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Abstract

This paper presents a new aqueous precipitatiornadeto prepare silicon-substituted
hydroxyapatites Ga(PO)6.y(SiOs)y(OH)..y(Von)y (SIHAS) and details the characterization of
powders with varying Si content up to y=1.25 mollg@a™. X-ray diffraction (XRD),
transmission electron microscopy (TEM), solid-statielear magnetic resonance (NMR) and
Fourier transform infrared (FTIR) spectroscopy wesed to accurately characterize samples
calcined at 400°C for 2 h and 1000°C for 15 h. Timethod allows for synthesizing
monophasic SiHAs with controlled stoichiometry. Thieeoretical maximum limit of
incorporation of Si into the hexagonal apatitiausture is y<1.5. This limit depends on the
OH content in the channel, which is a functionh# i content, temperature and atmosphere
of calcination. These results, particularly thosent infrared spectroscopy, express serious
reservations about the phase purity of SIHA powdesdlets or scaffolds prepared and

biologically evaluated in the literature.

Keywords: biomaterials; silicon-substituted hydroxyapatipegcipitation method, infrared

spectroscopy, NMR spectroscopy.
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1. Introduction

According to the literature, silicon-substituteddnyxyapatite (SiHA) is a highly promising
material in the field of bioactive bone substituéesl bone tissue engineering. It is now well-
established that silicon plays an important roléh early stage of cartilage and bone growth
[1-4]. Soluble silicon species have been showntitoutate spontaneous calcium phosphate
precipitation (.e. the mineral bone phase) [5] and to increase bomeral density [6].
Moreover, silicon has been reported to have a igesihfluence on the synthesis of type |
collagen by human osteoblast cells (MG-63 cell)limevitro [7]. Thereby, it is expected that
silicon could enhance the hydroxyapatite (HA) btodty [8, 9], and silicon-substituted
hydroxyapatites (SiHAs) have become a subject eatgmterest in bone repair. The SiHA
structure corresponds to the substitution of phasplions (P@) by silicate ions (Si¢})
into the HA crystal structure. Different mechanisfios charge compensation have been
suggested [8, 10, 11]. The most cited one was pexpbdy Gibson et al. with the creation of
anionic vacancies at OHsites [8, 12]. This mechanism leads to siliconssited
hydroxyapatites with the general formula 1@904)6_y(8i04)y(OH)2_y(VOH)y, where vy
represents the molar number of silicate group®dhiced into the apatitic structure {0y <

2) and \by stands for vacancies maintaining the charge balahte incorporation of Si into
the HA structure in solid solution,e. without the formation of other phases, seems to be
limited. However, the value and the origin of thimmitation are still not known, with for
instance the following values: 5 wt% (1.7 mok molsiua’) [13-15], 4 wit% € 1.4 mok;
molsina ™) [16, 17], 3.1 wt% 4 1.1 mok molsiua™) [18], 2 wt% & 0.7 mok molsiua™) [11,
19], 1.0 wt% (0.36 me| molsiya ) [20] or 0.28 wt% (0.1 me] molsiua™) [21]. Additionally,

it has been suggested that the concentration ofv®8 of Si & 0.28 mok molsiua™) is
optimal to induce the development of important bindty [22-24]. A value of 2.2 wt% of Si

was also reported by Thian et al. [25]. Unfortuhaten spite of extensive studies in recent
3
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years, these results remain heterogeneous, cogfasoh sometimes misleading. For instance,
Hing et al. revealed faster bone apposition androvgxd adhesion and proliferation of
osteoblast-like cells for SIHA compared to stoichedric HA [23, 26], whereas Palard et al.
found no significant difference in the behaviorM&-63 osteoblast-like cells between pure
HA and SiHA pellets (three compositions: y=0.2, @rHd 0.6 ma} mokiua™) [27]. Recent
critical analyses of the published results regayd8iHAs have highlighted the lack of
experimental evidence which could explain the eféécts of Si substitution on biological
activity in a biological environment [28, 29]. Irafticular, it has been criticized that the
physico-chemical characterizations of SiHA biocacmrare not detailed (purity, solubility,
rate of incorporation of Si inside the crystalitzf etc.). Therefore, the available data do not
provide sufficient information to establish thegini of the improved biological performance
of SIHA: (i) a direct effect of SIHA by Si releadd) an indirect effect of SIHA by changes in
the physico-chemical properties of HA due to Sissiistion (microstructure, superficial
chemistry, topography, etc.) or (iii) an effectsaicond phases (crystalline and/or amorphous).
According to Boanini et al., the term “ion-subsi#d” is quite often used without any
experimental proof regarding the incorporation aris inside the crystal lattice of calcium
orthophosphates [28]. The unclear bioactivity oH&iceramics could be explained by
variations in the phase composition. The first emcke for this was provided by the few
accurate analyses available in the literature wisbbw that SiHA powders can contain
crystallized [16, 30-35] and amorphous [16, 34 38pimpurities. The study by Kanaya et al.
is representative of the characterization problefrSiIHA samples [38]. Indeed, while the X-
ray diffraction patterns show only the characterisbhes of the HA phase (PDF: 09-432), the
29Si MAS NMR spectrum revealed that only 10% of Skvircorporated into the HA lattice;
the rest was on the particle surface in the formpofymeric silicate species [38]. An

equivalent observation was made by Gasqueéres [@6l.Most studies do not evidently show

