
HAL Id: hal-00835833
https://hal.science/hal-00835833

Submitted on 19 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Reasoning about Data Trees via Integer Linear
Programming

Claire David, Leonid Libkin, Tony Tan

To cite this version:
Claire David, Leonid Libkin, Tony Tan. Efficient Reasoning about Data Trees via Integer
Linear Programming. ACM Transactions on Database Systems, 2012, 37 (3), pp.19.1-19.28.
�10.1145/2338626.2338632�. �hal-00835833�

https://hal.science/hal-00835833
https://hal.archives-ouvertes.fr

1

Efficient Reasoning about Data Trees
via Integer Linear Programming

CLAIRE DAVID, Université Paris-Est

LEONID LIBKIN, University of Edinburgh

TONY TAN, University of Edinburgh

Data trees provide a standard abstraction of XML documents with data values: they are trees whose nodes,
in addition to the usual labels, can carry labels from an infinite alphabet (data). Therefore, one is interested
in decidable formalisms for reasoning about data trees. While some are known – such as the two-variable
logic – they tend to be of very high complexity, and most decidability proofs are highly nontrivial. We are
therefore interested in reasonable complexity formalisms as well as better techniques for proving decidability.

Here we show that many decidable formalisms for data trees are subsumed – fully or partially – by the
power of tree automata together with set constraints and linear constraints on cardinalities of various sets
of data values. All these constraints can be translated into instances of integer linear programming, giving
us an NP upper bound on the complexity of the reasoning tasks. We prove that this bound, as well as the
key encoding technique, remain very robust, and allow the addition of features such as counting of paths
and patterns, and even a concise encoding of constraints, without increasing the complexity. The NP bound

is tight, as we also show that the satisfiability of a single set constraint is already NP-hard.
We then relate our results to several reasoning tasks over XML documents, such as satisfiability of

schemas and data dependencies and satisfiability of the two-variable logic. As a final contribution, we
describe experimental results based on the implementation of some reasoning tasks using the SMT solver
Z3.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computa-
tion—Automata; F.4.1 [Mathematical logic and formal languages]: Mathematical logic; G.1.6 [Nu-

merical Analysis]: Optimization—Integer programming; H.2.1 [Database Management]: Logical De-
sign—Data Models

General Terms: Algorithms, Theory

Additional Key Words and Phrases: XML, tree languages, data values, Presburger arithmetic, reasoning,
integer linear programming

ACM Reference Format:

David, C., Libkin, L., and Tan, T. 2012. Efficient Reasoning about Data Trees via Integer Linear Program-
ming ACM 1, 1, Article 1 (December 2012), 27 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Traditional approaches to studying logics on trees use a finite alphabet for labeling tree
nodes. The interest in such logics was reawakened by the development of XML as the

This work was supported by the FET-Open project FoX (Foundations of XML), grant agreement FP7-ICT-
233599, and by EPSRC grant G049165. This work was done when the first author was at the University of
Edinburgh.
Authors’ addresses: C. David, Université Paris-Est; L. Libkin and T. Tan, University of Edinburgh. Emails:
Claire.David@univ-mlv.fr, libkin@inf.ed.ac.uk, ttan@inf.ed.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© 2012 ACM 0000-0000/2012/12-ART1 $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:2

standard for data exchange on the Web. Logical formalisms provide the basis for query
languages as well as for reasoning tasks, including many static analysis questions such as
consistency of specifications, query optimization, and typing [Alon et al. 2003; Arenas et al.
2008; Fan and Libkin 2002; Figueira 2009; Genevés and Layaida 2006; Milo et al. 2003;
Schwentick 2004].
The simplest abstraction of XML documents is ordered unranked finite trees whose nodes

are labeled by letters from a finite alphabet [Neven 2002; Vianu 2001]. This abstraction
works well for reasoning about structural properties, but real XML documents carry data,
which cannot be captured by a finite alphabet. Thus, there has been a consistent interest
in data trees, i.e., trees in which nodes carry both a label from a finite alphabet and a
data value from an infinite domain [Bojanczyk et al. 2009; Bojanczyk et al. 2011; Bouyer
et al. 2001; Demri and Lazic 2009; Neven et al. 2004; Kaminski and Tan 2008]. It seems
natural to add at least the equality of data values to a logic over data trees. But while
for finitely-labeled trees many logical formalisms are decidable by converting formulae to
automata (e.g., the monadic second-order logic MSO), adding data-equality makes even FO
(first-order logic) undecidable.
This explains why the search for decidable reasoning formalisms over data trees has been

a common theme in XML research. Such a search has largely followed two routes. The
first takes a specific XML reasoning task, or a set of similar tasks, and builds algorithms
for them (see, e.g, [Arenas et al. 2008; Arenas and Libkin 2008; Björklund et al. 2008;
Calvanese et al. 2009; Fan and Libkin 2002; Schwentick 2004; Figueira 2009]). The second
attempts to find a sufficiently general logical formalism that is decidable, and can express
some XML reasoning tasks of interest (see, e.g, [Demri and Lazic 2009; Bojanczyk et al.
2009; Jurdzinski and Lazic 2007]).
While both approaches have yielded many nontrivial and influential results, they are

not completely satisfactory. The first approach gives us specialized algorithms for concrete
problems, but no general tools. The second approach tends to produce extremely high
complexity bounds, such as 4ExpTime, or even non-primitive-recursive. In addition, the
proofs are usually highly nontrivial and are very hard to adapt to other reasoning tasks.
Instead we want a sufficiently general formalism – in fact, a family of formalisms, that are

not extremely complicated to deal with, and at the same time give us acceptable complexity
bounds. For reasoning tasks (as opposed to, say, query evaluation which we are used to
in databases), acceptable complexity is often viewed as single-exponential [Robinson and
Voronkov 2001], or better yet, NP. The latter is due to the fact that SAT solvers are now
a practical tool for many static analysis problems [Malik and Zhang 2009].
The particular class of formalisms we deal with here is motivated by both concrete XML

reasoning tasks and decidable logical formalisms. We now briefly describe those. One of the
earliest reasoning problems studied in the XML context was the problem of reasoning about
keys and inclusion constraints. An XML key says that for a given label a, the data value
of an a-node (i.e., node labeled a) uniquely determines the node. An inclusion constraint
says that every data value of an a-node will occur in a b-node as well. Such constraints are
typical in databases, from which many XML documents are generated. The question is then
whether they are consistent with the schema of an XML document, usually given as a tree
automaton, or a DTD.
To see that such a problem may arise even with very simple specifications, consider,

for instance, XML documents which allow element types a and b. Suppose we have a key
constraint for data values in a-nodes, and an inclusion constraint from data values of a-nodes
to data values of b-nodes. Clearly one can find documents satisfying these constraints. But
now assume we have a DTD with a single rule r → aab, where r is the root. Then this DTD
is not compatible with the above constraints: since the a-nodes must carry two different
data values, they cannot be included in the singleton set of data values of the only b-node.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:3

In fact, [Arenas et al. 2008; Fan and Libkin 2002] have given a number of examples
of naturally looking DTDs and sets of constraints that are inconsistent. The problem of
checking consistency of DTDs with keys and inclusion constrains as described above is
known to be solvable in NP [Fan and Libkin 2002].
On the logic side, there appear to be two main ideas leading to decidability. One starts

with a temporal logic, and adds a limited memory for keeping and comparing data val-
ues. Examples include [Demri and Lazic 2009; Jurdzinski and Lazic 2007], but the logics,
although decidable, have extremely high complexity (non-primitive-recursive). A different
approach based on restricting the number of variables was followed by [Bojanczyk et al.
2009], which showed that FO2, first-order logic with two variables, is decidable over data
trees. In fact, even ∃MSO2, its extension with existential monadic second-order quantifiers,
is decidable. The complexity drops to elementary but is still completely impractical: the
decision procedure runs in 4ExpTime.
Our formalisms extend the specific constraints such as keys and inclusions, and yet come

very close to subsuming the power of logics such as ∃MSO2, while permitting many proper-
ties which are not even definable in MSO – we will explain this more precisely in Section 6.
To motivate the kind of constraints we use, let us restate keys and inclusion constraints in
a slightly different way. For this, we need two new notations: V (a) stands for the set of data
values in a-labeled nodes, and #a is the number of a-nodes.

—A key simply states that #a = |V (a)|. We view this as a linear constraint, and allow
arbitrary linear constraints over the values #a and |V (a)|, for example, |V (a)| ≥ 2|V (b)|−
#c.

