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Abstract 26 

This paper presents a new aqueous precipitation method to prepare silicon-substituted 27 

hydroxyapatites Ca10(PO4)6-y(SiO4)y(OH)2-y(VOH)y (SiHAs) and details the characterization of 28 

powders with varying Si content up to y=1.25 mol molSiHA
-1. X-ray diffraction (XRD), 29 

transmission electron microscopy (TEM), solid-state nuclear magnetic resonance (NMR) and 30 

Fourier transform infrared (FTIR) spectroscopy were used to accurately characterize samples 31 

calcined at 400°C for 2 h and 1000°C for 15 h. This method allows for synthesizing 32 

monophasic SiHAs with controlled stoichiometry. The theoretical maximum limit of 33 

incorporation of Si into the hexagonal apatitic structure is y<1.5. This limit depends on the 34 

OH content in the channel, which is a function of the Si content, temperature and atmosphere 35 

of calcination. These results, particularly those from infrared spectroscopy, express serious 36 

reservations about the phase purity of SiHA powders, pellets or scaffolds prepared and 37 

biologically evaluated in the literature. 38 

 39 

 40 

 41 

 42 
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1. Introduction 49 

According to the literature, silicon-substituted hydroxyapatite (SiHA) is a highly promising 50 

material in the field of bioactive bone substitutes and bone tissue engineering. It is now well-51 

established that silicon plays an important role in the early stage of cartilage and bone growth 52 

[1-4]. Soluble silicon species have been shown to stimulate spontaneous calcium phosphate 53 

precipitation (i.e. the mineral bone phase) [5] and to increase bone mineral density [6]. 54 

Moreover, silicon has been reported to have a positive influence on the synthesis of type I 55 

collagen by human osteoblast cells (MG-63 cell line) in vitro [7]. Thereby, it is expected that 56 

silicon could enhance the hydroxyapatite (HA) bioactivity [8, 9], and silicon-substituted 57 

hydroxyapatites (SiHAs) have become a subject of great interest in bone repair. The SiHA 58 

structure corresponds to the substitution of phosphate ions (PO4
3-) by silicate ions (SiO4

4-) 59 

into the HA crystal structure. Different mechanisms for charge compensation have been 60 

suggested [8, 10, 11]. The most cited one was proposed by Gibson et al. with the creation of 61 

anionic vacancies at OH- sites [8, 12]. This mechanism leads to silicon-substituted 62 

hydroxyapatites with the general formula Ca10(PO4)6-y(SiO4)y(OH)2-y(VOH)y, where y 63 

represents the molar number of silicate groups introduced into the apatitic structure (0 ≤ y ≤ 64 

2) and VOH stands for vacancies maintaining the charge balance. The incorporation of Si into 65 

the HA structure in solid solution, i.e. without the formation of other phases, seems to be 66 

limited. However, the value and the origin of this limitation are still not known, with for 67 

instance the following values: 5 wt% (≈ 1.7 molSi molSiHA
-1) [13-15], 4 wt% (≈ 1.4 molSi 68 

molSiHA
-1) [16, 17], 3.1 wt% (≈ 1.1 molSi molSiHA

-1) [18], 2 wt% (≈ 0.7 molSi molSiHA
-1) [11, 69 

19], 1.0 wt% (0.36 molSi molSiHA
-1) [20] or 0.28 wt% (0.1 molSi molSiHA

-1) [21]. Additionally, 70 

it has been suggested that the concentration of 0.8 wt% of Si (≈ 0.28 molSi molSiHA
-1) is 71 

optimal to induce the development of important bioactivity [22-24]. A value of 2.2 wt% of Si 72 

was also reported by Thian et al. [25]. Unfortunately, in spite of extensive studies in recent 73 
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years, these results remain heterogeneous, confusing and sometimes misleading. For instance, 74 

Hing et al. revealed faster bone apposition and improved adhesion and proliferation of 75 

osteoblast-like cells for SiHA compared to stoichiometric HA [23, 26], whereas Palard et al. 76 

found no significant difference in the behavior of MG-63 osteoblast-like cells between pure 77 

HA and SiHA pellets (three compositions: y=0.2, 0.4 and 0.6 molSi molSiHA
-1) [27]. Recent 78 

critical analyses of the published results regarding SiHAs have highlighted the lack of 79 

experimental evidence which could explain the real effects of Si substitution on biological 80 

activity in a biological environment [28, 29]. In particular, it has been criticized that the 81 

physico-chemical characterizations of SiHA bioceramics are not detailed (purity, solubility, 82 

rate of incorporation of Si inside the crystal lattice, etc.). Therefore, the available data do not 83 

provide sufficient information to establish the origin of the improved biological performance 84 

of SiHA: (i) a direct effect of SiHA by Si release, (ii) an indirect effect of SiHA by changes in 85 

the physico-chemical properties of HA due to Si substitution (microstructure, superficial 86 

chemistry, topography, etc.) or (iii) an effect of second phases (crystalline and/or amorphous). 87 

According to Boanini et al., the term “ion-substituted” is quite often used without any 88 

experimental proof regarding the incorporation of ions inside the crystal lattice of calcium 89 

orthophosphates [28]. The unclear bioactivity of SiHA ceramics could be explained by 90 

variations in the phase composition. The first evidence for this was provided by the few 91 

accurate analyses available in the literature which show that SiHA powders can contain 92 

crystallized [16, 30-35] and amorphous [16, 34, 36-38] impurities. The study by Kanaya et al. 93 

is representative of the characterization problems of SiHA samples [38]. Indeed, while the X-94 

ray diffraction patterns show only the characteristic lines of the HA phase (PDF: 09-432), the 95 

29Si MAS NMR spectrum revealed that only 10% of Si was incorporated into the HA lattice; 96 

the rest was on the particle surface in the form of polymeric silicate species [38]. An 97 

equivalent observation was made by Gasquères et al. [16]. Most studies do not evidently show 98 
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the purity of their SiHA samples (powders, pellets or scaffolds) [8, 9, 19, 21-24, 26, 27, 39-99 

58]. They generally provide an imprecise physico-chemical characterization with assumptions 100 

based on X-ray diffraction patterns or incomplete infrared band assignment [8, 9, 19, 22, 32, 101 

36, 39, 59-61]. Moreover, infrared vibrations at 692, 840, 890 and 945 cm-1, detected on an 102 

SiHA sample containing 1.6 wt% Si (1200°C for 2 h), were attributed without evidence by 103 

Gibson et al. to the substitution of SiO4 for PO4 into the HA lattice [8, 12]. Unfortunately, this 104 

article set the standard for SiHA analysis by infrared spectroscopy and has been widely cited 105 

to prove the purity of SiHA powders synthesized using Gibson’s method [9, 23, 39, 40, 43, 106 

44, 46, 47, 53, 57] or displaying the same new infrared bands [14, 32, 36, 48, 50, 54, 62]. 107 

