ρ) + λρ

∂

∂xi

(
gabρ,ab

)
− ρ

(
∂ (Uexp/ρ0)

∂χi

)−→
(E)

= 0

To complete the description of the model, the associated boundary conditions have to be supplied.

4.8.6 Boundary terms

In the particular case of capillary fluids the Hyper Piola tensor has the following explicit expression

H
MN
i =

∂W cap

∂β

∂β

∂F i
M,N

= −λρ0ρ,ag
ab
(
F−1

)M

b

(
F−1

)N

i

Its Eulerian equivalent is the following Hyper Cauchy tensor

S
jk
i = −J−1HAB

i F j
BF

k
A = −J−1ρ0g

abρ,aλ
(
F−1

)B

i

(
F−1

)A

b
F j
BF

k
A = −λρgakρ,aδ

j
i
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Double force The expression of contact double force will first be proceed. In the absence of surface external
double force, the boundary conditions read

∂W cap

∂∇F
· (N ⊗N) = 0

or, in components

∂W cap

∂F i
A,B

NANB = −λρ0ρ,ag
ab
(
F−1

)A

b

(
F−1

)B

i
NANB = 0

Using the Piola transformation for normals (43), the former expression is rewritten

−λρ0ρ,ag
ab
(
F−1

)M

b

(
F−1

)N

i
J−1F c

MncJ
−1F e

Nne = 0

Hence, for line forces (23) we obtain

−J−1λρρ,ag
abnbνi = 0

Force In absence of external force, the new boundary conditions read

P
A
i NA +

∂

∂XE

(
PD
C

(
H

BC
i NB

))
PE
D = 0

or, using the Piola transformation, in Eulerian form

T
a
i na +

∂

∂xe

(
P d
c

(
Sbci nb

))
P e
d = 0

The first term will first be considered. This term can be expanded as

T
a
i na =

[(

−p (ρ) +
λ

2
gbcρ,bρ,c + ρ

∂

∂xc

(
λgbcρ,b

)
)

δai − λgbaρ,bρ,i

]

na

=

(

−p (ρ) +
λ

2
gbcρ,bρ,c + ρ

∂

∂xc

(
λgbcρ,b

)
)

ni − λgabρ,bρ,ina

=

(

−p (ρ) +
λ

2
gbcρ,bρ,c + ρ

∂

∂xc

(
λgbcρ,b

)
)

ni − λnbρ,bρ,i

=

(

−p (ρ) +
λ

2
gbcρ,bρ,c + ρ

∂

∂xc

(
λgbcρ,b

)
− λniρ,in

bρ,b

)

ni

It remains now to consider the last part of the boundary conditions, i.e.

∂

∂xd

(
P c
b

(
Sabi na

))
P d
c

This computation is a bit more tricky. In order to easily proceed their expression, the following identities need to
be established:

Q · (v ⊗ n) = (v.n)Q (33)

P · (v ⊗ n) = (v.n)P

Their demonstration is straightforward:

Qi
av

anj = ninav
anj = nav

aninj = Qi
jv

ana

P i
av

anj = (δia −Qi
a)v

anj = (δijδ
j
av

anj) +Qi
jv

ana

= δijv
ana +Qi

jv
ana = (δij +Qi

j)v
ana

= P i
jv

ana

Now, using the definition of the hyperstress for capillary fluids

Saji na = −λρρjni
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In the following, the factor −λρ will dropped down and only added at the end. Using the identity (33) we have the
first transformation relation

P i
a (ρ

anj) = ρanaP
i
j

Therefore
∇S

k

(
P i
a (ρ

anj)
)
= ∇S

k

(
ρanaP

i
j

)
= ∇S

k (ρana)P
i
j + ρana∇

S
k

(
P i
j

)

where ∇S
k := P a

k
∂

∂xa
denotes the surface gradient. Let us now compute the surface gradient of the projection

operator P ,

∇S
k

(
P i
j

)
= ∇S

k δ
i
j −∇S

k (n
inj) = −(∇S

k (n
i)nj + ni∇S

k (nj))

= Li
knj + niLkj

where Lij := −P a
i naj is the Weingarten curvature tensor. Therefore, at the end

∇S
k

(
P i
a (ρ

anj)
)
= ∇S

k (ρana)P
i
j + ρana(L

i
knj + niLkj)

To obtain the surface divergence it remains to multiply the previous result by δik

∇S
i

(
P i
a (ρ

anj)
)
= ∇S

i (ρana)P
i
j + ρana(L

i
inj + niLij)

This expression can be simplified, we have

∇S
i P

i
j = P a

i

∂

∂xa
P i
j = P a

i P
i
j

∂

∂xa
= ∇S

j

niLij = niP a
i naj = 0

and
2H := Li

i

where H is the surface mean curvature. Therefore, at the end of the journey

∇S
i

(
P i
a (ρ

anj)
)
= ∇S

j (ρana) + 2ρanaHnj

Once the two parts added, we obtain

(

−p (ρ) +
λ

2
gabρ,aρ,b + ρ

∂

∂xb

(
λgabρ,a

)
− λniρ,in

aρ,a + 2ρanaH

)

ni +∇S
i (ρana) = 0

or

−p∗ni +∇S
i (ρana) = 0

in which

p∗ =

(

p (ρ)−
λ

2
gabρ,aρ,b − ρ

∂

∂xb

(
λgabρ,a

)
+ λniρ,in

aρ,a + 2ρanaH

)

This is exactly the result found in [140, 141, 25, 26].