—An inclusion constraint states that V (a) ⊆ V (b), or, equivalently, V (a) ∩ V (b) = ∅. We
generalize this to arbitrary set-constraints [Pacholski and Podelski 1997], stating that a
Boolean combination of V (a)’s is either empty or nonempty.

We consider the problem of satisfiability of such constraints with respect to a schema
declaration, given by an unranked tree automaton [Martens et al. 2007]. Or, formally: Given
an unranked tree automaton A and a collection C of set and linear constraints, does there
exist a tree t accepted by A that satisfies all the constraints in C?
We prove that this problem, and several of its variations, are all NP-complete. The NP

upper bounds are all established by reduction to instances of integer linear programming.
In fact, the basic result, unlike many decidability proofs [Bojanczyk et al. 2009; Demri and
Lazic 2009; Fan and Libkin 2002], is quite easy to establish. This opens a possibility of using
efficient solvers for linear constraints to implement XML reasoning tasks. The lower bounds
were already known [Fan and Libkin 2002], but we sharpen them significantly.
Our basic decidability result already subsumes not only reasoning about integrity con-

straints in XML, but also a very large fragment of ∃MSO2. These relationships will be made
precise in Section 6. Note that even the decidability of the satisfiability problem does not
follow from known results such as [Bojanczyk et al. 2009] which are restricted to fragments
of MSO; in contrast, our formalism expresses many properties not definable in MSO.
In addition, our proof techniques come with extra benefits: we can easily extend reason-

ing tasks while retaining decidability. For instance, we can count not just the number of
nodes labeled a, but also the number of nodes that satisfy some node tests of XPath: for
instance, we can reason about the number of a-nodes that have a b-parent and a c-sibling.
By extending the translation into integer linear programming, we obtain such extensions
quite easily.
A more surprising extension is to concisely represented constraints. One way to reduce the

size of the representation of linear constraints is to discard all zero entries from matrices
defining them. This can shrink the size of the instance of the problem exponentially. A
common phenomenon in complexity theory is that such a shrinking increases the complexity

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:4

by an exponent; this appears to suggest that the bound would be NExpTime. But we show
that nonetheless the problem stays in NP.
In addition to proving the theoretical bounds, we would like to test the feasibility of our

approach. There are several industrial-strength solvers for integer linear constraints that
are used in program analysis, testing, and verification tasks. For our purposes we use the Z3
solver [de Moura and Bjørner 2008]. However, before we can use it, we need to solve one more
problem, namely to encode automata with such constraints. It is well known that one can
do it [Verma et al. 2005; Kopczynski and To 2010], and we use this fact in the decidability
proof. However, for implementing our techniques, we cannot use it as a black box. Hence,
we provide a self-contained translation from unranked tree automata to instances of linear
programming. With that translation, we implement some of the reasoning tasks using Z3,
and report initial promising results for DTDs with several hundred rules and constraints.

Remark. An extended abstract of this paper appeared in [David et al. 2011]. Compared
to the conference version, there are three major additions:

—We have previously referred to [Fan and Libkin 2002] for lower bounds. However, that re-
sult required all possible constraints – automata, linear, and set – to achieve NP-hardness,
and it was open whether all three were required. We have now solved this problem: we
show in Subsection 4.2 that NP-hardness can be achieved with a single set constraint.

—We provide complete proofs in subsections 7.2 and 7.3 that were omitted in the proceedings
version.

— Finally, after the conference publication, we have implemented some of the reasoning tasks
using the Z3 solver. We describe initial experimental results in Section 9.

Organization. Section 2 presents the main definitions. In Section 3 we define the con-
straints and the problem we are interested in. In Section 4 we establish the basic result.
An extension is presented in Section 5. In Section 6 we relate set and linear constraints
to XML reasoning tasks and the logic ∃MSO2 of [Bojanczyk et al. 2009]. We study the
complexity of the problem in the case of concise representation of the constraints in Section
7. The translation from unranked tree automata to linear integer programming is provided
in Section 8. We provide a preliminary report on our experimental results in Section 9.
Concluding remarks are given in Section 10.

2. PRELIMINARIES

Trees and automata. We start with the standard definitions of unranked finite trees and
logics and automata for them. An unranked finite tree domain is a prefix-closed finite subset
D of N∗ (words over N) such that u · i ∈ D implies u ·j ∈ D for all j < i and u ∈ N

∗. Given a
finite labeling alphabet Σ, a Σ-labeled unranked tree is a structure 〈D,E↓, E→, {a(·)}a∈Σ〉,
where

—D is an unranked tree domain,
—E↓ is the child relation: (u, u · i) ∈ E↓ for u · i ∈ D,
—E→ is the next-sibling relation: (u · i, u · (i+ 1)) ∈ E→ for u · (i+ 1) ∈ D, and
— the a(·)’s are labeling predicates, i.e. for each node u, exactly one of a(u), with a ∈ Σ, is

true.

The label of the node u in t will be denoted by ℓabt(u), and the domain D is denoted by
Dom(t).
Let r be a designated symbol in Σ. We assume that the root of the tree (i.e., the empty

word) is labeled r, and no other node is labeled r. (This is not a restriction as we can always
put a new root with a given label.)
An unranked tree automaton [Comon et al. 2007; Thatcher 1967] over Σ-labeled trees is a

tuple A = (Q,Σ, δ, F), where Q is a finite set of states, F ⊆ Q is the set of final states, and

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:5

δ : Q× Σ → 2(Q
∗) is a transition function; we require each δ(q, a) to be a regular language

over Q for all q ∈ Q and a ∈ Σ.
A run of A over a tree t is a function ρA : Dom(t) → Q such that for each node u with

n children u · 0, . . . , u · (n − 1), the word ρA(u · 0) · · · ρA(u · (n − 1)) is in the language
δ(ρA(u), ℓabt(u)). For a leaf u labeled a, this means that u could be assigned a state q if
and only if the empty word ǫ is in δ(q, a). A run is accepting if ρA(ǫ) ∈ F , i.e., if the root
is assigned an accepting state. A tree t is accepted by A if there exists an accepting run of
A on t. The set of all trees accepted by A is denoted by L(A).

Data trees. In a data tree, besides carrying a label from the finite alphabet Σ, each non-root
node also carries a data value from some countably infinite data domain. To be concrete,
we assume it to be N. For a node u of a data tree t, labeled with a symbol a ∈ Σ, the
assigned data value is denoted by valt(u). We also denote the set of all data values assigned
to a-nodes by Vt(a). That is, Vt(a) = {valt(u) | ℓabt(u) = a and u ∈ Dom(t)}.

Integer linear programming (ILP) and Presburger formulae. Recall that an in-
stance of integer linear programming consists of an m × k integer matrix A and a vector
b ∈ Z

m. The question is whether there is a k-vector v̄ over integers such that Av̄ ≥ b.
The problem is well-known to be NP-complete. It is NP-hard even when entries are

restricted to be 0’s and 1’s. Membership in NP follows from the fact that if Av̄ ≥ b has an
integer solution, then there is one in which all entries are bounded by (ak)p(m), where a is
the maximum absolute value that occurs in A and b, and p is a polynomial [Papadimitriou
1981].
We also consider existential Presburger formulae, i.e., existential first-order formulae over

the structure 〈Z,+, 0, 1, <〉. Such formulae can always be converted to formulae of the form

ϕ(x̄) = ∃ȳ PBC(Aiv̄i ≥ bi), (1)

where PBC means a positive Boolean combination, and each Aiv̄i ≥ bi is an instance
of integer linear programming with variables v̄i coming from x̄, ȳ. Indeed, each existential
Presburger formula is of the form ϕ(x̄) = ∃ȳ ψ(x̄, ȳ), where ψ is quantifier-free, i.e., a
Boolean combination of linear inequalities (both > and ≥). Negations can be removed
simply by changing the signs of coefficients, and strict inequalities f(z̄) > b can be replaced
by conjunctions of f(z̄) − z′ ≥ b and z′ ≥ 1, where z′ is a new existentially quantified
variable.
Thus, whenever we refer to existential Presburger formulae, we assume that they are of

the form (1). We also only work with non-negative integers for x̄ and ȳ, so we always assume
that all the conditions xj ≥ 0, yl ≥ 0 are included in formulae. However, it is to be noted
that the entries in Ai and bi can be negative.
Notice that we occasionally use conditions such as x > 0 or x + y ≤ b, or x = y, but

these are easily put in the form (1) by changing them to x ≥ 1, or −x − y ≥ −b, or the
conjunction of x ≥ y and y ≥ x, respectively.
The satisfiability of existential Presburger formulae is in NP. In [Papadimitriou 1981] it

is showed for formulae of the form Av̄ ≥ b. The proof immediately extends to our setting.