 Several methods are used to prepare Si-substituted hydroxyapatites (SiHAs), such as 108 

the sol-gel route [48], resuspension processes [20, 33, 34, 63-66], solid state reactions [10, 109 

67], hydrothermal techniques [17, 68, 69], mechanochemical methods [70], magnetron 110 

sputtering [14], pulsed laser deposition [51, 71], electrophoretic deposition [72] and 111 

precipitation from aqueous solutions. Aqueous precipitation methods are the most often 112 

described and set up in the literature. Two different procedures are used to produce Si-HA 113 

from aqueous solutions: (i) the acid-base neutralization [8, 9, 16, 19, 23, 30, 35, 37, 39, 46, 114 

47, 49, 50, 53, 56, 57, 73-75], and (ii) the use of phosphorus and calcium salts [13, 21, 32, 36, 115 

37, 60, 74, 76, 77]. Generally, far less attention has been devoted to the silicon reagent. Two 116 

organic compounds are mainly used as a source of silicate ions: tetraethylorthsilicate (TEOS, 117 

Si(OC2H5)4) and tetraacetoxysilane (TAS, Si(COOCH3)4) which are not miscible in water. 118 

Powders synthesized through these methods are poorly crystallized and often contaminated by 119 

second phases (e.g. α and β-Tricalcium phosphate, amorphous phase, silicocarnotite [16, 19, 120 

30, 31, 36-38, 49, 59, 60, 63, 64, 67, 74, 76]) or undesired ions like Mg [56], S [77] or Na [78, 121 

79]. 122 
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 In order to correctly describe the physical, chemical and biological properties of 123 

SiHAs and to compare them to routinely implanted HA and β-TCP, well-characterized pure 124 

SiHAs powders first need to be prepared. Therefore, this work was devoted to the 125 

development of a new route to synthesize monophasic SiHA powders with controlled 126 

stoichiometry. To this purpose, a solution of soluble silicate was first prepared from TEOS via 127 

a sol-gel route, and then accurate powder analysis was carried out by means of ICP/AES, X-128 

ray powder diffraction, Rietveld refinement, high resolution electron transmission microscopy 129 

(HR-TEM) with energy dispersive spectroscopy (EDS) as well as infrared (FT-IR/ATR) and 130 

solid-state NMR spectroscopy. Two pH levels of precipitation were studied, as well as six 131 

Si/P molar ratios. 132 

2. Materials and methods  133 

2.1 Powder synthesis  134 

HA and SiHA powders were prepared through an aqueous precipitation method using a fully 135 

automated apparatus. A diammonium hydrogen phosphate aqueous solution ((NH4)2HPO4, 136 

99%, Merck, Germany), and, if applicable, an alkaline silicate solution were added to a 137 

calcium nitrate solution (Ca(NO3)2, 4H2O, 99%, Merck, Germany) using peristaltic pumps. 138 

The reaction was performed under an argon flow (4.8, AirLiquide) to prevent any excessive 139 

carbonation of precipitates. The pH of the suspension was adjusted by the addition of a 28% 140 

ammonia solution (Merck, Germany) by means of a pH stat (Hanna Instruments), and the 141 

temperature was controlled and regulated automatically with an external T-probe. The 142 

suspension was continuously stirred and refluxed. After complete introduction of the 143 

solutions, the suspension was matured for 24 h, and then filtered under vacuum. Finally, the 144 

precipitates were dried at 70°C overnight. 145 

 The solution of soluble silicates was prepared from tetraethylorthosilicate (TEOS 146 

≥99%, Aldrich, Germany) via a sol-gel route. The original step consisted of the preparation of 147 
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a silica gel through the hydrolysis and condensation of this precursor. First, the alkoxide 148 

groups (Si-OEt) of TEOS were hydrolyzed to silanol groups (Si-OH). The reaction was 149 

catalyzed by a nitric acid aqueous solution (7.5 10-3M). This generates a considerable amount 150 

of monomers (Si-OH), which aggregate and form a colloidal suspension called the “sol”. This 151 

reaction, based on Klein et al. [80], was carried out by maintaining the molar ratio of 152 

TEOS/ethanol/acidified water at 1.0/8.5/4.0 and the solution at 25°C in an ambient 153 

atmosphere. Second, the condensation of the silanol or alkoxide groups was initiated by 154 

increasing the solution pH to a basic level, about pH 8, with a few drops of pure 28% 155 

ammonia solution (Merck, Germany). This reaction creates siloxane bridges (Si-O-Si), 156 

leading to the formation of a silica gel. The gelation reaction was continued for about 12 h at 157 

25°C. Finally, a solution of soluble silicates was obtained by depolymerization of the silica 158 

gel. This was achieved through the nucleophilic attack of siloxane linkages (Si-O) by 159 

hydroxide ions in pure 28% ammonia solution (pH > 11). After filtration through a Millipore 160 

filtration unit (Magma nylon, 0.8 µm), the soluble silicate ion concentration of these solutions 161 

was measured by means of an ion-exchange chromatography system (DIONEX DX-500) 162 

equipped with a SiO4
4- ion exchange column (AS4A) with a UV/Vis detector (410 nm). The 163 

soluble silicate ion concentration in these solutions was, on average, 1076 ± 34 ppm (n=14 164 

solutions). This value is a function of the preparation process (e.g. hydrolysis, condensation 165 

and depolymerization reactions). Thereby, the volume of the solutions of soluble silicates was 166 

adjusted for each synthesis. 167 

 A pure HA powder Ca10(PO4)6(OH)2 was first prepared to be used as a reference 168 

material for further SiHA syntheses and analyses. This was obtained at a pH and temperature 169 

of precipitation of 9.5 and 50°C, respectively, with a maturation time of 24 h, and a reagent 170 

(Ca/P) molar ratio equal to 10/6.  171 
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 The reagent ratios used to prepare the SiHA powders were calculated by assuming, 172 

first, the general formula Ca10(PO4)6-y(SiO4)y(OH)2-y(VOH)y and, second, a constant molar 173 

ratio Ca/(P+Si) equal to 10/6. The volume of the calcium and phosphate aqueous solutions 174 

was fixed at 500 mL and 250 mL, respectively. Table 1 summarizes the amount (mol) of Ca, 175 

P and Si used for each (Si)HA powder prepared with y equal to 0, 0.25, 0.50, 0.75, 1.00, 1.25; 176 

designated hereafter as HA, Si0.25HA, Si0.50HA, Si0.75HA, Si1.00HA and Si1.25HA, respectively. 177 

Precipitations were achieved at 50°C for 24 h of maturation time, according to the preliminary 178 

tests performed on pure HA. Two parameters of precipitation were examined, the pH of 179 

precipitation and the stoichiometric number y, i.e., the amount of silicate theoretically 180 

incorporated into the apatite structure. Precipitations were conducted either at pH 9.5, 181 

previously established for HA synthesis, or at pH 10.80 ± 0.05. The former was chosen 182 

according to phosphate and silicate speciation curves, in order to have HPO4
2- [81] and 183 