4.8.7 Bernoulli Law for capillary fluids

The results in the previous sections imply that for capillary fluids the following Eulerian Balance of force holds (see
also [24, 25])

−ρ




∂v

−→
(E)
i

∂t
+

∂v
−→
(E)
i

∂xa
(va)

−→
(E)



−
∂

∂xi
(p(ρ)) +

∂

∂xb
(Tcap)

b
i − ρ

(
∂U/ρ0
∂χi

)−→
(E)

= 0.

where we have introduced the constitutive equations

(Tcap)
b
i =

(

−Pcap (ρ, β) + ρ
∂

∂xb

(

2
∂W̌ cap

∂β
gabρ,a

))

δji − 2
∂W̌ cap

∂β
gajρ,aρ,i
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−Pcap := W̌ cap − ρ∂W̌ cap

∂ρ ; p(ρ) := ρ2 ∂(Ψ/ρ0)
∂ρ

.

If the last relationship is invertible one can express the density as a function ρ̂ of the pressure and introduce the
function

Q(p) =

ˆ

1

ρ̂(p)
dp

which has the remarkable property
∂Q(p)

∂xi
=

1

ρ̂(p)

∂p

∂xi
.

As a consequence, once divided by ρ the equations become

−
∂v

−→
(E)
i

∂t
−

∂v
−→
(E)
i

∂xa
(va)

−→
(E)

−
∂

∂xi
(Q(p)) +

1

ρ

∂

∂xb
(Tcap)

b
i −

(
∂U/ρ0
∂χi

)−→
(E)

= 0 (34)

The calculation of ∂
∂xa (T

cap)ai We have to compute the following term

∂

∂xa
(Tcap)

a
i =

∂

∂xa

((

−Pcap (ρ, β) + ρ
∂

∂xb

(

2
∂W̌ cap

∂β
gbcρ,c

))

δai − 2
∂W̌ cap

∂β
gdaρ,dρ,i

)

=
∂

∂xi

(

W̌ cap − ρ
∂W̌ cap

∂ρ
+ ρ

∂

∂xb

(

2
∂W̌ cap

∂β
gbcρ,c

))

︸ ︷︷ ︸

A

−2
∂

∂xa

(
∂W̌ cap

∂β
gdaρ,dρ,i

)

︸ ︷︷ ︸

B

Let process first the term labeled A

A =
∂

∂xi
W̌ cap −

∂

∂xi

(

ρ
∂W̌ cap

∂ρ

)

+
∂

∂xi

(

ρ
∂

∂xb

(

2
∂W̌ cap

∂β
gbcρ,c

))

=
∂W̌ cap

∂ρ

∂ρ

∂xi
+

∂W̌ cap

∂β

∂β

∂xi
− ρ,i

∂W̌ cap

∂ρ
− ρ

∂

∂xi

(
∂W̌ cap

∂ρ

)

+
∂

∂xi

(

ρ
∂

∂xb

(

2
∂W̌ cap

∂β
gbcρ,c

))

=
∂W̌ cap

∂β

∂β

∂xi
− ρ

∂

∂xi

(
∂W̌ cap

∂ρ

)

+ ρ,i
∂

∂xb

(

2
∂W̌ cap

∂β
gbcρ,c

)

+

(

ρ
∂

∂xi

∂

∂xb

(

2
∂W̌ cap

∂β
gbcρ,c

))

the term B is easy to determine

B = −2ρ,i
∂

∂xa

(
∂W̌ cap

∂β
gadρ,d

)

− 2
∂W̌ cap

∂β
gdaρ,dρ,ia

Therefore we have

∂

∂xa
(Tcap)

a
i = −ρ

∂

∂xi

(
∂W̌ cap

∂ρ

)

+

(

ρ
∂

∂xi

∂

∂xb

(

2
∂W̌ cap

∂β
gbcρ,c

))

+
∂W̌ cap

∂β

∂β

∂xi
− 2

∂W̌ cap

∂β
gdaρ,dρ,ia

and recalling that
∂β

∂xi
=

∂

∂xi

(
gabρ,aρ,b

)
= 2gabρ,aρ,bi

the sought result is finally obtained

∂

∂xa
(Tcap)

a
i = −ρ

∂

∂xi

(
∂W̌ cap

∂ρ

)

+ ρ
∂

∂xi

∂

∂xb

(

2
∂W̌ cap

∂β
gbcρ,c

)

= ρ
∂

∂xi

(
∂

∂xb

(

2
∂W̌ cap

∂β
gbcρ,c

)

−

(
∂W̌ cap

∂ρ

))

= ρ
∂

∂xi

(
Peff

(
ρ; ρ,a; g

abρ,ab
))
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4.8.8 Bernoulli constant of motion along flow curves

In order to be able to conclude our argument we need a last tensorial equality (see e.g. Lebedev et al. [86])

∂vi
∂xa

va =
∂va

∂xi
va +

(
∂vi
∂xa

va −
∂va

∂xi
va

)

=
∂

∂xi

(
1

2
vava

)

+W a
i va (35)

where the tensor W j
i defined by

W j
i :=

∂vi
∂xj

−
∂vj

∂xi

clearly verifies the equality

W a
b vav

b =

(
∂vb
∂xa

vbva −
∂va

∂xb
vbva

)

=
1

2

(

∂
(
vbv

b
)

∂xa
va −

∂ (vava)

∂xb
vb

)

= 0

Let consider the equations (34)

−
∂v

−→
(E)
i

∂t
−

∂v
−→
(E)
i

∂xa
(va)

−→
(E) −

∂

∂xi
(Q(p)) +

1

ρ

∂

∂xb

(
S
b
i

)
−

(
∂U/ρ0
∂χi

)−→
(E)

= 0

if the applied bulk external forces are such that there exists a scalar Eulerian function V for which the following
equality holds

(
∂U/ρ0
∂χi

)−→
(E)

=
∂V

∂xi

and by making use of (35) ( the notation (·)
−→
(E)

has been dropped down), we obtain

−
∂vi
∂t

−
∂

∂xi

(
1

2
vcvc

)

+W d
i vd −

∂

∂xi
(Q(p)) +

∂

∂xi

(
∂

∂xb

(

2
∂W̌ cap

∂β
gabρ,a

)

−

(
∂W̌ cap

∂ρ

))

−
∂V

∂xi
= 0.

