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This paper describes a polarized light imaging interferometer to measure

the rotation field of reflecting surfaces. This set-up is based on a home-made

prism featuring a birefringence gradient. The arrangement is presented

before focusing on the home-made prism and its manufacturing process. The

dependence of the measured optical phase on the rotation of the surface

is derived, thus highlighting the key parameters driving the sensitivity.

The system’s capabilities are illustrated by imaging the rotation field at the

surface of a tip-loaded polymer specimen. c© 2013 Optical Society of America

OCIS codes: 110.3175, 160.2710, 180.3170.
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1. Introduction

With the miniaturization of devices, MEMS development, or more generally with constant

advances in thin coating technology, the knowledge of mechanical properties of the involved

materials becomes an important topic in engineering science. Elastic properties of the thin

films are known to be very dependent on the processing conditions. Their knowledge is thus

essential to guarantee the capabilities of systems using these materials, and it is crucial to be

able to access the mechanical properties of thin film materials as deposited, that is without

any additional processing. Several methods are available to measure the elastic properties of

an isotropic thin film material (described by its Young modulus E and Poisson ratio ν). But

many of them such as nanoindentation [1], atomic force acoustic microscopy (AFAM, [2]) or

single mode scanning microdeformation microscope (SMM, [3]- [7]) only provide a combina-

tion of the properties (E/(1− ν2) for the nanoindentation). Basically, this latter microscope

uses a cantilever, with a micro-tip (radius ∼ 10 µm) at its end, which vibrates in permanent

contact with the sample to characterize. Pressing the tip onto the sample shifts the first reso-

nance frequency according to a combination of [E/(1−ν2)]
2
3 and [E/(1−ν2)]

2
3×(1−ν)/(2−ν).

One thus has to impose the value of ν to retrieve (E/(1−ν2))
2
3 . Obtaining a full parameters

set for isotropic materials and moving towards anisotropic materials is thus challenging.

It is possible to decouple the elasticity constants by combining techniques [8]- [10] or by using

the 2-first modes SMM [11]. In this last case, the parameter driving the Poisson ratio sensitiv-

ity is however very dependent on a geometrical parameter which is rather difficult to access

experimentally from resonance frequencies. An additional experimental information is thus

required in order to make the decoupling procedure robust. This could be a tip-independent

kinematic information such as the out-of-plane displacement field in the neighborhood of

the tip. Many imaging interferometric systems are virtually usable to access a displacement

field, such as compensated interferometers described by Françon or Nomarski employing a

Savart polariscope or a Wollaston prism, respectively [12]. It is worth noting that the lat-

ter features a usually overlooked tilt sensitivity [13]. It should however be noticed that the

out-of-plane displacement amplitude under the tip is usually a few nanometers or less, so

that it may turn difficult to access a reliable displacement field. The elastically affected zone

being rather small, it would seem wise to measure the rotation field instead of the out-of-

plane displacement field. This can be justified considering the problem of Boussinesq [14] :

applying a point loading on an elastic half-space, the surface displacement field w(r) varies

as 1/r (with r : the in-plane distance between the loading point and the point of interest)

and is therefore very confined. The surface rotation θ(r) thus scales as w(r)/r and may reach

experimentally accessible values since r is very small. The same applies to vanishingly small

structures such as microcantilevers : considering a clamped-free beam (length L) with a con-

stant curvature [15], the maximum out-of-plane displacement scales as L2 while the rotation
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scales as L. As a consequence, if L decreases, the out-of-plane displacement decreases faster

than the rotation. In the case of micro or even nano-system, it thus becomes interesting to

measure a rotation rather than a displacement.

Many interferometric [16]- [19] or non interferometric [20]- [21] angular measurement sys-

tems have been devised in the past to allow for a pointwise measure. Imaging techniques to

obtain surface rotation images as deflectometry [22] or shearography [23] are available at the

macro-scale.

This paper describes a polarized-light imaging interferometer derived from the one already

proposed to measure out-of-plane displacement fields [13]. The originality of the set-up is to

be based on a home-made prism featuring a birefringence gradient which allows to measure

full rotation (instead of displacement) fields. The device and the interference pattern are

described. The manufacturing process for the prism is then detailed. The dependence of the

measured optical phase on the rotation of the surface is exhibited and the key parameters

driving its rotation sensitivity are highlighted. An example for the practical calibration of the

set-up is given. Finally, an example with a micro-tip pressing onto a polymer (PDMS) sample

demonstrates the ability of the proposed set-up, combined with a phase-stepping method,

to catch localized phenomena. Detailed calculations describing the effect of the numerical

aperture are presented in the appendix.