H3SiO4
- ions [82] in solution as the main phosphate and silicate species, respectively. The 184 

studied parameters are listed in Table 1. 185 

 The as-synthesized powders were heated under air using an alumina crucible. Aliquots 186 

of each sample were calcined both at 400°C for 2 h (designated hereafter as “raw powders”), 187 

in order to remove synthesis residues, and at 1000°C for 15 h under air according to ISO norm 188 

13779-3 in order to characterize powders with a well-defined structure. The heating and 189 

cooling rate was fixed at 4°C min-1.  190 

2.2 Powder characterization 191 

2.2.1 X-ray powder diffraction and Rietveld refinement 192 

Crystalline phases were identified by means of a Siemens D5000 θ/2θ X-ray diffractometer 193 

(XRD) using CuKα radiation and operating at 40 kV and 20 mA. XRD patterns were first 194 

collected over the 2θ range of 10-60° at a step size of 0.03° and counting time of 4 s per step 195 

in order to determine the phase composition. Crystalline phases detected in the patterns were 196 



9 

 

identified by comparison to standard patterns from the ICDD-PDF (International Center for 197 

Diffraction Data-Powder Diffraction Files). In addition, high resolution XRD scans were 198 

obtained on calcined powders from 10° to 120° in 0.02° steps with a counting time of 10.5 s 199 

per step. These patterns were used to calculate the lattice parameters and the crystalline size 200 

by full pattern matching. In this mode, the positions of the diffraction peaks and the 201 

systematic extinctions are calculated from the cell parameters and the space group. The 202 

intensities of the lines are adjusted by the refinement program and not calculated from the 203 

atomic positions. The refinements were performed using the space group of the HA structure 204 

P63/m (PDF 09-432) by means of the Topas software (Bruker, Germany). The initial cell 205 

parameters were taken as a = 9.42Å and c = 6.88Å. 206 

 The evolution of the crystallinity of the samples after calcination at 1000°C for 15 h 207 

was evaluated by means of the full width at half maximum (FWHM) of the (211) peak at 208 

2θ=31.8°, as it had the highest intensity and minimal overlap with neighboring peaks. 209 

2.2.2 Infrared spectroscopy 210 

Fourier transform infrared (FT-IR) measurements were carried out with the use of a MIR TF 211 

VERTEX 70 Spectrometer by means of the ATR system. The spectra were recorded over the 212 

range of 450-4000 cm-1 with a resolution of 2 cm-1. Spectra were obtained by signal averaging 213 

32 successive scans. Every measurement was at least duplicated on two independent powder 214 

samples crushed by hand, with an agate pestle and mortar, and deposited on the ATR system. 215 

Spectra were normalized with respect to the υ4 band of the phosphate group at about 602 cm-1, 216 

according to a classical procedure [83, 84]. 217 

2.2.3 NMR spectroscopy 218 

NMR spectra were recorded on a Bruker AVANCE 300 spectrometer: B0 = 7.05 T, 219 

ν0(
1H) = 300.13 MHz, ν0(

31P) = 121.49 MHz, ν 0(
29Si) = 59.62 MHz, using a CP-MAS Bruker 220 

probe with 4 mm rotors spinning at 14 kHz for 1H and 31P and with 7 mm rotors spinning at 5 221 
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kHz for 29Si. Chemical shifts are referenced to TMS for 1H and 29Si and 85% aqueous H3PO4 222 

for 31P. Single pulse and CP (cross-polarization) MAS experiments have been used to study 223 

these materials. CP MAS relies on the heteronuclear dipolar interaction between an abundant 224 

spin X (1H here) and a low abundant nuclei Y (31P and 29Si here). It allows the study of local 225 

molecular motion. The NMR parameters are summarized in Table 2. 226 

2.2.4 Electron microscopy (HR-TEM, SAED and EDX) 227 

High resolution transmission electron microscopy (HR-TEM) was conducted on calcined 228 

powders (1000°C/15 h) using a JEOL 2010 F Microscope at a voltage of 200 kV. Samples 229 

were prepared by dispersing the powders in ethanol. After sonication at 40 W for 5 min, a 230 

small drop of the suspension was placed onto copper mesh grids coated with a holey carbon 231 

film. Finally, a thin coating of gold (10 nm in thickness) was sputtered on half of the grid. 232 

Gold was then distributed as crystallized nano-domains which were used as a reference in the 233 

selected area electron diffraction (SAED) patterns to calculate as precisely as possible the 234 

lattice parameters. The SAED patterns obtained from regions with or without gold on the HA 235 

part were the same. 236 

2.2.5 Elemental analysis 237 

The silicon, phosphorous and calcium content in powders was determined by inductively 238 

coupled plasma atomic emission spectrometry (ICP/AES) (HORIBA Spectrometer, Jobin-239 

Yvon, Activa model). Powder samples were dissolved in a nitric acid solution (0.5 M). 240 

Solutions were prepared (e.g. powder mass, dilution) in order to limit the measurement 241 

uncertainty as well as to determine the concentrations of Ca, P and Si within the highest 242 

sensitivity range of the ICP/AES device (around 30 ppm). Lastly, the carbon content in the 243 

powders was determined using an elemental analyzer with an infrared detector (LECO CS-244 

444 carbon and sulfur analyzer). 245 
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 The stoichiometric number y was determined by means of Eq. 4, assuming that 246 

powders containing 0 ≤ wt%Si ≤ 2.81 (or 0 ≤ y ≤ 1.00) are pure monophasic SiHAs 247 

Ca10(PO4)6-y(SiO4)y(OH)2-y(VOH)y, without any second crystalline or amorphous phase. 248 

%wt Si = (mSi 100 / mSiyHA) = (CmSi Vsol 100) / (mSiyHA) (1) 249 

nSi = (%wtSi mSiyHA) / (MSi 100) (2) 250 

MSiyHA = MHA – (19.895 ySi) (3) 251 

ySi = (nSi MSiyHA) / (mSiyHA) = (%wtSi MHA) / (100 MSi + 19.985 %wt Si) (4) 252 

where %wt Si is the mass percentage of Si in the powder, CmSi is the mass concentration of Si 253 

in the analyzed solution by ICP/AES (ppm or mg L-1), Vsol is the volume of the analyzed 254 

solution (L), mSiyHA is the mass of the powder dissolved in the former solution (mg), and 255 

MSiyHA, MHA and MSi are the molar masses of SiyHA, HA and Si, respectively (g mol-1). 256 

3. Results and discussion 257 

3.1 Influence of pH on the SiHA phase composition 258 

Si0.50HA powders were synthesized at 50°C with pH values equal to 9.50 (Si0.50HA-9.5) and 259 

10.80 (Si0.50HA-10.8). Fig. 1 shows the XRD diffractograms of powders calcined at 1000°C 260 

for 15 h. The pattern of the Si0.50HA-9.5 sample presents two different crystalline phases 261 

matching the ICDD standard for hydroxyapatite (HA, PDF 9-432) and α-tricalcium phosphate 262 

