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Nested punctual Hilbert schemes and commuting varieties of parabolic subalgebras *

It is known that the variety parametrizing pairs of commuting nilpotent matrices is irreducible and that this provides a proof of the irreducibility of the punctual Hilbert scheme in the plane. We extend this link to the nilpotent commuting variety of some parabolic subalgebras of M n (k) and to the punctual nested Hilbert scheme. By this method, we obtain a lower bound on the dimension of these moduli spaces. We characterize the cases where they are irreducible. In some reducible cases, we describe the irreducible components and their dimensions.

Introduction

Let k be an algebraically closed field of arbitrary characteristic.

Let S [n] denote the Hilbert scheme parametrizing the zero dimensional schemes z n in the affine plane S = A 2 = Spec k[x, y] with length(z n ) = n. Several variations from this original Hilbert scheme have been considered. For instance, Briançon studied the punctual Hilbert scheme S

[n] 0 which parametrizes the subschemes z n with length n and support on the origin [Br], and Cheah has considered the nested Hilbert schemes parametrizing tuples of zero dimensional schemes z k 1 ⊂ z k 2 ⊂ • • • ⊂ z kr organised in a tower of successive inclusions [START_REF] Cheah | Cellular decompositions for nested Hilbert schemes of points[END_REF][START_REF] Cheah | The virtual Hodge polynomials of nested Hilbert schemes and related varieties[END_REF].

Let C(M n ) be the commuting variety of M n , i.e. the variety parametrizing the pairs of square matrices (X, Y ) with X ∈ M n (k), Y ∈ M n (k), XY = Y X. Gerstenhaber [Ge] proved the irreducibility of C(M n ). Many variations in the same circle of ideas have been considered. For instance, one can consider C(a), where a ⊂ M n is a subspace (often a Lie subalgebra), or N (a) ⊂ C(a) defined by the condition that X, Y be nilpotent (cf. e.g. [Pa, Bar, Pr, Bu, GR]).

There is a well known connection between Hilbert schemes and commuting varieties. If z n ∈ S [n] is a zero dimensional subscheme, and if b 1 , . . . , b n is a base of the structural sheaf O zn = k[x, y]/I zn , the multiplications by x and y on O zn are represented by a pair of commuting matrices X, Y . The scheme z n is characterized by the pair of commuting matrices (X, Y ) up to simultaneous conjugation. This link has been intensively used by Nakajima [Na]. Obviously, variations on the Hilbert scheme correspond to variations on the commuting varieties.

The goal of this paper is to study the punctual nested Hilbert schemes S [k,n] 0 and S [[k,n]] 0 and their matrix counterparts N (p k,n ) and N (q k,n ). Here S

[k,n] 0 ⊂ S [k] 0 ×S [n]
0 parametrizes the pairs of punctual schemes z k , z n with z k ⊂ z n and S [[k,n]] 0

⊂ S [k] 0 ×S [k+1] 0 ו • •×S [n] 0 parametrizes the tuples z k ⊂ z k+1 • • • ⊂ z n , p k,n ⊂ M n
is a parabolic subalgebra defined by a flag F 0 ⊂ F k ⊂ F n with dim F i = i and q k,n is associated with a flag

F 0 ⊂ F 1 • • • ⊂ F k ⊂ F n .
Our interest in the nested punctual Hilbert schemes stems from the the creation and annihilation operators on the cohomology of the Hilbert scheme introduced by Nakajima and Grojnowski [Na, Gr]. The geometry of the nested Hilbert schemes controls these operators. A typical application is the vanishing of a cohomology class which is the push-down of the class of a variety under a contracting morphism. It is often necessary to describe the components of the nested Hilbert schemes and/or their dimension to simplify the computations [Na, Le, CE]. On the Lie algebra side, the subalgebras p k,n ⊂ M n are the maximal parabolics, hence are prototypes for the study of general parabolics. On the other hand, the algebras q k,n are used as a tool to study some other cases and are well behaved for our computations.. Closely linked to this setting, note also that q n,n is a Borel subalgebra of M n . Some properties of N (q n,n ) can be found in [GR].

Let P k,n , resp. Q k,n , be the groups of invertible matrices in p k,n , resp. q k,n . It acts on p k,n , resp. q k,n , by conjugation. In the Lie algebra setting, P k,n , resp. Q k,n , is nothing but the parabolic subgroup of GL n (k) with Lie algebra p k,n , resp. q k,n .

It is possible in our context to make precise the connection between Hilbert schemes and commuting varieties. Since zero dimensional schemes are characterized by pairs of commuting matrices up to the choice of the base, the expectation is that Hilbert schemes should be quotients of commuting varieties. This is correct in essence, provided that one takes care of the existence of cyclic vectors. Moreover, the acting groups P k,n and Q k,n are not reductive. Nevertheless, we will construct a geometric quotient in the sense of Mumford [MFK], as follows.

Let N cyc (p k,n ) and N cyc (q k,n ) be the open loci in N (p k,n ) × k n and N (q k,n ) × k n defined by the existence of a cyclic vector, i.e. these open loci parametrize the tuples ((X, Y ), v) with k[X, Y ](v) = k n . They are stable under the respective action of P k,n and Q k,n .

Theorem 3.2.

1. There exist geometric quotients q : N cyc (p k,n ) → N cyc (p k,n )/P k,n and q ′ : N cyc (q k,n ) → N cyc (q k,n )/Q k,n and they are principal bundles locally trivial for the Zariski topology.

2. There exist surjective morphisms π k,n :

N cyc (p k,n ) → S [n-k,n] 0 , π ′ k,n : N cyc (q k,n ) → S [[n-k,n]] 0 .
3. There exist isomorphisms i : N cyc (p k,n )/P k,n → S

[n-k,n] 0 and i ′ :

N cyc (q k,n )/Q k,n → S [[n-k,n]] 0
. These isomorphisms identify the projections to the Hilbert schemes with the geometric quotients, i.e. i • q = π k,n and i ′ • q ′ = π ′ k,n . This is directly inspired from the general construction of Nakajima's quiver varieties (see e.g. [Gi]), the cyclicity being a stability condition in the sense of [MFK]. It can straightforwardly be generalized to any parabolic subalgebra of M n .

We then investigate the dimension and the number of components of

N (p k,n ), N (q k,n ), S [k,n] 0
and S [[k,n]] 0

. Many of our proofs consider the problem for N (p k,n ), N (q k,n ) firstly and then use the above theorem and some geometric arguments to push down the information to the Hilbert schemes. Conversely, sometimes, we pull back the information from the Hilbert scheme to the commuting variety. The general philosophy is that the problems on the commuting varieties are in some sense "linear" versions of the corresponding problems on the Hilbert scheme which are "polynomial" problems. This explains why the most frequent direction of propagation of the information is from commuting varieties to Hilbert schemes.

Theorem 5.11. S [k,n] 0 is irreducible if and only if k ∈ {0, 1, n -1, n}. The variety N (p k,n ) is irreducible if and only if k ∈ {0, 1, n -1, n}. Theorem 5.12. S [[k,n]] 0 is irreducible if and only if k ∈ {n -1, n} or n 3. N (q k,n ) is irreducible if and only if k ∈ {0, 1} or n 3.
When k = 2 or k = n -2, we have precise results on the number of components and their dimensions.

Theorem 7.3. Let w = q 2,n or p 2,n . Then N (w) is equidimensional of dimension dim w -1. It has n 2 components. Theorem 7.5. S [2,n] 0 , S [n-2,n] 0 , S [[n-2,n]] 0 are equidimensional of dimension n -1. They have n 2 components. The similarity between S [k,n] 0 and S [n-k,n] 0
follows from a transposition isomorphism between N (p k,n ) and N (p n-k,n ). Note however that there might be profound differences between the Hilbert schemes and the corresponding commuting varieties because of the cyclicity condition, see remark 3.15.

Without any assumption on k ∈ [[0, n]], we have an estimate for the dimension of the components.

Proposition (Section 6).

Each irreducible component of S

[[k,n]] 0 has dimension at least n-1 which is the dimension of the curvilinear component. Each irreducible component of S [k,n] 0 has dimension at least n -2, which is the dimension of the curvilinear component minus one. Each irreducible component of N (q k,n ) has dimension at least dim q k,n -1. Each irreducible component of N (p k,n ) has dimension at least dim p k,n -2.
Note that the result is not optimal for p k,n and S

[k,n] 0 as Theorems 7.3 and 7.5 show.

Our approach does not depend on the characteristic of k. One reason that makes this possible is that we often rely on the key work of Premet in [Pr] made in arbitrary characteristic.

Several statements in the paper allow generalisations or abstract reformulations. To keep the paper readable by a large audience, we have chosen a presentation which minimizes the prerequisites. Hopefully, the paper is readable by a non specialist in at least one of the domains Hilbert schemes/commuting varieties.

Acknowledgments. We are grateful to Markus Reineke for computing and communicating to us the example mentioned in Remark 7.4.

Reducible nested Hilbert schemes

Throughout the paper, we work over an algebraically closed field k of arbitrary characteristic.

In this section, we produce examples of reducible nested Hilbert schemes, and we identify some of their components via direct computations.

Let S = A 2 = Spec k[x, y] be the affine plane. We denote by S [n] the Hilbert scheme parametrizing the zero dimensional subschemes z n ⊂ A 2 of length n. We denote by S [k,n] ⊂ S [k] × S [n] the Hilbert scheme parametrizing the pairs (z k , z n ) with z k ⊂ z n . We denote by S [[k,n] n] the Hilbert scheme that parametrizes the tuples of subschemes (z k , z k+1 , . . . , z n ) with z k ⊂ z k+1 • • • ⊂ z n . An index 0 indicates that the schemes considered are supported on the origin. For instance, S

] ⊂ S [k] × S [k+1] × • • • × S [
[k,n] 0 ⊂ S [k] 0 × S [n] 0 is the Hilbert scheme parametrizing the pairs (z k , z n ) with z k ⊂ z n and supp(z k ) = supp(z n ) = O.
All these Hilbert schemes have a functorial description. For the original Hilbert scheme, see [Gro] or [HM] for a modern treatment. For the nested Hilbert schemes see [Kee]. For the versions supported on the origin, a good reference is [Ber]. Section 3.1 will recall the main technical descriptions that we need.

Proposition 2.1. For k = 0, 1, n -1, n, S [k,n] 0 is reducible.
Proof. Recall that a curvilinear scheme of length n is a punctual scheme which can be defined by the ideal (x, y n ) in some system of coordinates i.e. this is a punctual scheme included in a smooth curve. The curvilinear schemes form an irreducible subvariety of S

[n] 0 of dimension n -1 [Br]. We prove that S [k,n] 0 admits at least two components: the curvilinear component where z k and z n are both curvilinear (of dimension n -1 since z k = (x, y k ) is determined by z n = (x, y n ) ) and an other component of dimension greater or equal than n -1. The families that we exhibit below are special cases of more general constructions which give charts on the Hilbert schemes [Ev].

Consider the families of subschemes z k , z n , with equation I k and I n where

I n = (x n-1 , yx + n-2 i=2 a i x i , y 2 + n-2 i=2 a i yx i-1 + bx n-2
). Let ϕ be the change of coordinates defined by x → x, y → y -n-2 i=2 a i x i-1 . Then ϕ(I n ) = (x n-1 , yx, y 2 + bx n-2 ). In particular, for each choice of the parameters a i , b, the scheme z n has length n.