2. Rotation field measurement

2.A. Experimental set-up

A schematic view of the interferential microscopy imaging set-up is shown in Fig. 1. The

device is based on a home-made prism, containing an uniaxial birefringence gradient. The

light source is a spatially incoherent light-emitting diode (LED, λ = 627 nm), which is used

to illuminate a polarizing beam splitter. After the polarizing beam splitter, the incident beam

on the prism is linearly polarized at 45◦ of the gradient direction (y) of the birefringent prism.

The prism splits the beam into two orthogonally polarized beams with a small angle between

each other. One of these beams is polarized orthogonally to the plane Π defined by the optical

axis of the system and the gradient direction of the prism (y), and will be referred to as

transverse electric (TE) beam. The other is polarized in the plane Π, and will be referred

to as transverse magnetic (TM) beam. These beams are focused upon the sample by an

objective lens. After reflection on the sample and recombination by the birefringent prism,

the beam goes through the polarization beam splitter, which thus behaves as a polarizer

orthogonal to the entrance one. The transmitted beam is finally focused on a CCD array

(DALSA 1M30, 1024 × 1024 pixels, 12 bits) which records the interference pattern. As the

set-up is illuminated using a light-emitting diode, the interference pattern reads [13]
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I = I0 + A cos(φ + π) (1)

with φ the phase shift between the TM and TE polarization components.

2.B. Home-made birefringent prism

2.B.1. Manufacturing process

The key element in the imaging set-up is the birefringent prism. The (O1xy) plane corre-

sponds to the entrance surface of the prism. A heterogeneous stress state is frozen in the

material to induce a heterogeneous birefringence state. To set a uniaxial stress gradient of

the σxx component along y, it is necessary to induce in the prism an homogeneous bending

moment.

In practice, the prism is made out of PS-8A epoxy resin (Vishay Micro-Measurements). A

test sample is machined from the polymer plate and then heated up above its glass transition

temperature (Tg ≃ 85 ◦C). It then undergoes an off-axis tensile test, described in Fig. 2. The

test sample is finally cooled at room temperature when maintaining the applied force to

freeze the birefringence state in the prism. By tailoring the specimen geometry and loading,

it is possible to obtain a wide range of values for the birefringence gradient. Using beam

theory, the stress tensor σ in the prism reads

σ =

⎛

⎜

⎝

Gy 0 0

0 0 0

0 0 0

⎞

⎟

⎠

(x,y,z)

(2)

where G denotes the gradient value.

2.B.2. Refractive index field

For the description of the prism, let us define the Π0 plane such as σxx(y) = 0. Let us

describe the prism in the plane (O1yz) where O1 is the intersection between the y axis and

the plane Π0. (O1xz) and (O1yz) are assumed to be made coincident with the plane Π0 and

Π, respectively.

The frozen uniaxial stress gradient results in a refractive index gradient in the prism. Initially,

the unstressed material has a refractive index n∗ = 1.5 for both TE and TM rays. As a

consequence of the arrangement described in Fig. 2, TM rays are polarized in the plane

Π. As σyy is equal to 0 everywhere, the TM index is equal to n∗ for any entrance point

(nTM = n∗). TE rays are polarized in the x-direction so they experience refractive indexes

modified by σxx. As σxx linearly depends on y, the TE index varies linearly with y. The TE

refractive index thus reads
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nTE = n∗ + CbGy = n∗ + cTEy (3)

where Cb is the photoelastic constant of material. Using a 3 mm thick polymer plate, a

birefringence gradient cTE ∼ 0.1 m−1 is achieved with the chosen material.

2.B.3. Ray-tracing

Fig. 3 shows (in the Π plane) the decomposition of an incident ray by the prism into

two emerging rays. Assuming that the surrounding refractive index equals to 1, the Snell-

Descartes laws on the entrance interface of the prism read

sin θe = nTM sin θaTM
= nTE(ye) sin θaTE

(4)

where θe is the incidence angle, ye is the entrance point and θaTE
and θaTM

are the angles

of the refracted rays at the entrance interface. The Snell-Descartes laws for the exit interface

of the prism read

nTM sin θbTM
= sin θoTM

= sin θe (5)

nTE(yoTE
) sin θbTE

= sin θoTE
(6)

where yoTE
is the exit point for the TE ray. θbTE

and θbTM
are the incidence angles at the

exit interface for TE and TM rays respectively. θoTE
and θoTM

are the emerging angles for

TE and TM rays respectively. The relation between entrance and exit angles of the prism

for the TE ray is given by the eikonal equation and reads

θbTE
= θaTE

+ ǫ + o
(

θ3
aTE

, ǫ3
)