By calculating the inner product with v we get

∂

∂t

(
1

2
v · v

)

+∇

(
1

2
v · v +Q(p(ρ))− Peff

(
ρ; ρ,a; g

abρ,ab
)
+ V

)

· v = 0

And if the field v be stationary, i.e. if
∂v

∂t
= 0

the last equation becomes

∇

(
1

2
v · v +Q(p(ρ))− Peff

(
ρ; ρ,a; g

abρ,ab
)
+ V

)

· v = 0

i.e. along flow curves there exists a constant K0 such that

1

2
v · v +Q(p(ρ))− Peff

(
ρ; ρ,a; g

abρ,ab
)
+ V = K0.

5 Conclusions: towards continuum analytical mechanics ?

The role of the principle of least action (or of its weaker version the principle of virtual works) in applied mathematics,
and in particular in mathematical physics, has been controversial since its very first formulations. The attitude
towards this postulation is often a total refuse. Indeed, both the supporters of variational postulations and the
supporters of balance of everything behave often as if the controversy does not exist. They simply pretend that the
other postulation process is not used at all or anymore. Of course the supporters of balance of everything are aware
of the importance of a variational principle, especially when a numerical code has to be designed or an existence
and uniqueness theorem need to be proven. They treat the variational principle as a theorem to be proven in
their postulation scheme. Very strange and somehow clumsy expressions are used like: theorem of the principle
of virtual works which is rather an oxymoron. Their attitude (see the section variational principles in Truesdell
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and Toupin [165]) is that a variational formulation cannot be generally obtained. Their existence are considered
as mathematical curiosities that make easier the work of the mathematicians. For them the search of variational
principles is a secondary task devoted to the applied mathematicians.

On the contrary the supporters of variational postulations behave as if their point of view were the only possible:
they do not even care to announce that they use it as, in their opinion, everybody has to do so. To these supporters
are directed the words of Piola which we already cited:

“Somebody could here object that this [i.e. the variational foundations of Analytical mechanics] is a very old
knowledge, which does not deserve to be newly promulgate by me: however [it seems that my efforts are needed] as
my beautiful theories [after being published] are then criticized.”

Actually the elitist attitude of many supporters of variational postulations is the true cause of the frequent
rediscoveries of the same variational principles in different times and the loss of the information about their first
historical appearance. Variational principles have to be regarded as the most powerful heuristic tool in applied
mathematics. The wise attitude of Hamilton and Rayleigh consisted in refraining from the effort of describing
dissipative phenomena directly and explicitly by means of the least action principle, but including them in the
picture only in a second step, by means of the introduction of a suitable dissipation functional. Of course this
heuristic attitude does not imply that a purely variational formulation of given model cannot be obtained, at worst
by embedding the original space of configurations in a wider one. When this further step can be performed then
the value of the improved mathematical model will increase.

In this context we found interesting the works Carcaterra and Sestieri [17], Carcaterra et al. [18], Culla et al.
[33], Carcaterra [19], Carcaterra ans Akai [21], which were initially motivated by the need of developing innovative
technological solutions. In these papers it is proven that a conservative system can show, if one restricts his attention
to a subset of its degrees of freedom, an apparent dissipative behavior. Actually in suitably designed conservative
systems the energy may flow from some primary degrees of freedom into a precise set of other (secondary or
hidden) ones, and remain there trapped for a very long (from the point of view of practical application: infinite)
time. Therefore, in some cases, a non-conservative description of a primary system, including an ad-hoc dissipation
functional, is a realistic and effective modeling simplification, even if the true and complete system is actually
Hamiltonian and conservative. The greatest advantage in variational based models is that, if the action functional
is well-behaving, they always produce intrinsically well-posed mathematical problems. Somebody claimed that this
is a purely mathematical requirement: actually this is not the case. It is a "physical" prescription that a model
could give a "unique" prevision of the modalities of occurrence of a physical phenomenon!

There is also a practical advantage in the variational formulation of models as they are easily transformed into
numerical codes. Of course after having considered Lagragian systems (the evolution of which are governed by a
least action functional) the study of non-Lagragian ones (for which such a functional may not exist) may appear
very difficult. It is often stated that dissipation cannot be described by means of a least action principle. This
is not exactly true, as it is possible to find some action functionals for a large class of dissipative systems (see
e.g. Maugin [97],Vujanovic and Jones [168] or Moiseiwitsch [111]). However it is true that not every conceived
system can be regarded as a Lagragian one. This point is mathematically delicate and will be only evoked here
(see e.g. Santilli [131] for more details). In general, a non-Lagragian system can be regarded as Lagragian in two
different ways: i) because it is an approximation of a Lagrangian system (see the case of Cattaneo equation for heat
propagation in e.g. Vujanovic and Jones[168]), and this approximation leads to cancel the lacking part of the true
action functional ii) because the considered system is simply a subsystem of a larger one which is truly Lagrangian.
(see e.g. Carcaterra and Sestieri [17], Carcaterra et al. [18] Carcaterra [19], Carcaterra ans Akai[21] [21]). The
assumption that variational principles can be used only for non-dissipative systems is contradicted by, e.g., Bourdin
et al.[10], Maugin and Trimarco [96] or Rinaldi and Lai [127] where variational principles modeling dissipative
phenomena occurring in damage and fracture are formulated. In our opinion models for surface phenomena in
presence of thermodynamical phenomena and diffusion or phase transitions in solids developed e.g. in McBride et
al [101, 102], Steeb and Diebels [158] and Steinmann et al. [160] or for growth phenomena in living tissues as those
presented in [93] (with suitable modifications!) should be formulated in a variational form.