3. CONSTRAINTS AND THE SATISFIABILITY PROBLEM

In this section we give the precise definitions of set and linear constraints, and state the
main satisfiability problem.

Set constraints. Recall that Σ is the labeling alphabet with a special symbol r for the
root. Data-terms (or just terms) are given by the grammar

τ := V (a) | τ ∪ τ | τ ∩ τ | τ for a ∈ Σ.

The semantics JτKt is defined with respect to a data tree t:

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:6

— JV (a)Kt = Vt(a);
— Jτ1 ∩ τ2Kt = Jτ1Kt ∩ Jτ2Kt;
— Jτ1 ∪ τ2Kt = Jτ1Kt ∪ Jτ2Kt;
— JτKt = Vt − JτKt;

where Vt =
⋃

a∈Σ Vt(a) is the set of data values found in the data tree t.
A set constraint is either τ = ∅ or τ 6= ∅, where τ is a term. A tree t satisfies τ = ∅,

written as t |= τ = ∅, if and only if JτKt = ∅ (and likewise for τ 6= ∅).
Note that set constraints τ1 ⊆ τ2 and τ1 ⊂ τ2 can be similarly defined, but they are easily

expressible with the emptiness constraints. For example, τ1 ⊆ τ2 means that τ1 ∩ τ2 = ∅,
while τ1 ⊂ τ2 means that τ1 ∩ τ2 = ∅ and τ2 ∩ τ1 6= ∅.
In particular, the inclusion constraint from the introduction is an example of a set con-

straint: to say that all data values of a-nodes occur as data values of b-nodes, we write
V (a) ∩ V (b) = ∅.

Linear data constraints. Fix variables xa for each a ∈ Σ and zS for each S ⊆ Σ. Linear
data constraints are linear constraints over these variables.
The interpretation of xa in a tree t is #a(t) – the number of a-nodes in t. The interpre-

tation of zS is the cardinality of the set

[S]t =
⋂

a∈S

Vt(a) ∩
⋃

b/∈S

Vt(b) =
⋂

a∈S

Vt(a) ∩
⋂

b/∈S

Vt(b).

That is, [S]t contains data values which are found among a-nodes for all a ∈ S but which
are not attached to any b-nodes for the label b 6∈ S. Note that the sets [S]t’s are disjoint,
and that

Vt(a) =
⋃

S such that a∈S

[S]t.

This gives us much more information than just the number of data values in a-nodes, which
can be expressed as:

|Vt(a)| =
∑

S such that a∈S

zS .

For instance, with such constraints we can reason about the data values that occur in a- and
c-nodes but do not occur in b-nodes: the number of those is simply

∑

{zS | a, c ∈ S, b 6∈ S}.
Notice that key constraints from the introduction are examples of linear data constraints;

that the data values of a-nodes form a key is that the number of a-nodes, which is xa, is
equal to the number of data values found in the a-nodes, which is |Vt(a)|. It is expressible
by the linear constraint:

xa =
∑

S such that a∈S

zS.

We view linear data constraints as an instance of integer linear programming. If Σ =
{a1, . . . , aℓ} and S1, . . . , Sk is an enumeration of nonempty subsets of Σ (thus k = 2|Σ|− 1),
then a set of m linear data constraints is Av̄ ≥ b, where A is an m× (ℓ+ k)-matrix over Z
and b ∈ Z

m. It is satisfied in a data tree t if it is true when v̄ is interpreted as the vector
(

#a1(t), . . . ,#aℓ(t),
∣

∣[S1]t
∣

∣, . . . ,
∣

∣[Sk]t
∣

∣

)

.

By data constraints, we mean either set constraints or linear data constraints.

Satisfiability problem. Let C denote a collection of set and linear data constraints. If a
tree t satisfies all the constraints in C, we write t |= C. We study the following satisfiability
problem.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:7

Problem: SAT(A, C)
Input: an unranked tree automaton A,

a collection C of set and linear data constraints
Question: is there a tree t accepted by A such that t |= C?

The problem of consistency of XML constraints and schemas [Arenas et al. 2008; Fan and
Libkin 2002] is a special instance of this problem. We shall later see that other problems
related to XML constraints, as well as a large fragment of the two-variable logic can be
formulated as special cases of SAT(A, C). Moreover, SAT(A, C) includes many instances
that cannot even be formulated in MSO, which is the logic that typically subsumes XML
reasoning tasks (for example, the linear constraint which states that #a(t) > 2 · #b(t) is
not expressible in MSO, but is a simple linear data constraint xa − 2xb > 0).

4. DECIDING SATISFIABILITY

We now prove the decidability and the complexity of SAT(A, C) problem. We assume the
following way of measuring the size of the input:

—For the automaton A, we take the size of the transition table, where each transition δ(q, a)
is represented by an NFA (or by a regular expression, since an NFA can be computed from
it in polynomial time).

—The size of each set constraint τ = ∅, or τ 6= ∅, is measured as the size of the parse-tree
for the term τ .

—The size of the linear data constraints Av̄ ≥ b is the sum of sizes of A and b, where the
numbers are represented in binary.

The main decidability result is the following.

Theorem 4.1. The problem SAT(A, C) is in NP (in fact, NP-complete).

That the problem is NP-hard is already known [Fan and Libkin 2002], although we tighten
the bound a lot in Subsection 4.2 (we show that satisfiability of a single set constraint is
already NP-hard). The main contribution is an easy proof for the upper bound given in
Subsection 4.1.

4.1. The proof of the NP-membership in Theorem 4.1

In this subsection we are going to present an NP-algorithm for SAT(A, C).
Let Σ = {a1, . . . , aℓ} and S1, . . . , Sk be the enumeration of non-empty subsets of Σ. We

fix the vectors x̄ = (x1, . . . , xℓ) and z̄ = (zS1
, . . . , zSk

).
We first show how to express set constraints in terms of linear data constraints. For this,

we need the following notation. For a term τ over the alphabet Σ, we define a family S(τ)
of subsets of Σ as follows.

— If τ = V (a), then S(τ) = {S | a ∈ S and S ⊆ Σ}.
— If τ = τ1, then S(τ) = 2Σ − S(τ1).
— If τ = τ1 ⋆ τ2, then S(τ) = S(τ1) ⋆ S(τ2), where ⋆ is ∩ or ∪.

It follows immediately that for every data tree t, we have JτKt =
⋃

S∈S(τ)[S]t. Moreover,

recall that the sets [S]t’s are disjoint.
Thus, the set constraint τ = ∅ can be expressed as a linear data constraint

∑

S∈S(τ) zS = 0.

Similarly, τ 6= ∅ can be expressed as
∑

S∈S(τ) zS ≥ 1. Since the size of linear constraints is

exponential in Σ, this transformation is polynomial in the size of the whole input.1 Hence,

1In Section 7 when we look at the concise representations of the input, we will need a more refined technique
for eliminating set constraints.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:8

from now on, we can assume that the set C is of the form A(x̄, z̄) ≥ b, and thus is given by
a quantifier-free Presburger formula ψC(x̄, z̄).
Next, we convert automata into linear constraints. In [Verma et al. 2005] it is shown

that given a context free grammar G, whose terminals are a1, . . . , aℓ, one can construct in
polynomial time an existential Presburger formula ϕG(x1, . . . , xℓ) such that ϕG(n1, . . . , nℓ)
holds if and only if there exists a word w ∈ L(G) such that #a1(w) = n1, . . . ,#aℓ(w) = nℓ,
where #ai(w) denotes the number of occurrences of ai in the word w. Then, in [Kopczynski
and To 2010] it is observed that the method can be extended to ranked tree automata.
Since unranked tree automata can be easily converted to ranked tree automata with ad-
ditional new symbol, we can construct the existential Presburger formula ϕA(x1, . . . , xℓ)
for unranked tree automaton A, with one extra existential quantifier for the new symbol2.
Hence, we have:

Lemma 4.2. (See also Section 8.) Given an unranked tree automaton A, over alphabet
Σ = {a1, . . . , aℓ}, one can construct in polynomial time an existential Presburger formula
ϕA(x1, . . . , xℓ) such that if t ∈ L(A), then ϕA(#a1(t), . . . ,#aℓ(t)) holds; and conversely, if
ϕA(n1, . . . , nℓ) holds, then there exists a tree t ∈ L(A) such that #a1(t) = n1, . . . ,#aℓ(t) =
nℓ.

