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commuting varieties of parabolic subalgebras®
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June 19, 2013

Abstract:

It is known that the variety parametrizing pairs of commuting nilpotent
matrices is irreducible and that this provides a proof of the irreducibility of
the punctual Hilbert scheme in the plane. We extend this link to the nilpotent
commuting variety of parabolic subalgebras of M, (k) and to the punctual
nested Hilbert scheme. By this method, we obtain a lower bound on the
dimension of these moduli spaces. We characterize the numerical conditions
under which they are irreducible. In some reducible cases, we describe the
irreducible components and their dimension.
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1 Introduction

Let k be an algebraically closed field of arbitrary characteristic. Let S
denote the Hilbert scheme parametrizing the zero dimensional schemes z,, in
the affine plane S = A% = Spec k[z, y| with length(z,) = n. Several varia-
tions from this original Hilbert scheme have been considered. For instance,
Briangon studied the punctual Hilbert scheme S([)n] which parametrizes the
subschemes z, with length n and support on the origin [Br], and Cheah has
considered the nested Hilbert schemes parametrizing tuples of zero dimen-
sional schemes z;, C 2k, C --- C 2z, organised in a tower of successive
inclusions [Chll [Ch2].

Let C(M,(k)) be the commuting variety of M,(k), i.e. the variety
parametrizing the pairs of square matrices (X,Y) with X € M,(k),Y €
M,(k), XY = Y X. Many variations in the same circle of ideas have been
considered since a first work of Gerstenhaber [Ge| who proved the irreducibil-
ity of C(M,(k)). For instance, one can consider C(a), where a C M, (k) is a
subspace (often a Lie subalgebra), or N'(a) C C(a) defined by the condition
X, Y nilpotent (cf. e.g. [Pal Bul, [GR]).

There is a well known connection between Hilbert schemes and commut-
ing varieties. If 2z, € S[" is a zero dimensional subscheme, and if by, ..., b,
is a base of the structural sheaf O, = k[z,y|/1,,, the multiplications by x
and y on O, are represented by a pair of commuting matrices X,Y. This
link has been intensively used by Nakajima [Na]. Obviously, variations on
the Hilbert scheme correspond to variations on the commuting varieties.



The goal of this paper is to study the punctual nested Hilbert schemes
S and S and their matrix counterparts A (pr..) and N(dqy..). Here
S([)k’"] C S([)k] X S([)"] parametrizes the pairs of punctual schemes z, z, with 2, C
z, and Sgk’nﬂ C Sgﬂ X S([)kﬂ} XX S([)"] parametrizes the tuples 2, C 241 -+ C
Zn, Prn C M, (k) is a parabolic subalgebra defined by a flag Fy C F), C F,
with dim F; = 7 and qi,, is associated with a flag Fy C Fy--- C F}, C F,,.
Closely linked to this setting, gy, is a Borel subalgebra of M, (k) and some
properties of N'(q,,) can be found in [GR].

One of the reasons to study the nested punctual Hilbert schemes is that
understanding their geometry is important to control the creation and an-
nihilation operators on the cohomology of the Hilbert scheme introduced by
Nakajima and Grojnowski [Nal, [Gr]. A typical application is the vanishing of
a cohomology class which is the push-down of the class of a variety under a
contractant morphism. It is then often necessary to describe the components
and/or their dimension to simplify the computations [Nal [Lel [CE].

Let Py, resp. Qg n, be the groups of invertible matrices in py, ., r€Sp. qi .-
It acts on pi ,, resp. qin, by conjugation. In the Lie algebra setting, P,
resp. Qk.n, is nothing but the parabolic subgroup of GL, (k) with Lie algebra
Pkn, T€SP. (. Although P, and ), are not reductive, it is possible in
our context to make precise the connection between the Hilbert schemes and
the commuting varieties by the following geometric quotient in the sense of
Mumford [MFK].

Let NcyC(pk,n) and /chc(qk,n) be the open loci in N(pr,) x k™ and
N (gk.n) x k™ defined by the existence of a cyclic vector, i.e. these open loci
parametrize the tuples ((X,Y),v) with k[X,Y](v) = k™ They are stable
under the respective action of Py, and Q.

Theorem [3.2l

1. There exist geometric quotients ¢ : ﬁcyc(]-‘lk,n) — Ncyc(Pk,n)/Pk,n and
¢ N¥(Qk,n) = NU(arn)/ Qi

2. There exist surjective morphisms 7, : /chc(lﬂk,n) — S([)”_k’"} ,
~ A rcyc n—k,n
7Tl/f,n: Ny (qk,n) — S([g ]] .

3. There exist isomorphisms i : N Ye(prn)/Pem — S([]"_k’"] and 7' :
NV (pn)/Qrm — SFF" These isomorphisms identify the pro-



jections to the Hilbert schemes with the geometric quotients, 1.e.
i0q=Tp,and i oq =7 .

This is directly inspired from the general construction of Nakajima’s
quiver varieties (see e.g. [Gi]), the cyclicity being a stability condition in
the sense of [MFK]. It can straightforwardly be generalized to any parabolic
subalgebra of M,,.

We then investigate the dimension and the number of components of
N(©en), Ndrn), SE™ and SPF™. Many of our proofs consider the prob-
lem for N (pr.n), N(qrn) firstly and then use the above theorem and some
geometric arguments to push down the information to the Hilbert schemes.
Conversely, sometimes, we pull back the information from the Hilbert scheme
to the commuting variety. The general philosophy is that the problems on the
commuting varieties are in some sense “linear” versions of the corresponding
problems on the Hilbert scheme which are “polynomial” problems. This ex-
plains why the most frequent direction of propagation of the information is
from commuting varieties to Hilbert schemes.

Theorem [5.111 Sék’"] is irreducible if and only if £ € {0,1,n — 1,n}. The
variety N (py.) is irreducible if and only if £ € {0,1,n — 1,n}.

Theorem Sgk’"] is irreducible if and only if k € {n —1,n} or n < 3.
N (qk.n) is irreducible if and only if £ € {0,1} or n < 3.

When k£ = 2 or k = n — 2, we have precise results on the number of
components and their dimensions.

Theorem [7.3l Let v = g3, or ps,. Then N (tv) is equidimensional of

dimension dimto — 1. It has L%J components.

Theorem [TB. S, slr=2m sIn=2m1 16 equidimensional of dimension

n — 1. They have ng components.

The similarity between S\ and S follows from a transposition
isomorphism between N (p ) and N (p,—x.). Note however that there might
be profound differences between the Hilbert schemes and the corresponding
commuting variety because of the cyclicity condition, see remark B.13l

Without any assumption on k& € [0,n], we have an estimate for the
dimension of the components.



Proposition (Section [6]).  Each irreducible component of Sgk’nﬂ has
dimension at least n — 1 which is the dimension of the curvilinear component.
Each irreducible component of S([)k’"} has dimension at least n — 2, which is
the dimension of the curvilinear component minus one. Each irreducible
component of N (q,,) has dimension at least dim qi,, — 1. Each irreducible
component of N'(pg,,) has dimension at least dim py, ,, — 2.

Note that the result is not optimal for py ,, and S([)k’"} as Theorems and
shows.

Our approach does not depend on the characteristic of k. One reason
that makes this possible is that we often rely on the key work of Premet in
[Pr] made in arbitrary characteristic.

2 Reducible nested Hilbert schemes

Throughout the paper, we work over an algebraically closed field k of arbi-
trary characteristic.

In this section, we produce examples of reducible nested Hilbert schemes,
and we identify some of their components via direct computations.

Let S = A? = Spec k[z,y] be the affine plane. We denote by
S the Hilbert scheme parametrizing the zero dimensional subschemes
2, C A? of length n. We denote by Sk < SW x Sl the Hilbert
scheme parametrizing the pairs (zx,z,) with 2z, C z,. We denote by
Slkn] Sk . SE+1] 5 ... x S the Hilbert scheme that parametrizes the
tuples of subschemes (zx, zki1,...,2,) With 2 C 2zgi1--+ C 2,. An index
0 indicates that the schemes considered are supported on the origin. For
instance, Sék’n] C Sgﬂ X Sé"} is the Hilbert scheme parametrizing the pairs
(2K, 2n) With zx C 2z, and supp(z,) = supp(z,) = O.

All these Hilbert schemes have a functorial description. For the original
Hilbert scheme, see [Gro] or [HM] for a modern treatment. For the nested
Hilbert schemes see [Kee|. For the versions supported on the origin, a good
reference is [Ber]. Section Bl will recall the main technical descriptions that
we need.

Proposition 2.1. For k #0,1,n—1,n, SF™ is reducible.

Proof. Recall that a curvilinear scheme of length n is a punctual scheme
which can be defined by the ideal (z,y™) in some system of coordinates
i.e. this is a punctual scheme included in a smooth curve. The curvilinear
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schemes form an irreducible subvariety of S([)"] of dimension n — 1 [Br]. We
prove that S([)k’"} admits at least two components: the curvilinear component
where 2, and z, are both curvilinear (of dimension n — 1 since 2z, = (z, y*) is
determined by z, = (x,3") ) and an other component of dimension greater
or equal than n — 1. The families that we exhibit below are special cases of
more general constructions which give charts on the Hilbert schemes [Ev].

Consider the set of subschemes z; z,, with equation I, and I, where
Iy = (" Y yx + 3077 at, v + 5207 agya' ™' 4 b 2). Let ¢ be the change
of coordinates defined by = ~ z, y — y — Sors az’". Then ¢(I,) =
(21 yx,y* + bx"~?). In particular, for each choice of the parameters a;, b,
the scheme z, has length n.

For each z,, there is a one dimensional family of subschemes 2z, C z,. We
check this claim in the coordinate system where I, = (2"~ 1, yx, y? + bax""2).
Consider I, = (2%, y—ca*~1). Modulo I; we have z"~! = 0 and yz = cz* = 0.
Since k <n —2and k > 2, y?> + ba" 2 = y? = (ca*1)? = 0. Thus I,, C I,
as expected.

All the ideals I,, and I are pairwise distinct since their generators form a
reduced Grobner basis for the order y >> x and a reduced Grobner basis is
unique. We thus have two families of dimension n— 1, namely the curvilinear
component and the family we constructed with the parameters (a;, b, c). It
remains to prove that they cannot be both included in a same component V
of dimension > n. For this, we prove that the closure of the curvilinear locus
is an irreducible component.