(7)

with :

ǫ =
cTEe

nTE(ye)
≃ 3 × 10−4 rad (8)

It depends on the thickness of the prism (e = 3 mm), birefringence gradient and TE rays

refractive index at the entrance point. ǫ represents the deflection of the TE ray inside the

prism by the birefringence gradient. For the TM ray, the exit point yoTM
reads

yoTM
= ye + e tan θaTM

(9)

The relation between entrance and exit points of the prism for the TE ray is also given by

the eikonal equation and reads
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yoTE
= ye + e

(

θaTE
+

ǫ

2

)

+ o
(

θ3
aTE

, ǫ3
)

(10)

The separation between TE and TM rays reads

θoTE
− θoTM

= cTEe + o
(

θ3
e , ǫ

3
)

∼ 10−4 rad (11)

It only depends on the thickness of the prism and the birefringence gradient. Further devel-

opments will be made easier by defining the plane of apparent splitting (PAS, see dash line

on Fig. 3). For an incident ray, it gathers the points where TE and TM rays appear to split.

The equation of the PAS reads

z = tan(θPAS)y − e

[

1 −
1

2n∗

]

+ o
(

θ2
e , ǫ

2, (cTEye)
2
)

(12)

with :

θPAS =
ecTE + 2θe

2n∗
2 + o

(

θ2
e , ǫ

2, (cTEye)
2
)

(13)

θPAS is the angle between PAS and surface of the prism (see Fig. 3). Expansion of Taylor

with respect to cTEye is possible because cTEye ≪ n∗ in the expression of ǫ (see Eq. (8)).

2.B.4. Optical path length in the prism

For the TM ray, the refractive index is constant, so the trajectory is rectilinear and the

optical length LTM reads

LTM = n∗
e

cos θaTM

=
n∗

2
e

√

n∗
2 − sin2 θe

(14)

The optical path length for TM ray thus depends on the incidence angle (see Fig. 3) but

does not depend on the entrance point. For the TE ray, the optical path length reads

LTE =

∫ 0

−e

nTE(yTE(z))

cos(θTE(z))
dz (15)

with :

yTE(z) = ye − z

(

θe

nTE(ye)
−

ǫz

2e

)

+ o
(

θ3
e , ǫ

3
)

(16)

θTE(z) =
θe

nTE(ye)
−

ǫz

e
+ o

(

θ3
e , ǫ

3
)

(17)

The optical path length for the TE ray finally reads
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LTE = e

[

nTE(ye)

(

1 +
ǫ2

6

)

+
cTEe

6
ǫ + ǫθe

+
θ2

e

2nTE(ye)

]

+ o
(

θ3
e , ǫ

3
)

(18)

LTE depends on both the incidence angle θe and the entrance point ye.

2.C. Optical phase

Let us assume that the optical phase difference φ due to the path prism-objective-sample-

objective-prism can be decomposed as φ = φp + φo where φp denotes the part arising from

the birefringent prism and φo the contribution arising from the object.

2.C.1. Optical phase arising from the birefringent prism

Fig. 4 presents the full ray tracing for the two emerging rays of Fig. 3. δPAS and αPAS are

the position and the rotation of the actual PAS with respect to the rear focal plane of the

objective, respectively. The point O2 is the intersection of the PAS with the optical axis. It

is the origin of the frame (O2Y Z) : Z is made coincident with the optical axis and Y lies in

the Π plane. ∆ is the distance between O2 and O1 projected onto Y (if ∆ = 0, O1 and O2

are on the optical axis). γTE and γTM define the surface orientation for TE and TM rays,

respectively. The two rays emerge from the PAS at the point whose orthogonal projection

on the Y axis is YPAS. Then, they travel through the objective, are reflected by the sample

and intersect the PAS at Y ′

PASTE
and Y ′

PASTM
:

Y ′

PASi
= −YPAS − 2

f 2
o + Y 2

PAS

fo

γi

− 2

[

αPAS +

(

1 +
1

n∗2

)

θe + n∗ǫ

+
ecTE

2n∗
2

]

δPAS + o
(

α2
PAS, θ2

e , θ
2
PAS, ǫ2, γ2

i

)

(19)

where i stands for TE or TM .