(α-TCP, PDF 9-348). The Si0.50HA-10.8 diffractogram displays only the characteristic 263 

diffraction lines of HA. This result indicates that the final composition of the powders is a 264 

function of silicate ion speciation. H3SiO4
- or more basic forms of silicate ions have to be 265 

maintained during the synthesis to obtain a thermally stable SiHA phase, i.e. a monophasic 266 

powder after heat treatment at 1000°C/15 h. Therefore, herein, the following results are 267 

presented for powders prepared at pH 10.8. Under these synthesis conditions, the general 268 

reaction of precipitation can be written as follows: 269 

10Ca2++(6-y)HPO4
2-+ yH3SiO4

-+(8+y)OH- ↔ Ca10(PO4)6-y(SiO4)y(OH)2-y(VOH)y +(6+2y)H2O  (5) 270 



12 

 

To our knowledge, this is the first time that a true precipitation reaction has been given for 271 

SiHA. 272 

3.2 Influence of the Si content (ySi) 273 

3.2.1 X-ray diffraction analysis 274 

Fig. 2 shows the diffraction patterns of HA and SiyHA (ySi = 0.25, 0.50, 0.75, 1.00 and 1.25 275 

mol) raw powders. Each pattern matches well with the standard pattern of HA (PDF 9-432). 276 

No other phase was detected. The samples exhibit broad diffraction lines which indicate very 277 

small crystallites and/or low crystallinity. More, the FWHM increased with silicon content. 278 

The diffractograms of heat treated powders (1000°C/15 h) are displayed in Fig. 3. They 279 

present no secondary phase besides hydroxyapatite for a silicon content up to ySi = 1.00. On 280 

the other hand, HA (PDF 9-432) and α-TCP (PDF 9-348) were detected in the pattern of 281 

Si1.25HA calcined at 1000°C for 15 h. Moreover, as observed for the raw powders, the 282 

crystallinity of SiyHA calcined powders with 1 ≥ y ≥ 0 decreased with an increase in the 283 

silicate content. Indeed, the higher the Si content, the higher the FWHM of the diffraction 284 

line. For instance, the FWHM of the diffraction line at 31.8° (2θ) increased as follow: 0.070 285 

(HA) < 0.096 (Si0.25HA) < 0.160 (Si0.50HA) < 0.164 (Si0.75HA) < 0.170 (Si1.00HA). This is due 286 

to both direct (decrease in the crystallinity) and indirect (decrease in the crystallite size) 287 

effects of Si, but the individual contributions of these effects cannot be evaluated by X-ray 288 

diffraction. 289 

 The XRD patterns indicate that whatever the amount of silicon ranging between 0 ≤ 290 

wt%Si ≤ 3.51 (or 0 ≤ y ≤ 1.25), the crystalline phase of the precipitates is a hydroxyapatite 291 

(PDF 09-432). Thereby, silicon can be incorporated in the apatitic structure, or in an 292 

amorphous phase or in both phases. However, only precipitates containing up to 2.81 wt%Si 293 

(or y = 1.00) are thermally stable at 1000°C for 15 h.  294 

3.2.2 Lattice parameter refinement 295 
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Refinement was performed on monophased heat-treated powders (0 ≤ y ≤ 1.00). The results, 296 

displayed in Table 3, reveal changes in the apatitic structure parameters. The Si substitution 297 

causes c-axis and unit cell volume expansion as well as a reduction in the mean crystallite 298 

size. The same observation was reported in other studies [10, 17, 32, 70, 85]. On the other 299 

hand, and in contrast to the linear increase of the lattice parameter c with an increasing 300 

amount of Si, the a lattice parameter fluctuates at random between 9.416 Å and 9.428 Å. 301 

These results highlight that all or part of the silicon is incorporated into the apatitic structure. 302 

3.2.3 Elemental analysis 303 

The experimental Ca/(P+Si) molar ratios of the final calcined powders are presented in Table 304 

1. Values are in accordance with the expected ones (1.67) for all compositions, considering 305 

experimental error. Moreover, the calcined powders were not carbonated since the carbon 306 

content by weight was equal to 0.03, 0.07, 0.05, 0.05 and 0.05 wt% (± 0.02 wt%) for HA, 307 

Si0.25HA, Si0.50HA, Si0.75HA and Si1.00HA, respectively.  308 

 The results, presented in Table 1, show that the chemical formulas of SiHA calculated  309 

first by the measured silicon contents, then by the the theoretical formula Ca10(PO4)6-310 

y(SiO4)y(OH)2-y(VOH)y and finally using Eq. 4 are in a good agreement with the nominal ones. 311 

3.2.4 Electron microscopy 312 

A low magnification bright-field image of heat-treated Si1.00HA particles is shown in Fig. 4a. 313 

SiHA powders are composed of round particles, smaller than 100 nm in diameter for 314 

Si1.00HA, whereas the HA powder shows bigger acicular crystals [86]. At higher 315 

magnification, grains do not present any dislocation or disorder within the central region. 316 

Similarly, high-resolution lattice images of the grain surface do not show any amorphous or 317 

disordered layer (see Fig. 4b). A selected area electron diffraction (SAED) pattern obtained on 318 

the same grain is displayed in Fig. 5a. SAED patterns show a diffraction pattern with well-319 

defined spots regardless of the selected area. This indicates the high crystallinity of the heat-320 
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treated SiHA powders and the homogeneity of the crystals. Second, a very good agreement 321 

appears between the SAED patterns and the PDF card 09-432 of HA as identified by X-ray 322 

diffraction. Moreover, no halo ring was observed, confirming the absence of the amorphous 323 

phase. Fig. 5b shows a SAED pattern for the [010] zone axis. Two other SAED patterns were 324 

obtained for the [1-10] zone axis. Indexation of these patterns allows for calculating the c/a 325 

ratio by means of the interval between two spots. Thus, for instance, according to the 326 

hexagonal crystallographic structure identified by X-ray diffraction and the distance D1 and 327 

D2 between two spots along the [h00] and [001] directions ([010] zone axis, Fig. 5b), 328 

respectively, the c/a ratio was calculated as follows: 329 

(c/a)2 = ¾ (D1/D2)
2 (6) 330 

 The results are the average of about ten intervals per pattern. A c/a ratio of 0.730 ± 331 

0.005 was determined. Moreover, other experimental patterns for different zone axes (not 332 

shown here) were obtained and compared to theoretical electron diffraction patterns 333 

calculated by means of the Java Electron Microscopy Simulation (JEMS) software [87]. The 334 

results indicate that the experimental and simulated patterns are perfectly superimposed for 335 