Let p be the projection SI™ — S, Let €™ ¢ SI" be the curvilinear
locus and C*" = (p~1(C™)),eq be the reduced inverse image. Note that
p restricts to a bijection between C*" and C™. Let V be an irreducible
variety containing the curvilinear locus C*™. Since C™ is open in p(V) C Sén}
by [Bx] and since p restricts to a bijection between C*" and C", we have
dimV =dimC" =n — 1.

]

The number of components of S([)k’n} is in general larger than the two
components exhibited in proposition 2.1l We illustrate this claim in the case
k= 2.

Proposition 2.2. S([f’"} contains ezactly |n/2] components of dimension
n—1.



Proof. Consider the action of the torus t.z = tfz (k >> 0) , t.y = ty on k[z, y]
and the induced action on S([]"}. There is a Bialynicki-Birula decomposition
of S([)"] with respect to this action. According to [ES, Proof of Proposition
4.2], any cell is characterized by a partition of n, and the dimension of the
cell with partition A= (A = --- > Ay, ) is n — Aq.

There is a unique cell of dimension n — 1 of S([]"} and it is associated with
the unique partition A = (1,1,...,1) of n with \; = 1. Geometrically, this
cell parametrizes the curvilinear subschemes which intersect the vertical line
y = 0 with multiplicity one. We call it the curvilinear cell and we denote it by
Foumo. There are [n/2] cells Fy C S([]n} of dimension n—2 corresponding to the
partitions A with n boxes and A\; = 2 : one has to take A = A, := (27,1°7%),
withb>a>1and a +b=n.

Following [Ev], we may be more explicit and describe the charts cor-
responding to the Bialynicki-Birula strata. We suppose n > 3 since the
proposition is clearly true for n = 2. If b = a, the Bialynicki-Birula
stratum F,, is isomorphic to Spec k[c;;] with universal ideal (z%y* +
D icto} el a1} cijz'y?). If b > a, the stratum is Spec Kk[c;, d;, e;] with
universal ideal (2% yz® + dicll, b—an1} c;rtT Y + dicll, bean1) ciyxt +
Doicay G 3 e ey G D i thma, b1y €T)

There is at most one term of degree one in the generators of the ideal,
which appears when (b —a = 0,¢19 # 0) or (b —a = 1,e; # 0). In these
cases, the corresponding point of the Bialynicki-Birula cell parametrizes a
curvilinear scheme and it parametrizes a noncurvilinear scheme if b —a > 2
or e; =0 or ¢ = 0. There are [n/2] — 1 partitions A, with b —a > 2.

Consider the projection p : SP™ — SI" and z, € SI". The fiber p~'(2,)
is set-theoretically a point if z, is curvilinear. If z, is not curvilinear, the
fiber is P!, where (c : d) € P! corresponds to the subscheme z, € S([f] with
ideal (cz + dy, z?, y?%).

It follows that p~'(F,yu,) and p~'(Fj,,) with b —a > 2 are irreducible

varieties of dimension n — 1. There are [ﬂj such irreducible varieties. To

2
prove that their closures are irreducible components, note that S([f’"] is a
proper subscheme of the n dimensional irreducible variety S([)"] X S([]z}. In

particular, any irreducible closed subvariety of dimension n — 1 in S([)z’"] is an
irreducible component.

It remains to prove that there are no other components. Let L be a
component with dimension n—1. The generic fiber of the projection L — S([]"}



has dimension 0 or 1 thus the projection has dimension at least n — 2. If
the projection has dimension n — 1, then the generic point of L maps to the
generic point of the curvilinear component for dimension reasons, and L is
the curvilinear component p=1(F,,,). If the projection has dimension n — 2,
then the generic point of L maps to the generic point of a Bialynicki-Birula
cell of dimension n — 2, Fj_,, or to a non closed point of Fi,.,. Since the
generic fiber has dimension 1, the generic point of L does not map to Fi ..,
nor to the generic point of Fy_,, b—a < 1. Hence L is included in one of the

components p~!(Fy,,) constructed above with b —a > 2, and the equality

follows from the equality of dimensions. O
Remark 2.3. [t is possible to prove along the same lines that S([)"_z’"}
has exactly |n/2| components of dimension n — 1.  More precisely,

the universal ideal (P, = 2%, P, = ya® + Zie{l,...,b—a—l} Gttt Py =
y* + Zz‘e{l,...,b—aﬂ} YT+ Y ieqay BT+ e pamy GETY)
Zie{b—a,...b—l} e;x') over Fy,, with b —a > 2 as above defines a n — 2 di-
mensional family of subschemes z, of length n. For each such subscheme
Zn, there is a one dimensional family of subschemes z,_o(t) parametrized
by t with z, o(t) C z,. In coordinates z, o(t) is defined by the ideal
(Py/x, Py/x + tab=Y, Py). The couple (2,_s, z,) moves in dimension n — 1.
Adding the curvilinear component, we obtain in this way the |n/2| compo-
nents of dimension n — 1.

3 Hilbert schemes and commuting varieties

The goal of this section is to make precise the link between Hilbert schemes
and commuting varieties in our context. More explicitly, we realize the
Hilbert schemes SI""™ and S ™™ as geometric quotients of the commut-
ing varieties N Y(pg.,) and N Y°(qg.n) by the groups Py, and Q. (The-
orem [3.2]). As a consequence, we point out a precise connection between
irreducible components of SI"™™ (resp. Sy and those of N¥(py.,)
(resp. N¥“(qy.,)) in Proposition B.I0.

We first introduce the notation to handle the commuting varieties. Let
M, i be the set of n x k matrices with entries in k and let M, := M, ,,. The
associative algebra M,, will more often be considered as a Lie algebra g via
[A, B] :== AB — BA and we will be interested in the action by conjugation of
G=GL,onit (g-X =gXg'). If v is a Lie subalgebra of M,, and X € v,



we denote the centralizer (also called commutator) of X in w by
Y = {Y en|[Y, X] = 0}.

The set of elements of to which are nilpotent in M,, is denoted by tv"*. We
define the nilpotent commuting variety of to:

N(w) ={(X,Y) € (n")? | [X,Y] =0} C 1o x 0.

If a subgroup @ C G normalizes tv then QX is the stabilizer of X € 1 in Q.
The group @ acts on N () diagonally (¢- (X,Y) = (¢ X,q-Y)).

Theorem 3.1. If X denotes a reqular nilpotent element of M,,, we have

N(M,) =G - (XO, (M)
In particular, the variety N'(M,,) is irreducible of dimension n* — 1

Recall that an element X € M, is said to be regular if it has a cyclic
vector, i.e. an element v € k™ such that (X*(v)|k € N) = k. This easily
implies, and is in fact equivalent to, dim GX (= dim M) = n. There is only
one regular nilpotent orbit. This is the orbit of nilpotent elements having
only one Jordan bloc.

Originally stated in [Bar| using the correspondence with Hilbert schemes,
we can find other proofs of this theorem in [Bas03] and [Pr]. In [Pi], the
result is proved whithout any assumption on char k. We have noted that
an error lies in the proof of the key Lemma 3 of [Bar| and we do not know
whether this Lemma remains true or not in its stated form. Nevertheless,
the general strategy works and the interested reader should be able to fill the
gap (e.g. with the tools described in the present paper).

Let V = k™ and (ey,...,e,) be its canonical basis. We will identify
M, with gl(V), the set of endomorphisms of V| thanks to this basis. For
1 <i<nletV,=(e,...e) and U; := (€;41,...€,). We define py,
(resp. qk.n) as the set of matrices X € gl(V') such that X (Vi) C Vi (resp.
X(V;) CV; forall 1 <i< k). Given X € p,,x, we denote by X*) the linear
map induced by X on V/Vi. Let Py, C GL, (resp. Qk, C GL,) be the
set of invertible matrices of py,, (resp. qin). In the Lie algebra vocabulary,
Py, and Qg (resp. P, and q,) are parabolic subgroups of GL, (resp.
parabolic subalgebras of gl(V')) and Lie(Py,) = Prn, Lie(Qrn) = qrn. In



fact, all the content of this section can easily be generalized to any parabolic
subalgebra of gl(V') and a corresponding nested Hilbert scheme.

We denote by N¥“(v) the set of triples (X,Y,v) with (X,Y) € N (),
kjz,y] — k"

P — P(X,Y)v)
i.e. v is a cyclic vector for the pair X,Y. More precisely, we will define
below a representable functor whose closed points are the triples (X, Y, v).
The groups Py, and Qj, naturally act on N Y(pg.,) and N V(qg.n) Via
g(X,Y,v) = (gXg~ ', gYg™!, gv). The following theorem asserts that a GIT
quotient in the sense of Mumford [MEFK] exists, and that the quotients are
nested punctual Hilbert schemes.

v € V such that the morphism is surjective,

Theorem 3.2. 1. The geometric quotients q : N%(pp,) —
NY(pen)/Prn and ¢ : NY(qr.) = NY(qrn)/Qrn exist.

2. There exist surjective morphisms
~ A 7Cyc n—k,n
Fin t N (prp) = S,
~ A rcyc n—k,n
7T/Y/c,n N (qk,n> - g ﬂ’

3. There exist isomorphisms i : X/Cyc(pk,n)/Pkm = S([]"_k’"] and i
/chc(qk,n)/Qk,n = Sg"_k’"ﬂ. These isomorphisms identify the projec-
tions to the Hilbert schemes with the geometric quotients, i.e. ioq = Ty,
and i’ oq =T ..

3.1 Functorial definitions

The proof of theorem will rely on the functorial properties of the Hilbert
scheme. The functorial description of the Hilbert scheme S "l is classical,
but we need to precise the functorial description of N'¢ and of the variants
SIS of the Hilbert scheme that we use.

Constructing the Hilbert scheme of the projective space, 7.e. proving
that the Hilbert functor is representable, is difficult [Grol [HM|. Once the
construction has been done, many associated functors are easily shown to
be representable. They are locally closed subfunctors of the Hilbert functor.
This remark will apply to the Hilbert schemes that we introduce below. They
are easily shown to be representable thanks to [HM| Proposition 2.7] or [Keel
Lemma 1.1].
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Definition 3.3. (Functorial definition of/(/'cyc(pkm) C P X P X V). Let
A be a k-algebra, Vi(A) = Vi Q¢ A the submodule of V(A) := V @ A.
The set m(A) of morphisms from Spec A to NV°(py,,) is the set of triples
(X,Y,v) with X € M,(A),Y € M,(A),v € A", with [X,Y] =0, X" =
XY = =V =0, X(Vi(A)) € Vi(A), Y (Vi(A)) C Vi(A), (XW)—k =
s = (YRR = 0 on V/Vi(A), and the natural evaluation morphisms
ev, © Alr,y] — A", P(z,y) — P(X,Y)(v), ev,_y : Alz,y] — A"F ~
V(A)/Vi(A), P(x,y) — P(X,Y)(v) mod Vi(A) are surjective.