One should not believe that the aforementioned considerations are limited to the description of mechanical
phenomena only: actually the formulation of variational principles proved to be a powerful tool in many different
research fields. In the following list (which cannot be exhaustive) we simply want to indicate the enormous variety
of phenomena which were considered, up to now, from the variational point of view, by citing only those few works
among the many available in the literature which we know better

• for biological evolutionary phenomena (see e.g. Edwards [54], Klimek et al. [77] and references therein);

• for the mathematical study of mutation and selection phenomena in species evolution (see e.g. Baake and
Georgii [4]);
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• for some phenomena of solid/solid phase transitions in plates and shells (see e..g. to Eremeyev Pietraszkiewicz
et al. [124], Eremeev et al. [56], Eremeyev and Pietraszkiewicz [57] );

• for mechanical vibration control (see e.g. Carcaterra and Akai [21]);

• for electromagnetic phenomena (see e.g. Daher and Maugin [36] and references therein);

• for vibration control using distributed arrays of piezoelectric actuators (see e.g. dell’Isola Vidoli [47, 48]);

• for interfacial phenomena (see e.g. Eremeyev and Pietraszkiewicz [57], [34]Rangamani et al. [126] Steigmann
and Ogden [155, 154], Daher and Maugin [37] and references therein);

• for the theory of membranes and rods (see e.g. Steigmann [153], Steigmann and Faulkner [157]);

• for mechanical phenomena involving different length scales (see e.g. Steigmann [156], dell’Isola et al. [50] and
references therein);

• for phase transition phenomena in fluids (see Seppecher [65, 138, 139, 140, 141] or Casal and Gouin [25, 26]);

• for damage and fracture phenomena (see e.g. Francfort and Marigo [64], Yang and Misra [108, 109], Con-
trafatto and Cuomo [30, 31, 32], [35]);

• for some phenomena related to fluid flow in deformable porous media (see e.g. to dell’Isola et al. [49], dell’Isola
et al. [50], Sciarra et al. [133, 134, 135], Quiligotti et al. [125]);

• for some piezoelectromechanical or magnetoelastic coupling phenomena (see e.g. to Barham et al. [5],
Steigmann [152], Maurini et al. [99], Maugin and Attou [95], Maurini, et al. [100], dell’Isola and Vidoli
[47, 48]).
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A Piola transformations and the formula of material derivative

A.1 Geometric framework

Let χ be a C2-diffeomorphism between the domains Dα and Dβ . The following notations will be considered

F := ∇χ, J := detF, F−T :=
(
F−1

)T

These fields are all defined in Dα. Conversely, the fields

F−1, J−1 := detF−1, FT

26



are obviously defined in Dβ. These relations are summed up in the following diagram:

TXDα

F // TxDβ
FT

oo

Dα
χ //

OO

��

Dβ

OO

��
T ⋆
XDα

F−T

// T ⋆
xDβ

F−1

oo

in which TpD and T ⋆
pD denote, respectively, the tangent and cotangent plane to D at p. For every tensor field Tα

defined in Dα, and for every tensor field Tβ defined in Dβ we use the notations

T
−→
(β)
α := Tα ◦ χ−1, T

−→
(α)
β := Tβ ◦ χ

We will say that T
−→
(β)
α is the field Tα displaced in Dβ and conversely. These relations are exemplified in the following

diagram in the specific case of two vectors fields:

TXDα

F // TxDβ
FT

oo

Dα

χ //

Tα

OO

T
−→

(α)
β

>>⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦
Dβ

Tβ

OO

χ−1

oo

T
−→

(β)
α

``❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆

A.2 Transposition of linear mappings

The transposed FT of the linear mapping F from the vector space TXDα to the vector space TxDβ is defined as
the unique linear mapping from T ⋆

xDβ to T ⋆
XDα such that for every couple (V, l) ∈ TXDα × T ⋆

xDβ

〈l, FV 〉(T⋆
xDβ ,TxDβ)

=
〈
FT l, V

〉

(T⋆
XDα,TXDα)

where the bracket denotes the duality product. If both Dα and Dβ are equipped with an inner product on their
tangent space at each point9, tangent and cotangent space can be identified. Let us denote by gα and gβ these
fields of metric defined, respectively, on Dα and Dβ . Through gβ a vector w can be associated to any covector l,
more precisely:

∀lǫT ⋆
xDβ, ∃wǫTxDβ, l = gβw

Therefore the equality between the duality bracket can be rewritten

〈gβw,FV 〉(T⋆
xDβ ,TxDβ)

=
〈
FT gβw, V

〉

(T⋆
XDα,TXDα)

This construction can be summarized by the following diagram

T ⋆
XDα

}}③③
③③
③③
③③
③③
③③

T ⋆
xDβ

FT

oo

!!❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈

R R

TXDα
F //

gα

OO

aa❉❉❉❉❉❉❉❉❉❉❉❉

TxDβ

gβ

OO

==④④④④④④④④④④④④

9In others terms, if both Dα and Dβ are Riemannian manifolds.
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Once introduced bases in TXDα and TxDβ, we can represent vectors, tensors and inner products in terms of
their components. The following relation is written in the domain Dβ, hence quantities defined on Dα have to be
transported:

gabw
b(F a

AV
A)

−→
(β) = V A

(
FT
)a

A
gabw

b(V A)
−→
(β) ∀V A, ∀wb

which implies

gab

(

(F a
A)

−→
(β) −

(
FT
)a

A

)

V Awb = 0 ∀V A, ∀wb

Therefore we have

(F i
M )

−→
(β) =

(
FT
)i

M
(36)

and, conversely,

(F−1)Mi
−→
(α) =

(
F−T

)M

i
(37)

These relations will be important in the next subsection to properly define Piola transformation.
Let us now consider the following inner product (with a slight abuse of notation)

〈FV, FW 〉TxDβ

where F is the same linear mapping as before. By considering the transposed mapping one gets

〈FV, FW 〉TxDβ
=
〈
FTFV,W

〉

TXDα

which in terms of components becomes

(gab)
−→
(α)F a

AV
AF b

BW
B = gCB(F

TF )CBV
AWB

therefore

(FTF )MN = (gab)
−→
(α)F a

MF b
N = (FMa)

−→
(α)F a

N

or more simply, dropping down the change of domain:

(FTF )MN = FMaF
a
N ; (FTF )MN = FM

a F aN

A.3 Piola transformation for virtual works and stress tensors

We call virtual displacement stemming from χ a vector field δχ defined in Dα and such that, for every X in Dα,
the vector δχ(X) belongs to the tangent space at the point χ(X). We will denote D the space of such virtual
displacements.