4
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the purity of their SIHA samples (powders, pelletsscaffolds) [8, 9, 19, 21-24, 26, 27, 39-
58]. They generally provide an imprecise physicerualtal characterization with assumptions
based on X-ray diffraction patterns or incompletigared band assignment [8, 9, 19, 22, 32,
36, 39, 59-61]. Moreover, infrared vibrations a26840, 890 and 945 ¢hmdetected on an
SiHA sample containing 1.6 wt% Si (1200°C for 2 Wgre attributed without evidence by
Gibson et al. to the substitution of Qifor PQ, into the HA lattice [8, 12]. Unfortunately, this
article set the standard for SiHA analysis by irdchspectroscopy and has been widely cited
to prove the purity of SiIHA powders synthesizechgsisibson’s method [9, 23, 39, 40, 43,
44, 46, 47, 53, 57] or displaying the same newaneid bands [14, 32, 36, 48, 50, 54, 62].
Several methods are used to prepare Si-substihyxyapatites (SiHAs), such as
the sol-gel route [48], resuspension processes32034, 63-66], solid state reactions [10,
67], hydrothermal techniques [17, 68, 69], mechaeraucal methods [70], magnetron
sputtering [14], pulsed laser deposition [51, 7&]ectrophoretic deposition [72] and
precipitation from aqueous solutions. Aqueous pigtion methods are the most often
described and set up in the literature. Two diffengrocedures are used to produce Si-HA
from aqueous solutions: (i) the acid-base neutrabn [8, 9, 16, 19, 23, 30, 35, 37, 39, 46,
47, 49, 50, 53, 56, 57, 73-75], and (ii) the useladsphorus and calcium salts [13, 21, 32, 36,
37, 60, 74, 76, 77]. Generally, far less attenhas been devoted to the silicon reagent. Two
organic compounds are mainly used as a sourcdiadtsiions: tetraethylorthsilicate (TEOS,
Si(OGHs),) and tetraacetoxysilane (TAS, Si(COOgMH which are not miscible in water.
Powders synthesized through these methods areypogstallized and often contaminated by
second phases (e.@.andp-Tricalcium phosphate, amorphous phase, silicocaenfi6, 19,
30, 31, 36-38, 49, 59, 60, 63, 64, 67, 74, 76))mdesired ions like Mg [56], S [77] or Na [78,

79].
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In order to correctly describe the physical, chehiand biological properties of
SiHAs and to compare them to routinely implanted &#dp-TCP, well-characterized pure
SiHAs powders first need to be prepared. Therefondss work was devoted to the
development of a new route to synthesize monoph&gitA powders with controlled
stoichiometry. To this purpose, a solution of stéulicate was first prepared from TEQ&

a sol-gel route, and then accurate powder analyasscarried out by means of ICP/AES, X-
ray powder diffraction, Rietveld refinement, higésolution electron transmission microscopy
(HR-TEM) with energy dispersive spectroscopy (ERS)well as infrared (FT-IR/ATR) and
solid-state NMR spectroscopy. Two pH levels of peation were studied, as well as six
Si/P molar ratios.

2. Materials and methods

2.1 Powder synthesis

HA and SiHA powders were prepared through an agueoecipitation method using a fully
automated apparatus. A diammonium hydrogen phospigiieous solution ((NjBHPO;,
99%, Merck, Germany), and, if applicable, an ah®lisilicate solution were added to a
calcium nitrate solution (Ca(N{3, 4H,0, 99%, Merck, Germany) using peristaltic pumps.
The reaction was performed under an argon flow, (AiB.iquide) to prevent any excessive
carbonation of precipitates. The pH of the susmemsias adjusted by the addition of a 28%
ammonia solution (Merck, Germany) by means of asp&t (Hanna Instruments), and the
temperature was controlled and regulated autoniigtieeith an external T-probe. The
suspension was continuously stirred and refluxefterAcomplete introduction of the
solutions, the suspension was matured for 24 h tlaenl filtered under vacuum. Finally, the
precipitates were dried at 70°C overnight.

The solution of soluble silicates was preparednfrtetraethylorthosilicate (TEOS

>99%, Aldrich, Germanyyia a sol-gel route. The original step consisted efggheparation of
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a silica gel through the hydrolysis and condensatb this precursor. First, the alkoxide
groups (Si-OEt) of TEOS were hydrolyzed to silagobups (Si-OH). The reaction was
catalyzed by a nitric acid aqueous solution (7.8M) This generates a considerable amount
of monomers (Si-OH), which aggregate and form éwmdl suspension called the “sol”. This
reaction, based on Klein et al. [80], was carried by maintaining the molar ratio of
TEOS/ethanol/acidified water at 1.0/8.5/4.0 and #wution at 25°C in an ambient
atmosphere. Second, the condensation of the silanallkoxide groups was initiated by
increasing the solution pH to a basic level, abpidt 8, with a few drops of pure 28%
ammonia solution (Merck, Germany). This reactiorates siloxane bridges (Si-O-Si),
leading to the formation of a silica gel. The gelatreaction was continued for about 12 h at
25°C. Finally, a solution of soluble silicates wastained by depolymerization of the silica
gel. This was achieved through the nucleophiliacktt of siloxane linkages (Si-O) by
hydroxide ions in pure 28% ammonia solution (pH13}. After filtration through a Millipore
filtration unit (Magma nylon, 0.8 um), the solulsiéicate ion concentration of these solutions
was measured by means of an ion-exchange chromgtogrsystem (DIONEX DX-500)
equipped with a Si¢) ion exchange column (AS4A) with a UV/Vis detecfd0 nm). The
soluble silicate ion concentration in these sohgiovas, on average, 102634 ppm (n=14
solutions). This value is a function of the preparaprocess (e.g. hydrolysis, condensation
and depolymerization reactions). Thereby, the velwhthe solutions of soluble silicates was
adjusted for each synthesis.

A pure HA powder Ca(POy)s(OH), was first prepared to be used as a reference
material for further SIHA syntheses and analyséss Was obtained at a pH and temperature
of precipitation of 9.5 and 50°C, respectively,iw#& maturation time of 24 h, and a reagent

(Ca/P) molar ratio equal to 10/6.
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The reagent ratios used to prepare the SiIHA pavdere calculated by assuming,
first, the general formula G&#POs)6.y(SiOs)y(OH)..«(Von)y and, second, a constant molar
ratio Ca/(P+Si) equal to 10/6. The volume of thieioan and phosphate aqueous solutions
was fixed at 500 mL and 250 mL, respectively. Tadbummarizes the amount (mol) of Ca,
P and Si used for each (Si)HA powder prepared wehual to 0, 0.25, 0.50, 0.75, 1.00, 1.25;
designated hereafter as HAg &HA, SipsHA, Sip.7sHA, SiiocHA and Si HA, respectively.
Precipitations were achieved at 50°C for 24 h ofursion time, according to the preliminary
tests performed on pure HA. Two parameters of pration were examined, the pH of
precipitation and the stoichiometric numbgri.e, the amount of silicate theoretically
incorporated into the apatite structure. Precijoitet were conducted either at pH 9.5,
previously established for HA synthesis, or at ppi80 + 0.05. The former was chosen
according to phosphate and silicate speciation eyrin order to have HR®O[81] and
H3SiO,4 ions [82] in solution as the main phosphate ahidase species, respectively. The
studied parameters are listed in Table 1.