__ The first point of the following lemma shows that the closed points of
N(py..,) are the expected triples (X,Y,v). It could seem natural in the
above definition of the functor A — m(A) to replace the condition X" =
X" Y = ... = Y™ = 0 with the simpler condition X" = Y™ = 0. The second
point of the lemma shows that this would add extra embedded components
to N¥“(py.,) and we are not interested in these components.

Lemma 3.4. (i) Let X,Y € M, (k) be a pair of nilpotent commuting matri-
ces. Then X'Y"™" =0 for alli € [0,n].

(i) The above conclusion may fail when replacing k by an arbitrary noethe-
rian k-algebra R.

Proof. (i) From reduction theory, it is an elementary fact that X and Y are
simultaneously strictly upper trigonalisable. Hence the equalities.

(if) Take R = Kla, b]/(ab, 1?), X — (? 8),Y: <2 2) Then X? —

Y2:OandXY:YX:(2 8) O

Let us now define functorially the localized Hilbert scheme. Consider
the Hilbert-Chow morphism S — Sym™(A?), and compose it with the
natural map Sym™(A?) — Sym™(Al) x Sym™(A!). We obtain a morphism
p: S — Symm(A!) x Sym™(A') which set-theoretically sends a subscheme
zp to the tuples of coordinates ({z1,...,x,},{¥1,.-.,yn}) where (z;,y;) are
the points of z, counted with multiplicities. A morphism Spec B — S
factorizes through p~1(0, 0) if the corresponding ideal I(Z) C Blx, y] satisfies
(™, y™) € I(Z). However, this property gives a special status to the lines
x = 0 and y = 0 as shown by the following example, whose verification is
straightforward.
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Example 3.5. Let B = k[a,b]/(ab,b*) and I = (y + ax + b, 2*) C Bz, y].
Then 2 € I, y* € I, but for any t € k*, (v +ty)* ¢ I.

Consequently, we do not define Sgﬂ as being p~1(0,0) and we ask for a
definition which is more symmetric with respect to the lines. For this, we
recall the well-known remark that a scheme z, of length n in S is supported
on the origin if and only it is included in the fat point scheme with equation

(z,y)".

Definition 3.6. The Hilbert scheme S([)"] represents the functor n from k-
algebras to sets where n(A) is the set of ideals I C Alz,y] satisfying

o Alx,yl/I is locally free on A of rank n,

o (z,y)" CI.

Remark 3.7. In the above definition, A is not necessarily noetherian (see
[HMY]). This will be useful in the proof of theorem [3.3, when we identify the
categorical quotient N’Cyc(pk,n)/Pkm with a Hilbert scheme. In the context
of the proof, we have no noetherian information on the categorical quotient
a priori since Py, is not reductive. The noetherianity of the quotient is a
consequence of the proof.

For nested Hilbert schemes, the definition is as follows.

Definition 3.8. The Hilbert scheme S([]"_k’"] represents the functor h from
k-algebras to sets defined by h(A) ={(I,J)} where

o [, J C Alx,y| are ideals,

o Alx,y]/I is locally free on A of rank n — k

o (z,y)"FcClI

o Alx,yl/J is locally free on A of rank n

e (z,y)"CJ

o JCI

3.2 The Hilbert scheme as a geometric quotient

In this section, we prove theorem B.2]

The cases of N¥“(py.,,) and N¥°(qy,,) are similar and we consider only
the first case. The strategy is the following. We first construct a categorical
quotient. Using the functorial properties of both the categorical quotient
and of the Hilbert scheme, we construct the isomorphism of the third item.
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Finally, using the description of the quotient via the Hilbert scheme, we show
that the categorical quotient turns out to be a geometric quotient.

The action of Py, i.e. the morphism 7 : Py, X N¥(py.) = NY(py.n)
can be defined at the functorial level. Let g € Hom(Spec A, Py,) =
{X e M,(A)| X(Vk(A)) C Vi(A); det X invertible} =: P,(4), m =
(X,Y,v) € m(A) and (g,m) € Hom(Spec A, Py, x N%(py,)). Then
the element n = (X', Y’,v') € m(A) defined by the action morphism = is
X' =gXg LY =gYg v =gv.

Let A,_r C A, be two sets of monomials {m; = x%y”} of respective
cardinal n—k and n. Let A = {A,_x, A, }. For each such A, there is an open
set N € N°(py.,) defined by the locus where the evaluation morphisms
ev,_r and ev, are surjective using only the images of the monomials in A.
More precisely, let A[A;] be the free A-module with basis A;. The open set
N corresponds to the subfunctor ma(A) C m(A) containing the triples
(X,Y,v) € m(A) such that eva, : A[A,] = A", m; — (m(X,Y)(v)) and
evn, . A[AL k] = AR my = (my(X,Y)(v))mod Vi(A) are surjective.

Remark that the surjectivity of the A-linear maps eva, , and eva, is
equivalent to their being an isomorphism ([AtM], Exercice 3.15), thus to
their determinant being invertible in A. In particular, A V¢ is defined by the
nonvanishing of a determinant in M (py,) x k", hence it is affine.

Since we have a covering of N Y°(pr.,) with open affine Py ,-stable sets
N J¢ ~ Spec Ap, it is possible to construct a categorical quotient on each
open set as N/ P, ,, := Spec AR with the invariants functions. Since the

group is not reductive, AZ’“" is not a priori finitely generated and we cannot
apply [MFK|, Thm 1.1]. We have to show without the general theory that
the local quotients are algebraic (i.e. of finite type over k) and that the local
constructions glue to produce a global categorical quotient.

Recall the functor A which defines the Hilbert scheme S([)k’"}. If Ais as
above, there is a subfunctor ha of h. By definition, ha(A) contains the pairs
(I,J) € h(A) such that A[z,y|/I (resp. A[z,y]/J) is free on A of rank n — k
(resp. of rank n) and such that the monomials m; in A, _; (resp. in A,)
form a basis of A[z,y]/I (resp. Alx,y]/J). This is an open subfonctor, hence
it is representable by an open subset Sx C Sé"_k’n}.

There is a morphism of functors m — h defined by

(X,Y,v) € m(A) = (I = Ker(ev,_i),J = Ker(ev,)) € h(A)

and a morphism of schemes 7, : N Y(prn) — S([)"_k’"} associated with
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the morphism of functors. By construction, this map is invariant under the
action of Py ,. From the universal property of the categorical quotient, we
obtain a factorisation N&°/ Py, — SV whose image is in S, hence the
factorisation ix : A V) Pen — Sa.

To prove that in is an isomorphism, we will construct an inverse pa.
Let (I,J) € ha(A). We choose a basis by,...,b, of Alz,y]/J such that
bi+1,---,by is a basis of A[z,y]/I. At least one such basis exists since we can
take b; to be the monomials in A. If we replace each element b;,7 < k by a
suitable combination b; + > ki1 @ijbj, we may suppose that the kernel 1 /J
of the map Alz,y|/J — Alz,y]/I is generated by by,...,b;. This choice of
our basis yields an effective isomorphism A[z,y|/J ~ A". The multiplication
by x and y on Afz,y]/I then correspond to matrices X,Y € py,,(A). Choose
v=1¢€ Alz,y]/I. Then (X,Y,v) € m(A) and corresponds to a morphism
v: Spec A — N “Y°(pk,n). This morphism is not canonically defined because
of the arbitrary choice of the basis by, ...,b,. However, if v; and v, are two
possible choices for the morphism v, and if ¢ € Py ,(A) = Hom(Spec A, Py.,,)
is the decomposition matrix of the basis defining 17 on the basis defining v»,
then vy = v o (p,14), where 7 is the action morphism. Since v; and v, differ
from the action of P, it follows that the morphism n = gov; = gosy is well
defined. The map which sends (7, J) to n is a morphism of functors. This is
the functorial description of a scheme morphism pa : Sa — N V) Pyn. By
construction, pa and ia are mutually inverse.

Since we proved that our local quotients N ¥/ Py ,, are isomorphic to an
open set Sp of the Hilbert scheme S([)n_k’k], these local quotients are alge-
braic. Gluing these local quotients to form a global quotient N YV(Pkn)/ Prn
is straightforward: this corresponds to the gluing of the open sets Sa in the
Hilbert scheme S([)n_k’k]. The surjectivity of the morphism 7, : N YV(Prp) —
Sé"_k’k] follows from the existence of the (noncanonical) local section v con-
structed in the proof.

According to [MEFK| Amplification 1.3], to prove that the categorical quo-
tient is a geometric quotient, it is sufficient to prove that the orbits are closed,
i.e. that the fibers of 7y ,, are orbits. If a point p;, with evaluation map (ev, ),
is in the fiber 7?,;;(] ,J), we get the following diagram, where J is the kernel
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of (ev,); and I is the kernel of ¢ o (evy,);.

I /7

1 1

J o klry B v
Ly

V/Vi

If p, is an other point in the fiber, we get a similar diagram with (ev, ).
instead of (ev,);. The morphism g = (ev,)s o ((evy)1)™! € GL, is well
defined. Since ((ev,);) '(Ker(v)) = I, g sends I/J = Ker(y) = Vi to
itself. Thus g € Py,,. By construction, the points p; and p, satisfy p, = g-p1
and they are in the same orbit.

3.3 From N to

In the previous section, the Hilbert schemes S([)k’n} ans Sgk’nﬂ have been
constructed as quotients of the schemes N¢(py,,,) and N°(qz,) which
parametrize triples (X,Y,v). In this section, we show how to throw off the
data v. From this point and until the end of the article, we only need to
work with the underlying variety structure on our schemes. In particular, we
will consider the following variety for w = py,, or q

N¥() == {(X,Y) € N(w)|Fv € V s.t. (X,Y,v) € N¥(t)}.

Lemma 3.9. (i) The action of Py, (resp. Qrn) on ./Y/'Cyc(pkvn) (resp.
NY(qr.n)) is free.