D = {δχ : Dα → TDβ, X 7→ δχ(X)}

A virtual work functional must obviously be identified as a linear and continuous functional defined on D (for a
detailed discussion of this point see dell’Isola et al. [53] and references therein), i.e to an element of D⋆ the dual
space of D

D⋆ = {W : D → R, δχ 7→ W}

Because of a representation theorem due to Schwartz [132] we can state that for any virtual work functional W
defined in Dα there exist N regular fields P

γ
(where γ = 1, ...N) such that

W (δχ) =

N∑

γ=1

ˆ

Dα

P
γ
∇α
γ

(δχ) dVα.

where
∇α
γ

= Dα → ⊗γT ⋆Dα ⊗ TDβ ; P
γ
= Dα → ⊗γTDα ⊗ T ⋆Dβ
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Modifying slightly the nomenclature introduced by Truesdell and Toupin [165] we can call P
γ

the γ − th order Piola

stress tensor. Now, following Piola [119], we can transport the field δχ on Dβ and define the corresponding Cauchy
stress tensors T

γ
by means of the equality

ˆ

Dα

P
γ
∇α
γ

(δχ) dVα :=

ˆ

Dβ

T
γ
∇β
γ

(

δχ
−→
(β)
)

dVβ ∀δχ ∈ D

in which
∇β
γ

= Dβ → ⊗γT ⋆Dβ ⊗ TDβ ; T
γ
= Dα → ⊗γTDβ ⊗ T ⋆Dβ

To prove that such a tensor exists, and to get its representation, let us write component-wise the previous equation

ˆ

Dα

P
A1...Aγ

i (δχ)
i
,A1...Aγ

dVα =

ˆ

Dβ

T
j1....jγ
i

(

δχ
−→
(β)
)i

,j1....jγ
dVβ ∀δχ ∈ D

Then using the chain rule the derivatives

(

δχ
−→
(β)
)i

,j1....jγ
=
(

(δχ)
i
,A1...Aγ

)−→(β) (
F−1

)A1

j1
...
(
F−1

)Aγ

jγ

and a change of variable in the second integral, we obtain

ˆ

Dα

P
A1...Aγ

i (δχ)i,A1...Aγ
dVα =

ˆ

Dα

J
(

T
j1....jγ
i

(
F−1

)A1

j1
...
(
F−1

)Aγ

jγ

)−→(α)

(δχ)i,A1...Aγ
dVα ∀δχ ∈ D

which is equivalent to the following Piola formula of transformation of stress tensors

P
A1...Aγ

i = J
(

T
j1....jγ
i

(
F−1

)A1

j1
...
(
F−1

)Aγ

jγ

)−→(α)

or, using the transformation (37) :

P
γ
= J

(

T
γ

)−→
(α)

F−T . . . F−T
︸ ︷︷ ︸

γ

With simple algebra we also get

J−1
(

P
A1...Aγ

i F i1
A1

....F
iγ
Aγ

)−→(β)

= T
i1....iγ
γi

or, using the transformation (36) :

T
γ
= J−1

(

P
γ

)−→
(β)

FT . . . FT
︸ ︷︷ ︸

γ

A.4 Piola transformation for divergence

For any tensor field Tα the following equality holds (for a proof see e.g. dell’Isola et al. [52] or Hughes and Marsden
[94]).

∇α · Tα = J
(

∇β ·
(

J−1T
−→
(β)
α FT

))
−→
(α)

(38)

which obviously implies the other one

(∇α · Tα)
−→
(β) = J

−→
(β) ∇β ·

(

J−1T
−→
(β)
α FT

)
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In components this relation reads (where XL and xj denote the components of the position vector in Dα and Dβ

respectively)
(
∂TA

α

∂XA

)
−→
(β)

= J
−→
(β) ∂

∂xa

(

J−1
(
TA
α F a

A

)
−→
(β)
)

(39)

Similarly we have that the following relationship, in some sense inverse of the relation (38)

∇β · Tβ = J−1

(

∇α ·

(

JT
−→
(α)
β F−T

))−→
(β)

(40)

A.5 The Piola-Ricci-Bianchi condition

The equation (40) was first found, without the help of tensor calculus, by Piola [119]. In the case where Tβ reduces
to the identity, the former equation takes the following form

∇ ·
(
JF−T

)
= 0 (41)

which in components can be written
∂

∂XA

(

J
(
F−1

)A

i

)

= 0

The equation (41) is a particular case of Bianchi condition for Ricci curvature tensor, when interpreting Lagrangian
coordinates as a chart for the Eulerian configuration of the body. From Piola-Ricci-Bianchi condition

∂

∂XA

(

J
(
F−1

)A

i

)

= 0

one gets

J,A
(
F−1

)A

i
+ J

(
F−1

)A

i,A
= 0

(
F−1

)A

i,A
= −J−1

(
ρ0
ρ

)

,A

(
F−1

)A

i
= −ρ0J

−1

(

−
1

ρ2

)

ρ,A
(
F−1

)A

i
=

(
1

ρ

)

ρ,A
(
F−1

)A

i

In conclusion
(
F−1

)A

i,A
=

ρ,A
ρ

(
F−1

)A

i
=

ρ,i
ρ

(42)

A.6 Piola transformation for double divergence

To obtain the Eulerian form for balance equation for capillary fluids we need to apply the divergence twice to
calculate the transformation of double Lagrangian divergence. We proceed as follows: the equality (39) implies that
(remark: we assume that the tensor TAB

α is symmetric)

(
∂TAB

α

∂XB

)
−→
(β)