The position of Y ′

PASi
depends on the position of YPAS, on the objective focal length fo,

on the incidence angle θe, on PAS position (δPAS , αPAS) and on the corresponding surface

orientation (γi). As described in equation (18), the optical path length in the prism for TE

ray depends on the entrance point. For the back TE path, this entrance point (Y ′

PASTE
)

depends on γTE , so that the back optical path length in the prism for TE ray depends on

γTE. The equation (14) indicates that the optical path length in the prism for TM ray only

depends on the incidence angle and does not depend on the entrance point. As a consequence
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the optical path length in the prism for TM ray is independent of the TM orientation of

the sample γTM . Finally, the total optical phase thus depends on γTE. It demonstrates how

the system is sensitive to TE orientation of the sample and insensitive to TM one. The TM

beam will thus act as a reference beam in the interferometer. The total optical path length

arising from the birefringent prism is the difference between the optical path length for TE

and TM rays.

φp(γTE) =
2π

λ
{[LTEforth

+ LTEback
(γTE)]

− [LTMforth
+ LTMback

]}
(20)

Using equations (14), (18) and (20) and first-order expansion of Taylor with respect to αPAS,

θe, θPAS, ǫ and γTE, it reads

φp = φγTE
+ φθe

+ φ∆ + φr (21)

with :

φγTE
= −

4π

λ
cTEe

f 2
o + Y 2

e

fo

γTE + o
(

γ2
TE

)

(22)

φθe
= −

2π

λ
cTEe

[

2

(

1 +
1

n∗2

)

δPAS +
e

n∗

]

θe

+ o
(

θ2
e , θ

2
PAS

)

(23)

φ∆ = −
4π

λ
cTEe∆ + o

(

θ2
PAS

)

(24)

φr = −
2π

λ
cTEe

[(

2αPAS +
cTEe

n∗
2

)

δPAS

+
(

2n∗δPAS −
e

3

)

ǫ
]

+ o
(

α2
PAS, θ2

PAS, ǫ2
)

(25)

where Ye denotes the entrance point on the prism (on Y axis). ∆ can be changed by

translating the prism so it will be used for phase modulation.

The rotation sensitivity ∂φ

∂γTE
depends on the thickness of the prism e and on the birefringence

gradient cTE . It also increases with the objective focal length fo and with the prism entrance

point Ye. So, the equation (21) is only valid for a ray. For the full beam, the rotation sensitivity

thus depends on the objective numerical aperture (see Appendix A). In addition, expanding

(21) up to the second order shows the rotation sensitivity dependence to the incidence angle

and to the implementation defects is negligible.

Finally, the lateral shear d between TE and TM rays on the sample (see Fig. 1) reads

d = focTEe + o
(

θ2
e , θ

2
PAS, α2

PAS, ǫ2
)

(26)
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It depends on the objective focal length fo as well as on the thickness of the prism and

birefringence gradient. d corresponds to the separation, in the Y -direction, between the two

reflected images of the sample due to the birefringence.

2.C.2. Optical phase arising from the object

In addition to φp, there is also a phase contribution arising from the object. Let us consider

the case of a tilted and stepped sample (height ∆Z = ZTE −ZTM), where TE and TM rays

are reflected at different heights. According to the principle of Fermat, tilting the sample does

not induce any additional phase difference in the objective-sample-objective path. However,

the step induces an additional phase φo which reads (assuming the ambient refractive index

of the medium is 1)

φo = −
4π

λ
∆Z cos α (27)

where α is the incidence angle on the sample. α spans the full range defined by the objective

pupil, so that for the full beam φo, an integration over α has to be considered (see Appendix

A).

3. Calibration and example

As the parameters driving the phase sensitivity to the topography depend on the numerical

aperture and thus on the illumination, a calibration procedure is desirable for practical

applications. This section presents the calibration experiment of the set-up and an example

to validate both the system capabilities and its modeling.

3.A. Calibration experiment

The calibration consists in plotting interferograms obtained by tilting a plane sample.