(ii) Let vi,vs € V such that (X,Y,v;) € N (ppn) (resp. N (qun))-
Then (X,Y,v1) and (X,Y, ve) belong to the same Py, (resp. Q. )-orbit.

Proof. (i) Let (X,Y,v) € N¥*(tv) and g € GL(V) stabilizing (X, Y, v). Then
g stabilizes each X*Y7(v) and, since these elements generates V, we have

g=1d.
. V -V . .
(i) Let g : { PX.Y)y = P(X,Y)ay It is well defined since {P €

klz,y]|P(X,Y).v; =0} = {P € k[z,y]|P(X,Y) = 0} by the cyclicity condi-
tion. Moreover g is linear and g.v; = vs.
For any S € k[x,y], we have gXg '(S(X,Y).vy) = gXS(X,Y)(v;) =
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g(S"(X,Y)(v1)) = S'(X,Y)we = X(S(X,Y)(v2)) where §" = xS € k[z,y].
In particular, g stabilizes X by cyclicity of v, and the same holds for Y.

A similar argument shows that any subspace V; C V stable under X and Y
is stabilized by g. The cyclicity property implies that g.v; = S(X,Y)(vy)
and that V; is generated by (R;(X,Y)(v1)); for some polynomials S, (R;); of
k[z,y]. Then ¢.V; is generated by (¢.R;(X,Y)(v1)); = (R(X,Y)(g.v1)); =
(R(X,Y) % S(X,Y)) (1) = (SCX,Y)(RI(X,Y)(01)))i © V. Hence g sta-
bilizes each such subspace V; and the result follows from the definitions of
Pk,n and ka. O

It follows from Lemma B.9((ii) that the following set-theoretical quotient
map

N(prn) = 55"
Thon . (X,)Y) — (Ker(ev,_x), Ker(ev,)) N
(= Tn(X,Y,0) Vo € V st (X,Y,v) € N¥(prn))

klz,y] — gl(V/Vi)

P o P(X®,y®) and ev,

is well defined where ev,_, : {

klz,y] — al(V)
P — PX,Y)"
S[[n—k,n]]
0 .

This also allows to define m,, : N (qpn) —

Proposition 3.10. 7, induces a bijection between irreducible components
of SIF" of dimension m and irreducible components of NY(prn) of di-
mension m+(dim pg, —n). The same holds for 7, ,, Sg"_k’"]] and NY(qg ).

Proof. As usual, we give a proof only for py .

Let f: Z1 — Z5 be an open surjective morphism with irreducible fibers.
Then, the pre-image by f of any irreducible component of Z, is irreducible
(e.g. see [T'Y], Proposition 1.1.7]). On the other hand, the image of any
irreducible component of Z; by f is irreducible. Hence f induces a bijection
between irreducible components of Z; and Z,.

Then, since a geometric quotient by a connected group satisfies the above
assumptions on f, we can apply the previous argument to 7 ,. It also works

. Ncyc(pk,n) — Ncyc(pk,n)
for pr : { (X.Y.0) = (X,Y) .
since fibers of 7, are of dimension dimp (Lemma (i)) and those of pr

The dimension statement follows
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are of dimension n (given (X,Y), the set {v| (X,Y,v) € N(ps.)} is open in
V).
U

Remark 3.11. We have defined N“(w) as a variety. In fact, using a suit-
able definition as a scheme of N¢(w) and using similar arguments to those
of Section[3.2, one can show that m , and m, , can be seen as morphisms and
that they are geometric quotients. Writing down this would add complexity
to the current presentation. Since everything that will be needed in the sequel
lies in Proposition [3.10, we omit the proof.

The correspondence with commuting varieties allows us to see in an el-
ementary way some non-trivial facts on the Hilbert scheme. We give an
example.

Proposition 3.12. Given a pair (2, 1, 2,) € S(g"_k’"}, there exists a chain
of intermediate subschemes z,_ C zp_k+r1 C --- C z,. In other words, the
projection map SY"FM s SR s surjective.  The same holds for the
projection map S([g"_k’"]] — Sg"_kl’"ﬂ with k > K.

Proof. The first assertion follows from the fact that any commuting pair
(X > Yvi) € gl(Vi) is simultaneously trigonalizable by an element of GLy, C
Py . Hence, in the new basis, it stabilizes the flag V3 C V5,--- C Vi. The
second one is the same argument applied to the pair (X®, Y®) € gl(V/V}).

0

Remark 3.13. Note that the opposite of the transposition yields a Lie algebra
isomorphism between Py, and P,_k. Hence the two varieties N'(py.) and
N (pn_rn) are isomorphic.

Ncyc(pn_km)(m N(pk,n> <—>Ncyc(pk’n) )

open
Tn—k,n l lﬂ'k,n
S([)k,n} Sén—k,n]

We use this duality in Lemmal[5.7 where we pull back informations related
to irreducibility from S([)l’"} to N(pn-1n) = N(p1n). Eventually, this turns

out to be a key part of our proof of the irreducibility of S([)"_l’n} (cf. Corollary
53).
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However, the cyclicity condition breaks the symmetry and there might
be profound differences between N°Y“(py.,) and NY(p,_y.n), hence between
St and SE For instance, SJP and S both contain a curvilin-
ear locus as an open set, and these curvilinear loci are isomorphic. On the
boundary of this curvilinear locus, the two Hilbert schemes are quite different:
when the scheme z3 has equation (22, vy, y?) there is set theoretically only one
length 1 point z; in zs, but there is a P! of zo with length 2 satisfying zo C 2.

4 Technical lemmas on matrices

In this section, we collect technical results that will be used later on. Most
of these results aim to describe a™ C a, where a is a space of matrices
commuting with a Jordan matrix of type A € P(n) and a™ is the set of
nilpotent matrices of a. In particular, we will make frequent use of Lemmas
and Proposition Parts of the results shown are well known in the
more general framework of Lie algebras. Our goal is to translate this in
the matrix setting and to provide a low-level understanding of the involved
phenomenons.

Lemma 4.1.
(i) (M,)"" is an irreducible subvariety of codimension n in M,.

(i1) Assume that p is the parabolic subalgebra defined by p = {X €
M,|Vj, X(Vi;) C Vi, } where the i; are k + 1 index satisfying 0 = iy <
i1 < ...ig = n. Then X € p is nilpotent if and only if the k extracted
matrices

Xijattia+r 0 X4,
X, = :

J

e M,

; : i1

Xijij+1 e X
are nilpotent.

(iii) If p is a parabolic subalgebra of M, then p™ is an irreducible subvariety
of p of codimension n.

Proof. (i) We reproduce the proof of [Bas03] of this classical fact. Define .J,,
as the set of matrices X satisfying

Vi,j, jAi+1=X,;=0.
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GL, xJ, — (M,)™
Then, _
{ (9, X) = gXg7'
dimension is equal to 2n — 1. Hence the result.
(ii) First, note that X; can be viewed as the matrix of the endomorphism
induced by X on V;,/V;,_,. Then, as vector spaces,

is a surjective morphism whose generic fiber

[:= H?Zl(End(‘/ij/‘/;j_l>>

p=lon  where { n={X ep|X(V;,) CVy }

and n is a nilpotent ideal of p. Hence X = X|;+ X, € p is nilpotent if and
only if X is nilpotent. This is equivalent to the nilpotency of each Xj.

(iii) Up to base change, one can assume that p satisfies the hypothesis of
(ii). Thus p™ is isomorphic to H;?:l(End(Vij /Vi,—1))" x n. Tt then follows
from (i) that p"? is an irreducible subvariety of p of codimension Z?Zl(z’j —
'éj_l) = n. ]

Let us explain (ii) in a more visual way.

Example 4.2. A matrix of the form

a b c d e
frgh v g
X=100%k 1 m
0 0n o p
0 0 g r s

is nilpotent if and only if the two following submatrices are nilpotent

b kK Il m
X1:<;¢L ), X2: n o p
g q T S

Fix an element X = (A; > --- > A4, ) in P(n), the set of partitions of
n. We define X € M, as the nilpotent element in Jordan canonical form
associated to A. In other words, in the basis (f; := eyt /\z+j)}§i.<dk’ we have

IISAG

i ={ a7t )

else.
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For Y € M, we denote the entries of Y via Yf;f = Z(i,j) Yj;,,f; and use the

following notation
v = (vi)) .
VARINCND!

An explicit characterization of MX* := {Y € M,| [Xx,Y] = 0} is given by
the following classical lemma.
Lemma 4.3. Y € MX* if and only if the following relations are satisfied:
Vi =0 i3> orh—i <7,
Y;Zj/ = Y;.Z’_Zl’j,_l Zf2 <] < j/ and )\z _j 2 )\z” _j/'

Picturally, this means that Y can be decomposed into blocks Y € My, »,
where

Yin Yip oo Yy,
0 Y :
Iy ’ O - ’ }/1277;
yid — : R St if \i 2 Air,
0
0 o ... 0
0 ... 0 Yiho oYy Y,
oo lo o0 e
Yyl — ‘ 2i)"i' Zf )\7, < )\i’.
T U SV
Proof. See [TA] or [Bas00, Lemma 3.2] for a more recent account. 0

Fix A € P(n). For each length ¢ € N* appearing in A (i.e. J €
[1,dx], i = €), we define 7, = #{i|\; = ¢}. Let W, := (f{|\; = ¢). This
is a filtration of W := W, = (fi|i € [1,dx]) whose associated gradation is
given by the subspaces W, := (fi|\; = £)/{fi|\i > {) of dimension 7.

It follows from Lemma that each W, is stable under MX*. Hence
we have a Lie algebra morphism MX» Pex My, where the extracted matrix

Preat(Y) = You = (Yf,’lil)i,i/ can be seen as the element induced by Y on
W = Ker X,.
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Lemma 4.4. The image (M;L)(A)ext of the morphism prey is the parabolic
subalgebra
{Z € My, | Z(W,) C W, VL € N*}.

Proof. 1t is an immediate consequence of Lemma [£.3] O
Similarily we define the surjective (cf. Lemma E3) maps MX> ¢ M, =:

MXx(0) = gl(W)) where
pro(Y) =Y (0) := (Y1) (ani=r=0) (2)

can be seen as the element induced by Y on W,. We also define (MX*),.4 :=
M;LXA — (MXA)red

Voo YVa=1LY() "
We have a natural section ¢ : (M;*),eq — My> of the Lie algebra morphism

Prreq by setting Z;;l, = { and @((Yi7i,>i,i’) =

Yol if j =4 N = Ay
(Z;Z;l,)(i7j)7(i/7j/). Hence, we can view (MX*), 4 as a subalgebra of MX* and

[T, M;¥*(¢) and pryeq as the surjective map:
0 else
n

Mi{A v;\:% (Mrfk)red Dn,

—~
w
~—

R

where n := Ker(pryeq). A similar decomposition holds for pro.: MXA
(M), ® ny where ny := Ker(pre).