= J
−→
(β) ∂

∂xb

(

J−1
(
TAB
α F b

B

)
−→
(β)
)

then

(
∂

∂XA

(
∂TAB

α

∂XB

))
−→
(β)

= J
−→
(β) ∂

∂xa



J−1





(
∂TAB

α

∂XB

)
−→
(β)

(F a
A)

−→
(β)









= J
−→
(β) ∂

∂xa

(

J−1

(

J
−→
(β) ∂

∂xb

(

J−1
(
TAB
α F b

B

)
−→
(β)
)

(F a
A)

−→
(β)

))

= J
−→
(β) ∂

∂xa

(
∂

∂xb

(

J−1
(
TAB
α F b

B

)
−→
(β)
)

(F a
A)

−→
(β)

)

In conclusion we have:

(
∂

∂XA

(
∂TAB

α

∂XB

))
−→
(β)

= J
−→
(β) ∂

∂xa

(
∂

∂xb

(

J−1
(
TAB
α F b

B

)
−→
(β)
)

(F a
A)

−→
(β)

)
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A.7 Piola transformation for normals

For normals we have the following formula (see e.g. dell’Isola et al. [50])

N
−→
(β)
α =

(
J−1FT

)
Nβ

‖(J−1FT )Nβ‖
(43)

while, for the passage from α to β domain, the following transformation formula for areas holds

(∥
∥
(
J−1FT

)
Nβ

∥
∥
−1
)−→(α)

=
∥
∥
(
JF−T

)
Nα

∥
∥ =

dAβ

dAα
. (44)

A.8 Material derivative

For what concerns the formula of material derivative we start by remarking that

(

T
−→
(β)
α

)
−→
(α)

= Tα

therefore

(
∂Tα

∂t

∣
∣
∣
∣
X

)

=









∂

(

T
−→
(β)
α

)−→
(α)

∂t

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
X









=







∂

(

T
−→
(β)
α ◦ χ

)

∂t

∣
∣
∣
∣
∣
∣
∣
∣
X







=







∂

(

T
−→
(β)
α (χ(X, t) , t)

)

∂t

∣
∣
∣
∣
∣
∣
∣
∣
X







=







∂

(

T
−→
(β)
α (x, t)

)

∂t

∣
∣
∣
∣
∣
∣
∣
∣
x

◦ χ







+
(

∇xT
−→
(β)
α (x, t)

∣
∣
∣
x
◦ χ
)

·
∂χ

∂t

∣
∣
∣
∣
X

as a consequence

(
∂Tα

∂t

∣
∣
∣
∣
X

)−→
(β)

=







∂

(

T
−→
(β)
α (x, t)

)

∂t

∣
∣
∣
∣
∣
∣
∣
∣
x







+
(

∇xT
−→
(β)
α (x, t)

∣
∣
∣
x

)

·
∂χ

∂t

∣
∣
∣
∣

−→
(β)

X

B Basic kinematic formulas

In this section some useful kinematic formulas are proven (for a complete presentation of this subject see e.g. [86]).
They are the basis of the procedure on which Hamilton-Piola postulation is founded. However, because of they
central role, they cannot be avoided in any case: their use can be only postponed to subsequent steps, when different
postulations are attempted and indeed kinematic formulas of this type are presented in any textbook of continuum
mechanics. From now on, the α domain will coincide with the Lagrangian set of coordinates while β domain will

coincide with the Eulerian domain and the notation (·)
−→
(B)

and (·)
−→
(E)

will be consistently used. They will be omitted
occasionally for making readability easier.

B.1 Formulas on Eulerian mass density and its gradients

Mass density and its gradients play a pivotal role in strain energy of fluids. Here we gather some useful formulas

relating them with C, F and ∇F (remark that we will omit the needed (·)
−→
(B)

, (·)
−→
(E)

) for making readability easier).

B.1.1 The derivative of the determinant a matrix with respect its entries

We start by recalling the well-known formula

∂ det(A)

∂Ai
M

= detA
(
A−T

)M

i
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which can be recovered by using the Laplace rule for calculating the determinant

δNM detA = Aa
M (A∗)

N
a

where (A∗)
N
i is the cofactor of the element Ai

N . Remarking that the cofactors of all elements of the M − th row are
independent of the entry Ai

M and the inversion theorem, for matrices one gets

∂ det(A)

∂Ai
M

= (A∗)
M
i = detA

(
A−T

)M

i

B.1.2 Partial derivatives of ρ, J and F−1 with respect to F

Once one recalls that
ρ0 detF = ρ

and having defined the cofactor of F as
(F ∗)

A
i F j

A = detFδji

it is easy to deduce

∂J

∂F i
M

= J
(
F−T

)i

M
=

ρ0
ρ

(
F−T

)i

M

∂ρ

∂F i
M

= −ρ
(
F−1

)M

i
(45)

∂
(
F−1

)N

j

∂F i
M

= −
(
F−1

)N

i

(
F−1

)M

j
(46)

B.1.3 Partial derivative of mass density with respect to C

In order to prove the following equality

∂ρ

∂CMN
= −

ρ

2

(
F−1

)Ma (
F−1

)N

a
(47)

We proceed in the following way:

∂ρ

∂CMN
= ρ0

∂ (detC)
−

1
2

∂CMN
= ρ0

∂ (detC)
−

1
2

∂ detC

∂ detC

∂CMN
= −

ρ0
2

(detC)−
3
2
∂ detC

∂CMN

In conclusion we have
∂ρ

∂CMN
= −

ρ0
2

(detC)
−

1
2
(
C−1

)MN
= −

ρ

2

(
F−1

)Ma (
F−1

)LN

a

B.1.4 Lagrangian and Eulerian gradients of F−1

Starting from
(
F−1

)M

a
F a
N = δMN

after differentiation we obtain:
(
F−1

)M

a
F a
N,O + F a

N

(
F−1

)M

a,O
= 0

which produces the following chain of equalities

F a
N

(
F−1

)M

a,O
= −

(
F−1

)M

a
F a
N,O

(
F−1

)M

i,O
= −

(
F−1

)A

i

(
F−1

)M

a
F a
A,O (48)