We may suppose n ≥ 4, otherwise there are no integers k to consider in the proposition. Then all the generators of I n have valuation at least two and it follows that z n is not curvilinear.

For each z n , there is a one dimensional family of subschemes z k ⊂ z n . We check this claim in the coordinate system where I n = (x n-1 , yx, y 2 + bx n-2 ). Consider I k = (x k , y-cx k-1 ). Modulo I k we have x n-1 = 0 and yx = cx k = 0. Since k ≤ n -2 and k ≥ 2, y 2 + bx n-2 = y 2 = (cx k-1 ) 2 = 0. Thus I n ⊂ I k , as expected.

All the ideals I n and I k are pairwise distinct since their generators form a reduced Gröbner basis for the order y >> x and a reduced Gröbner basis is unique ( [Eis], Exercise 15.14). We thus have two families of dimension n -1, namely the curvilinear component and the family we constructed with the parameters (a i , b, c). It remains to prove that they cannot be both included in a same component V of dimension ≥ n. For this, we prove that the closure of the curvilinear locus is an irreducible component.

Let p be the projection S

[k,n] 0 → S [n] 0 . Let C n ⊂ S [n]
0 be the curvilinear locus and C k,n = (p -1 (C n )) red be the reduced inverse image. Note that p restricts to a bijection between C k,n and C n . Let V be an irreducible variety containing the curvilinear locus C k,n . Since C n is open in p(V ) ⊂ S

[n] 0 by [Br] and since p restricts to a bijection between C k,n and C n , we have dim

V = dim C n = n -1. In general S [k,n] 0
has more than the two components exhibited in Proposition 2.1. For instance, corollary 7.5 shows that S 

= (λ 1 • • • λ d λ ) is n -λ 1 .
There is a unique cell of dimension n -1 of S

[n] 0 and it is associated with the unique partition λ = (1, 1, . . . , 1) of n with λ 1 = 1. Geometrically, this cell parametrizes the curvilinear subschemes which intersect the vertical line y = 0 with multiplicity one. We call it the curvilinear cell and we denote it by F curv . There are ⌊n/2⌋ cells F λ ⊂ S

[n] 0 of dimension n-2 corresponding to the partitions λ with n boxes and λ 1 = 2 : one has to take λ = λ a,b := (2 a , 1 b-a ), with b ≥ a ≥ 1 and a + b = n.

Following [Ev], we may be more explicit and describe the charts corresponding to the Bialynicki-Birula strata. Since S with ideal (cx + dy, x 2 , y 2 ), the proposition is true for n = 2 and we may suppose

n ≥ 3 . If b = a, the Bialynicki-Birula stratum F λ a,b is isomorphic to Spec k[c ij ] with universal ideal (x a , y 2 + j∈{0,1},i∈{1,...,a-1} c ij x i y j ). If b > a, the stratum is Spec k[c i , d i , e i ] with universal ideal (x b , yx a + i∈{1,...,b-a-1} c i x a+i , y 2 + i∈{1,...,b-a-1} c i yx i + i∈{1,...,a-1} d i (yx i + j∈{1,...,b-a-1} c j x i+j ) + i∈{b-a,...b-1} e i x i )
There is at most one term of degree one in the generators of the ideal, which appears when (ba = 0, c 10 = 0) or (ba = 1, e 1 = 0). In these cases, the corresponding point of the Bialynicki-Birula cell parametrizes a curvilinear scheme and it parametrizes a noncurvilinear scheme if ba ≥ 2 or e 1 = 0 or c 10 = 0. There are ⌊n/2⌋ -1 partitions λ a,b with ba ≥ 2.

Consider the projection p :

S [2,n] 0 → S [n] 0 and z n ∈ S [n] 0 . The fiber p -1 (z n ) is set-theoretically a point if z n is curvilinear. If z n is not curvilinear, the fiber is S [2]
0 which is homeomorphic to P 1 . It follows that p -1 (F curv ) and p -1 (F λ a,b ) with ba ≥ 2 are irreducible varieties of dimension n -1. There are n 2 such irreducible varieties. To prove that their closures are irreducible components, note that S

[2,n] 0 is a proper subscheme of the n dimensional irreducible variety S [n] 0 × S [2] 0 . In particular, any irreducible closed subvariety of dimension n -1 in S [2,n] 0 is an irreducible component.
It remains to prove that there are no other components. Let L be a component with dimension n -1. Since S

[2] 0 is one-dimensional, the generic fiber of the projection L → S

[n] 0 has dimension 0 or 1 thus the projection has dimension at least n -2. If the projection has dimension n -1, then the generic point of L maps to the generic point of the curvilinear component for dimension reasons, and L is the curvilinear component p -1 (F curv ). If the projection has dimension n -2, then the generic point of L maps to the generic point of a Bialynicki-Birula cell of dimension n -2, F λ a,b , or to a non closed point of F curv . Since the generic fiber has dimension 1, the generic point of L does not map to F curv nor to the generic point of F λ a,b , ba ≤ 1. Hence L is included in one of the components p -1 (F λ a,b ) constructed above with ba ≥ 2, and the equality follows from the equality of dimensions.

Remark 2.3. It is possible to prove along the same lines that S [n-2,n] 0 has exactly ⌊n/2⌋ components of dimension n -1.

More precisely, the universal ideal

(P 0 = x b , P 1 = yx a + i∈{1,...,b-a-1} c i x a+i , P 2 = y 2 + i∈{1,...,b-a-1} c i yx i + i∈{1,...,a-1} d i (yx i + j∈{1,...,b-a-1} c j x i+j ) + i∈{b-a,...b-1} e i x i ) over F λ a,b with b -a ≥ 2
as above defines a n -2 dimensional family of subschemes z n of length n. For each such subscheme z n , there is a one dimensional family of subschemes z n-2 (t) parametrized by t with z n-2 (t) ⊂ z n . In coordinates z n-2 (t) is defined by the ideal (P 0 /x, P 1 /x + tx b-1 , P 2 ) which is well defined since x divides both P 0 and P 1 . By the above, the component containing the couples (z n-2 , z n ) has dimension dimension (n -2) + 1 = n -1. Adding the curvilinear component, we obtain in this way the ⌊n/2⌋ components of dimension n -1.

Hilbert schemes and commuting varieties

The goal of this section is to make precise the link between Hilbert schemes and commuting varieties in our context. More explicitly, we realize the Hilbert schemes

S [n-k,n] 0 and S [[n-k,n]] 0
as geometric quotients of the commuting varieties N cyc (p k,n ) and N cyc (q k,n ) by the groups P k,n and Q k,n (Theorem 3.2). As a consequence, we point out a precise connection between irreducible components of S

[n-k,n] 0 (resp. S [[n-k,n]] 0 ) and those of N cyc (p k,n ) (resp. N cyc (q k,n )) in Proposition 3.13.
We first introduce the notation to handle the commuting varieties. Let M n,k be the space of n×k matrices with entries in k and let M n := M n,n . The associative algebra M n will more often be considered as a Lie algebra g via [A, B] := AB -BA and we will be interested in the action by conjugation of G = GL n on it (g • X = gXg -1 ). If w is a Lie subalgebra of M n and X ∈ w, we denote the centralizer (also called commutant) of X in w by

w X := {Y ∈ w | [Y, X] = 0}.
The set of elements of w which are nilpotent in M n is denoted by w nil . We define the nilpotent commuting variety of w:

N (w) = {(X, Y ) ∈ (w nil ) 2 | [X, Y ] = 0} ⊂ w × w. If a subgroup Q ⊂ G normalizes w then Q X is the stabilizer of X ∈ w in Q. The group Q acts on N (w) diagonally (q • (X, Y ) = (q • X, q • Y )). Theorem 3.1. If X 0 denotes a regular nilpotent element of M n , we have N (M n ) = G • (X 0 , (M X 0 n ) nil )
In particular, the variety

N (M n ) is irreducible of dimension n 2 -1
Recall that an element X ∈ M n is said to be regular if it has a cyclic vector, i.e. an element v ∈ k n such that X k (v)|k ∈ N = k n . This easily implies, and is in fact equivalent to, dim

G X (= dim M X n ) = n.
There is only one regular nilpotent orbit. This is the orbit of nilpotent elements having only one Jordan block.

This theorem was first stated in [Bar] using the correspondence with Hilbert schemes (with a small correction in the proof of lemma 3, see Math-Reviews 1825165). We can find other proofs of this theorem in [START_REF] Basili | On the irreducibility of commuting varieties of nilpotent matrices[END_REF] and [Pr]. In [Pr], the result is proved whithout any assumption on char k.

Let V = k n and (e 1 , . . . , e n ) be its canonical basis. We will identify M n with gl(V ), the set of endomorphisms of V , thanks to this basis. For

1 i n, let V i = e 1 , . . . e i . We define p k,n (resp. q k,n ) as the set of matrices X ∈ gl(V ) such that X(V k ) ⊆ V k (resp. X(V i ) ⊆ V i for all 1 i k). Given X ∈ p k,n , we denote by X (k) the linear map induced by X on V /V k . Let P k,n ⊂ GL n (resp. Q k,n ⊂ GL n ) be the algebraic group of invertible matrices of p k,n (resp. q k,n ).
In the Lie algebra vocabulary, P k,n and Q k,n (resp. p k,n and q k,n ) are parabolic subgroups of GL n (resp. parabolic subalgebras of gl(V )) and Lie

(P k,n ) = p k,n , Lie(Q k,n ) = q k,n .
In fact, all the content of this section can easily be generalized to any parabolic subalgebra of gl(V ) and a corresponding nested Hilbert scheme. Namely, the parabolic subalgebra stabilizing a partial flag

F 0 ⊂ F k 1 ⊂ • • • ⊂ F k ℓ ⊂ F n (dim F j = j) is in correspondence with the nested Hilbert scheme with length n -k ℓ • • • n -k 1 n.
In Definition 3.9 and Proposition 3.10, we define a scheme N cyc (w), whose k-points are the triples (X, Y, v) with (X, Y ) ∈ N (w) and v ∈ V is a cyclic vector for the pair of endomorphisms X, Y .

In Section 3.1.2, we also describe an action of the group

P k,n (resp. Q k,n ) on the scheme N cyc (p k,n ) (resp. N cyc (q k,n )). Set-theoretically, this action is given by g•(X, Y, v) = (gXg -1 , gY g -1 , gv).
The following theorem asserts that a GIT quotient in the sense of Mumford [MFK] exists, and that the quotients are nested punctual Hilbert schemes.

Theorem 3.2.

1. The geometric quotients q

: N cyc (p k,n ) ։ N cyc (p k,n )/P k,n and q ′ : N cyc (q k,n ) ։ N cyc (q k,n )/Q k,n
exist and they are principal bundles locally trivial for the Zariski topology.

2. There exist surjective morphisms

π k,n : N cyc (p k,n ) ։ S [n-k,n] 0 , π ′ k,n : N cyc (q k,n ) ։ S [[n-k,n]] 0 . 3. There exist isomorphisms i : N cyc (p k,n )/P k,n ∼ → S [n-k,n] 0 and i ′ : N cyc (q k,n )/Q k,n ∼ → S [[n-k,n]] 0
. These isomorphisms identify the projections to the Hilbert schemes with the geometric quotients, i.e. i•q = π k,n and i ′ • q ′ = π ′ k,n .