Proposition 4.5.

(i) Y € MXx is nilpotent if and only if Yyeq is. In other words (MXx)nil =
(M )rey x m

(ii) Y € M:** is nilpotent if and only if each Y () € M., is.

(iii) (M) s an irreducible subvariety of M of codimension dy.

Proof. We associate to each basis element f/ the weight w(f}) :== (j — Ai, j).

We order the weights lexicographically. Lemma asserts that Y € MXx

is parabolic with respect to these weights, i.e. Y (f{) = Zw(fa’)<w(f;;) iy fa.
b/ —

Remark that two elements f; and f;: have the same weight if and only if
Ai = Ay and j = j'. We order the basis f; with respect to their weight. The
base change from the f]Z lexicographically ordered by their index (4, ) to the
J; ordered by their weight transforms the matrix Y into a matrix Z.
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Let w be a weight and f;l,f;Q,...f;k be the elements with weight w
and ¢ := )\;,, (for any m € [1,k]). The diagonal block of Z corresponding
to the weight w is Y (¢) (Lemma A3). In other words, Z and Y,.q have
the same diagonal blocks Y (¢), the difference being that the same block
is repeated ¢ times in Z. In conclusion, Y,.q is nilpotent iff its diagonal
blocks Y (¢) are nilpotent, iff Z and Y are nilpotent. This proves i) and 7).
Since (MXX),.q = [Lens M7, and >, 7 = da, Lemma B.1] (i) allows us to
conclude. O

In the Lie algebra vocabulary, (MX*),.4 is a reductive part (in M,) of

the centraliser of X in M,. See [Pr] for an analogue of Proposition .3 (ii)
valid for a general reductive Lie algebra.

Example 4.6. Letn =12, A = (4,2,2,2,1,1) hence

01 abc d|hy i1 | hy i2| hg i3| 71| 72
01 ab c hy ho hs
01 b
0 a
01 haial er fi| k1 U] ke la | mi| mo
B 0 Xx _ hy e ki ko
XA o 01 ’ Mn > Y o h5 i5 kg lg €9 fQ k4 l4 ms| Mgy
0 hs k3 €2 k4
01 heis| ks Is | ke ls | es f3 | ms| me
0 he ks ke es
0 J3 my mg mg| g1 M
0 Ja mig mi1 mig| N2 | g2
Heredy =6, =1, =3, 71 =2 and
a|ht he hg| j1 J2 a
el kl kg mi1 Mo €1 kl k2
X» _ ks ez ka|ms my X _ ks ez k4
(M) ewt D Yeur = ks ke es| ms mg | (M>)red D Yrea = ks kg es
gr m g1 ny
n2  gs n2 g2
M, = (My*)(4)3Y4)=(a),
er ki ko X g m
~ My, = (M>*)(1)2Y (1) = .
My= (M@ 5 Y@ = [ ke er ke |, M T AWV =0
ks ke es




Y is nilpotent if and only if Y. is nilpotent if and only if the three matrices
Y () are nilpotent. This corresponds to the siz(= dy) independant conditions

Tr(Y(2)) =0
T’I“(Y(4)) =a = 0, €162 + €es€e3 + ese; — ]{31]{33 — ]{34]{36 — ]{32]{35 =0 s
det(Y(2)) = 0

Definition 4.7. Let A € P(n) and v is a subspace of M, (e.g. a Lie
subalgebra of M, containing Xy ). We define the following vector spaces

XX = o N M (10530 := {Vyea|Y € 052}
The following lemmas relate the geometry of (r**)"! to the one of
(ro )7 or (o> ()™
Lemma 4.8.
(i) There exists a vector space ny such that the following isomorphisms of
algebraic varieties holds

> 2 (), xng, (7)™ ()P X .

(1) (X2l s irreducible if and only if ()™l s and

Te

nil

codim mxk(mX*)"“ = codim (mXA)Ted(mXA)TEd

Proof. (i) Let ny = Ker((prred)wxs). The first equation follows and the
statement about nilpotent elements is a consequence of Proposition (i).
(ii) is a consequence of (i). O

Let 02 (0) := pro(n™*) = {Y({)|Y € w**} C M,,. We have a natural
analogue of Proposition[4.5] (iii) in this case under some necessary restrictions.

Lemma 4.9. Let v be a subspace of M,, such that the decomposition mfiﬁl =
[T,(w**)(¢) holds.

(i) The variety (0**)"! is irreducible if and only if each (0 *(£))™" is and

codim, ,x, (0*)" = Z codim x5 (e)(mXA (0)™.
¢

(ii) In particular if, for each £, w™*({) is isomorphic to M,,, Prrr, OT Qi r,
(1 <K < 1) then ()™ s irreducible and codim x, (03)" = d.
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Proof. (i) follows from Lemma .8
(ii) is then a consequence of Lemma (.11 O

Remark 4.10. In most of our applications, the previous lemma applies.
But, in some cases, we have (w**),eq C [[,w**(0). A slightly less pre-
cise decomposition may remain valid in these cases. Define 0™ ({y,ly) =
Proge () = {(Y(0),Y(6))Y € w} C w™(0) x w¥(6).  As-

sume that there exists a decomposition of the form 1.2 = (0*)(£y,£y) x

Hzg{zl,ZQ}(mXA)(g)-
Then ()" s irreducible if and only if (WXX(01,45))™ and each
(0> (0))" are. Then

codim, x, (07X = codim mxA(éhb)(mX*(fb€2))ml

+ Y codim g (0N (0). (4)
£g{t1,62}

5 Irreducibility of AV (p;,) and S([)”—lan]

The aim of this section is to prove that N (py,,) is irreducible (Theorem [(.§)).
We obtain as a corollary that a necessary and sufficient condition for the
irreduciblilty of N (py.) and S¥"™ is k € {0,1,n — 1,n} (Theorem [B1T)).

In this section, we will use the simplifying notation p := p; ,,. The strategy
is the following. We introduce a variety M(p) of almost commutant matrices.
Since M(p) is easily described as a graph, we get its irreducibility and its
dimension. The dimensions of the components of N (p) are controlled through
the equations defining NV (p) in M(p). From this dimension estimate, we have
a small list of candidates to be an irreducible component. We finally show
that only one element in this list defines an irreducible component.

In this section we assume n > 2. Recall that (e, ...,e,) is the canonical
basis of V =k", V} =ke; and U; := (e, ..., e,). Recall also that p =p;y, =
{X e gl(V) | X (V1) C Vi}. By virtue of Proposition 310, we study N (p) in
order to get informations on S" "

We have

p = gl(Vy) @ Hom(Uy, Vi) @ gl(Uy) 2k My, g & M, (5)

With respect to this decomposition, for any X € p, we set X = X; +
X5 + X3 where X = X\Vl € g[(Vl) =k, X5 € Hom(Ul,Vl) = Ml,n—l and
X3 € g[(Ul) = M, ;. That is
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(Xa Y) € p27j € Hom(Ula Vvl)
X, Y nilpotent : (0)

M(p) = (X, Y.)) et 0 —0

The following Proposition and Corollary are prototypes for several similar
results of Section [Gl

Proposition 5.1 ([Zd]). If n > 2, then M(p) is irreducible of dimension
n?—2

Proof. Let us compute

0] Xo¥5—YaXj5
0
xv)=| | @
: [X?n YE’)]
0

Hence, we have an alternative definition of M(p):

(X3, Y3) € N(gl(Lh)),
(X,Y,j) e M(p) & X =Y1=0, (8)
J=XoY5 - Y5 X5

In other words, M(p) is isomorphic to the graph of the morphism

N (My-1) x (Myp-1)? = My
((X?nyé)a (X2a}/é)) = XQYE), — YéXg ’

and the result follows from Theorem [3.11 O

Corollary 5.2. The dimension of each irreducible component of N(p) is
greater or equal than n* —n — 1.
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Proof. If n =1, the result is obvious.

)/X(;g : é\)/l(’(};/)’ 0) Hence, N (p) is defined in M(p)

by the n — 1 equations 0 = j € My, (cf. (8)). Then, we conclude with
proposition [5.11 O

Else, we embed (

Let us consider the set of 1-marked partitions of n

dx
Pl(n) = {()‘b ()\2 2 U 2 )\dk)) | Z)\Z =n, )\1 2 1}
=1

. . 1 <i < da,
Given A € P'(n), we let g; 1= €51 a,)4j fOT { 1<j< ;‘Z and we define
X\ €pvia '
7\ g;'—l lfj > 17
Xalg)) = { 0 ifj=1 (9)

Note that these X with A € P’(n) are a priori different from the X, with
A € P(n) in spite of the similar notation used.

Lemma 5.3 (Classification Lemma). Let P := {x € p | detxz # 0} be the
connected subgroup of G with Lie algebra p and let X be a nilpotent element

of p.
There ezists a unique X € P'(n) such that P- X = P - Xj.

Proof. Let us describe the P-action on p"¥.

0 . 0
Let X = ) € p™ and p = i € P (hence,
S . € : P3
0 0
pit | —pilpeps’
0
p1 € k¥ ps € GL(U,) ¥ GL,_; and p~! = ) . ). Then
: Ps
0

0| paXsps' +p1Xops'
0

X =pXp!= . 10
p pXp . paXaps! (10)
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Hence, in order to classify P-orbits of p™#, we can restrict ourselves to the
case where X3 is in Jordan normal form and study P’ - X where P’ = {p €
P | ps € GL; %, }. More precisely, we fix p € P(n—1) and f! := €1 )

(1<i<d,,1<j<yu) and assume that

+j+1

Z. P>,
X3(fj) :{ 0] ! lf]: 1.

Recall that we identify Hom(Uy, Vi) with E = ('f?);; = k™. The action
of GL,,_; on this vector space that we consider is the natural right action.
For any p; € GL}?,, we have pyXsp;' = pop3' X3 and {pop3' X5 | p2 €
E} = Im("X3) = ('f; | j # 1) for any p3 € GLX3,. On the other hand,
set 49 = min{i | Xy(fJ) # 0 for some i’ such that p; = s} (If Xo = 0, set
i :=d,, + 1, i, = 0 and ' f{* = 0). We have

X3
{plepg !