The last equality can be then multiplied times F−1 to get the Eulerian gradient

(
F−1

)M

i,j
= −

(
F−1

)A

j

(
F−1

)B

i

(
F−1

)M

a
F a
B,A

It can be useful to remark that:

−
(

ρ
(
F−1

)M

i

)

,j
= −ρ,j

(
F−1

)M

i
− ρ

(
F−1

)M

i,j
= −ρ,j

(
F−1

)M

i
+ ρ

(
F−1

)A

j

(
F−1

)B

i

(
F−1

)M

a
F a
B,A (49)
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B.1.5 Expression of Eulerian gradient of density in terms of F and its gradients

We start from the defining relationship:

ρ =
ρ0

det (F )
= ρ0 det

(
F−1

)
(50)

As it is possible to assume that ρ0 is constant, we calculate the gradient of the density as follows

ρ,i = ρ0 det
(
F−1

)

,i
= ρ0

∂ det
(
F−1

)

∂ (F−1)Aa

∂
(
F−1

)A

a

∂xi
= ρ0 det

(
F−1

)
F a
A

(
F−1

)A

a,i

and finally

ρ
−→
(B)
,i = ρF b

A

(
F−1

)A

b,B

(
F−1

)B

i

To summarize, from all previous expressions we obtain the following useful formulas :

ρ,i
ρ

= −
(
F−1

)A

a

(
F−1

)B

i
F a
A,B = −

(
F−1

)A

a
F a
A,i (51)

ρ,i = ρF a
A

(
F−1

)B

i

(
F−1

)A

a,B
= ρF a

A

(
F−1

)A

a,i

F a
A

(
F−1

)A

a,M
=

ρ,i
ρ
F i
M

(
F−1

)M

j,A

(
F−1

)A

i
=

(
F−1

)M

j

ρ,i
ρ

B.1.6 Calculation of partial derivative of Eulerian gradient of mass density with respect to F

We need to estimate the following partial derivative:

∂ρ,i

∂F j
M

=
∂

∂F j
M

(

−ρ
(
F−1

)A

a

(
F−1

)B

i

)

F a
A,B

As we have that




∂ρ

∂F i
M

(
F−1

)N

j

(
F−1

)O

k
+ ρ

(
F−1

)O

k

∂
(
F−1

)N

j

∂F i
M

+ ρ
(
F−1

)N

j

∂
(
F−1

)O

k

∂F i
M



 =

−ρ
(
F−1

)M

i

(
F−1

)N

j

(
F−1

)O

k
− ρ

(
F−1

)N

i

(
F−1

)M

j

(
F−1

)O

k
− ρ

(
F−1

)N

j

(
F−1

)O

i

(
F−1

)M

k

where we used the equalities (45), (46). We can then conclude

∂ρ,i

∂F j
M

= ρ
((

F−1
)M

j

(
F−1

)A

i

(
F−1

)B

a
F a
B,A +

(
F−1

)C

j

(
F−1

)M

i

(
F−1

)D

b
F b
D,C +

(
F−1

)E

i

(
F−1

)F

j

(
F−1

)M

c
F c
F,E

)

by using (51) we get

∂ρ,i

∂F j
M

= −ρ,i
(
F−1

)M

j
− ρ,j

(
F−1

)M

i
+ ρ

(
F−1

)A

i

(
F−1

)B

lj

(
F−1

)M

a
F a
B,A

Finally by replacing (49) we can conclude:

∂ρ,i

∂F j
M

= −ρ,j
(
F−1

)M

i
−
(

ρ
(
F−1

)M

j

)

,i
(52)
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B.1.7 The derivatives of (β)
−→
(B)

with respect F and ∇F

We start from a direct expression for (β)
−→
(B)

(β)
−→
(B)

= (∇ρ · ∇ρ)
−→
(B)

=
(
gabρ,aρ,b

)
−→
(B)

which implies the following two

∂

∂F
(β)

−→
(B)

= 2 (∇ρ)
−→
(B)

·
∂ (∇ρ)

−→
(B)

∂F
(53)

∂

∂∇F
(β)

−→
(B) = 2 (∇ρ)

−→
(B) ·

∂ (∇ρ)
−→
(B)

∂∇F
(54)

Then using (55) and (52) we get easily:

∂β

∂F i
M

= 2gabρ,a
∂ (ρ,b )

−→
(B)

∂F i
M

∂ (β)
−→
(B)

∂F i
M

= −2gab
(

ρ,aρ,i
(
F−1

)M

b
+ ρ,a

(

ρ
(
F−1

)M

i

)

,b

)−→
(B)

(55)

Similarly, using (54) and (51) we obtain

∂ (β)
−→
(B)

∂F i
M,N

= 2gab (ρ,a)
−→
(B) ∂ (ρ,b )

−→
(B)

∂F i
M,N

= −2gab
(

ρρ,a
(
F−1

)M

i

(
F−1

)N

b

)−→(B)

(56)

B.2 Derivatives of C,C−1,∇C and ∇C−1 with respect to F and ∇F

B.2.1 Computation of ∂CMN

∂F i
P

∂CMN

∂F i
P

= gab
∂

∂F i
P

(
F a
MF b

N

)
= gab

(
∂F b

M

∂F i
P

F a
N + F b

M

∂F a
N

∂F i
P

)

= gab
(
δbi δ

P
MF a

N + F b
Mδai δ

P
N

)
=
(
δPMFiN + FiMδPN

)

B.2.2 Computation of
∂CMN,O

∂F i
P

∂CMN,O

∂F i
P

=
∂

∂F i
P

(
∂F a

M

∂XO
FNa +

∂F b
N

∂XO
FLb

)

=
∂

∂F i
P

(
∂F a

M

∂XO

)