Functorial definitions

Hilbert schemes are often defined through their functor of points (see [EH] or [St] for an introduction). We will use this setting to prove Theorem 3.2.

A useful example for us is the functor of points of the k-vector space V . This is the functor which associates

• to any k-algebra A, the set V (A) := V ⊗ k A ∼ = A n . • to any morphism A → B, the natural map V (A) → V (B) = V (A) ⊗ A B, v → v ⊗ 1
In particular, the functor represented by M n (resp. V k , p k,n ) associates to any k-algebra A, the set M n (A) of n×n-matrices with coefficients in A (resp.

V k (A) := V k ⊗ A ⊂ V (A), p k,n (A) := {X ∈ M n (A) | X(V k (A)) ⊂ V k (A)}), see [St, Example 2.1].
In the following, we will usually only make explicit the value of the functors on objects, their value on morphisms then being standard. For more involved examples, the notion of relative representability turrns out to be useful.

Relative representability

We recall from [START_REF] Grothendieck | Techniques de construction en géométrie analytique. IV. Formalisme général des foncteurs représentables[END_REF] the notion of relatively representable morphism of functors, with some obvious adjustments to fit our context. We will use this language to prove the representability of our functors.

Let F, G be functors from the category of k-algebras to sets. Suppose that F is a subfunctor of G, ie. for every k-algebra A, F (A) is a subset of G(A). The inclusion F ⊂ G is relatively representable if, for every k-algebra A and every g ∈ G(A) , there exists a subscheme Z ⊂ Spec(A) satisfying the following property: for every ϕ :

A → B, the morphism Spec(B) → Spec(A) factorizes through Z if and only if the element f ∈ G(B) defined by f = ϕ * (g) satisfies f ∈ F (B). Grothendieck, [Gro2, Lemme 3.6] proves that if G is representable and if F ⊂ G is relatively representable, then F is representable.
In intuitive words, a relatively representable subfunctor F ⊂ G is a subfunctor of G defined by subscheme conditions on the base. We illustrate this through the following elementary lemma.

Lemma 3.3. The functor which maps a k-algebra A to the set

P k,n (A) := {X ∈ p k,n (A) | det X is invertible} is representable. The corresponding scheme is P k,n .
Proof. In the previous setting, we let G(A) := p k,n (A) and F (A) := P k,n (A). Given A and g ∈ G(A), we set This also applies when F is a subfunctor of G defined by the inclusion of two families according to the following lemma, proved in [Kee, Lemma 1.1].

Z := {p ∈ Spec(A)| det g / ∈ p}. Obvi- ously, Z is an open subscheme of Spec(A). For every ϕ : A → B, we consider the element f := ϕ * (g) ∈ G(B). We have f ∈ F (B) ⇔ det ϕ * (g) = ϕ(det g) is invertible ⇔ ∀p ∈ Spec(B) det g / ∈ ϕ -1 (p), that is, the comor- phism Spec(B) → Spec(A) factorizes through Z. In particular, F ⊂ G is relatively representable, hence F is representable
Lemma 3.4. Let X ⊂ Spec(A) × W , Y ⊂ Spec(A) × W be two families of subschemes of a scheme W with X finite and flat over Spec(A). There exists a subscheme Z ⊂ Spec(A) such that, for every morphism f : Spec(B) → Spec(A), the following two conditions are equivalent:

• f factorizes through Z • X × Spec(A) Spec(B) ⊂ Y × Spec(A) Spec(B) Proposition 3.5. Let n 1 ≥ n 2 • • • ≥ n j > 0 be integers. Let F n 1 ,.
..,n j be the functor from k-algebras to sets defined by F n 1 ,...,n j (A) = {(I 1 , . . . , I j )} where

• for every i, I i ⊂ A[x 1 , . . . , x d ] is an ideal, • A[x 1 , . . . , x d ]/I i is locally free on A of rank n i , • (x 1 , . . . , x d ) n i ⊂ I i , • I 1 ⊂ I 2 • • • ⊂ I j . Then F n 1 ,...,n j is representable.
Proof. For j = 1, the functor F n 1 parametrizes families of punctual subschemes of length n 1 in the closed subscheme W defined by the ideal (x 1 , . . . , x d ) n 1 in the affine space Spec k[x 1 , . . . , x d ]. It follows that this functor is representable by the Hilbert scheme

W [n 1 ] = W [n 1 ] 0
We then proceed by induction. Let G n 1 ,...,n j be the functor defined similarly to F n 1 ,...,n j , except that we replace the condition

I 1 ⊂ I 2 • • • ⊂ I j with the condition I 1 ⊂ I 2 • • • ⊂ I j-1 .
The functor G n 1 ,...,n j is representable by X 1 × X 2 , where X 1 represents F n 1 ,...,n j-1 , well defined by induction, and X 2 represents F n j . The inclusion of functors F n 1 ,...,n j ⊂ G n 1 ,...,n j is defined by the extra condition I j-1 ⊂ I j . According to the last lemma 3.4, this corresponds to a subscheme condition on the base of the families, ie. F n 1 ,...,n j ⊂ G n 1 ,...,n j is relatively representable. It follows that F n 1 ,...,n j is representable.

Definitions

The functorial description of the Hilbert scheme S [n] is classical, but we need to precise the functorial description of N cyc and of the variants S Consider the Hilbert-Chow morphism S [n] → Sym n (A 2 ), and compose it with the natural map Sym n (A 2 ) → Sym n (A 1 ) × Sym n (A 1 ). We obtain a morphism ρ : S [n] → Sym n (A 1 ) × Sym n (A 1 ) which set-theoretically sends a subscheme z n to the tuples of coordinates ({x 1 , . . . , x n }, {y 1 , . . . , y n }) where (x i , y i ) are the points of z n counted with multiplicities. A morphism Spec R → S [n] factorizes through ρ -1 (0, 0) if the corresponding ideal I(Z) ⊂ R[x, y] satisfies (x n , y n ) ∈ I(Z). However, this property gives a special status to the lines x = 0 and y = 0 as shown by the following example, whose verification is straightforward.

Example 3.6. Let R = k[a, b]/(ab, b 2 ) and I = (y + ax + b, x 2 ) ⊂ R[x, y]. Then x 2 ∈ I, y 2 ∈ I, but for any t ∈ k * , (x + ty) 2 / ∈ I.
Consequently, we do not define S

[n] 0

as being ρ -1 (0, 0) and we ask for a coordinate-free definition. The dimension of the ambient space S plays no role in the definition. We shall give a general definition for the Hilbert scheme Z

[n] 0 parametrizing subschemes z n of length n in a scheme Z of any dimension d supported on a smooth point o ∈ Z.

For this, we recall the well-known remark that a subscheme z n of length n in a scheme Z is supported on a smooth point o ∈ Z if and only if

I(o) n ⊂ I(z n ), ie. if z n is a subscheme of Spec k[x 1 , . . . , x d ]/(x 1 , . . . , x d ) n
where d is the dimension of Z at o. This leads to the following definitions for the localized Hilbert scheme Z is the scheme that represents the functor F n of Proposition 3.5. Let

n 1 ≥ n 2 • • • ≥ n j > 0 be integers. The Hilbert scheme Z [n j ,n j-1 ,...,n 1 ] 0
is the scheme which represents the functor F n 1 ,n 2 ,...,n j .

As long as we consider topological properties, a superscript 1 plays no role since the schemes S 

) red ∼ = (S [n] 0 ) red Proof. The functor F n,1 associated with S [1,n] 0 is defined by F n,1 (A) = {(I 1 , I 2 ) ⊂ A[x, y] with (x, y) n ⊂ I 1 ⊂ I 2 , (x, y) ⊂ I 2 , A[x,
y]/I 1 locally free of rank n, A[x, y]/I 2 locally free of rank 1}. In particular, I 2 = (x, y) is the only possibility. In other words, if F n denotes the functor associated with S

[n] 0 , then F n,1 can be seen as a subfunctor of F n defined by the condition I 1 ⊂ (x, y). By Keel's lemma 3.4, this inclusion is relatively representable and S

[1,n] 0 is a closed subscheme of S

[n] 0 . When A = k, k[x, y]/(x, y) n is a local ring with maximal ideal (x, y). It follows that the inclusion I 2 ⊂ (x, y) is always satisfied or equivalently, that the embedding S

[1,n] 0 ⊂ S [n]
0 identifies the k-points on both sides. This proves the proposition. Definition 3.9. Let A be a k-algebra. Let V (A), V k (A) and p k,n (A) be as in the beginning of Section 3.1. Consider the functor m from k-algrebras to sets where m

(A) is    (X, Y, v) ∈ p k,n (A) × p k,n (A) × V (A) [X, Y ] = 0, X n = X n-1 Y = ... = Y n = 0, (X (k) ) n-k = • • • = (Y (k) ) n-k = 0 on V /V k (A)
ev n and ev n-k are surjective

   where ev n : A[x, y] → V (A) ≃ A n P (x, y) → P (X, Y )(v) and ev n-k : A[x, y] → V (A)/V k (A) ≃ A n-k P (x, y) → P (X, Y )(v) + V k (A)
are the natural evaluation morphisms.

Proposition 3.10. (Functorial definition of

N cyc (p k,n ) ⊂ p k,n × p k,n × V ).
The functor m is representable by a scheme N cyc (p k,n ).

Proof. We give a sketch of the proof. Let m ′ be the functor given by the same conditions as m except the surjectivity of ev n and ev n-k . In view of [START_REF] Stromme | Elementary introduction to representable functors and Hilbert schemes[END_REF]Example 2.1], m ′ is representable by a closed affine subscheme of p k,n × p k,n × V . Then, the inclusion m ⊂ m ′ is defined by surjectivity conditions, or equivalently by the invertibility of some determinant. It follows that this inclusion of functors is relatively representable, using the same argument as in the proof of Lemma 3.3.

The first point of the following lemma shows that the closed points of N cyc (p k,n ) are the expected triples (X, Y, v). Since, on k-points, we require X and Y to be nilpotent, it could seem natural in the above definition of the functor A → m(A) to replace the condition X n = X n-1 Y = ... = Y n = 0 with the simpler condition X n = Y n = 0. The second point of the lemma shows that this would add extra embedded components to N cyc (p k,n ) and we are not interested in these components.

Lemma 3.11. (i) Let X, Y ∈ M n (k) be a pair of nilpotent commuting ma- trices. Then X i Y n-i = 0 for all i ∈ [[0, n]].
(ii) The above conclusion may fail when replacing k by an arbitrary (even noetherian) k-algebra R.

Proof. (i) From reduction theory, it is an elementary fact that X and Y are simultaneously strictly upper trigonalisable. Hence the equalities.