0.734 ≥ c/a ≥ 0.729. Additionally, the c/a ratio value from PDF 09-432 (0.7309) is included in 336 

this range. 337 

3.2.5. Solid-state NMR analysis 338 

3.2.5.1. 31P MAS NMR 339 

The 31P MAS NMR spectra of HA, Si0.50HA and Si1.00HA calcined at 1000°C for 15 h are 340 

shown in Fig. 6a. The spectra present a main narrow peak which corresponds to the single P 341 

site of hydroxyapatite [88], and whose position shifts to higher frequencies with increasing 342 

silicon content: 2.8 ppm for HA, 3.0 ppm for Si0.50HA, and 3.1 ppm for Si1.00HA. Likewise, 343 

the FWHM broadens: 166 Hz < 188 Hz < 233 Hz for raw HA, Si0.50HA and Si1.00HA, 344 

respectively (figure not included), and 55 Hz < 132 Hz < 233 Hz for calcined HA, Si0.50HA 345 
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and Si1.00HA, respectively (Fig. 6a). The chemical shift and peak broadening indicate that the 346 

SiHA structure is different from a perfect hydroxyapatite short-range structure. The increasing 347 

line width suggests an increase in local disorder around those phosphate groups where Si is 348 

incorporated in the HA structure. Besides the 2.8 ppm peak, two additional weak broad peaks 349 

at 4.6 and 5.8 ppm were detected in the 31P spectra. The peak at 4.6 ppm was only revealed in 350 

the 1H� 31P CP MAS spectrum (Fig. 7b). HA powder did not present the 4.6 ppm signal (Fig. 351 

7a). According to Hartmann et al. [89], the 31P MAS peak at 5.8 ppm corresponds to PO4 352 

tetrahedra in a proton-free region of a hydroxyapatite channel structure containing OH 353 

vacancies (i.e. along the crystallographic c-axis). These proton-free regions, observed in 354 

oxyhydroxyapatite Ca10(PO4)6(OH)2-2x(O)x(VOH)x (OHA), must exist in silicon-substituted 355 

hydroxyapatite Ca10(PO4)6-y(SiO4)y(OH)2-y(VOH)y (SiHA), or silicon-substituted 356 

oxyhydroxyapatite Ca10(PO4)6-y(SiO4)y(OH)2-y-2xOx(VOH)x+y (SiOHA). The assignment of the 357 

peak at 4.6 ppm, that seems related to the incorporation of Si in the apatite lattice, will be 358 

discussed later on (section 3.2.5.3). 359 

3.2.5.2. 1H MAS NMR  360 

The 1H MAS NMR spectra of pure HA, Si0.50HA and Si1.00HA powders calcined at 1000°C 361 

for 15 h are shown in Fig. 6b. Two signals were observed, one sharp at 0 ppm and one 362 

broader at about 5.2 ppm. The former (0 ppm) is characteristic of OH groups in crystalline 363 

HA [89]. Moreover, and similarly to the 31P signal at 2.8 ppm, the greater the Si content in the 364 

apatitic structure of the calcined powders, the broader the FWHM of the signal at 0 ppm 365 

(FWHM = 108 Hz for HA, 191 Hz for Si0.5HA and 228 Hz for Si1.00HA). This suggests a 366 

change in the environment around the hydroxyl groups, highlighting the modification of O-H 367 

bond distances due to Si. As postulated by Gomes et al., this concomitant broadening of the 368 

31P and 1H resonances with Si content confirms the incorporation of Si atoms into the apatite 369 

lattice [30]. The signal at 5.2 ppm was attributed by Hartmann et al. to OH- positions missing 370 
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only one neighboring ion in OHA channels [89]. This type of OH- group along the channels of 371 

the apatite structure leads to the formation of “proton pairs” stabilized by a hydrogen bond. 372 

The intensity of this proton position is higher in SiHA samples than in HA, but does not seem 373 

to be an exclusive function of the Si content (see Fig. 6b). Therefore, 1H MAS NMR indicates 374 

the presence of two types of OH- groups along the channels of the apatite structure: an 375 

unchanged proton line position with continuous OH- groups (0 ppm) and OH- pairs 376 

surrounded by vacancies (5.2 ppm). 377 

3.2.5.3. 1H-31P HETCOR CP MAS 378 

To confirm that the entire proton position is located in the apatite channel structure, two-379 

dimensional 1H-31P HETCOR CP MAS experiments were performed on raw and calcined 380 

powders. Fig. 8 presents 1H-31P HETCOR CP MAS spectra recorded on raw Si1.00HA (Fig. 381 

8a) and calcined Si0.50HA (Fig. 8b) powders. The spectra show two main 2D correlation peaks 382 

on both raw and calcined powders. The same peaks were observed for Si0.25HA, Si0.50HA and 383 

Si1.00HA (HETCOR CP MAS results for calcined Si0.25HA and Si1.00HA not included). The 384 

stronger one (peak A, Fig. 8b), characteristic of an ideal HA structure, is due to the dipolar 385 

interaction between the P sites (δ(31P) = 2.8 ppm) and the OH sites (δ(1H) = 0 ppm). It 386 

corresponds to an undisturbed hydroxyapatite short-range structure [89]. The second one 387 

(peak B, Fig. 8b) appears between the 31P signal at 4.6 ppm and the 1H signal at 5.2 ppm. Its 388 

intensity increases with heat treatment (Fig. 8) and the Si content (data not included). This 389 

correlation is not observed for the HA sample (data not included). Moreover, a low extent of 390 

peak B is observed with the main 31P peak at 2.8 ppm (peak C, Fig. 8b). The intensity of this 391 

2D correlation peak becomes stronger with Si content as well. More generally, the higher the 392 

amount of Si incorporated into the SiHA structure, the stronger the dispersion of the main 393 

correlation between A and B along the 31P axis. Finally, as expected, the HETCOR spectra 394 

show no correlation peak of the 31P line at 5.8 ppm, confirming that it corresponds to a 395 
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proton-free phosphate position. To conclude, first the broadening of peak A indicates an 396 

increase in the distribution of P-H bond distances when silicate is incorporated into the HA 397 

structure, corresponding to the loss of local ordering in the phosphate environment. Second, 398 

peaks B and C correspond to two distinct P sites in the vicinity of isolated pairs of protons 399 

(OH- pairs) present in the channel structure of silicon-substituted oxyhydroxyapatite 400 

Ca10(PO4)6-y(SiO4)y(OH)2-y-2xOx(VOH)y+x (SiOHA): (i) peak B represents a very strongly 401 

distorted hydroxyapatite short-range structure and (ii) peak C represents a less distorted one. 402 

Peak B is clearly related to SiO4 substitution and proves once again that charge compensation 403 

implies OH vacancies along the channels, leading to the formation of OH- pairs in the vicinity 404 

of the substituted PO4 tetrahedra. Peak C can be due to SiO4 substitution as well as 405 

dehydration of SiHA, both leading to the formation of OH vacancies in SiOHA. 406 

3.2.5.4. 29Si MAS NMR 407 

The 29Si MAS NMR spectra of Si1.00HA powders, raw and calcined, are shown in Fig. 9. The 408 

raw powders present two resonances: one sharp at about -72 ppm that is clearly attributed to 409 