Going back to the proof of Theorem 4.1, we introduce additional variables va for each a ∈
Σ. The intended meaning of va is the cardinality of Vt(a). Let v̄ be the vector (va1

, . . . , vaℓ
).

We next define two formulae that ensure proper interaction between ψC and ϕA. First,

χ(v̄, x̄, z̄) =
∧

a∈Σ

(va =
∑

a∈S

zS) ∧ (va ≤ xa)

states the expected conditions on these variables, given their intended interpretations. Sec-
ond,

χ′(v̄, x̄) =
∧

a∈Σ

(xa = 0 ∨ va > 0)

ensures that if a-nodes exist (i.e., xa > 0), then at least one data value is attached to the
a-nodes.
We now consider a Presburger formula Ψ(A,C)(x̄, z̄)

∃v̄
(

ψC(x̄, z̄) ∧ ϕA(x̄) ∧ χ(v̄, x̄, z̄) ∧ χ
′(x̄, z̄)

)

.

To convert Ψ(A,C)(x̄, z̄) into the form (1), we simply move all the existential quantifier in
ϕA(x̄) to the front. Each atomic predicate inside Ψ(A,C)(x̄, z̄) can then be viewed as an
instance of integer linear programming Aȳi ≥ bi.

Lemma 4.3. Given tuples of non-negative integers n̄ = (na)a∈Σ and m̄ = (mS)S⊆Σ, the
formula Ψ(A,C)(n̄, m̄) holds if and only if there exists a data tree t accepted by A such that

(1) na = #a(t) for each a ∈ Σ;
(2) mS = |[S]t| for each S ⊆ Σ;
(3) t |= C.

Proof. The “if” part is immediate from the construction of Ψ(A,C). We prove the “only
if” direction. Suppose Ψ(A,C)(n̄, m̄) holds. That is, there exists a witness v̄ such that

ϕC(n̄, m̄) ∧ ϕA(n̄) ∧ χ(v̄, n̄, m̄) ∧ χ′(n̄, m̄) holds.

Since ϕA holds, by Lemma 4.2, there exists a tree t ∈ L(A) such that (#a1(t), . . . ,#aℓ(t)) =
n̄.

2We shall present a more thorough construction in Section 8.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:9

Now we show how to assign data values to the nodes in the tree t so that in the resulting
data tree t′ we have mS = |[S]t′ |, for every S ⊆ Σ. Let K =

∑

S⊆ΣmS . We use the set

{1, . . . ,K} for data values in the tree t′. Let

f : {1, . . . ,K} 7→ 2Σ − ∅

be a function satisfying |f−1(S)| = mS , for each S ⊆ Σ. The witness for v̄ is
(
∑

a1∈S mS , . . . ,
∑

aℓ∈SmS).

The data tree t′ is obtained by letting Vt′(a) be
⋃

a∈S f
−1(S). This is possible since

χ(v̄, n̄, m̄) holds as
∑

a∈S |f−1(S)| = va ≤ #a(t) = na. By definition of the function f , we

obtain that [S]t′ = f−1(S), thus, |[S]t′ | = ms, for each S ⊆ Σ. This proves the lemma.

We now have an NP algorithm for SAT(A, C): in polynomial time we construct the
formula Ψ(A,C)(x̄, z̄) and then check for its satisfiability. It runs in NP, and Lemma 4.3
implies that it solves SAT(A, C). ✷

We shall see in the next section that our algorithm for SAT(A, C) gives some results
obtained by using much harder techniques (such as reasoning about constraints in XML),
and comes very close to giving us results obtained by considerably much harder techniques
(like the results of [Bojanczyk et al. 2009]). Moreover, the structure of our proof leads to
some extensions that otherwise would have been very hard to obtain.
Notice that extending the class of linear constraints by adding multiplication leads to the

immediate loss of decidability, since Hilbert’s 10th problem can be trivially encoded. On
the other hand, the problem is decidable in NExpTime [Givan et al. 2002] if we extend
linear constraints with prequadratic Diophantine equations, that is, Diophantine equations
supplemented with constraints of the form xi ≤ xjxk.

4.2. The proof of the NP-hardness in Theorem 4.1

Recall that NP-hardness of the satisfiability problem already follows from [Fan and Libkin
2002], which, however, used all three kinds of constraints: automata (DTDs), linear con-
straints (keys), and set constraints (foreign keys). It was open whether NP-hardness can
be established for less expressive constraints. Now we show that very little is needed for
NP-hardness.

Proposition 4.4. The problem of checking, for a set constraint τ 6= ∅, whether there
exists a tree t such that t |= τ 6= ∅, is NP-hard.

The proof goes via a reduction from the satisfiability of boolean formulae. We start by
showing how to convert a boolean formula to a term. For a boolean formula ϕ with the
variables x1, . . . , xℓ, we define the term τ(ϕ) over the alphabet {a1, . . . , aℓ} as follows.

— If ϕ is xi, then τ(ϕ) is V (ai).

— If ϕ is ¬ψ, then τ(ϕ) is τ(ψ).
— If ϕ is ψ1 ∧ ψ2, then τ(ϕ) is τ(ψ1) ∩ τ(ψ2).
— If ϕ is ψ1 ∨ ψ2, then τ(ϕ) is τ(ψ1) ∪ τ(ψ2).

In the lemma below, we use the notion of S(τ) defined in the beginning Subsection 4.1.

Lemma 4.5. Let ϕ be a boolean formula over the variables x1, . . . , xℓ, and ξ :
{x1, . . . , xℓ} 7→ {true, false} be a boolean assignment such that not all variables are assigned
to false. The boolean formula ϕ evaluates to true under the assignment ξ if and only if the
set {ai | ξ(xi) = true} is in S(τ(ϕ)).

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:10

Proof. The proof is by induction on the depth of the formula ϕ, denoted by depth(ϕ).3

The basis is when depth(ϕ) = 0, that is, ϕ is xi, for some xi ∈ {x1, . . . , xℓ}. Obviously
xi evaluates to true under the assignment ξ if and only if ξ(xi) = true. By definition of S,
the set S(τ(xi)) contains the set {aj | ξ(xj) = true}.
Assume now that Lemma 4.5 holds for every boolean formula of depth < m and let ϕ be

a boolean formula of depth m. There are three cases to consider.

(1) The formula ϕ is ¬ψ.
Let ξ be an assignment such that not all variables are assigned with false. If ϕ evaluates
to true under the assignment ξ, then ψ evaluates to false under the assignment ξ. By the
induction hypothesis, the set {aj | ξ(xj) = true} is not in S(τ(ψ)). By the definition,
the set {aj | ξ(xj) = true} is in S(τ(ϕ)).
Vice versa, if the set {aj | ξ(xj) = true} is in S(τ(ϕ)), then it is not in S(τ(ψ)). By
the induction hypothesis, the formula ψ evaluates to false under the assignment ξ.
Therefore, the formula ϕ evaluates to true under the assignment ξ.

(2) The formula ϕ is ψ1 ∧ ψ2.
Let ξ be an assignment such that not all variables are assigned with false. If ϕ evaluates
to true under the assignment ξ, then both formulae ψ1 and ψ2 evaluate to true under
the assignment ξ. By the induction hypothesis, the set {aj | ξ(xj) = true} is in both
S(τ(ψ1)) and S(τ(ψ2)). By the definition of S, the set {aj | ξ(xj) = true} is in S(τ(ϕ)).
Vice versa, if the set {aj | ξ(xj) = true} is in S(τ(ϕ)), then it is in both S(τ(ψ1)) and
S(τ(ψ2)). By the induction hypothesis, both formulae ψ1 and ψ2 evaluate to true under
the assignment ξ. Therefore, the formula ϕ evaluates to true with the assignment ξ.

(3) The formula ϕ is ψ1 ∨ ψ2.
This case can be proved in a similar manner as in the case 2, thus, we omit the proof.

This completes the proof of Lemma 4.5.

The following lemma will immediately imply Proposition 4.4.

Lemma 4.6. For every boolean formula ϕ over the variables x1, . . . , xℓ, the following
holds. The formula ϕ ∧ (x1 ∨ · · · ∨ xℓ) is satisfiable if and only if there exists a data tree t
such that t |= τ(ϕ) 6= ∅.

Proof. We start with the “only if” part. Suppose that the boolean formula ϕ∧(x1∨· · ·∨
xℓ) is satisfiable. Then there exists an assignment ξ : {x1, . . . , xℓ} 7→ {true, false} such that
not all the variables are assigned to false, and ϕ evaluates to true under ξ. By Lemma 4.5,
the set {aj | ξ(xj) = true} belongs to S(τ(ϕ)), and since not all variables are assigned to
false, it is not empty.
Consider the following tree t, whose root (which is labeled by the designated label r) has

precisely |{aj | ξ(xj) = true}| children, and

— all these children are leaf nodes;
— there is exactly one node labeled with the label a, for each a ∈ {aj | ξ(xj) = true};
— all these leaf nodes have the same data value, say 1.