(ii) Take R = k[a, b]/(ab, b 2 ), X = 0 0 1 0 , Y = b 0 a b . Then X 2 = Y 2 = 0 and XY = Y X = 0 0 b 0 .
Finally, we can define the action of P k,n on N cyc (p k,n ), i.e. the morphism

γ : P k,n × N cyc (p k,n ) → N cyc (p k,n ) at the functorial level. Let g ∈ P k,n (A), t = (X, Y, v) ∈ m(A) so (g, t) ∈ Hom(Spec A, P k,n × N cyc (p k,n )). Then the element t ′ = (X ′ , Y ′ , v ′ ) ∈ m(A), image of (g, t) by the action morphism γ, is X ′ = gXg -1 , Y ′ = gY g -1 , v ′ = gv.

The Hilbert scheme as a geometric quotient

In this section, we prove Theorem 3.2

The cases of N cyc (p k,n ) and N cyc (q k,n ) are similar and we consider only the first case. The strategy is the following. We first construct a categorical quotient. Using the functorial properties of both the categorical quotient and the Hilbert scheme, we construct the isomorphism between N cyc (p k,n )/P k,n and S

[n-k,n] 0 . Finally, using the description of the quotient via the Hilbert scheme, we show that the categorical quotient turns out to be a geometric quotient.

Let ∆ n-k ⊂ ∆ n be two sets of monomials

{δ i = x α i y β i } of respective cardinality n -k and n. Let ∆ = {∆ n-k , ∆ n }. For each such ∆, there is an open subscheme N cyc ∆ ⊂ N cyc (p k,n
) whose support is the locus where the evaluation morphisms ev n-k and ev n are surjective using only the images of the monomials in ∆. More precisely, let A[∆ i ] be the free A-module with basis

∆ i . The open subscheme N cyc ∆ corresponds to the subfunctor m ∆ (A) ⊂ m(A) containing the triples (X, Y, v) ∈ m(A) such that ev ∆n : A[∆ n ] → A n , δ i → (δ i (X, Y )(v)) and ev ∆ n-k : A[∆ n-k ] → A n-k , δ i → (δ i (X, Y )(v))mod V k (A) are surjective.
Recall that the surjectivity of the A-linear maps ev ∆ n-k and ev ∆n is equivalent to their being an isomorphism ( [AtM], Exercice 3.15), thus to their determinant being invertible in A. In particular, N cyc ∆ is defined by the nonvanishing of a determinant in N (p k,n ) × k n , hence it is affine.

Since is not a priori finitely generated (and we cannot apply [START_REF] Mumford | Geometric invariant theory third edition[END_REF]Thm 1.1]). We have to show without the general theory that the local quotients are algebraic (i.e. of finite type over k) and that the local constructions glue to produce a global categorical quotient.

Recall the functor h which defines the Hilbert scheme S

[k,n] 0

. If ∆ is as above, there is a subfunctor h ∆ of h. By definition, h ∆ (A) contains the pairs (I, J) ∈ h(A) such that A[x, y]/I (resp. A[x, y]/J) is free on A of rank nk (resp. of rank n) and such that the monomials δ i in ∆ n-k (resp. in ∆ n ) form a basis of A[x, y]/I (resp. A[x, y]/J). This is a relatively representable subfunctor, which is representable by an open subscheme

S ∆ ⊂ S [n-k,n] 0 .
There is a morphism of functors m → h defined by

(X, Y, v) ∈ m(A) → (I = Ker(ev n-k ), J = Ker(ev n )) ∈ h(A)
and a morphism of schemes π k,n :

N cyc (p k,n ) → S [n-k,n] 0
associated with the morphism of functors. By construction, this map is invariant under the action of P k,n . From the universal property of the categorical quotient, we obtain a factorisation

N cyc ∆ /P k,n → S [n-k,n] 0
whose image is in S ∆ , hence the factorisation i ∆ : N cyc ∆ /P k,n → S ∆ . To prove that i ∆ is an isomorphism, we will construct an inverse ρ ∆ . Let (I, J) ∈ h ∆ (A). We choose a basis b 1 , . . . , b n of A[x, y]/J such that b k+1 , . . . , b n is a basis of A[x, y]/I. Such a basis exists since we can take b i to be the monomials in ∆. If we replace each element b i , i ≤ k by a suitable combination b i + j≥k+1 a ij b j , we may suppose that the kernel I/J of the map A[x, y]/J → A[x, y]/I is generated by b 1 , . . . , b k . This choice of our basis yields an effective isomorphism A[x, y]/J ≃ A n . The multiplication by x and y on A[x, y]/J then correspond to matrices X, Y ∈ p k,n (A). Choose v = 1 ∈ A[x, y]/J. Then (X, Y, v) ∈ m(A) and corresponds to a morphism ν : Spec A → N cyc (p k,n ). This morphism is not canonically defined because of the arbitrary choice of the basis b 1 , . . . , b n . However, if ν 1 and ν 2 are two possible choices for the morphism ν, and if ϕ ∈ P k,n (A) = Hom(Spec A, P k,n ) is the decomposition matrix of the basis defining ν 1 on the basis defining ν 2 , then ν 2 = γ • (ϕ, ν 1 ), where γ is the action morphism. Since ν 1 and ν 2 differ by the action of P k,n (A), it follows that the morphism η = q•ν 1 = q•ν 2 is well defined. The map which sends (I, J) to η is a morphism of functors. This is the functorial description of a scheme morphism ρ ∆ : S ∆ → N cyc ∆ /P k,n . By construction, ρ ∆ and i ∆ are mutually inverse.

Since we proved that our local quotients N cyc ∆ /P k,n are isomorphic to an open subscheme S ∆ of the Hilbert scheme S is a categorical quotient of N cyc . There remains to prove that this quotient is locally trivial in the Zariski topology. This will imply the remaining statements of the theorem, namely that the quotient is geometrical and the surjectivity of the quotient morphism. We shall prove the local triviality over S ∆ . More precisely, we shall exhibit a pair of inverse isomorphisms ϕ 1 , ϕ 2 to prove that S ∆ × P k,n and N cyc ∆ are isomorphic as schemes over S ∆ . Remark that we have constructed a (non-canonical) map h ∆ (A) → m(A) sending (I, J) to ν. Since this map depends functorially on A, this functor corresponds to a section s ∆ : S ∆ → N cyc ∆ of the map π k,n : N cyc ∆ → S ∆ . We define ϕ 1 to be the composition

S ∆ × P k,n (s ∆ ,Id) → N cyc ∆ × P k,n → N cyc ∆
where the second arrow is given by the group action.

The identity map id

N cyc ∆ on N cyc ∆ ≃ Spec(B ∆ )
, is an element of m ∆ (B ∆ ). It yields an evaluation map (ev n ) 1 and the following diagram, where J is the kernel of (ev n ) 1 and I is the kernel of ψ • (ev n ) 1 .

I I/J ֒→ ֒→ J ֒→ B ∆ [x, y] (evn) 1 → V (B ∆ ) ↓ ψ V (B ∆ )/V k (B ∆ ) . Using the map s ∆ • π k,n : N cyc ∆ → N cyc
∆ instead of the identity map, we get a similar diagram with (ev n ) 2 instead of (ev n ) 1 and I, J unchanged. The morphism g = (ev n ) 1 • ((ev n ) 2 ) -1 ∈ GL(V (B ∆ )) is then well defined. Since ((ev n ) 2 ) -1 (Ker(ψ)) = I, g sends I/J = Ker(ψ) = V k (B ∆ ) to itself and g ∈ P k,n (B ∆ ) = Hom(Spec(B ∆ ), P k,n ). We define ϕ 2 : N cyc ∆ → S ∆ × P k,n by ϕ 2 = ( π k,n , g). By construction, the morphisms ϕ 1 and ϕ 2 are inverse.

From N to N

In the previous section, the Hilbert schemes

S [k,n] 0 ans S [[k,n]] 0
have been constructed as quotients of the schemes N cyc (p k,n ) and N cyc (q k,n ) which parametrize triples (X, Y, v). In this section, we show how to throw off the data v. From this point and until the end of the article, we only need to work with the underlying variety structure on our schemes. In particular, we will consider the following variety for w = p k,n or q k,n :

N cyc (w) := {(X, Y ) ∈ N (w)| ∃v ∈ V s.t. (X, Y, v) ∈ N cyc (w)}. Lemma 3.12. (i) The action of P k,n (resp. Q k,n ) on N cyc (p k,n ) (resp. N cyc (q k,n )) is free. (ii) Let v 1 , v 2 ∈ V such that (X, Y, v i ) ∈ N cyc (p k,n ) (resp. N cyc (q k,n )).
Then (X, Y, v 1 ) and (X, Y, v 2 ) belong to the same P k,n (resp. Q k,n )-orbit.

Proof. (i) Let (X, Y, v) ∈ N cyc (w) and g ∈ GL(V ) stabilizing (X, Y, v). Then g stabilizes each X i Y j (v) and, since these elements generates V , we have g = Id.

(ii) Let g :

V → V P (X, Y ).v 1 → P (X, Y ).v 2 . It is well defined since {P ∈ k[x, y]|P (X, Y ).v i = 0} = {P ∈ k[x, y]|P (X, Y ) = 0} by the cyclicity condi- tion. Moreover g is linear and g.v 1 = v 2 . For any S ∈ k[x, y], we have gXg -1 (S(X, Y ).v 2 ) = gXS(X, Y )(v 1 ) = g(S ′ (X, Y )(v 1 )) = S ′ (X, Y ).v 2 = X(S(X, Y )(v 2 )) where S ′ = xS ∈ k[x, y].
In particular, g stabilizes X by cyclicity of v 2 and the same holds for Y .

A similar argument shows that any subspace V i ⊂ V stable under X and Y is stabilized by g. The cyclicity property implies that g.v

1 = S(X, Y )(v 1 ) and that V i is generated by (R l (X, Y )(v 1 )) l for some polynomials S, (R l ) l of k[x, y]. Then g.V i is generated by (g.R l (X, Y )(v 1 )) l = (R l (X, Y )(g.v 1 )) l = ((R l (X, Y ) × S(X, Y ))(v 1 )) l = (S(X, Y )(R l (X, Y )(v 1 ))) l ⊂ V i .
Hence g stabilizes each such subspace V i and the result follows from the definitions of P k,n and Q k,n .

It follows from Lemma 3.12(ii) that the following set-theoretical quotient map

π k,n :    N cyc (p k,n ) → S [n-k,n] 0 (X, Y ) → (Ker(ev n-k ), Ker(ev n )) (= π k,n (X, Y, v) ∀v ∈ V s.t. (X, Y, v) ∈ N cyc (p k,n )) is well defined where ev n-k : k[x, y] → gl(V /V k ) P → P (X (k) , Y (k) )
and ev n :

k[x, y] → gl(V ) P → P (X, Y )
. This also allows to define π ′ k,n :

N cyc (q k,n ) → S [[n-k,n]] 0 . Proposition 3.13. π k,n induces a bijection between irreducible components of S [n-k,n] 0 of dimension m and irreducible components of N cyc (p k,n ) of di- mension m+(dim p k,n -n). The same holds for π ′ k,n , S [[n-k,n]] 0
and N cyc (q k,n ).

Proof. As usual, we give a proof only for p k,n .

Let Z 1 , Z 2 be varieties and f : Z 1 → Z 2 be an open surjective morphism with irreducible fibers. Then, the pre-image by f of any irreducible component of Z 2 is irreducible (e.g. see [START_REF] Tauvel | Lie algebras and algebraic groups[END_REF]Proposition 1.1.7]). On the other hand, the image of any irreducible component of Z 1 by f is irreducible. Hence f induces a bijection between irreducible components of Z 1 and Z 2 .