€k, X)) )
¢ U {Xops! | ps € GL2, )+ Im(*Xs)

(p1Idn—1CGL
_X p—
P3 - GLnil

} + Im(*X3)

(Lomr;am) <tff | ,uz = ,Ui0> \ {0}
+(fili# L or iy > ) (11)

As a consequence, the P-orbit of X is uniquely determined by p and ig. A

representant of P- X is Y = . % . Finally, an elementary base
: 3
0
change in P obtained by a re-ordering of the ( f]’)” sends Y on X where
A= (g + 1, (2 2 - lig -+ = ). B

Remark 5.4. In the special case X° := Xyo where A° := (n, () € P'(n), we
also get
P’ X% = X3 + Hom(Uy, V)

as a consequence of (L), where P’ is the subgroup of P defined in the previous
proof.

When X\ € P'(n), we say that X is in canonical form in p. Let

Na(p) = P (X, (p™)"). (12)
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Then

dimNy(p) = dim P - Xy + dim(p*>)™"
= dimp — dimp™> + dim(pX*)ml
= dimp — codim ,x, (p™**)"". (13)

Lemma 5.5.

Np) = || M)

AEP!(n)

Moreover, (pX)™ and Ny(p) are irreducible and dim Ny(p) = n®>—n+1—dy.

Proof. The decomposition into a disjoint union follows from Lemma 5.3

Let A € P’(n) and use notation of (). In order to apply results of section
A, we have to define a new basis (f;) in which X := Xy is in canonical form
for M,, as in ({l). Set ip := max({i|\; > A1} U {1}) and

fi=9 gt ifi<ip =1L Mg ifi<ig .

In this basis, X becomes X, with g = (111 = -+ > pg,) € P(n) and p is
defined in M, by the single property Y € p < Y (f{°) C kf{°. Hence, the
subspace (pX),cq (cf. Definition E7) is also characterized in (MZX),.q by the
single property ‘ '

K’ed € (pX)red ~ K’ed( 120) - kfllo'

In particular, letting 7, := #{i | \; = ¢} = #{i| u; = £}, we have

M, 04\
X (g o 70 1 Xy X
pro={ o TN e =TT
Then, Lemma (i) provides the irreducibility statement for (pX)" and
hence for Nx(p). Together with (I3)), it also provides the dimension of Ny (p).

U

Combining this with corollary 5.2, we get that the irreducible components
of N(p) are of the form Ny(p) where A € P’'(n) has at most two parts (dy <
2). The unique irreducible component of maximal dimension is associated
with A° = (n, ) € P'(n).
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There remains to show that

Na(p) C Nyo(p) (14)
when A has two parts. In order to prove this, we distinguish two cases.

Lemma 5.6. If A = (A1, (X2)) € P'(n) with Ay < Ao + 1, property ([I4) is
satisfied.

Proof. For (X3,Y3) € N(gl(U1)), we look at the fiber over (X3,Y3) in N (p)
and NAO(p):

Fx, v, = {(Xs,Y2) € (Hom(Uy;, V1))* | (X2 + X3, Yo + Y3) € N(p)},

Fy,y, == {(X2,Y2) € (Hom(Uy, V1))* | (X2 + X5, Y2+ Y3) € Nyo(p)}-

Since Fy,y, = {(Xs,Ya) | ‘X355 = 'Y5'Xo} (cf. (@) is a vector space,
it is irreducible. On the other hand, the two varieties F,y, and Fl, y, are
closed and satisfy Fy, y, C Fix,y,. So

FXS,YS = F;(S,Ys < dim FX37Y3 = dimF)/(?“Y?). (15)
We can compute the dimension of F, y, in the following way:

dim F,y, = dim(Im(*X3) NIm("Y3)) + dim Ker(*X3) + dim Ker(*Y3)
= dimIm(*X3) + dim Im(*Y3) — dim(Im(* X3) + Im("Y3))
+ dim Ker(*X3) + dim Ker("Y3)
= 2(n—1) — dim(Im(*X3) + Im(*Y3)).

Set X0 := X,0. Then, identifying Hom(Uy,V;) with (es,...,%,) and
using notation of (@), we have Im(*X9) = (es,...%,) and for any Y3 €
(gl(U7)%3)™ | the inclusion Im('Y3) C Im(*X9) holds. Since dim Im(*X9) =
n — 2, we get dim Fxoy, = n. An other consequence of the inclusion
Im('Y3) C Im(*XY) is the following: for any X, € Hom(Uy, V;), there exists
Ys € Hom(Uy, V1) such that (X5, Y3) € Fx9.y,. Combining this with Remark
B4 we get that X9+ X, € P.X7 for a generic element (X3, Ys) € Fxoy, and

Y3 € (gl(Uy)%3)mt
0 = L . XO X Y Y ; )
Ny (p) = GL(U,) {< 3+ X, Y34 Y3) (X5, Y3) € Fxgy,

29



In particular, a generic element (X, Y") of the irreducible variety Nyo(p) satis-
fies dim F, y, = n. Moreover, since N(gl(U1)) = GL(U1).(X3, (gl(Uy)*3)nit)
(Theorem B.1]), we see that any (X3, Y3) € M(gl(U)) lies in fact in Nyo(p) by
considering the inclusion N (gl(U;)) C N (p) given by X, = Y5 = 0. Hence
Fy. vy, # 0 and

\V/(Xg, YE),) € N(g[(Ul)), dim F;(S’YS 2 n. (16)

From now on, we fix X := X, and want to show that a generic element Y
of (p™)" satisfies (X,Y) € Nyo(p). This will prove the Lemma since (p*)"
is irreducible (Lemma [B.5) and we will then have (X, (p*)"") C Nyo(p).

Define Z € p by

2 . . .
; gi_, ifi=1,j5>1,
2(95) = { OJ 1 else.

We have Z € (p¥)"" under the hypothesis made on A (Lemma [A3) and
Im(*Zs) + Im(*X3) = (g3.---,95,,93-- - 9%,) s0 dim Fx, z, = n. Since the
(P = N

Y — CliHlF’X&y3
from (@) that W := {Y € (p*)" | dim Fy,y, = n = dim F%, ,, } is a non-
empty open subset of (p¥)". For Y € W, we have (X,Y) € (X3,Y3) +
Fx, v, C Nyo(p) by ([@5). U

The following Lemma can be proved with purely matricial arguments.
However, we find the given proof more interesting. It uses the isomor-
phism p;, = p,_1, and enlighten a bit the correspondence between S([)l’"}
and S mentioned in remark 313

application is upper semi-continuous, it follows

Lemma 5.7. If A = (A1, (A\2)) € P'(n) with \y > Ao property () is satis-
fied.

Proof. Seen as varieties, we have S([)l’"} = S([]"} since S([]” is only one point.
In particular, the irreducibility of SJ"™ follows from that of S [Br, [P1] and
N(p,_1.,) is then also irreducible (Proposition B.10).

We have a Lie algebra isomorphism given by

/. pl,n — pn—l,n
¥ { X = —s('X)s™! (17)
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where s is defined on the basis (€;)ic[1,n] by s(€;) := en—;. In particular, the
restriction ¢ : N(p1,) = N(pn_1,) is an isomorphism of varieties. More-
over, ¥(X,Y") has a cyclic vector if and only if (*X,"Y") does.

Note that (Nyo(p1,)) = Nyo(Pn_1.) and that Nyo(p1,) is open
in N(p1,). It is then straightforward to check that ¥(Nyo(p1n)) C
N (p,_1,). Hence, it follows from Lemma and the irreducibility of
the open subset N¥°(p,,_1,) C N (Pn_1.,) that L(Nyo(p1.s)) = NY(pr_1.n).

Consider now Xy given by ([@). We can define Y € (p;,,)"" via

1 . .
i ogi if 1=2,
Yig) ‘_{ 0 if izl

Under our hypothesis on A, we have Y € p2 (Lemmal3) and ‘g} is a cyclic
vector for (*Xy,'Y). In particular, (Nx(p1n)) N N¥(p,_1,) # 0 so the
irreducible subset )(Nx(p1.,)) is contained in N¥(p,,_1,,) = V(Nyo(p1n))-

Since 1 is an isomorphism, (I4]) is proved in our case. O

Finally, it follows from discussion above (I4)) that the following theorem
holds.

Theorem 5.8. The variety N (p1,) is irreducible of dimension n®> —n =
dim Pin — 1.

Hence, by Proposition [3.10
Corollary 5.9. S([)"_l’"} is an irreducible variety of dimension n — 1.

Remark 5.10. The above corollary was already proved in [CE] with other
techniques (Bialynicki-Birula stratifications and Grébner basis computa-
tions).

Theorem 5.11. S¥™ is irreducible if and only if k € {0,1,n—1,n}. N (pr.n)
is wrreducible if and only if k € {0,1,n — 1,n}.

Proof. Since S([]"} is irreducible [Br, [Pr], since S([]l’"] is homeomorphic to
S([]"} and S([]"’"] is isomorphic to S([)"], this proves together with Proposition
P10 the assertion of the Theorem for S The variety A’ (Pg.n) is irre-
ducible for & = 1 by Theorem (.8 The transposition isomorphism of
(@) implies that N (pp—1,) =~ N(p1,) is irreducible too. The varieties
N(pon) = N(pnn) = N(M,(k)) are irreducible by Theorem Bl Finally,
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the number of components in N (py ,,) is greater or equal than the number of
components of N'%¢(py,,) which is, in turn, equal to the number of compo-
nents in S ") (Proposition BI0). It follows that A (ps,) is not irreducible
forke{2,...,n—2} O

Corollary 5.12. Sgk’"] is irreducible if and only if k € {n —1,n} orn < 3.
N (qk.n) is irreducible if and only if k € {0,1} or n < 3.

Proof. Note that SI*™ ~ ¥ for k = n — 1,n and N (qen) = N (pr.) for
k =0,1. The “if” part then follows from Theorem [E.11] and easy computa-
tions when n < 3. For £ > 2, we have a se?uence of surjective morphisms
NV (qpp) — SIhnl  gl=2nl - g=2nl propositions and B.12).
Since S([)n_z’"] is reducible when n > 4, the corollary follows.