Now, for each set S ⊆ Σ, if S = {aj | ξ(xj) = true}, then [S]t = {1}. Otherwise, [S]t = ∅.
Since Jτ(ϕ)Kt =

⋃

S∈S(τ(ϕ))[S]t, and the set {aj | ξ(xj) = true} is in S(τ(ϕ)), we have

Jτ(ϕ)Kt 6= ∅. Hence, t |= τ(ϕ) 6= ∅.
Now we prove the “if” part. Suppose there exists a data tree t such that t |= τ(ϕ) 6= ∅.

This means that there is a set S ∈ S(τ(ϕ)) such that [S]t 6= ∅. Consider the assignment
ξ : {x1, . . . , xℓ} 7→ (true, false) where ξ(xi) = true if and only if ai ∈ S. The set S is not

3The depth of a boolean formula ϕ is defined as follows. depth(xi) = 0; depth(¬ψ) = depth(ψ) + 1; and
depth(ψ1 ∧ ψ2) = depth(ψ1 ∨ ψ2) = max(depth(ψ1), depth(ψ2)) + 1.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:11

empty, thus, not all the variables are assigned to false. Moreover, by Lemma 4.5, the boolean
formula ϕ evaluates to true under the assignment ξ. Therefore, the formula ϕ∧(x1∨· · ·∨xℓ)
is satisfiable.

Proof. (of Proposition 4.4) It is straightforward to establish the NP-hardness of the
satisfiability of boolean formula of the form:

ϕ ∧ (x1 ∨ · · · ∨ xℓ),

where x1, . . . , xℓ are all the variables in ϕ.
By Lemma 4.6, the satisfiability of ϕ ∧ (x1 ∨ · · · ∨ xℓ) can be reduced to the satisfiability

of the set constraint τ(ϕ) 6= ∅. Since the construction of τ(ϕ) can be done in linear time in
the length of ϕ, Proposition 4.4 follows immediately.

Remark 4.7. It is also true that given a term τ , deciding whether there exists a data
tree t such that t |= τ = ∅ is also NP-hard.
It can be established from the fact that there exists a data tree t such that t |= τ(ϕ) = ∅

if and only if the boolean formula ¬ϕ∧ (x1 ∨· · ·∨xℓ) is satisfiable. The proof is very similar
to the proof above, and thus, omitted.

5. INCORPORATING COMPLEX PROPERTIES OF NODES

We now demonstrate how the simple structure of the proof allows us to obtain extensions
for the main reasoning task almost effortlessly.
So far we were counting the numbers of nodes #a(t) – i.e., nodes labeled a. Checking

whether a node is labeled a is a simple property expressed by a fixed MSO (in fact, by an
atomic FO) formula with one free variable. We now show that we can count the number of
nodes satisfying arbitrary fixed MSO formulae and use them in linear constraints.
More precisely, let π(x) be an MSO formula with one free first-order variable in the

usual vocabulary of unranked trees, that is, E↓, E→, and a(·)a∈Σ for child and next-sibling
edges and labeling predicates. Such a formula selects nodes in trees. We let #π(t) be the
cardinality of the set of nodes in t that satisfy π.
Adding these variables to our system of constraints increases their expressiveness. For

instance, we can state that every every a-labeled node is reachable by some XPath node
expression e(x). Indeed, unary MSO subsumes many XML formalisms, for example node
expressions of XPath (or even conditional XPath [Marx 2005]). Thus, e(x) can be viewed as
an MSO formula, and then we can define π(x) = e(x) ∧ a(x), stating that x is also labeled
a. Then #π(t) = #a(t) specifies the above constraint.
Using our proof, we can extend the decidability result to constraints that include counting

the number of nodes output selected by unary MSO formulae. If Π = {π1(x), . . . , πs(x)} is
a collection of such MSO formulae, then we refer to Π-linear constraints: these are linear
constraints over the usual variables xa’s and zS’s, as well as wπi

’s, interpreted as #πi(t).
We deal with the problem Π-SAT(A, C): its input is an automaton A and a collection C of
set and Π-linear constraints, and the question is whether these are satisfiable.
Our proof immediately implies that the problem is decidable:

Corollary 5.1. The problem Π-SAT(A, C) is decidable.

Proof. We can embed the formulae π1, . . . , πs into the automaton A and check the
existence of a tree over the alphabet Σ × 2Π, where (i) its Σ projection is accepted by A
and (ii) for each node labeled with (a, P) ∈ Σ × 2Π, a formula π is satisfied if and only if
π ∈ P is satisfied. The linear constraints in C over the variables xa’s and zS ’s can be easily
converted into the variables xa,P ’s and zT , where P ⊆ 2Π and T ⊆ (Σ× 2Π).

The complexity of Π-SAT(A, C) depends on how the formulae π1, . . . , πs are given. If
they are given as MSO formulae, then it is immediately known that the complexity is

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:12

non-elementary. But these formulae are also captured by the query automata of [Neven
and Schwentick 2002]: these are automata that also select nodes in their accepting runs.
When representing the formulae π1, . . . , πs with query automata, the complexity drops to
NExpTime, and in some cases to NP.

Corollary 5.2. If the formulae in Π are given as query automata, then Π-SAT(A, C)
is decidable in NExpTime. Moreover, Π-SAT(A, C) is in NP if Π is fixed.

Proof. The NExpTime upper bound is straightforward, as the non-elementary blow-
up for SAT(A, C) occurs in translating the MSO formulae to query automata. Moreover,
the blow-up occurs when moving from the alphabet Σ to Σ× 2Π. Thus, if Π is fixed, then
the complexity remains NP.

While converting from MSO to query automata is non-elementary, for some other for-
malisms that complexity is much lower: for example, [Libkin and Sirangelo 2010] shows how
to convert conditional-XPath to query automata in single-exponential time.

6. COMPARISON WITH OTHER FORMALISMS

We now explain how the satisfiability problem SAT(A, C) relates to reasoning tasks for
XML with data.

6.1. XML constraints

As we already noticed, keys and inclusion constraints, studied extensively in the XML
context (and included in the standards) are modeled with set and linear constraints. A
simple key, saying that data values determine a-nodes, is a linear constraint xa =

∑

a∈S zS,
and an inclusion constraint saying that data values of a-nodes occur also as data values of

b-nodes is V (a)∩V (b) = ∅. Similarly, one can handle denial constraints, often used in dealing
with inconsistent data. An example of a denial constraint is saying that the same data value
cannot appear in both an a-node and a b-node; this is expressible as V (a) ∩ V (b) 6= ∅.
Our result implies that the satisfiability problem for key, inclusion, and denial constraints

with respect to an automaton is solvable in NP. Note however that to express a key as a
linear constraint one needs exponentially many (in Σ) variables zS , while we can compactly
encode keys simply by letters involved in them, requiring log |Σ| bits instead. It turns out
that this does not change the bound for keys and inclusion constraints; our proof can easily
be adjusted to show:

Corollary 6.1. The satisfiability problem for key (encoded by log |Σ| bits) and inclu-
sion constraints with respect to an automaton is solvable in NP.

Proof. Let A be an automaton over the alphabet Σ and let C be a collection of keys
and inclusion constraints, where elements of C are written as V (a) 7→ a (for keys) and
V (a) ⊆ V (b) (for inclusion constraints). Let Σ = {a1, . . . , aℓ}.
Our algorithm to decide whether there exists a data tree t ∈ L(A) such that t |= C works

as follows.

(1) Construct the existential Presburger formula ϕA(x1, . . . , xℓ) for the automaton A ac-
cording to Lemma 4.2.

(2) Let ϕC(x1, . . . , xℓ) be the formula: ∃v1 · · · ∃vℓ

∧

i

vi ≤ xi ∧
∧

i

(vi = 0 ↔ xi = 0)

∧

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:13

(

∧

V (ai) 7→ai∈C

vi = xi

)

∧
(

∧

V (ai)⊆V (aj)∈C

vi ≤ vj

)

.

(3) Let ϕA,C(x1, . . . , xℓ) := ϕA(x1, . . . , xℓ) ∧ ϕC(x1, . . . , xℓ).
Test the satisfiability of ϕA,C(x1, . . . , xℓ).