Then, since a geometric quotient by a connected group satisfies the above assumptions on f , we can apply the previous argument to π k,n . It also works for pr :

N cyc (p k,n ) → N cyc (p k,n ) (X, Y, v) → (X, Y )
. The dimension statement follows since fibers of π k,n are of dimension dim p (Lemma 3.12 (i)) and those of pr

are of dimension n (given (X, Y ), the set {v| (X, Y, v) ∈ N (p k,n )} is open in V ).
The correspondence with commuting varieties allows us to see in an elementary way some non-trivial facts on the Hilbert scheme. We give an example.

Proposition 3.14. Given a pair

(z n-k , z n ) ∈ S [n-k,n] 0 , there exists a chain of intermediate subschemes z n-k ⊂ z n-k+1 ⊂ • • • ⊂ z n . In other words, the projection map S [[n-k,n]] 0 → S [n-k,n] 0 is surjective. The same holds for the projection map S [[n-k,n]] 0 → S [[n-k ′ ,n]] 0 with k k ′ .
Proof. The first assertion follows from the fact that any commuting pair

(X |V k , Y |V k ) ∈ gl(V k ) is simultaneously trigonalizable by an element of GL V k ⊂ P k,n . Hence, in the new basis, it stabilizes the flag V 1 ⊂ V 2 , • • • ⊂ V k .
The second one is the same argument applied to the pair (X (k) , Y (k) ) ∈ gl(V /V k ).

Remark 3.15. Note that there is a Lie algebra isomorphism between p k,n and p n-k,n (namely, minus the transposition with respect to the anti-diagonal). Hence the two varieties

N (p k,n ) and N (p n-k,n ) are isomorphic. N cyc (p n-k,n ) open / / π n-k,n N (p k,n ) N cyc (p k,n ) ? _ open o o π k,n S [k,n] 0 S [n-k,n] 0 .
We use this duality in Lemma 5.7 where we pull back informations related to irreducibility from S [START_REF] Basili | On the irreducibility of commuting varieties of nilpotent matrices[END_REF]Proposition 2.1] for an elementary proof of this classical fact. (ii) First, note that X j can be viewed as the matrix of the endomorphism induced by X on V i j /V i j-1 . Then, as vector spaces,

[1,n] 0 to N (p n-1,n ) ∼ = N (p 1,n ). Eventually, this turns Proof. (i) See
p v.s. ∼ = l ⊕ n where l := k j=1 (End(V i j /V i j -1 )) n := {X ∈ p | X(V i j ) ⊂ V i j-1 }
and n is a nilpotent ideal of p. Hence X = X l + X n ∈ p is nilpotent if and only if X l is nilpotent. This is equivalent to the nilpotency of each X j .

(iii) Up to base change, one can assume that p satisfies the hypothesis of (ii). Thus p nil is isomorphic to k j=1 (End(V i j /V i j -1 )) nil × n. It then follows from (i) that p nil is an irreducible subvariety of p of codimension k j=1 (i ji j-1 ) = n.

Let us explain (ii) in a more visual way.

Example 4.2. A matrix of the form

X =       a b c d e f g h i j 0 0 k l m 0 0 n o p 0 0 q r s      
is nilpotent if and only if the two following submatrices are nilpotent

X 1 = a b f g , X 2 =   k l m n o p q r s   Fix an element λ = (λ 1 • • • λ d λ ) in P(n)
, the set of partitions of n. We define X λ ∈ M n as the nilpotent element in Jordan canonical form associated to λ. In other words, in the basis (f i j := e i-1 ℓ=1 λ ℓ +j )

1 i d λ 1 j λ i , we have X λ (f i j ) = f i j-1 if j = 1, 0 else. (1) 
For Y ∈ M n , we denote the entries of

Y via Y.f i ′ j ′ = (i,j) Y i,i ′ j,j ′ f i j and use the following notation Y = Y i,i ′ j,j ′ (i,j),(i ′ ,j ′ ) . An explicit characterization of M X λ n := {Y ∈ M n | [X λ , Y ] = 0} is given by the following classical lemma. Lemma 4.3. Y ∈ M X λ n
if and only if the following relations are satisfied:

Y i,i ′ j,j ′ = 0 if j > j ′ or λ i -j < λ i ′ -j ′ , Y i,i ′ j,j ′ = Y i,i ′ j-1,j ′ -1 if 2 j j ′ and λ i -j λ i ′ -j ′ .
Picturally, this means that Y can be decomposed into blocks

Y i,i ′ ∈ M λ i ,λ i ′ where Y i,i ′ =               Y i,i ′ 1,1 Y i,i ′ 1,2 . . . Y i,i ′ 1,λ i ′ 0 Y i,i ′ 1,1 . . . . . . . . . 0 . . . Y i,i ′ 1,2 . . . . . . . . . Y i,i ′ 1,1 . . . . . . . . . 0 . . . . . . . . . . . . 0 0 . . . 0               if λ i λ i ′ , Y i,i ′ =       0 . . . 0 Y i,i ′ λ i ,λ i ′ . . . Y i,i ′ 2,λ i ′ Y i,i ′ 1,λ i ′ 0 . . . . . . 0 . . . . . . Y i,i ′ 2,λ i ′ . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . . . . 0 Y i,i ′ λ i ,λ i ′       if λ i λ i ′ .
Proof. See [TA] or [Bas00, Lemma 3.2] for a more recent account.

Fix λ ∈ P(n). For each length ℓ ∈ N * appearing in λ (i.e. ∃i ∈ [[1, d λ ]], λ i = ℓ), we define τ ℓ = ♯{i|λ i = ℓ}. Let W ℓ := f i 1 |λ i ℓ . This is a filtration of W := W 1 = f i 1 |i ∈ [[1, d λ ]
] whose associated grading is given by the subspaces

W ′ ℓ := f i 1 |λ i ℓ / f i 1 |λ i > ℓ of dimension τ ℓ . It follows from Lemma 4.3 that each W ℓ is stable under M X λ n . Hence we have a Lie algebra morphism M X λ n prext -→ M d λ where the extracted matrix pr ext (Y ) = Y ext := (Y i,i ′ 1,1 ) i,i ′ can be seen as the element induced by Y on W = Ker X λ . Lemma 4.4. The image (M X λ n ) ext of the morphism pr ext is the parabolic subalgebra {Z ∈ M d λ | Z(W ℓ ) ⊂ W ℓ , ∀ℓ ∈ N * }.
is repeated ℓ times in Z. In conclusion, Y gr is nilpotent iff its diagonal blocks Y (ℓ) are nilpotent, iff Z and Y are nilpotent. This proves i) and ii).

Since (M X λ n ) gr ∼ = ℓ∈N * M τ ℓ and ℓ∈N * τ ℓ = d λ , Lemma 4.1 (i) allows us to conclude.

In the Lie algebra vocabulary, (M X λ n ) gr is a reductive part (in M n ) of the centraliser of X λ in M n and n is its nilpotent radical so (3) can be written

as a Lie algebra isomorphism M X λ n v.s. ∼ = (M X λ n ) gr ⋉ n.
See [Pr] for an analogue of Proposition 4.5 (ii) valid for a general reductive Lie algebra.

Example 4.6. Let n = 12, λ = (4, 2, 2, 2, 1, 1) hence

X λ =                 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0                 , M X λ n ∋ Y =                 a b c d h 1 i 1 h 2 i 2 h 3 i 3 j 1 j 2 a b c h 1 h 2 h 3 a b a h 4 i 4 e 1 f 1 k 1 l 1 k 2 l 2 m 1 m 2 h 4 e 1 k 1 k 2 h 5 i 5 k 3 l 3 e 2 f 2 k 4 l 4 m 3 m 4 h 5 k 3 e 2 k 4 h 6 i 6 k 5 l 5 k 6 l 6 e 3 f 3 m 5 m 6 h 6 k 5 k 6 e 3 j 3 m 7 m 8 m 9 g 1 n 1 j 4 m 10 m 11 m 12 n 2 g 2                
.

Here Definition 4.7. Let λ ∈ P(n) and w be a subspace of M n ( e.g. a Lie subalgebra of M n containing X λ ). We define the following vector spaces

d λ = 6, τ 4 = 1, τ 2 = 3, τ 1 = 2 and (M X λ n ) ext ∋ Y ext =       a h 1 h 2 h 3 j 1 j 2 e 1 k 1 k 2 m 1 m 2 k 3 e 2 k 4 m 3 m 4 k 5 k 6 e 3 m 5 m 6 g 1 n 1 n 2 g 2       , (M X λ n ) gr ∋ Y gr =       a e 1 k 1 k 2 k 3 e 2 k 4 k 5 k 6 e 3 g 1 n 1 n 2 g 2       . M 1 ∼ = (M X λ n )(4) ∋ Y (4) = a , M 3 ∼ = (M X λ n )(2) ∋ Y (2) =   e 1 k 1 k 2 k 3 e 2 k 4 k 5 k 6 e 3   , M 2 ∼ = (M X λ n )(1) ∋ Y (1) = g 1 n 1 n 2 g 2 . Y is nilpotent if
w X λ := w ∩ M X λ n , (w X λ ) gr := {Y gr |Y ∈ w X λ }.
The following lemmas relate the geometry of (w X λ ) nil to the one of (w X λ ) nil gr or (w X λ (ℓ)) nil Lemma 4.8.

(i) There exists a vector space n 2 such that the following isomorphisms of algebraic varieties holds

w X λ ∼ = (w X λ ) gr × n 2 , (w X λ ) nil ∼ = (w X λ ) nil gr × n 2 .
(ii) (w X λ ) nil is irreducible if and only if (w X λ ) nil gr is and codim w X λ (w X λ ) nil = codim (w X λ )gr (w X λ ) nil gr Proof. (i) Let n 2 = Ker((pr gr ) |w X λ ). The first equation follows and the statement about nilpotent elements is a consequence of Proposition 4.5 (i).

(ii) is a consequence of (i).

Let w X λ (ℓ) := pr ℓ (w

X λ ) = {Y (ℓ) | Y ∈ w X λ } ⊆ M τ ℓ .
We have a natural analogue of Proposition 4.5 (iii) in this case under some necessary restrictions. Lemma 4.9. Let w be a subspace of M n such that the decomposition w X λ gr = ℓ (w X λ )(ℓ) holds. (i) The variety (w X λ ) nil is irreducible if and only if each (w X λ (ℓ)) nil is and

codim w X λ (w X λ ) nil = ℓ codim w X λ (ℓ) (w X λ (ℓ)) nil . (ii) In particular if, for each ℓ, w X λ (ℓ) is isomorphic to M τ ℓ , p k ′ ,τ ℓ or q k ′ ,τ ℓ (1 k ′ τ ℓ ) then (w X λ ) nil is irreducible and codim w X λ (w X λ ) nil = d λ .
Proof. (i) follows from Lemma 4.8. (ii) is then a consequence of Lemma 4.1.