FNa +
∂F b

M

∂XO

∂FNb

∂F i
P

+
∂

∂F i
P

(
∂F c

N

∂XO

)

FMc +
∂F d

N

∂XO

∂FMl

∂F d
P

= gabF
a
M,O

∂F b
N

∂F i
P

+ gcdF
c
N,O

∂F d
M

∂F i
P

= gabF
a
M,Oδ

b
i δ

N
P + gcdF

c
N,Oδ

d
i δ

M
P

= FiM,Oδ
N
P + FiN,Oδ

M
P

B.2.3 Computation of
∂C−1

MN

∂F i
P

∂
(
C−1

)

MN

∂F i
P

=
∂
((
F−1

)

aM

(
F−1

)a

N

)

∂F i
P

=
∂
((
F−1

)

aM

)

∂F i
P

(
F−1

)a

N
+
(
F−1

)

bM

∂
((

F−1
)b

N

)

∂F i
P

Using equation (46) we obtain

∂
(
C−1

)

MN

∂F i
P

= −
(
F−1

)

Mi

(
F−1

)P

a

(
F−1

)a

N
−
(
F−1

)

Ni

(
F−1

)bP (
F−1

)

bM
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B.2.4 Computation of
∂C−1

MN,O

∂F i
P

∂C−1
MN,O

∂F i
P

=

(

(
F−1

)

Ma,O

∂
(
F−1

)a

N

∂F i
P

+
∂
(
F−1

)

Mb

∂F i
P

(
F−1

)b

N,O

)

= −
((

F−1
)

Ni

(
F−1

)aP (
F−1

)

Ma,O
+
(
F−1

)

Mi

(
F−1

)aP (
F−1

)

aN,O

)

= −
(
F−1

)aP
((

F−1
)

Ni

(
F−1

)

Ma,O
+
(
F−1

)

Mi

(
F−1

)

aN,O

)

B.2.5 Computation of
∂CMN,O

∂F i
P,Q

The computation is straightforward

∂CMN,O

∂F i
P,Q

=
∂

∂F i
P,Q

(
F a
M,OFNa + F b

N,OFMb

)
=
(

δai δ
P
MδQOFNa + δbi δ

P
NδQOFMb

)

=
(

δPMδQOFNi + δPNδQOFMi

)

B.2.6 Computation of
∂C−1

MN,O

∂F i
P,Q

We compute the partial derivative as the following product:

∂C−1
MN,O

∂F i
P,Q

=
∂C−1

MN,O

∂ (F−1)aA,B

∂
(
F−1

)a

A,B

∂F i
P,Q

The first term is directly proceed:

∂C−1
MN,O

∂ (F−1)
i
P,Q

=
∂

∂ (F−1)
i
P,Q

(

gab
(
F−1

)a

N

(
F−1

)b

M,O
+
(
F−1

)

Mc

(
F−1

)c

N,O

)

= gabδ
b
i δ

P
MδOQ

(
F−1

)a

N
+ δci δ

P
NδOQ

(
F−1

)

Mc

(
F−1

)c

N,L

= δOQ
[
δPM
(
F−1

)

iN
+ δPN

(
F−1

)

Mi

]

Deriving equation (48) with respect to F i
P,Qwe obtain

∂
(
F−1

)M

i,N

∂F j
P,Q

= −
(
F−1

)M

j

(
F−1

)P

i
δQN

Combining the results and considering that

(
F−1

)i

M,N
= giagMA

(
F−1

)A

a,N

we finally have

∂C−1
MN,O

∂F i
P,Q

= −δOA
[
δBM
(
F−1

)

aN
+ δBN

(
F−1

)

Ma

] (
F−1

)

Bi

(
F−1

)aP
δAQ

= −δOQ

[(
F−1

)

Mi

(
F−1

)aP (
F−1

)

aN
+
(
F−1

)

Ni

(
F−1

)bP (
F−1

)

Mb

]

C Gauss divergence theorem for embedded Riemannian manifolds

We choose a global orthonormal basis (ei, i = 1, 2, 3) for the vector field of displacements in E3, the tridimensional
Euclidean space. All tensor fields will be represented by their components with respect to this basis. In this section
we consider an embedded Riemannian manifold M in E3. This manifold can be therefore a regular curve or surface,
but will be restricted to a surface in the present discussion. As M can be equipped with a Gaussian coordinate
systems, it is possible to introduce in the neighborhood of any point of M (For more details see dell’Isola et al.
[53]):
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• P , the field of projection operator on tangent space;

• Q the field of projection operator on tangent space.

These projectors verify the following obvious identities:

δji = P j
i +Qj

i , P a
i P

j
a = P j

i ,

Qa
iQ

j
a = Qj

i , P a
i Q

j
a = 0.

In order to simplify the forthcoming calculations, instead of using curvilinear coordinates, we rather use a global
Cartesian coordinate system, completed by P and Q in the neighborhood of M. This technical choice is exactly the
same one which allowed Germain to generalize, for second gradient materials, the results found by Green, Rivlin,
Toupin and Mindlin.

The unit external normal to M on its border, which is denoted ν, belongs to the tangent space to M.
Using these notations the divergence theorem reads (see e.g. Spivak [161]) For any vector field W defined in the

vicinity of M
ˆ

M

(P a
b W

b),cP
c
adS =

ˆ

∂M

W aP b
aνbdL (57)

This theorem together with relation
Qa

j,bP
b
a = −Qa

jP
b
a,b

implies that, for any vector field W defined in a neighborhood of M.
ˆ

M

(W a) ,b P
b
adS =

ˆ

M

[

(P a
b W

b),cP
c
a + (Qd

eW
e),fP

f
d

]

dS

=

ˆ

M

W aQb
a,cP

c
b dS +

ˆ

∂M

W dP e
d νedL = −

ˆ

M

W aQb
aP

c
b,cdS +

ˆ

∂M

W dP f
d νfdL
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