The as-synthesized powders were heated undesiag an alumina crucible. Aliquots
of each sample were calcined both at 400°C for{@esignated hereafter as “raw powders”),
in order to remove synthesis residues, and at ID@°15 h under air according to ISO norm
13779-3 in order to characterize powders with al-defined structure. The heating and
cooling rate was fixed at 4°C nmitn
2.2 Powder characterization
2.2.1 X-ray powder diffraction and Rietveld refinenent
Crystalline phases were identified by means ofean®ns D500®/20 X-ray diffractometer
(XRD) using Cukx radiation and operating at 40 kV and 20 mA. XRDtgras were first
collected over therange of 10-60° at a step size of 0.03° and cogritme of 4 s per step

in order to determine the phase composition. CHyrstaphases detected in the patterns were

8



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

identified by comparison to standard patterns fitte ICDD-PDF (International Center for
Diffraction Data-Powder Diffraction Files). In adidin, high resolution XRD scans were
obtained on calcined powders from 10° to 120° B20.steps with a counting time of 10.5 s
per step. These patterns were used to calculatatticee parameters and the crystalline size
by full pattern matching. In this mode, the positoof the diffraction peaks and the
systematic extinctions are calculated from the palfameters and the space group. The
intensities of the lines are adjusted by the raefiaet program and not calculated from the
atomic positions. The refinements were performedguthe space group of the HA structure
P63/m (PDF 09-432) by means of the Topas softwBraker, Germany). The initial cell
parameters were takenas 9.42A and: = 6.88A.

The evolution of the crystallinity of the samplsféer calcination at 1000°C for 15 h
was evaluated by means of the full width at halixmam (FWHM) of the (211) peak at
20=31.8°, as it had the highest intensity and miniovedrlap with neighboring peaks.

2.2.2 Infrared spectroscopy

Fourier transform infrared (FT-IR) measurementseaearried out with the use of a MIR TF
VERTEX 70 Spectrometer by means of the ATR systEne. spectra were recorded over the
range of 450-4000 cirwith a resolution of 2 cth Spectra were obtained by signal averaging
32 successive scans. Every measurement was atllgalgtated on two independent powder
samples crushed by hand, with an agate pestle anidmand deposited on the ATR system.
Spectra were normalized with respect towhband of the phosphate group at about 602,cm
according to a classical procedure [83, 84].

2.2.3 NMR spectroscopy

NMR spectra were recorded on a Bruker AVANCE 30Gcspmeter: B=7.05 T,
vo(*H) = 300.13 MHzyo(*'P) = 121.49 MHzy o(*°Si) = 59.62 MHz, using a CP-MAS Bruker

probe with 4 mm rotors spinning at 14 kHz fer and®'P and with 7 mm rotors spinning at 5

9
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kHz for 2°Si. Chemical shifts are referenced to TMStdrand®°Si and 85% aqueoussPIO,

for 3'P. Single pulse and CP (cross-polarization) MASeeixpents have been used to study
these materials. CP MAS relies on the heteronudgemar interaction between an abundant
spin X (H here) and a low abundant nuclei ¥R and®Si here). It allows the study of local
molecular motion. The NMR parameters are summaiizdable 2.

2.2.4 Electron microscopy (HR-TEM, SAED and EDX)

High resolution transmission electron microscopyR{HEM) was conducted on calcined
powders (1000°C/15 h) using a JEOL 2010 F Microscapa voltage of 200 kV. Samples
were prepared by dispersing the powders in ethakftér sonication at 40 W for 5 min, a
small drop of the suspension was placed onto com@sh grids coated with a holey carbon
film. Finally, a thin coating of gold (10 nm in dkness) was sputtered on half of the grid.
Gold was then distributed as crystallized nano-domahich were used as a reference in the
selected area electron diffraction (SAED) pattexmgalculate as precisely as possible the
lattice parameters. The SAED patterns obtained fregions with or without gold on the HA
part were the same.

2.2.5 Elemental analysis

The silicon, phosphorous and calcium content in gew was determined by inductively
coupled plasma atomic emission spectrometry (ICERABEHORIBA Spectrometer, Jobin-
Yvon, Activa model). Powder samples were dissolued nitric acid solution (0.5 M).
Solutions were prepared (e.g. powder mass, dilutionorder to limit the measurement
uncertainty as well as to determine the concenoinatiof Ca, P and Si within the highest
sensitivity range of the ICP/AES device (aroundp®dn). Lastly, the carbon content in the
powders was determined using an elemental analyzkran infrared detector (LECO CS-

444 carbon and sulfur analyzer).
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The stoichiometric numbey was determined by means of Eq. 4, assuming that
powders containing 6 wt%Si < 2.81 (or 0< y < 1.00) are pure monophasic SiHAsS

Calo(PO4)6_y(SiO4)y(OH)Z_y(VOH)y, without any second crystalline or amorphous phase

%wt Si = (5100 / nmyiyna) = (CMi Vs 100) / (MEiyria) (1)
Nsi = (%WLST Meya) / (Ms; 100) )
Msiyta = Muya — (19.895 y) (3)
ysi = (Nsi Msiyia) / (Msigria) = (%WLSi M) / (100 M; + 19.985 %wt Si) 4)

where %wt Si is the mass percentage of Si in thedpo, Cng; is the mass concentration of Si
in the analyzed solution by ICP/AES (ppm or m{),L Vs is the volume of the analyzed
solution (L), msiyna is the mass of the powder dissolved in the forswution (mg), and
MsiyHa, Mua and Ms; are the molar masses of SiyHA, HA and Si, respelsti(g mot%).