Note that here we do not use the variables zS ’s.
We claim that for each data tree t, t ∈ L(A) and t |= C if and only if

ϕA,C(#a1(t), . . . ,#aℓ(t)) holds.
We start with the “only if” part. Let t ∈ L(A) and t |= C. That ϕA(#a1(t), . . . ,#aℓ(t))

follows from Lemma 4.2. To show that ϕC(#a1(t), . . . ,#aℓ(t)) holds, we let the witnesses
for each vi as the cardinality |Vt(ai)|, the number of data values found in the ai-nodes in t.
Then, it is straightforward to show that ϕC(#a1(t), . . . ,#aℓ(t)) holds.
Now we show the “if” part. Suppose ϕA,C(n1, . . . , nℓ) holds. By Lemma 4.2, there exists

a tree t ∈ L(A) such that for each ai ∈ Σ, ni = #ai(t). Let (m1, . . . ,mℓ) be the witness for
(v1, . . . , vℓ) that ϕC(x1, . . . , xℓ) holds. We assign the values 1, . . . ,mi as data values for the
ai-nodes in t such that Vt(ai) = {1, . . . ,mi}, for each ai ∈ Σ. Such assignment is always
possible since mi ≤ #ai(t). That the keys and inclusion constraints in C are satisfied follows
immediately from the constraints vi = xi and vi ≤ vj , respectively.

This extends the results of [Arenas et al. 2008; Fan and Libkin 2002] which showed an
NP bound for keys and a special form of inclusions (whose right-hand-sides are keys as
well); but in addition our proof is much more streamlined compared to the proofs there.
We give a couple of remarks here comparing the results in our paper to other types of

XML constraints.

Remark 6.2. It is easy to extend these results to more complex constraints studied in
the XML context. For example, consider key constraints given by regular expressions over
Σ. Such a constraint for a regular expression e, is satisfied in a tree t if nodes reachable from
the root by following a path from e are uniquely determined by their data values. These
constraints, common in XML schema specifications, are easily described by our formalism:
one simply marks the nodes with states of an automaton for e, and uses the tree automaton
A to ensure that the marking is correct.

Remark 6.3. The proof can also be easily extended to the satisfiability of conditional-
XPath formulae with key and inclusion constraints on the selected nodes. It is known
that a conditional-XPath formula can be converted to a query automaton [Libkin and
Sirangelo 2010]. Recall that a query automaton is an automaton that in addition to accept-
ing/rejecting a tree, also outputs a set of nodes [Neven and Schwentick 2002]. The translation
of [Libkin and Sirangelo 2010] works in ExpTime. By viewing those selected nodes as nodes
that carry special symbols, the results in the previous sections hold immediately also for
the XPath formulae.

Remark 6.4. Finally, notice that there are different kinds of key and inclusion con-
straints, called relative constraints, studied in [Buneman et al. 2002; Arenas et al. 2008].
In short, a relative key constraint states that any two a-nodes, sharing a common ancestor
labeled with b, carry different data values, while a relative inclusion constraint states that
for every a-node, which has an ancestor labeled with c, there exists a b-node, with the same
ancestor, that carries the same data value. The satisfaction problem of DTD and relative
constraints is already proved to be undecidable in [Arenas et al. 2008].

6.2. Two-variable logic

As mentioned already, our main result does not follow from the decidability of the two-
variable existential monadic second-order logic over data trees [Bojanczyk et al. 2009]. We

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:14

now explain the precise relationship between the two formalisms. When we talk about logics
over data trees, we view them as structures

t = 〈D,E↓, E→, {a(·)}a∈Σ,∼〉, (2)

which extend unranked trees with the binary predicate ∼ interpreted as u ∼ u′ ⇔ valt(u) =
valt(u

′), where u and u′ are nodes of the tree.
The sentences of the logic ∃MSO2 are of the form ∃X1 . . . ∃Xm ψ, where ψ is an FO

formula over the vocabulary extended with the unary predicates X1, . . . , Xm that uses only
two variables, x and y. It is known that every MSO sentence that does not mention data
values is equivalent to an ∃MSO2 sentence.
The unary key constraint V (a) 7→ a can be expressed with the formula: ∀x∀y (a(x) ∧

a(y) ∧ x ∼ y → x = y). The inclusion constraint V (a) ⊆ V (b) can be expressed with the
formula: ∀x∃y (a(x) → b(y)∧x ∼ y). The denial constraint V (a)∩V (b) = ∅ can be expressed
with the formula: ∀x∀y (a(x) ∧ b(y) → ¬(x ∼ y)).
It was shown in [Bojanczyk et al. 2009] that every ∃MSO2 formula over data trees is

equivalent to a formula

∃X1 . . . ∃Xk(χ ∧
∧

i

ϕi ∧
∧

j

ψj)

where

(1) χ describes a behavior of an automaton that can make “local” data comparisons (i.e.,
whether a data value in a node is equal/not equal the data value of its parent, left- or
right-sibling);

(2) each ϕi is of the form ∀x∀y(α(x) ∧ α(y) ∧ x ∼ y → x = y), where α is a conjunction of
labeling predicates, Xk’s, and their negations; and

(3) each ψj is of the form ∀x∃y α(x) → (x ∼ y ∧ α′(y)), with α, α′ as in item 2.

If we extend the alphabet to Σ× 2k so that each label also specifies the family of the Xi’s
the node belongs to, then formulae in items 2 and 3 can be encoded by constraints.

—Formulae in item 2 become conjunctions of keys and denial constraints over the extended
alphabet. That is, it becomes a formula

∀x∀y(
∨

a∈Σ′

a(x) ∧
∨

a∈Σ′

a(y) ∧ x ∼ y → x = y),

for some Σ′ ⊆ Σ × 2k, which is equivalent to a is a key for each a ∈ Σ′, as well as
V (a) ∩ V (b) = ∅, for every a, b ∈ Σ′ and a 6= b.

—Formulae in item 3 become

∀x∃y(
∨

a∈Σ′

a(x) → x ∼ y ∧
∨

a∈Σ′′

a(y)),

for some Σ′,Σ′′ ⊆ Σ× 2k, which is equivalent to generalized inclusion constraints of the
form

⋃

a∈Σ′

V (a) ⊆
⋃

b∈Σ′′

V (b),

or, equivalently
⋃

a∈Σ′ V (a) ∩
⋂

b∈Σ′′ V (b) = ∅.

Hence, [Bojanczyk et al. 2009] and our results imply the following.

Corollary 6.5.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:15

— (corollary of [Bojanczyk et al. 2009]) Satisfiability of ∃MSO2 formulae over data trees
is equivalent to satisfiability of keys, denial constraints, and generalized inclusions con-
straints with respect to an automaton with local data comparisons.

— (corollary of Theorem 4.1) Satisfiability of keys, denial constraints, and generalized in-
clusions constraints with respect to an automaton is solvable in NP.

While our main result and the decidability of ∃MSO2 are incomparable, in essence we
subsume ∃MSO2 minus the local data comparison constraints. More precisely, by local data
comparison constraints we mean those of the form:

∀x∀y((a(x) ∧ b(y) ∧ ε(x, y)) → δ(x, y)),

where ε(x, y) is either “x is the parent of y” or “x is the right-sibling of y”; and δ(x, y) is
either “x ∼ y” or “¬(x ∼ y).”
Our formalism is suitable for stating properties that do not involve such local data com-

parisons. For example, the property “all data values are the same” can be expressed as

V (a) ∩ V (b) = ∅ for each a, b ∈ Σ; and zΣ = 1, where Σ denotes the alphabet. The
property “all data values are different” can also be expressed in our formalism as follows:
V (a) ∩ V (b) = ∅ for each a, b ∈ Σ; and xa =

∑

a∈S zS for each a ∈ Σ.
Note that our proof is conceptually simpler than the proof of [Bojanczyk et al. 2009] that

goes via more than a dozen reductions. Unlike [Bojanczyk et al. 2009], we fail to capture
local data comparisons in automata; on the other hand, we add many properties (e.g., linear
constraints) which are not even expressible in MSO.