SiO4
4- (Q0) in the apatitic structure [90], and a broad peak at about -100/-110 ppm which 410 

corresponds to Q3/Q4 silicon species [16]. The results confirm that the main part of the silicate 411 

is incorporated into the HA lattice during precipitation, according to the main reaction Eq. 1. 412 

The rest of the silicates are adsorbed at the crystallite surface, as observed for phosphates 413 

during the precipitation of apatitic calcium phosphates [91, 92]. After calcination, the broad 414 

peak at -100/-110 ppm disappears without the detection of new signals, similar to those 415 

reported in the literature (Si-TCP or α-Ca3Si3O9) [16, 30, 38]. The same results were obtained 416 

for the Si0.25HA and Si0.50HA samples (data not included). 417 

3.2.6. FT-IR analysis 418 

3.2.6.1 As-synthesized samples 419 
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The IR spectra of the raw HA and SiHA powders with a silicon content up to ySi = 1.25 mol 420 

(figure not included) present strong similarities and exhibit intense bands characteristic of 421 

hydroxyapatite. They correspond to the four vibrational modes of phosphate groups (ν1, ν2, ν3, 422 

and ν4), and the stretching (νS) and librational (νL) modes of the hydroxide groups [81, 92-94]. 423 

The intensity of the latter, at 630 cm-1 (νL) and 3570 cm-1 (νS), clearly decreased with the 424 

amount of silicon. These results confirm that the as-synthesized precipitates exhibit the 425 

hydroxyapatite phase, regardless of the amount of silicon ranging between 0 ≤ wt%Si ≤ _3.51 426 

(or 0 ≤ y ≤ 1.25), as observed on the diffractograms (Fig. 2). A more accurate description of 427 

the infrared spectra of the as-synthesized SiHA powders is available in a complementary 428 

article [95]. 429 

3.2.6.2 Calcined samples – general observations 430 

Fig. 10 compares the infrared spectra of heat-treated HA and SiHA powders (1000°C/15 h). 431 

The HA and SiyHA with 0 ≤ y ≤ 1.0 powders mainly present bands characteristic of 432 

hydroxyapatite with the ν1 (962 cm-1), ν2 (473 cm-1), ν3 (1021 and 1085 cm-1) and ν4 (562 and 433 

600 cm-1) modes of PO4
3-, as well as the stretching (νS: 3572 cm-1) and librational (νL: 629 cm-

434 

1) modes of hydroxide groups [81, 92, 94]. A shoulder at 947 cm-1 was also observed for HA 435 

and SiHA powders. The relative intensity of this shoulder was slightly higher for SiHA than 436 

for HA, but did not seem to be a function of the amount of Si. Besides the low hydroxyapatite 437 

vibrations, the spectrum of the Si1.25HA powder presents mainly the characteristic bands of α-438 

TCP and traces of β-tricalcium phosphates (β-TCP): the weak band at 495 cm-1 ascribed to 439 

the O-P-O ν2 vibrational mode of β-TCP, the bands due to the splitting of the ν4 mode at 567 440 

cm-1 in α-TCP (551, 560, 580, 595 and 611 cm-1), the bands at 945 and 955cm-1 assigned to 441 

the degenerated symmetric P-O stretching vibration of the phosphate ions (ν1) in β- and α-442 

TCP, respectively, and the bands corresponding to the strong asymmetric P-O stretching 443 

mode (ν3) for β-TCP (988, 1025 cm-1) and α-TCP ( 988, 1013, 1025, 1031 and 1055cm-1) [52, 444 
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96]. This result is complementary to the X-ray diffraction pattern (Fig. 3) and indicates that 445 

the Si1.25HA apatitic precipitate decomposes during heat treatment with the formation of TCP 446 

and amorphous silica species. 447 

3.2.6.3. Calcined samples – accurate IR band assignment of the pure SiHA phase 448 

As opposed to HA, the FT-IR spectra of the calcined SiyHA powders, with 0 ≤ y ≤ 0.75, 449 

exhibit nine new bands or shoulders (sh) at 491 (sh), 504, 528, 750, 840, 893, 930 (sh), 985 450 

(sh) and 1002 (sh) cm-1. The intensity of these new vibrations increased with the amount of 451 

Si, except for the weak band at 840 cm-1 and the shoulder at 930 cm-1 which remained 452 

relatively constant. Conversely, the intensity of the absorption bands attributed to the four 453 

vibrational modes of PO4
3- and both modes of OH- in hydroxyapatite decreased as the amount 454 

of Si increased in the range 0 ≤ y ≤ 1.00 (e.g. νS OH : 0.49 (HA) > 0.39 (Si0.25HA) > 0.35 455 

(Si0.50HA) > 0.12 (Si0.75HA) > 0.07 (Si1.00HA)). More precisely, the νL mode decreased to the 456 

detection limit for y = 1, while the stretching the OH- band decreased and broadened. In fact, 457 

two new vibrations at 3565 and 3552 cm-1, close to the main one at 3572 cm-1, were detected 458 

(Fig. 10). This confirms the mechanism of charge compensation with the creation of OH- 459 

vacancies, and highlights the new environment and distribution of OH- ions along the 460 

channels of the SiHA structure [93, 97] and, more importantly, the formation of low hydrogen 461 

bonding between closed O2- and OH- ions (H-bonds cause a shift of 20 cm-1 to the low 462 

wavenumber of the main band at 3572 cm-1 [98]). The FT-IR spectrum of Si1.0HA displays 463 

the same eight new bands as those detected on Si0.25HA, Si0.50HA and Si0.75HA. However, 464 

their relative intensity decreased significantly, reaching the detection limit for the band at 750 465 

cm-1 and with a complete disappearance of the bands at 491, 504, and 528 cm-1. Additionally, 466 

seven new vibrations appeared at 500, 515, 535, 683, 798 and 873 cm-1. They were 467 

accompanied by an intensification of the shoulder at 947 cm-1. The bands at 683, 798 and 870 468 

cm-1 were also detected in spectrum of Si1.25HA calcined powder. According to these results 469 
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and an accurate review of the bibliography, summarized in Table 4, it is clear that the nine 470 

vibrations at 493, 504, 528, 750, 840, 893, 930, 985 and 1002 cm-1 are related to the 471 

incorporation of Si into the hydroxyapatite structure. The changes detected in the sample 472 

Si1.0HA were due to the start of decomposition of the SiHA phase, emphasized by a decrease 473 

in the nine characteristic bands and the formation of an amorphous silica phase which 474 

presents vibrations at 500, 515, 535, 683, 798 and 873 cm-1. Silica was not detected by NMR 475 

due to the low amount of 29Si in the samples (high detection limit). The shoulder at 947 cm-1 
476 

could be attributed to β-TCP, which exhibits a symmetric P-O stretching mode ν1 at 945 cm-1 477 