Remark 4.10. The previous lemma is in general sufficient for our applications. But, in some cases, we have (w X λ ) gr ℓ w X λ (ℓ). A slightly less precise decomposition may remain valid in these cases. Define w

X λ (ℓ 1 , ℓ 2 ) := pr ℓ 1 ,ℓ 2 (w X λ ) = {(Y (ℓ 1 ), Y (ℓ 2 ))|Y ∈ w X λ } ⊆ w X λ (ℓ 1 ) × w X λ (ℓ 2 ).
Assume that there exists a decomposition of the form w X λ gr = (w

X λ )(ℓ 1 , ℓ 2 ) × ℓ / ∈{ℓ 1 ,ℓ 2 } (w X λ )(ℓ). Then (w X λ ) nil is irreducible if and only if (w X λ (ℓ 1 , ℓ 2 )) nil and each (w X λ (ℓ)) nil are. Then codim w X λ (w X λ ) nil = codim w X λ (ℓ 1 ,ℓ 2 ) (w X λ (ℓ 1 , ℓ 2 )) nil + ℓ / ∈{ℓ 1 ,ℓ 2 } codim w X λ (ℓ) (w X λ (ℓ)) nil . ( 4 
)
5 Irreducibility of N (p 1,n ) and S

[n-1,n] 0

The aim of this section is to prove that N (p 1,n ) is irreducible (Theorem 5.8).

We obtain as a corollary that a necessary and sufficient condition for the irreducibility of N (p k,n ) and S

[k,n] 0 is k ∈ {0, 1, n -1, n} (Theorem 5.11). In this section, we will use the simplifying notation p := p 1,n . The strategy is the following. We introduce a variety M(p) of almost commuting matrices. Since M(p) is easily described as a graph, we get its irreducibility and its dimension. The dimensions of the components of N (p) are controlled through the equations defining N (p) in M(p). From this dimension estimate, we have a small list of candidates to be an irreducible component. We finally show that only one element in this list defines an irreducible component.

In this section we assume n 2. Recall that (e 1 , . . . , e n ) is the canonical basis of V = k n , V i = e 1 , . . . , e i . Also, we note U i := e i+1 , . . . , e n . We will mostly be interested in this section by V 1 = ke 1 and U 1 = e 2 , . . . , e n . Recall also that p 

= p 1,n = {X ∈ gl(V ) | X(V 1 ) ⊂ V 1 }.
= gl(V 1 ) ⊕ Hom(U 1 , V 1 ) ⊕ gl(U 1 ) ∼ = k ⊕ M 1,n-1 ⊕ M n-1 (5) 
With respect to this decomposition, for any X ∈ p, we set X = X 1 + X 2 + X 3 where X

1 := X |V 1 ∈ gl(V 1 ) ∼ = k, X 2 ∈ Hom(U 1 , V 1 ) ∼ = M 1,n-1 and X 3 ∈ gl(U 1 ) ∼ = M n-1 . That is X =      X 1 X 2 0 . . . X 3 0      (6) 
We will often identify Hom(U 1 , V 1 ) with E := t e 2 , . . . , t e n . Define

M(p) :=          (X, Y, j) (X, Y ) ∈ p 2 , j ∈ Hom(U 1 , V 1 ) X, Y nilpotent , [X, Y ] -      0 j 0 . . . (0) 0      = 0         
The following Proposition and Corollary are prototypes for several similar results of Section 6. The main ideas for this approach are taken from [Zo].

Proposition 5.1. If n 2, then M(p) is irreducible of dimension n 2 -2 Proof. Let us compute [X, Y ] =      0 X 2 Y 3 -Y 2 X 3 0 . . . [X 3 , Y 3 ] 0      . (7) 
Hence, we have an alternative definition of M(p):

(X, Y, j) ∈ M(p) ⇔    (X 3 , Y 3 ) ∈ N (gl(U 1 )), X 1 = Y 1 = 0, j = X 2 Y 3 -Y 2 X 3 . (8)
In other words, M(p) is isomorphic to the graph of the morphism

N (M n-1 ) × (M 1,n-1 ) 2 → M 1,n-1 ((X 3 , Y 3 ), (X 2 , Y 2 )) → X 2 Y 3 -Y 2 X 3 .
and the result follows from Theorem 3.1.

Corollary 5.2. The dimension of each irreducible component of N (p) is greater or equal than n 2n -1.

Proof. If n = 1, the result is obvious.

Else, we embed

N (p) ֒→ M(p) (X, Y ) → (X, Y, 0) . Hence, N (p) is defined in M(p)
by the n -1 equations 0 = j ∈ M 1,n-1 (cf. ( 8)). Then, we conclude with Proposition 5.1.

Let us consider the set of 1-marked partitions of n

P ′ (n) := {(λ 1 , (λ 2 • • • λ d λ )) | d λ i=1 λ i = n, λ 1 1}. Given λ ∈ P ′ (n), we let g i j := e ( i-1 ℓ=1 λ ℓ )+j for 1 i d λ , 1 j λ i and we define X λ ∈ p via X λ (g i j ) = g i j-1 if j > 1, 0 if j = 1. (9) 
Note that these X λ with λ ∈ P ′ (n) are a priori different from the X λ with λ ∈ P(n) in spite of the similar notation used.

Lemma 5.3 (Classification Lemma). Let P := {x ∈ p | det x = 0} be the connected subgroup of G with Lie algebra p and let X be a nilpotent element of p.

There exists a unique λ ∈ P ′ (n) such that P • X = P • X λ .

Proof. Let us describe the P -action on p nil .

Let X =      0 X 2 0 . . . X 3 0      ∈ p nil and p =      p 1 p 2 0 . . . p 3 0      ∈ P (hence, p 1 ∈ k * , p 3 ∈ GL(U 1 ) ∼ = GL n-1 and p -1 =      p -1 1 -p -1 1 p 2 p -1 3 0 . . . p -1 3 0      ). Then p • X = pXp -1 =      0 p 2 X 3 p -1 3 + p 1 X 2 p -1 3 0 . . . p 3 X 3 p -1 3 0      . (10) 
Hence, in order to classify P -orbits of p nil , we can restrict ourselves to the case where X 3 is in Jordan normal form and study P ′ • X where P ′ = {p ∈ P | p 3 ∈ GL X 3 n-1 }. More precisely, we fix µ ∈ P(n-1) and f i j := e ( i-1 ℓ=1 µ ℓ )+j+1

(1 i d µ , 1 j µ i ) and assume that

X 3 (f i j ) = f i j-1 if j > 1, 0 if j = 1.
Recall that we identify Hom(U 1 , V 1 ) with E = t f i j i,j ∼ = k n-1 . The action of GL n-1 on this vector space that we consider is the natural right action. For any p 3 ∈ GL X 3 n-1 , we have p 2 X 3 p -1

3 = p 2 p -1 3 X 3 and {p 2 p -1 3 X 3 | p 2 ∈ E} = Im( t X 3 ) = t f i j | j = 1 for any p 3 ∈ GL X 3 n-1 . On the other hand, set i 0 = min{i | X 2 (f i ′ 1 ) = 0 for some i ′ such that µ i = µ i ′ } (If X 2 = 0, set i 0 := d µ + 1, µ i 0 = 0 and t f i 0 1 = 0). We have p 1 X 2 p -1 3 p 1 ∈ k * , p 3 ∈ GL X 3 n-1 + Im( t X 3 ) (p 1 Id n-1 ⊂GL X 3 n-1 ) = X 2 p -1 3 | p 3 ∈ GL X 3 n-1 + Im( t X 3 ) (Lemma 4.4) = t f i 1 | µ i = µ i 0 \ {0} + t f i j | j = 1 or µ i 0 > µ i (11) 
As a consequence, the P -orbit of X is uniquely determined by µ and i

0 . A representative of P • X is Y =      0 t f i 0 1 0 . . . X 3 0     
. Finally, an elementary base change in P obtained by a re-ordering of the (f i j ) i,j sends Y on X λ where λ

:= (µ i 0 + 1, (µ 2 • • • µ i 0 • • • µ dµ )).
Remark 5.4. In the special case X 0 := X λ 0 where λ 0 := (n, ∅) ∈ P ′ (n), we also get

P ′ • X 0 = X 0 3 + Hom(U 1 , V 1
) as a consequence of (11), where P ′ is the subgroup of P defined in the previous proof.

When λ ∈ P ′ (n), we say that X λ is in canonical form in p. Let N λ (p) := P • (X λ , (p X λ ) nil ). ( 12 
) Then dim N λ (p) = dim P • X λ + dim(p X λ ) nil = dim p -dim p X λ + dim(p X λ ) nil = dim p -codim p X λ (p X λ ) nil . ( 13 
) Lemma 5.5. N (p) = λ∈P ′ (n) N λ (p)
Moreover, (p X λ ) nil and N λ (p) are irreducible and dim N λ (p) = n 2 -n+1-d λ .

Proof. The decomposition into a disjoint union follows from Lemma 5.3. Let λ ∈ P ′ (n) and use notation of (9). In order to apply results of section 4, we have to define a new basis (f i j ) in which X := X λ is in canonical form for M n as in (1). Set i 0 := max({i|λ i > λ 1 } ∪ {1}) and

f i j :=    g 1 j if i = i 0 g i+1 j if i < i 0 g i j if i > i 0 , µ i :=    λ 1 if i = i 0 λ i+1 if i < i 0 λ i if i > i 0 . In this basis, X becomes X µ with µ = (µ 1 • • • µ d λ ) ∈ P(n) and p is defined in M n by the single property Y ∈ p ⇔ Y (f i 0 1 ) ⊂ kf i 0 1 . Hence, the subspace (p X ) gr (cf. Definition 4.7) is also characterized in (M X n ) gr by the single property Y gr ∈ (p X ) gr ⇔ Y gr (f i 0 1 ) ⊂ kf i 0 1 . In particular, letting τ ℓ := ♯{i | λ i = ℓ} = ♯{i | µ i = ℓ}, we have p X (ℓ) ∼ = M τ ℓ if ℓ = λ 1 p 1,τ ℓ if ℓ = λ 1 , and (p X ) gr = ℓ p X (ℓ).
Then, Lemma 4.9 (ii) provides the irreducibility statement for (p X ) nil and hence for N λ (p). Together with (13), it also provides the dimension of N λ (p).

Combining this with corollary 5.2, we get that the irreducible components of N (p) are of the form N λ (p) where λ ∈ P ′ (n) has at most two parts (d λ 2). The unique irreducible component of maximal dimension is associated with λ 0 = (n, ∅) ∈ P ′ (n).

There remains to show that

N λ (p) ⊂ N λ 0 (p) (14) 
when λ has two parts. In order to prove this, we distinguish two cases.

Lemma 5.6.