3. Results and discussion

3.1 Influence of pH on the SiHA phase composition

Sio.s0HA powders were synthesized at 50°C with pH vakegsal to 9.50 (9kHA-9.5) and
10.80 (SésdHA-10.8). Fig. 1 shows the XRD diffractograms ofwgters calcined at 1000°C
for 15 h. The pattern of the (StHA-9.5 sample presents two different crystallineagds
matching the ICDD standard for hydroxyapatite (HFRF 9-432) and-tricalcium phosphate
(o-TCP, PDF 9-348). The &HA-10.8 diffractogram displays only the characticis
diffraction lines of HA. This result indicates théte final composition of the powders is a
function of silicate ion speciation.3HiO, or more basic forms of silicate ions have to be
maintained during the synthesis to obtain a thdgrsaable SiHA phasd,e. a monophasic
powder after heat treatment at 1000°C/15 h. Thesefberein, the following results are
presented for powders prepared at pH 10.8. Undesetlsynthesis conditions, the general
reaction of precipitation can be written as follows

10CE +(6-y)HPQZ+ yHsSiOs +(8+Y)OH o Caro(POs)e(SiOn)y(OH)oy(Vor)y +(6+2y)HO  (5)
11
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To our knowledge, this is the first time that aetforecipitation reaction has been given for
SiHA.

3.2 Influence of the Si content (¥)

3.2.1 X-ray diffraction analysis

Fig. 2 shows the diffraction patterns of HA angH& (ysi = 0.25, 0.50, 0.75, 1.00 and 1.25
mol) raw powders. Each pattern matches well withgtandard pattern of HA (PDF 9-432).
No other phase was detected. The samples exhdadhdiffraction lines which indicate very
small crystallites and/or low crystallinity. Morthe FWHM increased with silicon content.
The diffractograms of heat treated powders (10008Q4) are displayed in Fig. 3. They
present no secondary phase besides hydroxyapatite dilicon content up tosy= 1.00. On
the other hand, HA (PDF 9-432) andTCP (PDF 9-348) were detected in the pattern of
Sip oHA calcined at 1000°C for 15 h. Moreover, as obsdryor the raw powders, the
crystallinity of SyHA calcined powders with & y > 0 decreased with an increase in the
silicate content. Indeed, the higher the Si contdre higher the FWHM of the diffraction
line. For instance, the FWHM of the diffractiondimat 31.8° (8) increased as follow: 0.070
(HA) < 0.096 (Si»HA) < 0.160 (SisHA) < 0.164 (Si.7HA) < 0.170 (SioHA). This is due

to both direct (decrease in the crystallinity) andirect (decrease in the crystallite size)
effects of Si, but the individual contributions thiese effects cannot be evaluated by X-ray
diffraction.

The XRD patterns indicate that whatever the amadirsilicon ranging between €
wt%Si < 3.51 (or 0< y < 1.25), the crystalline phase of the precipitatea hydroxyapatite
(PDF 09-432). Thereby, silicon can be incorporatedthe apatitic structure, or in an
amorphous phase or in both phases. However, oelyiptates containing up to 2.81 wt%Si
(or y = 1.00) are thermally stable at 1000°C fohl5

3.2.2 Lattice parameter refinement

12
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Refinement was performed on monophased heat-trgat@ders (< y < 1.00). The results,
displayed in Table 3, reveal changes in the apaittiucture parameters. The Si substitution
causesc-axis and unit cell volume expansion as well agduction in the mean crystallite
size. The same observation was reported in otleliest [10, 17, 32, 70, 85]. On the other
hand, and in contrast to the linear increase oflatéce parametec with an increasing
amount of Si, thea lattice parameter fluctuates at random betwee@@®A and 9.428 A.
These results highlight that all or part of thécsih is incorporated into the apatitic structure.
3.2.3 Elemental analysis
The experimental Ca/(P+Si) molar ratios of thelfeacined powders are presented in Table
1. Values are in accordance with the expected ¢(hég) for all compositions, considering
experimental error. Moreover, the calcined powdeese not carbonated since the carbon
content by weight was equal to 0.03, 0.07, 0.065 @nd 0.05 wt% (+ 0.02 wt%) for HA,
Sip.23HA, SigsHA, Sip7sHA and Si oHA, respectively.

The results, presented in Table 1, show that leenecal formulas of SiHA calculated

first by the measured silicon contents, then by tie theoretical formula G#PO,),.
y(SiOA)y(OH)Z_y(VOH)y and finally using Eq. 4 are in a good agreemettt e nominal ones.

3.2.4 Electron microscopy

A low magnification bright-field image of heat-tted Si odHA particles is shown in Fig. 4a.
SiHA powders are composed of round particles, sndhan 100 nm in diameter for
SihoHA, whereas the HA powder shows bigger acicularstalg [86]. At higher
magnification, grains do not present any dislocatow disorder within the central region.
Similarly, high-resolution lattice images of theagr surface do not show any amorphous or
disordered layer (see Fig. 4b). A selected aredrele diffraction (SAED) pattern obtained on
the same grain is displayed in Fig. 5a. SAED pasteshow a diffraction pattern with well-

defined spots regardless of the selected area.ififisates the high crystallinity of the heat-
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treated SIHA powders and the homogeneity of thetaty. Second, a very good agreement
appears between the SAED patterns and the PDFO€a4A®2 of HA as identified by X-ray
diffraction. Moreover, no halo ring was observednfirming the absence of the amorphous
phaseFig. 5b shows a SAED pattern for the [010] zones.aXivo other SAED patterns were
obtained for the [1-10] zone axis. Indexation afs patterns allows for calculating ttia
ratio by means of the interval between two spotsus] for instance, according to the
hexagonal crystallographic structure identifiedXyay diffraction and the distance;@2nd
D, between two spots along the [h00] and [001] dioast ([010] zone axis, Fig. 5b),
respectively, the/a ratio was calculated as follows:
(c/a)” = % (D/D2)* (6)
The results are the average of about ten intepaigpattern. Ac/a ratio of 0.730 +
0.005 was determined. Moreover, other experimepddtierns for different zone axes (not
shown here) were obtained and compared to theakestectron diffraction patterns
calculated by means of the Java Electron Micros@ipyulation (JEMS) software [87]. The
results indicate that the experimental and simdlgt@tterns are perfectly superimposed for
0.734> c/a> 0.729. Additionally, the c/a ratio value from PD®432 (0.7309) is included in
this range.
3.2.5. Solid-state NMR analysis
3.2.5.1.°'P MAS NMR
The *P MAS NMR spectra of HA, $sHA and SioHA calcined at 1000°C for 15 h are
shown in Fig. 6a. The spectra present a main napeak which corresponds to the single P
site of hydroxyapatite [88], and whose positionftshio higher frequencies with increasing
silicon content: 2.8 ppm for HA, 3.0 ppm forp§HA, and 3.1 ppm for $pHA. Likewise,
the FWHM broadens: 166 Hz < 188 Hz < 233 Hz for ra#, SipsoHA and SioHA,