[96]. However, this assumption is not convincing since other bands assigned to β-TCP are 478 

absent. In fact, this shoulder is a contribution of the Si-O in plane stretching vibrations in Si-479 

OH and Si-O- on the surface of the grains, and the symmetric stretching (ν1) vibration of 480 

orthophosphate groups in the neighborhood of OH vacancies along the channels. The former, 481 

reported at 950 cm-1 (see Table 4), shifted toward lower frequencies due to hydrogen bonding 482 

between surface groups, thus creating the component at 930 cm-1. The band at 950 cm-1 is 483 

commonly observed for oxy-hydroxyapatite Ca10(PO4)6(OH)2-2xOx(VOH)x, [93, 99-102]. 484 

Therefore, in the context of this study, OH- vacancies (VOH) are due first to the incorporation 485 

of SiO4 into the HA structure, and second to the partial dehydration of SiHA to SiOHA as 486 

follows: 487 

Ca10(PO4)6-y(SiO4)y(OH)2-y(VOH)y ↔ Ca10(PO4)6-y(SiO4)y(OH)2-y-2xOx(VOH)y+x + x H2O (7) 488 

3.2.6.4. Calcined samples – OH vacancies and the limit of incorporation of Si in HA 489 

The amount of hydroxide (%OH) in the silicon-substituted hydroxyapatite structure is 490 

reported versus the amount of silicon (mol molSiHA
-1) in Fig. 11. The theoretical values of OH 491 

were plotted by considering the formula Ca10(PO4)6-y(SiO4)y(OH)2-y(VOH)y (i.e. %OH = 100 -492 

50 y). The experimental values were determined at room temperature on the calcined samples 493 

(1000°C/15 h) by means of the integrated area of the νL and νS OH bands. The average of the 494 
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integrated areas obtained for HA (y=0) was assumed to be representative of the full 495 

occupancy of the OH position within the channels (100% OH). The amount of OH vacancies 496 

(VOH) determined experimentally was always higher than the theoretical one with respect to 497 

the chemical formula Ca10(PO4)6-y(SiO4)y(OH)2-y(VOH)y. In other words, the dehydration of 498 

the calcined powders was greater than expected, and a higher Si doping level led to a greater 499 

difference. Thus, the incorporation of Si into the hydroxyapatite structure generates OH 500 

vacancies first to maintain the charge balance (Ca10(PO4)6-y(SiO4)y(OH)2-y(VOH)y) and second 501 

from another phenomena, which is an increasing function of the amount of Si. A possible 502 

explanation is an increase of the mobility of OH ions along the channel axis (local disorder) 503 

and their subsequent rate of diffusion and debonding from the HA lattice [103]. HA 504 

decomposition is a dynamic process, mainly controlled by the degree of dehydration [104-505 

106]. In fact, the thermal stability of hydroxyapatite was found to depend on the fraction of 506 

VOH and O2- ions in the channels. Several “critical values” of VOH in OHA Ca10(PO4)6(OH)2-507 

2xOx(VOH)x have been reported beyond which the apatite channel structure is destroyed: x ≤ 508 

0.80 [103], x ≤ 0.75 [107], x ≤ 0.50 [89]. However, the most probable limit comes from work 509 

of Heughebaert and Montel on the crystallization of calcium phosphates during precipitation 510 

[108, 109]. They determined that the apatitic structure appears only when at least 25% of the 511 

OH- positions along the channels are really occupied. In other words, the apatitic structure 512 

appears when VOH < 1.5. Therefore, the theoretical maximum limit of incorporation of Si into 513 

a hexagonal apatitic structure is y < 1.5 as regards the formula Ca10(PO4)6-y(SiO4)y(OH)2-514 

y(VOH)y. However, due to the dehydration reaction (Eq. 7), this limit is a function of the 515 

temperature and the atmosphere of heat treatment. This assumption can explain why the 516 

Si1.0HA and Si1.25HA powders, which showed an apatitic structure after calcination at 400°C 517 

for 2 h, were not thermically stable at 1000°C for 15 h in contrast to SiHA with a silicon 518 

content ranging between 0 ≤ y ≤ 0.75. Control of the degree of hydroxylation, i.e. the partial 519 
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steam pressure pH20, is necessary to control the thermal stability of the SiHA phase. This 520 

assumption is confirmed by the infrared spectra obtained from the Si1.0HA sample heat treated 521 

at 1000°C for 15 h under different partial pressures of steam, pH20, in mbar (Fig. 12); a higher 522 

pH20 led to a more stable silicon-substituted apatite phase. Thus, the Si1.0HA powder, after 523 

calcination under high steam pressure (pH20 = 200 mbar), presented only the characteristic 524 

bands of SiHA with traces of amorphous silica at the IR spectroscopy detection limit 525 

(≈0.1wt%), whereas the same sample heat-treated under dry argon gas (pH2O = 0 mbar) 526 

contained amorphous silica species as well as TCP (α and β). Moreover, the vibrations related 527 

to Si-O in SiHA (750 and 890 cm-1) as well as the vibrational modes ν3 and ν4 of the phosphate 528 

groups in HA decreased with a decrease in pH20. Conversely, the vibrations due to amorphous 529 

silica species, at 683, 798 and 873 cm-1, and TCP (e.g. 731, 942, 997 and 1137 cm-1) increases 530 

with a decrease in pH20. 531 

 These results confirm that the formation of amorphous silica and the decomposition of 532 

the SiHA phase are correlated. More precisely, the detection of amorphous silica indicates the 533 

start of decomposition, which is followed by the formation of TCP (α and β). 534 

 Finally, Trombe and Montel reported the variation of a from 9.421 Å to 9.402 Å, 535 

without a significant variation in the c lattice parameter, when HA transforms into OHA, 536 

Ca10(PO4)6(OH)0.5O0.75(VOH)0.75 [102]. Thus, SiHA dehydration can explain the random 537 

fluctuations in the a lattice parameter observed in this work and in the literature [30]. 538 

4. Conclusion  539 

This paper presents a new route to synthesize monophasic silicon-containing hydroxyapatites 540 

Ca10(PO4)6-y(SiO4)y(OH)2-y(VOH)y (SiHAs) with controlled stoichiometry. The combination of 541 

solid state nuclear magnetic resonance (NMR) and IR spectroscopy (IR) demonstrated that 542 

silicate substitution for phosphate creates OH vacancies along the channels. Moreover, Si 543 

substitution increases the local disorder and the mobility of OH ions along these channels and 544 
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their subsequent rate of diffusion and debonding from the HA lattice. The control of the 545 

degree of hydroxylation of the SiHA phases, i.e. their thermal stability, can be carried out by 546 

means of the partial steam pressure, pH20. Additionally, an exhaustive description of the 547 

infrared bands related to the incorporation of silicate groups into the HA structure was 548 

established. It allowed us to determine that the literature has incorrectly attributed some 549 

infrared bands to silicate groups in the apatite structure. These bands, e.g. 683, 798 and 873 550 

cm-1, due in fact to amorphous silica phases, raise questions regarding the phase purity of the 551 

great majority of biologically evaluated SiHA bioceramics. 552 

 553 
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Fig. 1. XRD patterns of heat treated Si0.50HA powders prepared at 50°C and maintained at pH 
9.5 and 10.8. 