If λ = (λ 1 , (λ 2 )) ∈ P ′ (n) with λ 1 λ 2 + 1, property (14) is satisfied.
Proof. For (X 3 , Y 3 ) ∈ N (gl(U 1 )), we look at the fiber over (X 3 , Y 3 ) in N (p) and N λ 0 (p):

F X 3 ,Y 3 := {(X 2 , Y 2 ) ∈ (Hom(U 1 , V 1 )) 2 | (X 2 + X 3 , Y 2 + Y 3 ) ∈ N (p)}, F ′ X 3 ,Y 3 := {(X 2 , Y 2 ) ∈ (Hom(U 1 , V 1 )) 2 | (X 2 + X 3 , Y 2 + Y 3 ) ∈ N λ 0 (p)}. Since F X 3 ,Y 3 = {(X 2 , Y 2 ) | t X 3 t Y 2 = t Y 3 t X 2 } (cf. ( 7 
)) is a vector space, it is irreducible. On the other hand, the two varieties F X 3 ,Y 3 and F ′ X 3 ,Y 3 are closed and satisfy

F ′ X 3 ,Y 3 ⊂ F X 3 ,Y 3 . So F X 3 ,Y 3 = F ′ X 3 ,Y 3 ⇔ dim F X 3 ,Y 3 = dim F ′ X 3 ,Y 3 . ( 15 
)
We can compute the dimension of F X 3 ,Y 3 in the following way: dim F X 3 ,Y 3 = dim(Im( t X 3 ) ∩ Im( t Y 3 )) + dim Ker( t X 3 ) + dim Ker( t Y 3 ) = dim Im( t X 3 ) + dim Im( t Y 3 )dim(Im( t X 3 ) + Im( t Y 3 )) + dim Ker( t X 3 ) + dim Ker( t Y 3 ) = 2(n -1)dim(Im( t X 3 ) + Im( t Y 3 )). Set X 0 := X λ 0 . Then, identifying Hom(U 1 , V 1 ) with t e 2 , . . . , t e n and using notation of (6), we have Im( t X 0 3 ) = t e 3 , . . . t e n and for any Y 3 ∈ (gl(U 1 ) X 0 3 ) nil , the inclusion Im( t Y 3 ) ⊂ Im( t X 0 3 ) holds. Since dim Im( t X 0 3 ) = n -2, we get dim F X 0 3 ,Y 3 = n. An other consequence of the inclusion Im( t Y 3 ) ⊂ Im( t X 0 3 ) is the following: for any X 2 ∈ Hom(U 1 , V 1 ), there exists Y 2 ∈ Hom(U 1 , V 1 ) such that (X 2 , Y 2 ) ∈ F X 0 3 ,Y 3 . Combining this with Remark 5.4, we get that X 0 3 + X 2 ∈ P.X 0 3 for a general element (X 2 , Y 2 ) ∈ F X 0 3 ,Y 3 and

N λ 0 (p) = GL(U 1 ) • (X 0 3 + X 2 , Y 3 + Y 2 ) Y 3 ∈ (gl(U 1 ) X 0 3 ) nil (X 2 , Y 2 ) ∈ F X 0 3 ,Y 3 .
In particular, a general element (X, Y ) of the irreducible variety N λ 0 (p) satisfies dim F ′ X 3 ,Y 3 = n. Moreover, since N (gl(U 1 )) = GL(U 1 ).(X 0 3 , (gl(U 1 ) X 0 3 ) nil ) (Theorem 3.1), we see that any (X 3 , Y 3 ) ∈ N (gl(U 1 )) lies in fact in N λ 0 (p) by considering the inclusion N (gl(U 1 )) ⊂ N (p) given by X 2 = Y 2 = 0. Hence F ′ X 3 ,Y 3 = ∅ and

∀(X 3 , Y 3 ) ∈ N (gl(U 1 )), dim F ′ X 3 ,Y 3 n. ( 16 
)
From now on, we fix X := X λ and want to show that a general element Y of (p X ) nil satisfies (X, Y ) ∈ N λ 0 (p). This will prove the Lemma since (p X ) nil is irreducible (Lemma 5.5) and we will then have (X, (p X ) nil ) ⊂ N λ 0 (p). Define Z ∈ p by Z(g i j ) = g 2 j-1 if i = 1, j > 1, 0 else.

We have Z ∈ (p X ) nil under the hypothesis made on λ (Lemma 4.3) and Im( t Z 3 ) + Im( t X 3 ) = g 1 2 , . . . , g 1 λ 1 , g 2 2 , . . . , g 2 λ 2 so dim F X 3 ,Z 3 = n. Since the application (p X ) nil → N Y → dim F X 3 ,Y 3 is upper semi-continuous, it follows from ( 16) that

W := Y ∈ (p X ) nil | dim F X 3 ,Y 3 = n = dim F ′ X 3 ,Y 3
is a nonempty open subset of (p X ) nil . For Y ∈ W , we have (X, Y ) ∈ (X 3 , Y 3 ) + F X 3 ,Y 3 ⊂ N λ 0 (p) by ( 15).

The following Lemma can be proved with purely matricial arguments. However, we find the given proof more interesting. It uses the isomorphism p 1,n ∼ = p n-1,n and enlighten a bit the correspondence between S Then (X, Y, j) ∈ M(q k,n ) ⇔    (X 3 , Y 3 ) ∈ N (q k-1,n-1 ),

X 1 = Y 1 = 0, j = X 2 Y 3 -Y 2 X 3
Thus M(q k,n ) is isomorphic to the graph of ϕ :

N (q k-1,n-1 ) × (M 1,n-1 ) 2 → M 1,n-1

((X 3 , Y 3 ), (X 2 , Y 2 )) → X 2 Y 3 -Y 2 X 3 .
Hence, by induction, each irreducible component of M(q k,n ) has a dimension greater or equal than dim q k-1,n-1 -1 + 2(n -1). Since k -1 1, and X 3 , Y 3 ∈ gl(U 1 ) are nilpotent, we get X 3 (e 2 ) = Y 3 (e 2 ) = 0. So the image of ϕ lies in t e 3 , . . . t e n and N (q k,n ) is defined in M(q k,n ) by n -2 equations. Then the dimension of each of its irreducible component is greater or equal than dim q k-1,n-1 -1 + 2(n -1) -(n -2) = dim q k-1,n-1 + n -1 = dim q k,n -1.

Hence, by Proposition 3.13: Corollary 6.2. Each irreducible component of S [[n-k,n]] 0 has dimension at least n -1 which is the dimension of the curvilinear component. Remark 6.3. When k = n, Proposition 6.1 provides a lower bound for the dimension of the nilpotent commuting variety of the Borel subalgebra q n,n . In this case, a simpler proof is given by considering the bracket map n × n → [n, n] where n is the nilradical of a Borel b. Its fibers, in particular its null one which is equal to N (b), are of dimension greater or equal than 2 dim ndim[n, n] = dim b in an arbitrary semisimple Lie algebra. When b acts on n with finitely many orbits, a computation similar to (13) then shows that N (b) is an equidimensional variety. This simplifies some of the arguments of [GR], where this result was first proved, since it allows to avoid Strategy 2.10 (2-3) in this case.

Unfortunately, concerning p k,n we are only able to give the following less effective bound. Proposition 6.4. Each irreducible component of N (p k,n ) has dimension at least dim p k,n -2.

Picturally, this corresponds to a group of the following form: 

(Q X λ 1,n-1 ) ext =               

  As a first step towards this goal, we count the number of components of dimension n -1.Proposition 2.2. S [2,n] 0 contains exactly ⌊n/2⌋ components of dimension n -1.Proof. Consider the action of the torus t.x = t k x (k >> 0) , t.y = ty on k[x, y] and the induced action on S to this action. According to [ES, Proof of Proposition 4.2], any cell is characterized by a partition of n, and the dimension of the cell with partition λ

  omorphic to P 1 , where (c : d) ∈ P 1 corresponds to the subscheme z 2 ∈ S [2] 0

  by a subscheme of p k,n . The k-points of F are those of the open subscheme P k,n ⊂ p k,n . Hence P k,n with the open subscheme structure represents F .

  that we use.

0

  and the localized nested Hilbert scheme Z [n j ,n j-1 ,...,n 1 ] 0 . Of course, they include our two main objects of study S = A 2 and o = (0, 0). Definition 3.7. Let Z be a scheme over k, o ∈ Z a smooth point such that the local dimension of Z at o is d. The Hilbert scheme Z [n] 0

  . In fact, the following proposition shows they are even isomorphic as varieties.Proposition 3.8. Let (S [1,n] 0) red and (S[n] 0 ) red be the varieties obtained from S

  quotients are algebraic. Gluing these local quotients to form a global quotient N cyc (p k,n )/P k,n is straightforward: this corresponds to the gluing of the open subschemes S ∆ in the Hilbert scheme S [n-k,k] 0 . So far, we have proved that the Hilbert scheme S [n-k,k] 0

  and only if Y ext is nilpotent if and only if the three matrices Y (ℓ) are nilpotent. This corresponds to the six(= d λ ) independent conditions    T r(Y (4)) = a = 0, T r(Y (2)) = 0 e 1 e 2 + e 2 e 3 + e 3 e 1k 1 k 3k 4 k 6k 2 k 5

  If λ = (λ 1 , (λ 2 )) ∈ P ′ (n) with λ 1 λ 2 , then Property (14) is satisfied.

  By virtue of Proposition 3.13, we can study N (p) in order to get informations on S

		[n-1,n] 0	.
	We have
	p	v.s.

(9). We claim that (X µ ) µ∈P ′′ (n) is a set of representatives of nilpotent orbits of q 2,n .

* This work has benefited from two short stay funded by the GDR TLAG

out to be a key part of our proof of the irreducibility of S

[n-1,n] 0 (cf. Corollary 5.9).

However, the cyclicity condition breaks the symmetry and there might be profound differences between N cyc (p k,n ) and N cyc (p n-k,n ), hence between S both contain a curvilinear locus as an open subvariety, and these curvilinear loci are isomorphic. On the boundary of this curvilinear locus, the two Hilbert schemes are quite different: when the scheme z 3 has equation (x 2 , xy, y 2 ) there is set theoretically only one length 1 point z 1 in z 3 , but there is a P 1 of z 2 with length 2 satisfying z 2 ⊂ z 3 .

Technical lemmas on matrices

In this section, we collect technical results that will be used later on. Most of these results aim to describe a nil ⊂ a, where a is a space of matrices commuting with a Jordan matrix of type λ ∈ P(n) and a nil is the set of nilpotent matrices of a. In particular, we will make frequent use of Lemmas 4.3 and Proposition 4.5. Parts of the results shown are well known in the more general framework of Lie algebras. Our goal is to translate this in the matrix setting and to provide a low-level understanding of the involved phenomena.

Lemma 4.1.

(i) (M n ) nil is an irreducible subvariety of codimension n in M n .

(ii) Assume that p is the parabolic subalgebra defined by p = {X ∈ M n | ∀j, X(V i j ) ⊂ V i j } where the i j are k + 1 indices satisfying 0 = i 0 i 1 . . . i k = n. Then X ∈ p is nilpotent if and only if the k extracted matrices

(iii) If p is a parabolic subalgebra of M n then p nil is an irreducible subvariety of p of codimension n.

Proof. It is an immediate consequence of Lemma 4.3.

Similarily we define the surjective (cf. Lemma 4.3) maps

where

can be seen as the element induced by Y on W ′ ℓ . We also define (M X λ n ) gr := ℓ M X λ n (ℓ) and pr gr as the surjective map:

.

We have a natural section ϕ :

of the Lie algebra morphism pr gr by setting

where n := Ker(pr gr ). A similar decomposition holds for pr ext :

where n 1 := Ker(pr ext ).

Proposition 4.5.