O

6 General lower bounds for the dimension of
the components

The goal of this section is to give lower bounds for the dimension of the
components of N (py.), N (qk.n), S([)k’"},Sgk’"]] which are valid for all &, n.
Letn>2and 1 <k<n—1.

Proposition 6.1. Each irreducible component of N'(qx.n) has dimension at
least dim qy,, — 1.

Proof. We proceed by induction on k, the case k = 1 being proved in Theo-
rem [b.§ since 1, = p1,,. Assume now k > 2. The proof mainly follows that
of Proposition 5.1l and Corollary 5.2

For any X € qj,, we decompose X = X; + Xy + X3 as in (@), with
Xs € (g[(Ul) N qkm) = Jk—1,n—1- We let

. 0
M(Qen) = (X Y.5) € (ai,)* x Hom(Uy, Vi) | [X, V] = | =0

Then
(X35,Y3) € N(qe—1,n-1),
(X,YV,])EM(C[]%”)@ Xlz}/lzou
J=XoY; — Yo X5
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Thus M(qy ) is isomorphic to the graph of

0 N(Qr—1n-1) X (M1 ,-1)> = M,
' ((X37Y23)7 (X271/é)) = XQYé — YéXg '

Hence, by induction, each irreducible component of M(qx ) has a dimension
greater or equal than dimqg_;,—1 — 1+ 2(n —1).

Since k — 1 > 1, and X3,Y3; € gl(U;) are nilpotent, we get X3(es) =
Y3(e2) = 0. So the image of ¢ lies in (‘es,...%e,) and N(qx,) is defined in
M(qrn) by n — 2 equations. Then the dimension of each of its irreducible
component is greater or equal than dimqx_1,-1 —1+2(n—1) — (n —2) =
dimqg_1p-1 +n—1=dimgqz, — 1. O

Hence, by Proposition [3.10

Corollary 6.2. Fach irreducible component of Sg"_k’nﬂ has dimension at
least n — 1 which is the dimension of the curvilinear component.

Unfortunately, concerning py,,, we are only able to give the following less
effective bound.

Proposition 6.3. Each irreducible component of N (pr.) has dimension at
least dim py, , — 2.

Proof. Let

0
M(pin) =4 (X,Y,B) € p;,, x Hom(Uy, Vi) [[X, Y] — | . =0

Once again, we proceed in a similar way to Proposition L.l

Hence, M(pg,) is isomorphic to a graph over an irreducible basis of
dimension (k*—1)+((n—k)?—1)+2k(n—k) and N (py ) is defined in M (py )
by k(n — k) equations. Hence, the dimension of each irreducible components
of N (py,,) is greater or equal than k*+(n—k)*+k(n—k)—2 = dimpy,—2. O

Finally, we have the following consequence concerning nested Hilbert
schemes (cf. Proposition B.10]).

Corollary 6.4. Fach irreducible component of S([)"_k’"] has dimension at least
n — 2, which is the dimension of the curvilinear component minus one.

33



7 Detailed study of S([]2’n]

In the special cases k = 2 and £ = n — 2, we have a more precise estimate
for the dimension of the components. The goal of this section is to describe
the number and the dimension of the components for N'(pa.,) ~ N (pn_2.),
N (G2), S gin=2ml gln=2nl “Tye general strategy is the same as in Section
5]

Our first aim is a classification of orbits.

We identify g5, with

gl(Vi) @ Hom(U1, Vi) @ {X € gl(T1)| X (e2) € Ces} = kb My m1 D g et

Again, we decompose each X € g3, with respect to this direct sum

(18)

For any A= (A, (A2 = --- = Ag,)) € P'(n), we set Agy41 = 0. Let

[ =\ for some i € [2,dx + 1]
e=1=(I>Norl=0)
(19)
For pu = (X, 1,€) € P"(n), we define g} := exi-ty,4j41 and iy i=min{i’ > 1|
[ =X/} €[2,dx + 1]. In the basis (e, (g;»)(lgigd)\)), we define X, € qq,, via

P”(n) — {()\,Z,E) c ’P’(n— 1) x N x {0, 1}

IEAQ ¥
g§_1 ifj>1
; eep ifi=1,57=1
X,L(61) = 07 Xu(gg) el ifi= iu andj =1
0 else
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0]le O 01 0 0
1
1
0
Xu: 0 1
1
0
N—— N————
A1 A

Note that in the basis (g); ; of Uy, we have (X,,)3 = Xy in the notation of
@). We claim that (X,,)uecpr ) is a set of representatives of nilpotent orbits

of q2,n~

Lemma 7.1. Each nilpotent element of qa,, (resp. Pan) is Qan(resp. Pay,)-
conjugated to X,, for some p € P"(n).
Moreover Qs - X, = Qo - Xy if and only if = p'.

Proof. Thanks to the inclusion (GL(V2) x Idy,) C Ps,, we can trigonalize
the gl(V3)-part of any element of py,, hence each element of py,, is P -
conjugated to an element of qz,. Since Q2, C P, it is therefore sufficient
to prove the result for qq,,.

Let X = X;+X5+X3 € g2, be anilpotent element. We have X; = 0. The
element X3 is nilpotent so, up to conjugacy by an element of (/dy, X Q1,—-1) C
(Q2.,, we may assume that X3 = X for some fixed A € P'(n—1) (Lemmal5.3)).
Let @ C Q2,, be the subgroup of elements stabilizing this part X3 = Xj,

0
thatis Q' =< ¢ = _ qs € Qfg . For g € Q' we get (cf. (I0)):

: qs
0

0] a1Xoqs' + @Xag! 0] Xoqgs' + qoq5 ' X

0 0

: X : X

0 0
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V.S.

(12

Hence, we are reduced to classify the different @)’-orbits in Hom(Uy, V1)
<tg;‘>i,j =~ k™~! with respect to the action of Q" given by

q- Xo = Xoq1q5 " + qag3 X,
In particular, Q' - X = Xok* QA ; + (k") Xx = XoQ72_; + Im(*X).
We have Im(*Xy) = (g} | j > 2) and this subspace is stable under the

right action of Q‘fﬁl_l. There remains to understand the Qfg_l—action on
the quotient space k"!/Im(*X,) = ('¢i | i € [1,ds]). Under notation
of section [l this corresponds to the right action of (Qfﬁ_l)m on W =
(gt | i € [1,dx]). In the left action setting on {(gj | i € [1,d,]), (Qfg_l)m
can be described as the subgroup stabilizing (gi) in the parabolic subgroup
stabilizing each W, = (gi|\; = ¢) (Lemma [.4)).

Picturally, this corresponds to a group of the following form:

0 0 * * *

(Qfﬁ—l)ezt =

0 0 * * *
* ok ok

* * *

. . . . . 0 0 *
0 0 0 0 o 0 o0 0 o
i\:/l {ilx; > X1} ' {ilx; < A1}

In the right action setting, let W, := (*gi | \; < £,i # 1). We see that
(Qfg_l)emt is the subgroup of My, stabilizing kg & W), and each W, (£ €
N*).

Let g := min({i > 1| X5(gi) # 0 for some ' > 1 such that \; = Ay} U
{dx+1}) and, if ig = dy + 1, we let 'g;® := 0. We get

1> 1
Ny > —A

i >1 i
Xe @ 2 (0t 170 N0+ ('
7 10

On the other hand, if X5(g;) # 0, we set € = 1; otherwise we set ¢ = 0.

Then:
| is1
A+k(gh+(g| ' % fe—1,
Xo Q) )ewt = (o) +Q9i| ) <, ) ife

A if e =0.

(20)
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Hence, if e = 1 and \;, < Ay, we have X € Qq,, - X,, with p = (X,0,1).
Else, we have X € ()3, - X, with p:= (X, Ay, €).
Thanks to (20)), it is an easy matter to see that p is unique.
U

Note that we may have Py, - X, = P, - X,y with p # p/. A full
classification of nilpotent orbits should throw away those cases. However,
the description of Lemma [T.1] will be sufficient for our purpose.

If p = (Xel) € P’(n), we denote by d,, the number of parts in the
partition of n associated to GL,, -X,,. That is

q — dx+1 ife=0and!=0,
B dy else.

It follows from Lemma [7.1] that

N(p2p) = U Nu(pan), where  N,(p2n) = Pon - (X, (p;ﬁ{)"“),

peEP” (n)

N(q2,n) = |_| Nu(qln)a with Nﬂ(qln) = Q2,n . (XN’ (qgg)ml)

peP” (n)
Lemma 7.2. Let 0 = gy, 07 P, and p = (X, €,1) € P"(n).
1. (XY™l s an irreducible subset of wXr of codimension

| dy—1 ife=1andl >0,
n= dy else.

2. Nu(w) is a closed irreducible subset of N'(w) of dimension dimw — ¢,

Proof. The computation (I3)) remains valid when one replaces p(= p1,) by
P2, Orqs,. Hence, the second assertion is a consequence of the first one.
The proof is based on case by case considerations on (rw*#)"l and the
use of Lemma 9] (or Remark A.T0]) in a similar manner as in Lemma [5.5]
Firstly, assume that ¢ = 0 or [ = 0. The proof of Lemma can easily
be translated here. An elementary base change (f});; based on a reordering
of (e1, (g})i;) transforms X, into an element in Jordan canonical form in M,

with partition pu/ € P(n). In these cases, (0*X#),.4 is defined in (M;i“)red
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by a condition of one of the types given in the RHS below, for some iy and
possibly ;.

[ Yiealfi') € kS (e=1,1=0)
Yea(f1°) € kf(® and Yyeq(fi') € kf} =017 M
Y € (0#),.q & (or) Yred(fllo) Yyea(f? ) ( 1@0 121> 0 = pan,e = 0,1 = A1,
(/1)

L }ced jﬁo
In particular, (0*#),.q = [],0**(¢) and each w**(¢) is isomorphic to
M,,, P14, P2.r, OF q2.r,. We then finish as in Lemma
If e =1 and [ > 0, we have a more subtle base change to operate. Let
ip = max{i|\; > A1 }. Recall that the condition ¢ = 1 implies the inequality
1< i, <o (cf. (@J). Let

gt if i <ip,i4+1#1,and 1 <7< Ny,
g5t ifi+1l=i,and 1 <j<\,+1,
fi=q e  iitl=i,andj=1, (21)
gjl-—g;“ ifr=10and 1 <j <A
9; ifie>9and 1 <5<\,

In this new basis, X,, is in Jordan canonical form associated to a partition
o= (py ==y ) € P(n) and gg,, (resp. pa,) is characterized by the
two conditions

Y € qz,, (resp. n<:>{ i i i
o (P Ben) & v (g gy e G e+ )

(22)

Define ¢; := ! = N, +1=1+1and {; := pj, = A\;. From now on, we

iu—1 '
assume that Y € M;*. Then Y(f; »~1) has no component in o ' (Lemma
[4.3)). Hence, for such Y the two conditions on the first line of [22)) are both

equivalent to the existence of some « € k such that Y ( Z”_1) =« f‘*_l.