7. CONCISE REPRESENTATIONS OF THE SATISFIABILITY PROBLEM

Recall that we measure the size of the linear data constraints Av̄ ≥ b as the sum of sizes
of A and b, with numbers represented in binary.
This could be a rather inefficient way of representing linear constraints. Since the number

of variables zS in the constraints is 2|Σ|−1, we may achieve a more compact representation if
only a few of those variables are used in the constraints. Namely, we can safely disregard all
the zero-columns in A, and keep only the columns that correspond to variables actually used
in constraints. This representation can be exponentially smaller than the full representation
of the constraints (since Σ is a part of the input, we cannot achieve a smaller reduction
even if there are no linear constraints).
This is what we mean by concise representation. Consider the corresponding problem

Concise-SAT(A, C), which is the same as the SAT(A, C) problem before, except that we
use a concise representation of linear constraints.
It is a very common phenomenon in complexity theory that going to concise repre-

sentation increases the complexity by an exponent; in fact doing so is a common way
of getting NExpTime-complete problems from NP-complete problems. Of course given a
concise representation of constraints, we can always convert it into the usual representa-
tion in at most exponential time, and then apply Theorem 4.1. This immediately tells us
that Concise-SAT is in NExpTime, and it is tempting to think that Concise-SAT is
NExpTime-complete.
However, this is not the case. Quite surprisingly, the concise representation does not in-

crease the complexity of the problem. To show this, we need to design the decision procedure
in a much more careful way.

Theorem 7.1. The problem Concise-SAT(A, C) is solvable in NP.

We now indicate where the proof of Theorem 4.1 falls short when we have concise rep-
resentations. First, the transformation from set to linear constraints is polynomial in the
number of variables zS, i.e., O(2

|Σ|). This did not cause problems before, but now we may
not have all the variables zS , so the input may be of the size O(|Σ|k) for a fixed k. Then

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:16

the algorithm for eliminating set constraints becomes exponential. Second, the introduction
of new variables va for

∑

a∈S⊆Σ zS used in the proof may likewise induce an exponential
blow-up when considering concise representation.
The main aim is to show that there exists a subset Z ⊆ 2Σ of polynomial size such that

there exists a tree t ∈ L(A) and t |= C if and only if there exists a tree t′ ∈ L(A) and t′ |= C
and [S]t′ = ∅, for all S /∈ Z. For this we introduce another extension of the ILP problem.
In the following three subsections we present the proof of Theorem 7.1.

7.1. Proof of Theorem 7.1

Let Σ be a finite alphabet and C is a collection of set and linear constraints. In the following
we say that a term τ ∈ C if and only if C contains a set constraint of the form τ = ∅ or
τ 6= ∅. Similarly we say that a variable zS ∈ C if and only if there is a linear data constraint
in C that uses zS . We denote by Ψlin(C) the set of linear data constraints found in C.

Definition 7.2. [C-functions] Given an alphabet Σ and a collection C of data constraints,
a C-function is a function F from Σ ∪ {τ | τ ∈ C} ∪ {zS | zS ∈ C} to 2Σ such that:

(C1) for each a ∈ Σ, either F(a) = ∅ or a ∈ F(a);
(C2) for each zS ∈ C, either F(zS) = ∅ or F(zS) = S;
(C3) for each constraint τ 6= ∅ ∈ C, we have F(τ) ∈ S(τ);
(C4) for each constraint τ = ∅ ∈ C, we have F(τ) = ∅ and Im(F) ∩ S(τ) = ∅;

where Im(F) denotes the image of F , and S(τ) was defined in Subsection 4.2.

The intuition of F is such that Im(F) is the desired set Z. Given a collection C of data
constraints and a C-function F , we denote by Ψ(C,F) the system obtained from C by adding
the following constraints to Ψlin(C):

zS ≥ 1 for each S ∈ Im(F)− ∅
xa = 0 for each a ∈ Σ such that F(a) = ∅
zS = 0 for each zS ∈ C such that F(zS) = ∅

∑

a∈S∈Im(F)−∅

zS ≤ xa for each a ∈ Σ;

Notice that the size of Ψ(C,F) is polynomial in the size of both C and the alphabet Σ.
In the rest of the proof, all instances of ILP we refer to are instances over the variables

xa, zS , va.

Definition 7.3 (ILP under C-condition). An instance of ILP problem under C-condition
is given by an instance Ψ of ILP together with a collection C of data constraints. We say
that it has a non-negative solution if there exists a C-function F such that the instance of
ILP given by Ψ and Ψ(F , C) has a non-negative solution.

We will now state the two main lemmas from which Theorem 7.1 follows immediately.

Lemma 7.4. Checking whether an instance of ILP under C-condition has a non-negative
solution is in NP.

Lemma 7.5. Given an automaton A and a set C of data constraints in concise repre-
sentation, one can construct, in polynomial time, an instance of ILP with C-condition so
that there exists a tree t ∈ L(A) such that t |= C if and only if the instance of ILP with
C-conditions has a non-negative solution.

7.2. Proof of Lemma 7.4

First we need to prove the following result:

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:17

Lemma 7.6. Given an alphabet Σ, a collection C of linear data constraints, and a func-
tion F from Σ ∪ {τ | τ ∈ C} ∪ {zS | zS ∈ C} to 2Σ one can decide in polynomial time if F
is a C-function.

Proof. To check that F is a C-function, one has to check that conditions (C1)–(C4) in
definition 7.2. Conditions (C1) and (C2) are easy to check in polynomial time. The fact
that Conditions (C3) and (C4) can be checked in polynomial time follows directly from the
following claim:

Claim 1. Given a term τ and a set S ⊆ Σ, one can decide in linear time if S ∈ S(τ).

Proof. The proof is similar to the one in Subsection 4.2. In Subsection 4.2 we show
how to convert a boolean formula to a term. Here we show how to convert a term into a
boolean formula.
For each a ∈ Σ, we associate a boolean variable Pa. And for each term τ , we associate a

boolean formula ϕτ over the variables Pa as follows:

— if τ = V (a), then ϕτ = Pa;
— if τ = τ1 ∪ τ2, then ϕτ = ϕτ1 ∨ ϕτ2 .
— if τ = τ1 ∩ τ2, then ϕτ = ϕτ1 ∧ ϕτ2 ;
— if τ = τ1, then ϕτ = ¬ϕτ1 .

A set S ⊆ Σ defines a Boolean assignment ξS , where the variable ξS(Pa) = true if and only
if a ∈ S, for each a ∈ Σ.
It is a rather straightforward induction to show that the boolean formula ϕτ evaluates to

true under the assignment ξS if and only if S ∈ S(τ). The construction of ϕτ can be done
in time linear in the length τ , and so is the evaluation of ϕτ under ξS . This completes the
proof of our claim.

We can now prove Lemma 7.4.

Proof. (of Lemma 7.4) Note the size of the system Ψ(C,F) is polynomial in |Σ| and
Ψ(C), and hence if a solution to some Ψ(C,F) exists, there is one of size polynomial in |Σ|
and Ψ(C) due to [Papadimitriou 1981]. Hence for an NP algorithm we simply guess F and
a solution to Ψ(C,F). Both guesses are of polynomial size, and then we check that F is a
C-function, build Ψ(C,F) and verify that the solution is correct. These three tasks can be
done in polynomial time.

7.3. Proof of Lemma 7.5

Recall that (A, C) is satisfiable if and only if there exists a tree t ∈ L(A) such that t |= C.
The same meaning applies to (A,Ψ(C,F)), where F is a C-function.
The following Lemma 7.7 immediately implies Lemma 7.5.

Lemma 7.7. Let A be an automaton and C a collection of data constraints. Then, (A, C)
is satisfiable if and only if there exists a C-function F such that (A,Ψ(C,F)) is satisfiable.

Proof. The “if” direction is trivial. If there exists a tree t that satisfies (A,Ψ(C,F)),
then the same tree also satisfies (A, C).
We now show the “only if” part. That is, if (A, C) is satisfiable, then there exists a C-

function F and a data tree tF such that [S]tF = ∅ for all S 6∈ Im(F) and tF |= (A,Ψ(C,F)).
Consider a tree t that satisfies (A, C). Define a C-function F as follows:

— For each a ∈ Σ, if the label a does not appear in t, then define F(a) = ∅. Otherwise,
define F(a) = Sa, where Sa is such that a ∈ Sa and [Sa]t 6= ∅. Such a set exists as at
least one node in t is labeled by a.

— For each zS ∈ C, if [S]t = ∅ define F(zS) = ∅. Otherwise, define F(zS) = S.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:18

—For each constraint τ 6= ∅ ∈ C, define F(τ) = Sτ where Sτ ∈ S(τ) and [Sτ]t 6= ∅. Such a
set exists as t |= τ 6= ∅.

— For each constraint τ = ∅ ∈ C, define F(τ) = ∅.