Namely, a PDMS sample, charged with 50wt% of Co nano-particles, is tilted from δγ = −5◦

to 5◦ by 0.05◦ steps with respect to the (unknown) initial stage orientation γd. Intensity

images are acquired for each tilt value. This experiment gives one interferogram per pixel,

which are used to retrieve modeling parameters. For the calibration, the phase equation for

one ray (53) is recast :

φ(K, γd + δγ, Ψ, α) = −K[1 + sin2(α)][γd + δγ] + Ψ (28)

with :
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K =
4π

λ
cTEefo (29)

γd + δγ = γTE = γTM (30)

Ψ = φθe
+ φ∆ + φr (31)

Ψ represents the phase contribution independent from γTE, as the contribution (27) from

the object vanishes in this configuration. Because of the θe dependence, Ψ reads

Ψ = ΨaY + Ψb (32)

with :

ΨaY = φθe
Ψb = φ∆ + φr (33)

Let us denote NA the numerical aperture of the objective. Taking the full aperture into

account, equation (1) is modified by weighting and summing all useful rays of the light beam

(see Appendix A) and the intensity equation (54) reads

I(K,γd + δγ, Ψ, γc, NA, m) = I0

+ AF (γd + δγ, γc, NA, m, K, Ψ)
(34)

F is the weighted sum of the contribution of each useful rays (some light rays are lost in the

pupil of the objective, depending on the tilt). m is a parameter used to describe the pupil

illumination. It is used in the apodization function Pm which corresponds to the repartition

of light on the pupil (Pm(α) = [cos(α)]m). γc is used to account for negligible phenomena

not taken into consideration in the model, such as the distance between the pupil and the

rear focal plane. It modifies the pseudo-period of the intensity with the tilt. For the sake of

generality γc is assumed to depend on Y :

γc = γca
Y + γcb

(35)

The involved parameters thus fall into two categories. The first one contains global parame-

ters (parameters which have the same value for all pixels) : K, γd, NA, m, Ψa, Ψb, γca
and

γcb
. The second one contains the local parameters (parameters which have a different value

for each pixel) : I0 and A. Starting with a set of global parameters p, the first step of the

identification procedure consists in calculating F (p, δγ) for all values of δγ. For each pixel

(i, j) one thus defines the local residual :
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R2
0(p,I0(i, j), A(i, j)) =

∑

δγ

{Iexp(i, j, δγ)

− [I0(i, j) + A(i, j)F (p, δγ)]}2

(36)

The optimal values I0optimum
(i, j) and Aoptimum(i, j) are obtained as the minimizers of the

residual R2
0. Using more than 2 different δγ values, the stationarity condition yields an

overdetermined linear system for each pixel. The description quality is then locally assessed

through

R2
1(p, i, j) = min

I0(i,j),A(i,j)
R2

0(p, I0(i, j), A(i, j)) (37)

A global residual taking in consideration residuals R2
1 for every pixels is then defined :

R2
2(p) =

∑

i,j

R2
1(p, i, j)

∑

i,j

∑

δγ

[Iexp(i, j, δγ)]2
(38)

The set of parameters poptimum is retrieved as the minimizer of R2
2, using the conjugate gradient

algorithm. Let us define the final residual which reads

R2
3 = min

p
R2

2(p) (39)

poptimum, I0optimum
(i, j), Aoptimum(i, j) is then the set of fitted parameters. This calibration has

to be performed after each modification of the set-up.

The interferograms for three different pixels, along the Y -direction, are displayed in Fig.

5. The position of interferogram center is driven by Ψ. The attenuation of the signal with

absolute tilt (upper envelope) is driven by NA, m and γd. The pseudo-period is driven by

NA, K and γc. The experimental, identified global and local parameters values, all calculated

on 160 pixels distributed regularly along the 2 lines of Fig. 6 (80 regularly spaced pixels by

line) are given on Tables 1, 2 and 3, respectively. The comparison between the fitted and the

experimental values shows that the fitted value of NA is the same as the experimental one

within 2.4%. m is almost 0 so the repartition of light on the pupil is almost homogeneous. The

retrieved value for K is lower than the estimated one, it is, to a large extent, due to cTE which

is estimated with an uncertainty of almost 10%. The identified initial stage misorientation

γd is about 3.7◦ which is a realistic value because the surfaces of the sample are not parallel.