 
Fig. 2. X-ray diffraction patterns of raw SiHA powders synthesized at pH = 10.8 with 
different silicon concentration. 



 
Fig. 3. X-ray diffraction patterns of heat treated (1000°C/15h) SiHA powders synthesized at 
pH = 10.8 with different silicon concentration.  

 
Fig. 4: (a) TEM micrograph of heat treated Si1.0HA crystallites (1000°C/15h), (b) High-
resolution lattice image of a heat treated Si1.0HA particle (1000°C/15h) along the zone axis 
[01-1]; plane spacing of 8.2Å. 



 
Fig. 5: (a) selected area electron diffraction (SAED) pattern of heat treated Si1.0HA powder 
(1000°C/15h), (b) SAED of heat treated Si1.0HA powder (1000°C/15h) for the [0 1 0] zone 
axis, c/a= 0.730 



 
Fig. 6. (a) 31P and (b) 1H MAS-NMR spectra of the HA, Si0.50HA and Si1.00HA powders 
calcined at 1000°C for 15h. 

 
Fig. 7. Comparison between 31P MAS-NMR and CP MAS NMR spectra of (a) HA and (b) 
Si0.50HA powders calcined at 1000°C for 15h. 
 



  
Fig. 8. 1H-31P HETCOR CP MAS experiment recorded on (a) Si1.00HA powder calcined at 
400°C for 2h, and (b) Si0.50HA powder calcined at 1000°C for 15h. 

 
Fig. 9. 29Si MAS-NMR spectra of the Si1.00HA powder calcined at 400°C for 2h and 1000°C 
for 15h 



 
Fig. 10. FTIR spectra of calcined HA and SiHA powders (1000°C / 15h) collected at room 
temperature, symbol ● shows additional vibrations for Si1.0HA at 500, 515, 535 cm-1. 

 
Fig. 11. OH content into the apatitic channels versus the Si content, for theoretical SiHA 
structure (y VOH) and samples calcined at 1000°C for 15h (determined from integrated areas 



of νL and νS bands). 

 
Fig. 12. FTIR spectra of calcined Si1.0HA powder (1000°C / 15h) under different partial 
pressure of steam (pH2O = 0, 80, 200 mbar and air). 
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Table 1 

Chemical conditions of preparation of HA and SiyHA samples and final composition of the 

calcined powders (1000°C/15h). 

Sample 

Synthesis parameters 
(T = 50°C, tm =24h) 

Composition of the final calcined powders (1000°C/15h) 

nCa nP nSi pH ySi ySi Chemical formula of SiyHA Ca/(P+Si) 

    Expected Determined - According to Equation Eq. 2 
Determined by 

ICP/AES / mol / mol / mol - / mol mol-1 SiHA - 

HA 0.200 0.120 0 9.5 0 0 Ca10(PO4)6(OH)2 1.69 ± 0.05 

Si0.25HA 0.200 0.115 0.005 11.0 0.25 0.28±0.02 Ca10(PO4)5.72(SiO4)0.28(OH)1.72(VOH)0.28 1.69 ± 0.02 

Si0.50HA 0.200 0.110 0.010 9.5 0.50 N/A HA + α TCP N/A 

Si0.50HA 0.200 0.110 0.010 11.0 0.50 0.52±0.02 Ca10(PO4)5.48(SiO4)0.52(OH)1.48(VOH)0.52 1.68 ± 0.02 

Si0.75HA 0.200 0.105 0.015 11.0 0.75 0.72±0.02 Ca10(PO4)5.28(SiO4)0.72(OH)1.28(VOH)0.72 1.67 ±0.03 

Si1.00HA 0.200 0.100 0.020 11.0 1.00 0.97±0.02 Ca10(PO4)5.03(SiO4)0.97(OH)1.03(VOH)0.97 1.67 ± 0.01 

Si1.25HA 0.200 0.095 0.025 11.0 1.25 N/A HA+TCP N/A 
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Table 2 

NMR parameters. 

NMR Experiments 
t90° 

number  

of scans 

relaxation  

delay 

1H  

decoupling 

contact  

time 

t1  

increments 

/ µs - / s - / ms  

1H MAS 4.6 4 300 - - - 

31P MAS 1.3 16 60 

SPINAL-64 
(54kHz) 

- - 

31P CPMAS 

1.5 

16 

15 

3 - 

1H-31P HETCOR 
CPMAS 

32 1 128 

29Si MAS 1.5 ~ 4000 60 
SPINAL-64 

(45kHz) 
- - 
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Table 3. 

Lattice parameters, unit cell volume and mean size of the crystallites of heat-treated powders 

at 1000°C for 15h evaluated by Rietveld refinement. 

Sample 
Lattice parameters / Å 

Volume of the unit cell / Å3 Crystallites mean size / nm 
a-axis c-axis 

PDF 9-432 9.418 6.884 1058 - 

HA 9.421 ± 3 10-5 6.884 ± 3 10-5 1058 ± 1 243 ± 1 

Si0,25HA 9.423 ± 4 10-5 6.892 ± 4 10-5 1060 ± 1 157 ± 1 

Si0,50HA 9.428 ± 2 10-4 6.899 ± 2 10-4 1062 ± 1 116 ± 1 

Si0,75HA 9.423 ± 2 10-4 6.908 ± 2 10-4 1062 ± 1 103 ± 1 

Si1,00HA 9.416 ± 7 10-5 6.920 ± 5 10-5 1063 ± 1 107 ± 1 
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Table 4 

IR bands and shoulders assignment proposed by our work 

λ / cm-1 Mode assignments proposed by this work Literature support 

1002* Degenerated PO4
3- asymmetric stretching (ν3) [94, 110] 

985 Si-OH at SiHA surface   / and/or /   Si in SiHA [110-112] 

947 
Oxyapatite [93, 99, 100, 102, 113] 

Si-OH at SiHA surface [114-116] 

930** Si-OH at SiHA surface   / and/or /   Si in SiHA [114, 117-121] 

893 Si in SiHA [8, 113, 118] 

873 Si in silica [112, 113, 122, 123] 

840 Si-R [118, 124] 

798 Si in silica [34, 110, 112-115, 117, 120, 122, 125-127] 

750 Si in SiHA [32, 54, 74] 

683 Si in silica   [113, 114, 116, 126, 127] 

535 Si in silica [128] 

528 Si in SiHA [111, 118, 121, 128] 

515 Si in silica [127-130] 

504 Si in SiHA [32, 56, 118] 

 

* degeneration of the ν3 PO4
3- domain at 1020 cm-1 due to the SiO4

4- in the environment of the 

phosphate ions 

** degeneration of the band at 947 cm-1 
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