respectively (figure not included), and 55 Hz < 12 < 233 Hz for calcined HA, &HA
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and Si HA, respectively (Fig. 6a). The chemical shift grehk broadening indicate that the
SiHA structure is different from a perfect hydropgdite short-range structure. The increasing
line width suggests an increase in local disordeurad those phosphate groups where Si is
incorporated in the HA structure. Besides the 28 peak, two additional weak broad peaks
at 4.6 and 5.8 ppm were detected iniespectra. The peak at 4.6 ppm was only revealed in
the'H-> 3P CP MAS spectrum (Fig. 7b). HA powder did not preshe 4.6 ppm signal (Fig.
7a). According to Hartmann et al. [89], tAi® MAS peak at 5.8 ppm corresponds to,PO
tetrahedra in a proton-free region of a hydroxydgathannel structure containing OH
vacancies i(e. along the crystallographic-axis). These proton-free regions, observed in
oxyhydroxyapatite Ga(POy)s(OH)2-2dO)x(Vor)x (OHA), must exist in silicon-substituted
hydroxyapatite CB(PO4)6_y(SiO4)y(OH)2_y(VOH)y (SIHA), or  silicon-substituted
oxyhydroxyapatite Ga(PQ)e(SiOs)y(OH)2-y-2xOx(Von),,, (SIOHA). The assignment of the
peak at 4.6 ppm, that seems related to the incatiparof Si in the apatite lattice, will be
discussed later on (section 3.2.5.3).

3.2.5.2.'"H MAS NMR

The'H MAS NMR spectra of pure HA, §dHA and SioHA powders calcined at 1000°C
for 15 h are shown in Fig. 6b. Two signals wereeobsd, one sharp at 0 ppm and one
broader at about 5.2 ppm. The former (0O ppm) igattaristic of OH groups in crystalline
HA [89]. Moreover, and similarly to th&P signal at 2.8 ppm, the greater the Si contetitén
apatitic structure of the calcined powders, theades the FWHM of the signal at 0 ppm
(FWHM = 108 Hz for HA, 191 Hz for $HA and 228 Hz for SipdHA). This suggests a
change in the environment around the hydroxyl gsoiymhlighting the modification of O-H
bond distances due to Si. As postulated by Gomes,eahis concomitant broadening of the
31p and'H resonances with Si content confirms the incorponaof Si atoms into the apatite

lattice [30]. The signal at 5.2 ppm was attribubydHartmann et al. to OHbositions missing
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only one neighboring ion in OHA channels [89]. Ttyipe of OH group along the channels of
the apatite structure leads to the formation obtpn pairs” stabilized by a hydrogen bond.
The intensity of this proton position is higherSitHA samples than in HA, but does not seem
to be an exclusive function of the Si content (Sige 6b). Therefore’H MAS NMR indicates
the presence of two types of Ogroups along the channels of the apatite structame
unchanged proton line position with continuous "Ogtoups (0 ppm) and OHpairs
surrounded by vacancies (5.2 ppm).

3.2.5.3.'H-*'P HETCOR CP MAS

To confirm that the entire proton position is ladhtin the apatite channel structure, two-
dimensional'H-**P HETCOR CP MAS experiments were performed on rad @alcined
powders. Fig. 8 presentsli-*}P HETCOR CP MAS spectra recorded on rawe$lA (Fig.
8a) and calcined &iHA (Fig. 8b) powders. The spectra show two mainc@relation peaks
on both raw and calcined powders. The same peates abserved for gbsHA, SipsgHA and
SipoHA (HETCOR CP MAS results for calcinedp2#HA and SioHA not included). The
stronger one (peak A, Fig. 8b), characteristic mofideal HA structure, is due to the dipolar
interaction between the P site3*{P) = 2.8 ppm) and the OH site§('H) = 0 ppm). It
corresponds to an undisturbed hydroxyapatite staoige structure [89]. The second one
(peak B, Fig. 8b) appears between e signal at 4.6 ppm and the signal at 5.2 ppm. Its
intensity increases with heat treatment (Fig. & #re Si content (data not included). This
correlation is not observed for the HA sample (dedtincluded). Moreover, a low extent of
peak B is observed with the maitiP peak at 2.8 ppm (peak C, Fig. 8b). The interdfitis
2D correlation peak becomes stronger with Si cdrasrwell. More generally, the higher the
amount of Si incorporated into the SiHA structuttee stronger the dispersion of the main
correlation between A and B along tH® axis. Finally, as expected, the HETCOR spectra

show no correlation peak of tH&P line at 5.8 ppm, confirming that it correspondsat
16
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proton-free phosphate position. To conclude, firet broadening of peak A indicates an
increase in the distribution of P-H bond distane#®n silicate is incorporated into the HA
structure, corresponding to the loss of local ardem the phosphate environment. Second,
peaks B and C correspond to two distinct P sitethenvicinity of isolated pairs of protons
(OH pairs) present in the channel structure of silsohstituted oxyhydroxyapatite
Cao(POy)6-y(SiOs)y(OH)2.y-2:0x(Von)y+x (SIOHA): (i) peak B represents a very strongly
distorted hydroxyapatite short-range structure @ngeak C represents a less distorted one.
Peak B is clearly related to SjGubstitution and proves once again that charggpeasation
implies OH vacancies along the channels, leadirtggdormation of OHpairs in the vicinity

of the substituted PPtetrahedra. Peak C can be due to ,Sgdbstitution as well as
dehydration of SiHA, both leading to the formatmiOH vacancies in SIOHA.