Finally, the residual R2
3 is about 2.31 × 10−3 thereby proving the identification quality.
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3.B. Phase modulation calibration

The ∆-sensitivity
(

s∆ = ∂φ

∂∆

)

will be used in the following subsection (3.C) for phase mod-

ulation and has thus to be estimated. It is proposed to change ∆ from a known value δ∆

(here : δ∆ = 0.5 mm) and to reproduce the above-described calibration experiment. For

this second calibration, global parameters are set to the previously identified values poptimum

(obtained in the previous section), except the parameter Ψb which is changed to Ψ′

b :

Ψ′

b = φ∆+δ∆ + φr = Ψb + φδ∆ = Ψb + s∆δ∆ (40)

Ψb is the homogeneous part of the γTE-independent contribution of the phase. The calibration

procedure is the same as in the previous section but the last minimization is performed with

respect to Ψ′

b instead of the full set p. For the actual set-up (experimental parameters values

are given in on Table 1), one obtains :

s∆th
= −

4π

λ
cTEe ≃ −8.36 × 103 rad.m−1 (41)

s∆exp =
Ψ′

b − Ψb

δ∆
≃ −6.66 × 103 rad.m−1 (42)

The difference between the theoretical and the experimental values is, to a large extent, due

to cTE and is consistent with the error on K :

Kth =
4π

λ
cTEefo ≃ 167 rad.rad−1 (43)

Kexp ≃ 147 rad.rad−1 (44)

Kth

|s∆th
|

= fo = 20 mm (45)

Kexp

|s∆exp|
≃ 22.1 mm (46)

The value of ∆-sensitivity can be compare with the parameter K. The identification is

consistent because the ratios (theoretical and experimental) between the 2 parameters give

the same value within 10%, thereby proving the slight discrepancy obtained on K results

from the product cTEe. In addition, the value of the shear d (Eq. (26)) is compared with

the parameter K. d is obtained by measuring the separation between the 2 superimposed

pictures on an intensity image. One obtains dexp ≃ 7.86 µm which shoul be compared to

dth = cTEefo = 8.34 µm. Considering the ratios
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Kth

dth

=
4π

λ
≃ 20.0 µm−1 (47)

Kexp

dexp

≃ 18.7 µm−1 (48)

The identification is consistent with a discrepancy in cTEe because the ratios (theoretical

and experimental) between the 2 parameters give the same value at almost 6.5%.

3.C. Example of phase map

The goal is to measure the rotation field around a tip (radius ∼ 10 µm) which presses onto

a sample. The validation experiment consists in pressing a tip onto the specimen described

in Sect.3.A.

The considered phase-stepping method makes use of 4 pictures obtained for ∆k =

[0, 0.1, 0.2, 0.3] mm. Using the equation (1) to approximate the intensity (a small range

of tilt is swept so interferograms remain similar to a sine curve), the measured intensities

read

Iexp(i, j, ∆k) = I0(i, j) + A(i, j) cos[φ(i, j) + s∆∆k] (49)

Equation (49) therefore yields 4 equations per pixel for only 3 unknowns (I0(i, j), A(i, j) and

φ(i, j)), so that φ is obtained by solving it in a least-square sense.

A phase map example is presented on Fig.6. It is obtained when pressing a tungsten tip

(radius = 30 µm) onto an opaque sample of PDMS, charged with 50wt% of Co nano-particles

(sample thickness ≈ 2.6 mm). The noise is obtained by making 2 identical phase maps and

averaging the difference between them. The noise on phase φnoise is estimated to 8.9 × 10−3

rad. The phase map is described in the (OT XT YT ) plane, with OT the tip loading point. XT

and YT are oriented as X and Y . Let us comment the phase along YT axis in 2 different

parts of the phase map. The first one corresponds to the zone far from the tip (dotted line

on Fig. 6) where the sample is not deformed. The phase is linear with respect to YT (circles

on Fig. 7), as a result of the dependence on the incidence angle (θe). It corresponds to the

parameter Ψ presented in the calibration subsection. The phase equation reads

φfar from the tip = φθe
+ φ∆ + φr = ΨaY + Ψb = Ψ (50)

The theoretical phase far from tip on Fig. 7 is a plotting of Ψ coming from the calibration

subsection, along the YT axis. The good agreement validates the proposed modeling. The

crosses on Fig. 7 correspond to a zone (solid line on Fig. 6) where the sample is deformed

by the tip so the γTE-contribution of the optical phase is activated. The presence of a phase

deviation from the previous line in the vicinity of the tip, shows the presence of the rotation
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field in the Y -direction. This phase map proves that the system allows one to measure the

rotation field of localized phenomena (here, a few tens of micrometer). Let us assume that

the situation corresponds to the problem of Boussinesq [14] : an elastic half-space with

a point load. In this case the displacement w scales as w(XT , YT ) = −P/(πE∗r) (with

r =
√

X2
T + Y 2

T : the in-plane distance between the loading point and the point of interest,

see Fig. 6, P the loading onto the sample and E∗ = E/(1− ν2) the biaxial Young’s modulus

of the sample) and the rotation θ as θ(XT , YT ) = P/(πE∗r2). So, the measured rotation

field scales as γTE(XT , YT ) = PYT/(πE∗r3) and the contribution from the object scales as