Proof. We associate to each basis element f i j the weight w(f i j ) := (jλ i , j). We order the weights lexicographically. Lemma 4.3 asserts that Y ∈ M X λ n is parabolic with respect to these weights

Remark that two elements f i j and f i ′ j ′ have the same weight if and only if λ i = λ i ′ and j = j ′ . We order the basis f i j with respect to their weight. The base change from the f i j lexicographically ordered by their index (i, j) to the f i j ordered by their weight transforms the matrix Y into a matrix Z.

Let w be a weight and f i 1 j , f i 2 j , . . . f i k j be the elements with weight w and ℓ := λ im (for any m ∈ [[1, k]]). The diagonal block of Z corresponding to the weight w is Y (ℓ) (Lemma 4.3). In other words, Z and Y gr have the same diagonal blocks Y (ℓ), the difference being that the same block Proof. Seen as varieties, we have S follows from that of S

[n] 0 [Br, Pr] and N cyc (p n-1,n ) is then also irreducible (Proposition 3.13).

We have a Lie algebra isomorphism given by

where s is defined on the basis (e i ) i∈ [[1,n]] by s(e i ) := e n-i . In particular, the restriction ψ :

) is an isomorphism of varieties. Moreover, ψ(X, Y ) has a cyclic vector if and only if ( t X, t Y ) does. Note that ψ(N

). Hence, it follows from Lemma 5.5 and the irreducibility of the open subvariety

Consider now X λ given by ( 9). We can define

Under our hypothesis on λ, we have Y ∈ p X λ 1,n (Lemma 4.3) and t g 1 1 is a cyclic vector for ( t X λ , t Y ). In particular, ψ(N

Since ψ is an isomorphism, ( 14) is proved in our case.

Finally, it follows from discussion above (14) that the following theorem holds.

Theorem 5.8. The variety

Hence, by Proposition 3.13:

Remark 5.10. The above corollary was already proved in [CE] with other techniques (Bialynicki-Birula stratifications and Gröbner basis computations).

0 , this proves together with Proposition 2.1 the assertion of the Theorem for S [k,n] 0 . The variety N (p k,n ) is irreducible for k = 1 by Theorem 5.8. The transposition isomorphism of (17) implies that

The "if" part then follows from Theorem 5.11 and easy computations when n 3. For k 2, we have a sequence of surjective morphisms

is reducible when n 4, the corollary follows.

General lower bounds for the dimension of the components

The goal of this section is to give lower bounds for the dimension of the components of

which are valid for all k, n. Let n 2 and 1 k n -1. Proposition 6.1. Each irreducible component of N (q k,n ) has dimension at least dim q k,n -1.

Proof. We proceed by induction on k, the case k = 1 being proved in Theorem 5.8 since q 1,n = p 1,n . Assume now k 2. The proof mainly follows those of Proposition 5.1 and Corollary 5.2.

For any X ∈ q k,n , we decompose X = X 1 + X 2 + X 3 as in ( 6), with

Once again, we proceed in a similar way to Proposition 5.1. Hence, M(p k,n ) is isomorphic to the graph of a morphism with an irreducible domain of dimension (k

Finally, we have the following consequence concerning nested Hilbert schemes (cf. Proposition 3.13).

Corollary 6.5. Each irreducible component of S

[n-k,n] 0 has dimension at least n -2, which is the dimension of the curvilinear component minus one.

Applying naively the same argument to a general parabolic subalgebra p whose Levi part has ℓ blocks, one can show that the dimension of any irreducible component of N (p) (resp. of the corresponding Hilbert scheme) has dimension at least D -(ℓ -1) with D = dim p -1 (resp. D = n -1). We think that the correct dimension should be D but were only able to prove this in special cases such as q k,n . In fact, in this case as in some others, the extra codimension yielded by the Levi-blocks of size 1 can be discarded easily, hence the optimal result.

Detailed study of S [2,n] 0

In the special cases k = 2 and k = n -2, we have a more precise estimate for the dimension of the components. The goal of this section is to describe the number and the dimension of the components for

. The general strategy is the same as in Section 5.

Our first aim is a classification of orbits.

We identify q 2,n with

Again, we decompose each X ∈ q 2,n with respect to this direct sum

For any λ

Proof. Thanks to the inclusion (GL(V 2 ) × Id U 2 ) ⊂ P 2,n , we can trigonalize the gl(V 2 )-part of any element of p 2,n , hence each element of p 2,n is P 2,nconjugated to an element of q 2,n . Since Q 2,n ⊂ P 2,n , it is therefore sufficient to prove the result for q 2,n . Let X = X 1 +X 2 +X 3 ∈ q 2,n be a nilpotent element. We have X 1 = 0. The element X 3 is nilpotent so, up to conjugacy by an element of (Id V 1 ×Q 1,n-1 ) ⊂ Q 2,n , we may assume that X 3 = X λ for some fixed λ ∈ P ′ (n-1) (Lemma 5.3). Let Q ′ ⊂ Q 2,n be the subgroup of elements stabilizing this part

Hence, we are reduced to classify the different Q ′ -orbits in Hom(U 1 , V 1 ) v.s. ∼ = t g i j i,j ∼ = k n-1 with respect to the action of Q ′ given by q • X 2 = X 2 q 1 q -1 3 + q 2 q -1 3 X λ .

In particular,

2 and this subspace is stable under the right action of Q X λ 1,n-1 . There remains to understand the

] . Under notation of section 4, this corresponds to the right action of (Q

In the left action setting on

) ext can be described as the subgroup stabilizing g 1 1 in the parabolic subgroup stabilizing each

On the other hand, if X 2 (g 1 1 ) = 0, we set ǫ = 1; otherwise we set ǫ = 0. Then:

Hence, if ǫ = 1 and

Note that we may have P 2,n • X µ = P 2,n • X µ ′ with µ = µ ′ . A full classification of nilpotent orbits should throw away those cases. However, the description of Lemma 7.1 will be sufficient for our purpose.

If µ = (λ, ǫ, l) ∈ P ′′ (n), we denote by d µ the number of parts in the partition of n associated to GL n •X µ . That is

It follows from Lemma 7.1 that

Lemma 7.2. Let w = q 2,n or p 2,n and µ = (λ, ǫ, l) ∈ P ′′ (n).

1. (w Xµ ) nil is an irreducible subvariety of w Xµ of codimension

Proof. The computation (13) remains valid when one replaces p(= p 1,n ) by p 2,n or q 2,n . Hence, the second assertion is a consequence of the first one.

The proof is based on case by case considerations on (w Xµ ) nil gr and the use of Lemma 4.9 (or Remark 4.10) in a similar manner as in Lemma 5.5.

Firstly, assume that ε = 0 or l = 0. The proof of Lemma 5.5 can easily be translated here. An elementary base change (f i j ) i,j based on a reordering of (e 1 , (g i j ) i,j ) transforms X µ into an element in Jordan canonical form in M n with partition µ ′ ∈ P(n). In these cases, (w Xµ ) gr is defined in (M Xµ dµ ) gr by a condition of one of the types given in the RHS below, for some i 0 and possibly i 1 .

In particular, (w Xµ ) gr = ℓ w Xµ (ℓ) and each w Xµ (ℓ) is isomorphic to M τ ℓ , p 1,τ ℓ , p 2,τ ℓ or q 2,τ ℓ . We then finish as in Lemma 5.5.

If ε = 1 and l > 0, we have a more subtle base change to operate. Let i 0 = max{i|λ i > λ 1 }. Recall that the condition ǫ = 1 implies the inequality 1 < i µ i 0 (cf. ( 19)). Let

In this new basis, X µ is in Jordan canonical form associated to a partition

) has no component in f iµ-1 2 (Lemma 4.3). Hence, for such Y , the two conditions on the first line of ( 22) are both equivalent to the existence of some α ∈ k such that Y (f

), implies β i 0 = δ = γ ′ iµ-1 = α and β i = 0 for all i = i 0 such that µ ′ i = µ ′ i 0 . Thus, we have the following characterization of (w Xµ ) gr in M Xµ n :

Hence w X λ gr = w X λ (ℓ 1 , ℓ 2 ) × ℓ / ∈{ℓ 1 ,ℓ 2 } w X λ (ℓ); w Xµ (ℓ) = M τ ℓ for ℓ = ℓ 1 , ℓ 2 and (w Xµ (ℓ 1 , ℓ 2 )) nil is characterized in w Xµ (ℓ 1 , ℓ 2 ) by the conditions α = 0, B 1 , B 2 nilpotent (Lemma 4.1). Thus (w Xµ (ℓ 1 , ℓ 2 )) nil is an irreducible variety of codimension τ ℓ 1 + τ ℓ 2 -1 in w Xµ (ℓ 1 , ℓ 2 ) (Lemma 4.1); the variety (w Xµ ) nil is also irreducible and codim w Xµ (w Xµ ) nil = d µ -1 (Remark 4.10). Hence we have proved the first assertion follows in this last case.

Theorem 7.3. Let w = q 2,n or p 2,n . Then N (w) is equidimensional of dimension dim w -1. It has n 2 components. Proof. We have min{c µ |µ ∈ P ′′ (n)} = 1. Hence, it follows from Lemma 7.2 and Proposition 6.1 that each irreducible component of N (q 2,n ) has dimension dim q 2,n -1. There are two types of µ ∈ P ′′ (n) such that c µ = 1.

• µ = ((n -1, ∅), 0, 1) which is the only element whose associated partition of n has just one part.

• µ = ((λ 1 , λ 2 ), λ 2 , 1) with λ 2 > λ 1 . Its associated partition of n has two parts: (λ 2 + 1 λ 1 ), cf. ( 21) for more details. Note that this covers (the transpose of) the partitions involved in the proof of Proposition 2.2 since λ 2 > λ 1 ⇔ (λ 2 + 1)λ 1 2.

There are n 2 such elements, whence the statement for w = q 2,n . It follows from the description above that the map {µ ∈ P ′′ (n)|c µ = 1} → P(n) which sends µ to the partition associated to GL n .X µ is injective. In particular, the different such X µ belong to different P 2,n -orbits. So the associated varieties N µ (p 2,n ), which are the irreducible components of maximal dimension of N (p 2,n ), are all distinct.

There remains to prove that there is no other irreducible component in

and we are done.

Remark 7.4. (i) The key point of this last proof in the case w = p 2,n is that dim N µ (q 2,n ) and dim N µ (p 2,n ) are both related to the same integer c µ . This is what allows us to carry out the equidimensionality property from N (q 2,n ) to N (p 2,n )

(ii) The method used in this section is deeply based on the decomposition of N (w) as a finite union of the irreducible subvarieties N µ (w). For this, the classification into finitely many orbits of Lemma 7.1 plays a key role. This situation breaks down in general for p k,n . Using quiver theory and techniques similar to [Bo], M. Reineke communicated to us an example of an infinite family of P 6,12 -orbits in p 6,12 .

(iii) Similarly, in [GR], the authors show that some continuous families of Q n,n -orbits exist in q n,n (Borel case) as soon as n 6. From this, they deduce the existence of irreducible components of N (q n,n ) of dimension greater or equal than dim q n,n showing that the variety is not equidimensional in these cases.

Corollary 7.5. S [n-2,n]] 0 has at least n 2 components. But Theorem 7.3 implies that there are at most n 2 components, and that these components have dimension n -1. The result follows.