3.2.5.4.7°Si MAS NMR

The?*Si MAS NMR spectra of $ibHA powders, raw and calcined, are shown in FigHe

raw powders present two resonances: one sharpat &2 ppm that is clearly attributed to
Sio,* (Q% in the apatitic structure [90], and a broad pag#bout -100/-110 ppm which
corresponds to ¥Q* silicon species [16]. The results confirm that th&in part of the silicate
is incorporated into the HA lattice during precgibn, according to the main reaction Eq. 1.
The rest of the silicates are adsorbed at thealhystsurface, as observed for phosphates
during the precipitation of apatitic calcium phoaf#s [91, 92]. After calcination, the broad
peak at -100/-110 ppm disappears without the deteof new signals, similar to those
reported in the literature (Si-TCP @Ca&SizOo) [16, 30, 38]. The same results were obtained
for the SpsHA and SpsHA samples (data not included).

3.2.6. FT-IR analysis

3.2.6.1 As-synthesized samples
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The IR spectra of the raw HA and SiHA powders vathilicon content up tosy= 1.25 mol
(figure not included) present strong similaritiesd aexhibit intense bands characteristic of
hydroxyapatite. They correspond to the four vilanaél modes of phosphate groups {2, vs,
andvy), and the stretching§) and librational . ) modes of the hydroxide groups [81, 92-94].
The intensity of the latter, at 630 ¢ngv.) and 3570 cil (vg), clearly decreased with the
amount of silicon. These results confirm that tlsesgnthesized precipitates exhibit the
hydroxyapatite phase, regardless of the amouniticdis ranging between € wt%Si< 3.51
(or 0<y<1.25), as observed on the diffractograms (FigA2nore accurate description of
the infrared spectra of the as-synthesized SiHA deo®/ is available in a complementary
article [95].

3.2.6.2 Calcined samples — general observations

Fig. 10 compares the infrared spectra of heatate®tA and SiHA powders (1000°C/15 h).
The HA and SHA with 0 < y < 1.0 powders mainly present bands characteristic of
hydroxyapatite with the; (962 cm'), v» (473 cn'), vs (1021 and 1085 ci) andv, (562 and
600 cm') modes of PG, as well as the stretchings( 3572 cnt') and librational . : 629 cm

) modes of hydroxide groups [81, 92, 94]. A shoulale947 crit was also observed for HA
and SiHA powders. The relative intensity of thi®slder was slightly higher for SiHA than
for HA, but did not seem to be a function of theoamt of Si. Besides the low hydroxyapatite
vibrations, the spectrum of the; 24HA powder presents mainly the characteristic baids
TCP and traces d@-tricalcium phosphate3{TCP): the weak band at 495 ¢nascribed to
the O-P-Ov, vibrational mode of-TCP, the bands due to the splitting of thenode at 567
cm? in o-TCP (551, 560, 580, 595 and 611 Bmthe bands at 945 and 955tmssigned to
the degenerated symmetric P-O stretching vibradiothe phosphate ions;) in 3- anda-
TCP, respectively, and the bands correspondinghéostrong asymmetric P-O stretching

mode ¢) for B-TCP (988, 1025 cif) anda-TCP ( 988, 1013, 1025, 1031 and 10553152,
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96]. This result is complementary to the X-ray w@ifftion pattern (Fig. 3) and indicates that
the Si »sHA apatitic precipitate decomposes during heatineat with the formation of TCP
and amorphous silica species.

3.2.6.3. Calcined samples — accurate IR band assigent of the pure SiHA phase

As opposed to HA, the FT-IR spectra of the calciggtHA powders, with 0< y < 0.75,
exhibit nine new bands or shoulders (sh) at 49), &M, 528, 750, 840, 893, 930 (sh), 985
(sh) and 1002 (sh) cf The intensity of these new vibrations increasétth the amount of
Si, except for the weak band at 840 tmnd the shoulder at 930 gnwhich remained
relatively constant. Conversely, the intensity loé tabsorption bands attributed to the four
vibrational modes of P§& and both modes of Okh hydroxyapatite decreased as the amount
of Si increased in the range<Oy < 1.00 (e.gvs OH : 0.49 (HA) > 0.39 (9ksHA) > 0.35
(SigsHA) > 0.12 (Sp.74HA) > 0.07 (Si.oHA)). More precisely, the. mode decreased to the
detection limit for y = 1, while the stretching tldH band decreased and broadened. In fact,
two new vibrations at 3565 and 3552 tnslose to the main one at 3572 trwere detected
(Fig. 10). This confirms the mechanism of chargengensation with the creation of OH
vacancies, and highlights the new environment aistrilsution of OH ions along the
channels of the SiHA structure [93, 97] and, manpartantly, the formation of low hydrogen
bonding between closed*Oand OH ions (H-bonds cause a shift of 20 trto the low
wavenumber of the main band at 3572cf@8]). The FT-IR spectrum of SHA displays
the same eight new bands as those detected @gH8i SipsHA and Sp,sHA. However,
their relative intensity decreased significantBaching the detection limit for the band at 750
cm™ and with a complete disappearance of the band81at504, and 528 ¢t Additionally,
seven new vibrations appeared at 500, 515, 535, 888 and 873 cth They were
accompanied by an intensification of the should&@4& cni". The bands at 683, 798 and 870

cm™* were also detected in spectrum of A calcined powder. According to these results
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and an accurate review of the bibliography, sumreariin Table 4, it is clear that the nine
vibrations at 493, 504, 528, 750, 840, 893, 93( @8d 1002 cih are related to the
incorporation of Si into the hydroxyapatite struetuThe changes detected in the sample
Sip o0HA were due to the start of decomposition of thdASphase, emphasized by a decrease
in the nine characteristic bands and the formabéran amorphous silica phase which
presents vibrations at 500, 515, 535, 683, 79884dcm’. Silica was not detected by NMR
due to the low amount &fSi in the samples (high detection limit). The skieunlat 947 cr
could be attributed tB-TCP, which exhibits a symmetric P-O stretching medat 945 crit
[96]. However, this assumption is not convincingcs other bands assigned3elrCP are
absent. In fact, this shoulder is a contributioriha Si-O in plane stretching vibrations in Si-
OH and Si-O on the surface of the grains, and the symmetretcdting ¢1) vibration of
orthophosphate groups in the neighborhood of Otaveies along the channels. The former,
reported at 950 crh(see Table 4), shifted toward lower frequencies uhydrogen bonding
between surface groups, thus creating the compaate®80 crit. The band at 950 chis
commonly observed for oxy-hydroxyapatite 16BOw)e(OH)2-2O0x(Von)x, [93, 99-102].
Therefore, in the context of this study, Ordcancies (¥u) are due first to the incorporation
of SiO, into the HA structure, and second to the partediydiration of SiHA to SIOHA as
follows:

Cao(PQy)6-y(Si0s)y(OH)2-(V o)y <> Caod(POu)e-y(SiOs)y(OH)z-y-20x(Vor)y+x + X HO  (7)
3.2.6.4. Calcined samples — OH vacancies and thmili of incorporation of Si in HA

The amount of hydroxide (%OH) in the silicon-sutidéd hydroxyapatite structure is
reported versus the amount of silicon (mol gal) in Fig. 11. The theoretical values of OH
were plotted by considering the formula;§BOu)s-(SiOs)y(OH)2.y(Vor)y (i.e. %0OH = 100 -

50 y). The experimental values were determined@nrtemperature on the calcined samples

(1000°C/15 h) by means of the integrated area®fttandvs OH bands. The average of the
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integrated areas obtained for HA (y=0) was assurnmede representative of the full
occupancy of the OH position within the channel@@ OH). The amount of OH vacancies
(Von) determined experimentally was always higher tthentheoretical one with respect to
the chemical formula GgPO)6.y(SiOs)y(OH)..y(Von)y. In other words, the dehydration of
the calcined powders was greater than expecteda dmgher Si doping level led to a greater
difference. Thus, the incorporation of Si into thgdroxyapatite structure generates OH
vacancies first to maintain the charge balanceax)s.y(SiOs)y(OH)..y(Von)y) and second
from another phenomena, which is an increasingtimmaf the amount of Si. A possible
explanation is an increase of the mobility of Osalong the channel axis (local disorder)
and their subsequent rate of diffusion and debandnom the HA lattice [103]. HA
decomposition is a dynamic process, mainly cordlby the degree of dehydration [104-
106]. In fact, the thermal stability of hydroxyapatwas found to depend on the fraction of
Von and G ions in the channels. Several “critical valuesgf; in OHA Cao(POs)s(OH ).

2 Ox(Vou)x have been reported beyond which the apatite chatmeture is destroyed: x
0.80 [103], x< 0.75 [107], x< 0.50 [89]. However, the most probable limit confresn work

of Heughebaert and Montel on the crystallizatiorcaltium phosphates during precipitation
[108, 109]. They determined that the apatitic strrecappears only when at least 25% of the
OH positions along the channels are really occupiedther words, the apatitic structure
appears when d; < 1.5. Therefore, the theoretical maximum limitreforporation of Si into

a hexagonal apatitic structure is y < 1.5 as regdiné formula Ca(PO)e-(SiOs)y(OH),-
y(Von)y. However, due to the dehydration reaction (Eq.tfis limit is a function of the
temperature and the atmosphere of heat treatméid. d&ssumption can explain why the
Sip gHA and Si »>gHA powders, which showed an apatitic structureraftdcination at 400°C
for 2 h, were not thermically stable at 1000°C 1&r h in contrast to SiHA with a silicon

content ranging between<Qy < 0.75. Control of the degree of hydroxylatio®, the partial
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steam pressurepp, IS necessary to control the thermal stabilitytted SIHA phase. This
assumption is confirmed by the infrared spectraiokt from the SicHA sample heat treated
at 1000°C for 15 h under different partial pressuwksteam, o, in mbar (Fig. 12); a higher
pu2o led to a more stable silicon-substituted apatitase. Thus, the S§HA powder, after
calcination under high steam pressurg{p= 200 mbar), presented only the characteristic
bands of SiHA with traces of amorphous silica a tlR spectroscopy detection limit
(=0.1wt%), whereas the same sample heat-treated whrgleargon gas (p#0 = 0 mbar)
contained amorphous silica species as well as TGin@p). Moreover, the vibrations related
to Si-O in SiHA (750 and 890 chias well as the vibrational modesandv, of the phosphate
groups in HA decreased with a decreaseqin. fConversely, the vibrations due to amorphous
silica species, at 683, 798 and 873'cand TCP (e.g. 731, 942, 997 and 1137 cincreases
with a decrease inypo.

These results confirm that the formation of amorghsilica and the decomposition of
the SiHA phase are correlated. More preciselyd#tection of amorphous silica indicates the
start of decomposition, which is followed by themation of TCP @ andp).

Finally, Trombe and Montel reported the variatioiha from 9.421 A to 9.402 A,
without a significant variation in the lattice parameter, when HA transforms into OHA,
Cao(POy)6(OH)0.s00.75Vor)o.75s [102]. Thus, SiHA dehydration can explain the m@md
fluctuations in the lattice parameter observed in this work and inliteeature [30].

4. Conclusion

This paper presents a new route to synthesize nmasapsilicon-containing hydroxyapatites
Cay0(POy)6-(SiOs)y(OH)2-(Von)y (SIHAS) with controlled stoichiometry. The combiioa of
solid state nuclear magnetic resonance (NMR) andgéctroscopy (IR) demonstrated that
silicate substitution for phosphate creates OH neies along the channels. Moreover, Si

substitution increases the local disorder and tbbility of OH ions along these channels and
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their subsequent rate of diffusion and debondimmgnfithe HA lattice. The control of the
degree of hydroxylation of the SiHA phases, their thermal stability, can be carried out by
means of the partial steam pressurgy.pAdditionally, an exhaustive description of the
infrared bands related to the incorporation ofcate groups into the HA structure was
established. It allowed us to determine that tiherdiure has incorrectly attributed some
infrared bands to silicate groups in the apatitecstire. These bands, e.g. 683, 798 and 873
cm?, due in fact to amorphous silica phases, raisstiues regarding the phase purity of the

great majority of biologically evaluated SiHA bigaaics.
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Fig. 1. XRD patterns of heat treated Si,;0HA powders prepared at 50°C and maintained at pH
9.5 and 10.8.
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Fig. 2. X-ray diffraction patterns of raw SiHA powders synthesized at pH = 10.8 with
different silicon concentration.
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Fig. 3. X-ray diffraction patterns of heat treated (1000°C/15h) SiHA powders synthesized at
pH = 10.8 with different silicon concentration.