∆Z(XT , YT , d) = w(XT , YT ) − w(XT , YT − d), because the measure is only made in the

Y -direction. Finally, the phase equation can reads

φtip =φθe
+ φ∆ + φr + φγTE

+ φo

=ΨaY + Ψb +
∂φ

∂γTE

γTE(XT , YT )

+
∂φ

∂∆Z
∆Z(XT , YT , d)

(51)

with : XT fixed on the line, YT variable along the line.

The solution of Boussinesq (solid line close to the tip on Fig. 7) anyway fits the measured

phase, thereby demonstrating the ability of the set-up to catch a localized phenomenon.

4. Conclusions

The proposed set-up makes use of a birefringent prism whose fabrication procedure is pre-

sented. It allows one to access the rotation field of reflecting surfaces, projected onto a

particular prism direction. It must be highlighted that the set-up is therefore well suited to

localized phenomena. This method is particularly useful for situations where scale effects

require to measure the rotation instead of the out-of-plane displacement. The noise on the

phase measurement is estimated to 8.9 × 10−3 rad without any image accumulation. As a

consequence, it is thought to be useful to study the deformation of samples in scanning mi-

crodeformation microscopy. A detailed modeling including aperture effects is proposed, and a

calibration procedure allows one to retrieve the parameters required by a quantitative use of

the obtained phase maps. The ability of the set-up to catch localized mechanical phenomena

is therefore demonstrated. Future work will thus focus on coupling this imaging arrangement

with a SMM set-up.

A. Effect of the numerical aperture on the interferogram

In subsection 2.C.1 and 2.C.2, expressions of the optical phase arising from the birefringent

prism and from the object were calculated (Eq. (21) and (27)). It is shown that, for one ray,
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the phase depends on entrance point of the prism Ye and on incidence angle α. It means that,

for the full beam, the phase depends on the objective numerical aperture (NA = sin(αmax)).

The sine condition [24] yields :

sin (α) = −
Ye

fo

+ o
(

θ2
e , α

2
PAS, θ2

PAS

)

(52)

So that using equations (21), (27), the total phase difference reads

φ(γTE, α) = −
4π

λ
cTEefo

[

1 + sin2 (α)
]

γTE

−
4π

λ
∆Z cos α + φθe

+ φ∆ + φr + o
(

γ2
TE

)

(53)

To assess the effect of the numerical aperture, it is necessary to consider the contribution

of every angle of incidence (see Fig. 8a), based on the equations (1) and (53). The light

intensity is obtained by summing the contribution of every useful rays :

I(γTE, γc, NA, m) = I0 + AF (γTE, γc, NA, m) (54)

F is obtained by weighting and summing the contribution of each ray over the numerical

aperture. Because of the tilting, a part of the light beam is not collected at the level of the

pupil of the objective so that only the useful rays are considered. Useful rays correspond

to surface which is not hatched on Fig. 8b and thus define the integration bounds in the

following F equations.

For γTE ≥ 0 :

F (γTE , γc, NA, m) =

{

2

∫ π

θ1

∫ α2(θ)

α1

f1(γTE , α, m) dθdα

+2

∫ θ2

0

∫ α3(θ′)

α1

f1(γTE , α, m) dθ′dα

}

/ {

2

∫ π

θ1

∫ α2(θ)

α1

f2(α) dθdα + 2

∫ θ2

0

∫ α3(θ′)

α1

f2(α) dθ′dα

}

(55)

and for γTE ≤ 0 :

F (γTE , γc, NA, m) =

{

2

∫ θ1

0

∫ α1

α2(θ)
f1(γTE , α, m) dθdα

+2

∫ π

θ2

∫ α1

α3(θ′)
f1(γTE , α, m) dθ′dα

}

/ {

2

∫ θ1

0

∫ α1

α2(θ)
f2(α) dθdα + 2

∫ π

θ2

∫ α1

α3(θ′)
f2(α) dθ′dα

}

(56)

with :