Now, write Y (f1°) =, i fi and Y( = S vifi+ifs (Lemmald3).

We note that 7;,_; = avand, since i ,_; = A;,, +1 > M\ +2 = p; +2, we have

; = 0 for all i such that p; = i (Lemma [A.3). Hence the second condition
z -1 7 —1 3 i,—1 . .

Of @2), Y(fi*+ 2 ) =&f" +o(fi°+ £ ), implies B;, = 0 = %{p—l =

and 5; = 0 for all i # ig such that p = p; . Thus, we have the following
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V() ekfi™h (resp. Y(f* ) € (T A0+ B4,
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.. . X
caracterisation of (r0X#),.q in My *:

« Al « A2 ac k,
x 0 0 A e M
Y;‘ed € (m u)red = Y(£1)7 Y(£2) = . s . s J € 177'Zj—1’
. Bl : BQ Bj c M‘I‘e.—l'
0 0 I

Hence 1,2 = 0% (01, £2) X [Tygqp, 00y 02 (0); w¥4(0) = My, for £ # 61,0,
and (r0Xe (€1, 05))™ is caracterized in ™= (£1,¢3) by the conditions o = 0,
By, By nilpotent (Lemma [T]). Thus (™= (1, £3))™ is an irreducible variety
of codimension 7, + 74, — 1 in X~ (¢;, £5) (Lemma ET]); the variety (ro*w)ni
is also irreducible and codim x, (0*#)"" = d, — 1 (Remark EI0). Hence

we have proved the first assertion follows in this last case. O

Theorem 7.3. Let v = qa, or pa,. Then N (o) is equidimensional of

dimension dimto — 1. It has L%J components.

Proof. We have min{c,|p € P"(n)} = 1. Hence, it follows from Lemma
and Proposition 6.1 that each irreducible component of N'(qz,,) has dimen-
sion dim gy, — 1. There are two types of u € P”(n) such that ¢, = 1.

e 1= ((n—1,0),0,1) which is the only element whose associated parti-
tion of n has just one part.

o 1= ((A1,A2), A9, 1) with A > Ay. Its associated partition of n has two
parts: (A2 +1 > A1), cf. (ZI)) for more details. Note that this covers
(the transpose of) the partitions involved in the proof of Proposition
22since Ay > A\ & (A +1) — A\ > 2.

There are ng such elements, whence the statement for w = qq,.

It follows from the description above that the map {u € P"(n)|c, =
1} — P(n) which sends p to the partition associated to GL,, .X,, is injective.
In particular, the different such X,, belong to different P ,-orbits and all
the associated irreducible components of NV, (p2,,) of maximal dimension are
distinct.

There remains to prove that there is no other irreducible component in
N(psy). Let (X,Y) € N(p2y). The pair (X, Y)y,) is a commuting pair in
gl(V2) hence, up to GL(V3) x Idy,(C P ,)-conjugacy, we can assume that
X(e1) = Y(ey) = 0. That is (X,Y) € N(q2,). In particular, there exists
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p € P"(n) such that (X,Y) € Nu(qa.n) C Nu(p2n) and ¢, = 1. We have

therefore shown that
N(pz) © | Nolpa),

cu=1

and we are done. O

Remark 7.4. (i) The key point of this last proof in the case v = py,, is that
dim N, (qa,,) and dim N, (ps,,) are both related to the same integer c,,. This
is what allows us to carry out the equidimensionality property from N (qa.)
to N'(p2,n)

(ii) The method used in this section is deeply based on the decomposition
into a finite number of irreducible variety, the N,(w), candidates for being
the irreducible components of N'(w). Therefore the classification into finitely
many orbits of Lemma [7.1] plays a key role. This situation breaks down in
general for py,. Using quiver theory and techniques similar to [Bd], M.
Reineke communicated to us an example of an infinite family of P 12-orbits
in Pe12-

(#ii) Similarly, in [GR], the authors shows that some continous families of
Qnn-orbits exist in q,,, (Borel case) as soon asn = 6. From this, they deduce
the existence of irreducible components of N (qn.n) of dimension greater or
equal than dimgq,,, showing that the variety is not equidimensional in these
cases.

Corollary 7.5. SP™ st=2m sIn=2n1 e equidimensional of dimension n—

1. They have ng components.

Proof. The number of components in S.>™ is (Proposition BI0) the number

of components in N¢(p,,_3,,), thus at most the number L%J of components

in the variety N (p,_2,) which may contain noncyclic components. On the
other hand, we have exhibited [%J components of dimension n — 1 in S([)z’"}
in Proposition 2.2, hence the conclusion for S([f’"]. The same argument apply
to SI">" using Remark

Finally, from the existence of a surjective morphism SI" > — gln=2]

(Proposition B.12), we see that Sg"_2’nﬂ has at least |2 | components. But
Theorem implies that there are at most [%J components, and that these

components have dimension n — 1. The result follows. O

40



References

[AtM] M. F. Atiyah and I. G. MacDonald, Introduction to commutative al-
gebra, Addison-Wesley Publishing Co., 1969.

[Bar] V. Baranovski, The variety of pairs of commuting nilpotent matrices
is irreducible, Transform. Groups, 6 (2001), 3-8.

[Bas00] R. Basili, On the irreducibility of varieties of commuting matrices,
J. Pure Appl. Algebra, 149 (2000), 107-120.

[Bas03] R. Basili, On the irreducibility of commuting varieties of nilpotent
matrices, J. Algebra, 268 (2003), 58-80.

[Bo] M. Boos, Conjugation on varieties of nilpotent matrices, preprint
arXiv:1205.5197 (2012).

[Ber| J. Bertin, The Punctual Hilbert Scheme An Introduction, HAL
Preprint, cel.archives-ouvertes.fr/docs/00/43/77/13/PDF/BERTIN_IFETE2008.pdf

[Br] J. Briancon, Description de Hilb"C{x;y}, Invent. Math., 41 (1977),
45-89.

[Bu] M. Bulois, Composantes irréductibles de la variété commutante nilpo-
tente d’une algebre de Lie symétrique semi-simple, Annales de ['institut
Fourier, 59 (2009), 37-80.

[Ch1] J. Cheah, Cellular decompositions for nested Hilbert schemes of points,
Pacific J. Math., 183 (1998), no. 1, 39-90.

[Ch2] J. Cheah, The virtual Hodge polynomials of nested Hilbert schemes
and related varieties, Math. Z., 227 (1998), no. 3, 479-504.

[CE] P. E. Chaput and L. Evain, On the equivariant cohomology of Hilbert
schemes of points in the plane, arXiv:1205.5470 [math.AG]

[ES] G. Ellingsrud and S. A. Strgmme, On the homology of the Hilbert
scheme of points in the plane, Invent. Math., 87 (1987), no. 2, 343-352.

[Ev] L. Evain, Irreducible components of the equivariant punctual Hilbert
schemes, Adv. Math., 185 (2004), no. 2, 328-346.

41


cel.archives-ouvertes.fr/ docs/00/43/77/13/PDF/BERTIN_IFETE2008.pdf

[Ge] M. Gerstenhaber, On dominance and varieties of commuting matrices,
Annals Math., 73 (1961), 324-348.

[Gi] V.  Ginzburg, Lectures on Nakajima’s Quiver  Varieties,
arXiv:0905.0686 (2009).

[GR] S. Goodwin and G. Roehrle, On commuting varieties of nilradicals of
Borel subalgebras of reductive Lie algebras, preprint arXiv:1209.1289
(2012).

[Gr] I. Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and
vertex operators, Math. Res. Lett., 3 (1996), no. 2, 275-291.

[Gro] A. Grothendieck, Techniques de construction et théoremes d’existence
en géométrie algébrique. IV. Les schémas de Hilbert. (French) [Con-
struction techniques and existence theorems in algebraic geometry. IV.
Hilbert schemes] Séminaire Bourbaki, Vol. 6, Exp. No. 221, 249-276,
Soc. Math. France, Paris, 1995.

[HM] M. Haiman and B. Sturmfels, Multigraded Hilbert schemes, J. Alge-
braic Geom., 13 (2004), no. 4, 725-769.

[Kee] S. Keel, Functorial construction of Le Barz’s triangle space with ap-
plications, Trans. Amer. Math. Soc., 335 (1993), no. 1, 213-229.

[Le] M. Lehn, Chern classes of tautological sheaves on Hilbert schemes of
points on surfaces, Invent. Math., 136 (1999), no. 1, 157-207.

[IMFK] D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory
third edition, Ergeb. Math. Grenzgeb. (2), Springer-Verlag, 1994.

[Na] H. Nakajima, Lectures on Hilbert schemes of points on surfaces, Uni-
versity Lecture Series, 18, American Mathematical Society, 1999.

[Pa] D. I. Panyushev, The Jacobian modules of a representation of a Lie
algebra and geometry of commuting varieties, Compositio Math., 94
(1994), 181-199.

[Po] V. L. Popov, Irregular and singular loci of commuting varieties, Trans-
form. Groups, 13 (2008), 819-837.

42



[Pr] A. Premet, Nilpotent commuting varieties of reductive Lie algebras,
Invent. Math., 154 (2003), 653-683.

[TA] HW. Turnbull and A.C. Aitken, An Introduction to the theory of
canonical matrices, Dover Publications, 1961.

[TY] P. Tauvel and R. W. T. Yu, Lie algebras and algebraic groups, Springer
Monographs in Mathematics, Springer-Verlag, 2005.

[Zo] E. Zoque, On the variety of almost commuting nilpotent matrices,
Transform. Groups, 15 (2010), 483-501.

43



	Introduction
	Reducible nested Hilbert schemes
	Hilbert schemes and commuting varieties
	Functorial definitions
	The Hilbert scheme as a geometric quotient 
	From N"0365N to N

	Technical lemmas on matrices
	Irreducibility of N(p1,n) and S[n-1,n]0
	General lower bounds for the dimension of the components
	Detailed study of S[2,n]0