Fig. 4: (a) TEM micrograph of heat treated Si, HA crystallites (1000°C/15h), (b) High-
resolution lattice image of a heat treated Si, HA particle (1000°C/15h) along the zone axis
[01-1]; plane spacing of 8.2A.
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Fig. 5: (a) selected area electron diffraction (SAED) pattern of heat treated Si, .HA powder
(1000°C/15h), (b) SAED of heat treated Si,o.HA powder (1000°C/15h) for the [0 1 0] zone
axis, ¢/a= 0.730
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Fig. 6. (a) 3'P and (b) *H MAS-NMR spectra of the HA, Si, ;oHA and Si,.coHA powders
calcined at 1000°C for 15h.
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Fig. 7. Comparison between 3:P MAS-NMR and CP MAS NMR spectra of (a) HA and (b)
Sio.50HA powders calcined at 1000°C for 15h.
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Fig. 8. *H-3'P HETCOR CP MAS experiment recorded on (a) Si;.coHA powder calcined at

400°C for 2h, and (b) Sio50HA powder calcined at 1000°C for 15h.
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Fig. 9. 2981 MAS-NMR spectra of the Sii.ooHA powder calcined at 400°C for 2h and 1000°C

for 15h
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Fig. 10. FTIR spectra of calcined HA and SiHA powders (1000°C / 15h) collected at room
temperature, symbol e shows additional vibrations for Si; HA at 500, 515, 535 cm™.
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Fig. 12. FTIR spectra of calcined Si,.oHA powder (1000°C / 15h) under different partial
pressure of steam (pu20 = 0, 80, 200 mbar and air).




Table 1

Chemical conditions of preparation of HA angr8\ samples and final composition of the

calcined powders (1000°C/15h).

Synthesis parameters

(T = 50°C, {, =24h)

Composition of the final calcined powders (1000°C)15h

Nca Ne Ng; pH Ysi Ysi Chemical formula of SHA Ca/(P+Si)
Sample
Expected Determined - According to Equation Eq. )
Determined by
/mol | /mol | /mol - / mol mét gia - ICPIAES
HA 0.200 | 0.120 0 9.5 0 0 GAPOy)6(OH), 1.69 £0.05
SipoHA | 0.200 | 0.115| 0.005 11. 0.25 0.28+0.02  1JROy)5 7ASiO4)0.24 OH)1 7V oH)o.28 1.69 £0.02
SipsHA | 0.200 | 0.110| 0.010, 9.5 0.50 N/A HAx+TCP N/A
SipsHA | 0.200 | 0.110( 0.010, 11. 0.50 0.52+0.02  1dROy)5 44 SiO4)0.5{OH)1.4Vor)o.52 1.68 £0.02
Sip7HA | 0.200 | 0.105| 0.015 11. 0.75 0.72+0.02  14ROy)5 24 SiO4)0.7AOH)1.2dVor)o.72 1.67 £0.03
SipoHA | 0.200 | 0.100| 0.020, 11. 1.00 0.97+0.02  14ROy)5 04 SiO4)0.9AOH)1.04{VoH)o.07 1.67 £0.01
SipoHA | 0.200 | 0.095| 0.025 11. 1.25 N/A HA+TCP N/A




Table 2

NMR parameters.

oy number relaxation H . cqntact . t
NMR Experiments of scans delay decoupling time increments
Ius - I's - / ms
'H MAS 4.6 4 300 - - ;
¥p MAS 1.3 16 60 - -
P CPMAS 16 SPINAL-64 3 i
'H3p HETCOR | 19 2 15 (54kHz) : -
CPMAS
295 MAS 15 ~ 4000 60 SPINAL-64 ) ]

(45kHz)




Table 3.

Lattice parameters, unit cell volume and mean sfabe crystallites of heat-treated powders

at 1000°C for 15h evaluated by Rietveld refinement.

Lattice parameters / A

Sample - - Volume of the unit cell / A Crystallites mean size / nm
a-axis c-axis

PDF 9-432 9.418 6.884 1058 -

HA 9.421+310° 6.884+ 3 10° 1058+ 1 243+ 1

Sig 2HA 9.423+ 4 10° 6.892+ 4 10° 1060+ 1 157+ 1

Sig sHA 9.428+ 2 10* 6.899+ 2 10* 1062+ 1 116+ 1

Sig 7HA 9.423+ 2 10* 6.908+ 2 10* 1062+ 1 103+ 1

Siy oHA 9.416+ 7 10° 6.920% 5 10° 1063+ 1 107+ 1




Table 4

IR bands and shoulders assignment proposed by arlir w

Alemt Mode assignments proposed by this work Literatuppert
1002* Degenerated R® asymmetric stretching4) [94, 110]
985 Si-OH at SiHA surface /and/or/ Siin SiHA [110-112]
Oxyapatite [93, 99, 100, 102, 113]
947
Si-OH at SiHA surface [114-116]
930** Si-OH at SiHA surface /and/or/ SiinH3 [114, 117-121]
893 Siin SIHA [8, 113, 118]
873 Siin silica [112, 113, 122, 123]
840 Si-R [118, 124]
798 Si in silica [34, 110, 112-115, 117, 120, 122, 125-127]
750 Siin SIHA [32, 54, 74]
683 Siin silica [113, 114, 116, 126, 127]
535 Siin silica [128]
528 Siin SIHA [111, 118, 121, 128]
515 Siin silica [127-130]
504 Siin SIHA [32, 56, 118]

* degeneration of the; PQ;> domain at 1020 cthdue to the Sig} in the environment of the
phosphate ions

** degeneration of the band at 947 ¢m
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