15



f1(γTE, α, m) = cos [φ (γTE, α)]Pm(α) sinα (57)

f2(α) = P1(α) sin α (58)

θ1 = arccos

(

2Y0p

Dpup

)

(59)

θ2 = arccos

(

−2Y0p

Dpup

)

(60)

α1 = arcsin

(

−Y0p

fo

)

(61)

α2(θ) = arcsin (−NA cos θ) (62)

α3(θ
′) = arcsin

(

−NA cos θ′ −
2Y0p

fo

)

(63)

Y0p
=

g

2
= −

Dpup

2

1 + NA2

2NA
(γTE + γc) + o

(

γ2
TE, γ2

c

)

(64)

Dpup is the diameter of the pupil. g and Y0p
are defined in (OpXpYp), a plane in the rear

focal plane, orientated as (O2XY ) and with Op the center of the pupil. g is the distance

between Op and the center of the reflected beam Cp which depends on γTE. Y0p
is the center

of [OpCp]. γc describes a perturbation on the collected flux (see Fig. 8a). It is used to take

into consideration negligible phenomena not present in the model. Among other things, this

angle is related to the distance between the pupil and the rear focal plane, the light beam

divergence and the decentering of the beam with respect to the optical axis.

sin(α) =
r cos(θ)

fo

=
r′ cos(θ′) − g

fo

(65)

(Oprθ) and (Cpr
′θ′) are two cylindrical coordinate systems (see Fig. 8b) used for the integra-

tion. Pm is the apodization function, it corresponds to the repartition of light on the pupil.

There are many possible choices for this function [25] and one chooses

Pm(α) = [cos(α)]m (66)

m is a parameter used to describe the pupil illumination. In equations (55) and (56), the

function P1 appears in denominator, for the weighting of F . It is possible to choose any value

of m but using m = 1 the denominator is analytically integrable so that the computation

time in the calibration process decreases noticeably.
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Table 1. Estimated parameters.

LED Objective

λ (nm) fo (mm) NA

627 20 0.45

Prism Rotation sensitivity

cTE (m−1) e (mm) K (rad.rad−1)

0.139 3 167

Table 2. Fitted global parameters.

NA m K (rad.rad−1)

0.439 2.78 × 10−4 147

γca
(rad.µm−1) γcb

(rad) γd (rad)

2.30 × 10−4 0.117 −6.45 × 10−2

Ψa (rad.µm−1) Ψb (rad) R2

3

−1.87 × 10−2 4.82 2.31 × 10−3

Table 3. Fitted local parameters.

Interferogram X (µm) Y (µm) I0 (GL) A (GL) Ψ (rad) γc (rad)

(a) 42.5 62.7 672 234 3.65 0.132

(b) 42.5 183 695 251 1.40 0.160

(a) 42.5 303 620 224 −0.853 0.187
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List of Figure Captions

Fig. 1. Schematic view of the interferometric imaging set-up.

Fig. 2. Arrangement used to establish a stress gradient in the sample. The prism is cut out

of the specimen gauge section.

Fig. 3. Ray tracing in the prism.

Fig. 4. Ray tracing through the objective for the two emerging rays of Fig.3.

Fig. 5a. Tilting sample interferograms. For Y = 183 µm and for δγ ranging from −5◦ to 5◦.

Fig. 5b. Tilting sample interferograms. For Y = {62.7, 183, 303}µm and for δγ ranging from

−2◦ to 3◦.

Fig. 6. Phase map obtained when pressing a tip onto a PDMS sample.

Fig. 7. Phase along YT axis. Circles : experimental phase far from the tip. Crosses :

experimental phase close to the tip. Solid lines : theoretical phases far and close to the tip.

Fig. 8a. Ray tracing illustrating the light collection as a function of the tilt of the sample.

Fig. 8b. Collected light in the plane of the pupil.
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Fig. 1. Schematic view of the interferometric imaging set-up.
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Fig. 5. Tilting sample interferograms. (a) For Y = 183 µm and for δγ ranging

from −5◦ to 5◦. (b) For Y = {62.7, 183, 303}µm and for δγ ranging from −2◦

to 3◦.
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Fig. 6. Phase map obtained when pressing a tip onto a PDMS sample.

Fig. 7. Phase along YT axis. Circles : experimental phase far from the tip.

Crosses : experimental phase close to the tip. Solid lines : theoretical phases

far and close to the tip.
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of the sample. (b) : Collected light in the plane of the pupil.
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