It is rather straightforward to show that F is a C-function.
We now build from t and F a data tree tF that satisfies (A,Ψ(C,F)) and such that

[S]tF = ∅ for all S 6∈ Im(F).
The tree tF is obtained from t by rearranging the data value in such a way that [S]tF = [S]t

for S ∈ Im(F) and [S]tF = ∅ for all other set S. The domain of t and tF coincide and the
labeling function ℓab is the same as well. We assign data values in tF as follows:

— for each node u such that valt(u) ∈ [S]t for some set S ∈ Im(F), we set valtF (u) =
valt(u);

— for each node u such that valt(u) ∈ [S]t and S /∈ Im(F), we let valtF (u) be an arbitrary
data value from [F(ℓab(u))]t.

By this construction, [F(ℓab(u))]t is not empty and [S]tF = ∅ for all S 6∈ Im(F). As the
tree (the data-free part) tF has the same label as t, it is accepted by the automaton A.
Moreover, we have #a(t) = #a(tF) for each a ∈ Σ and [S]t = [S]tF for each zS ∈ C. Since
the tree t satisfies C, the tree tF satisfies the linear data constraints from Ψlin(C).
It remains to show that it satisfies the following additional constraints:

(i). zS ≥ 1 for each S ∈ Im(F)− {∅}.

(ii). xa = 0 for each a ∈ Σ, where F(a) = ∅.

(iii). zS = 0 for each S ∈ C, where F(zS) = ∅.

(iv).
∑

a∈S∈Im(F)−{∅}

zS ≤ xa for each a ∈ Σ.

Constraints (i)-(iii) are ensured by the construction of F . As in the proof of Theorem 4.1,
in the formula χ(v̄, x̄, z̄) and the fact that t ∈ L(A) and t |= C, we have:

∑

a∈S⊆Σ

|[S]t| ≤ #t(a) for each a ∈ Σ

By construction of the tree tF , we have #tF(a) = #t(a) for each a ∈ Σ and |[S]tF | ≤ |[S]t|
for each non-empty set S ⊆ Σ. Thus, the constraint (iv) is satisfied by tF .

8. CONVERTING AUTOMATA TO PRESBURGER FORMULAE

To make our proof completely algorithmic, we spell out the translation from an automaton
to a Presburger formula defining Parikh images of trees, used as a black box (Lemma 4.2) in
the proof of Theorem 4.1. This is the algorithm that we use in our implementation described
in Section 9. We also present an algorithm that constructs a tree accepted by the original
automaton from a solution to the corresponding Presburger formula.
We recall that the Parikh image of a tree t over the alphabet Σ = {al, . . . , aℓ} is the

ℓ-tuple Parikh(t) = (#a1(t), . . . ,#aℓ(t)) ∈ N
ℓ, and the Parikh image of a tree language L is

Parikh(L) = {Parikh(t) | t ∈ L} ⊆ N
ℓ.

Proposition 8.1. There is a quadratic time algorithm that, given an unranked tree
automaton A over Σ = {al, . . . , aℓ}, returns a formula

ϕA(x1, . . . , xℓ) = ∃ȳ ψ(x̄, ȳ)

of at most quadratic size such that

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:19

— if t ∈ L(A), then ϕA(#a1(t), . . . ,#aℓ(t)) holds; and conversely,
— if ϕA(n1, . . . , nℓ) holds, then there exists a tree t ∈ L(A) such that #a1(t) =
n1, . . . ,#aℓ(t) = nℓ

and α is a conjunction of formulae of the form:

—A(x̄, ȳ) ≥ b, where all the entries of A and b are either 0 or 1 or −1;
— formulae (v = 0 ∨ v′ ≥ 1) where v, v′ are variables among x̄, ȳ; and
— disjunctions

∨

i(vi ≥ 1 ∧ v′i = 1), where vi’s and v′i’s are variables among x̄, ȳ.

Moreover, from every solution (n1, . . . , nℓ) and witness tuple m̄ such that α(n1, . . . , nℓ, m̄)
holds, we can construct effectively a tree t ∈ L(A) such that Parikh(t) = (n1, . . . , nℓ).

8.1. Proof of Proposition 8.1

The general outline is as follows: we first replace an automaton by an ECFG – Extended
Context-Free Grammar (Proposition 8.2), and then by a CFG of a special form, which we
call simple CFG (Proposition 8.3). We then show the construction of the Presburger formula
for such simple CFGs (Proposition 8.4). The first two reductions are standard. The crucial
one is the last one.
Recall that an ECFG is a CFG in which the right-hand sides of productions are regu-

lar expressions. Formally, an ECFG over the alphabet (Γ ∪ Λ) of nonterminals Γ, with a
distinguished symbol r for the root, and terminals Λ is G = (Γ,Λ,∆), where ∆ assigns
to each symbol a ∈ Γ a regular expression over (Γ ∪ Λ) − {r}. The set of trees of G is
denoted by T (G). That is, an unranked tree t is in T (G) if its root is labeled r, for each
node v labeled a ∈ Γ with children u · 0, . . . , u · (n − 1), the word of their labels, i.e.,
ℓabt(u · 0) · · · ℓabt(u · (n− 1)), is in the language of ∆(a), and each node labeled with b ∈ Λ
is a leaf.
The first reduction is stated as a proposition below.

Proposition 8.2. Given an automaton A with the set Q of states over alphabet Σ, one
can construct, in quadratic time, an ECFG G = (Γ,Σ−{r},∆) with Γ = Q×Σ∪ {r} such
that the following holds.

(1) For all tree t ∈ L(A), there exists a tree t′ ∈ T (G) such that for all a ∈ Σ, #a(t) =
#a(t′).

(2) Vice versa, for all tree t′ ∈ T (G), there exists a tree t ∈ L(A) such that for all a ∈ Σ,
#a(t) = #a(t′).

Moreover, every tree t′ ∈ T (G) can be converted effectively into a tree t ∈ L(A).

Proof. Let A = (Σ, Q, δ, F) be an automaton. For a regular expression α over the
alphabet Q, we define the expression α as follows.

— If q ∈ Q, then q =
⋃

a∈Σ(q, a).

— β ∪ γ = β ∪ γ; β γ = β γ, and (β)∗ = (β)∗.

The desired ECFG G = (Q × Σ ∪ {r},Σ− {r},∆) is defined as follows.

—∆(r) =
⋃

qf∈F δ(qf , r).

— For every (q, a) ∈ Q× Σ, ∆((q, a)) = δ(q, a) a.

Transforming a tree t′ ∈ T (G) to a tree t ∈ L(A) is straightforward.

(1) Delete every nodes in t′ labeled with Σ ∪ {r}; and it results in an accepting run of A,
which is a tree over the alphabet Q× Σ.

(2) Project this accepting run to the alphabet Σ. The resulting tree is the desired t.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:20

This completes the proof of Proposition 8.2.

Next, we define a simple CFG as G = (Γ,Λ,∆) with a designated terminal symbol λ ∈ Λ.
For each a ∈ Γ, ∆(a) is of the form: b, or b · c, or b|c, or λ, where b, c ∈ (Γ ∪ Λ) − {r}. We
denote the set of parse trees of G by T (G). Note that trees in T (G) can have only unary or
binary branching. We make the standard assumption that all symbols in Γ are reachable
from the root symbol r. If a CFG has some unreachable symbols, they can be eliminated
without affecting the set T (G).
The second reduction is stated as proposition below.

Proposition 8.3. Given an ECFG G = (Γ,Λ,∆), one can construct, in linear time, a
simple CFG G = (Γ′,Λ ∪ {λ},∆′) such that the following holds.

(1) For all tree t ∈ T (G), there exists a tree t′ ∈ T (G) such that for all a ∈ Λ, #a(t) =
#a(t′).

(2) Vice versa, for all tree t′ ∈ T (G), there exists a tree t ∈ T (G) such that for all a ∈ Λ,
#a(t) = #a(t′).

Moreover, every tree t′ ∈ T (G) can be converted effectively into the tree t ∈ T (G).

Proof. Let G = (Γ,Λ,∆) be an ECFG. We inductively construct the simple CFG
G = (Γ′,Λ ∪ {λ},∆′), for some alphabet Γ′ ⊇ Γ, as follows. Start with Γ′ = Γ and ∆′ = ∆
where all symbols of Γ′ are “unmarked.” While Γ′ contains an unmarked symbol a, do the
following:

(1) If ∆′(a) is a symbol from Γ′ ∪ Λ or λ, then mark a.
(2) If ∆′(a) = α op β, where op is · or |, then

— add new unmarked symbols Aa
α and Aa

β to Γ;

— redefine ∆′(a) as Aa
α op Aa

β ;

— define ∆′(Aa
α) = α and ∆′(Aα

β) = β
—mark a.

(3) If ∆(a) = α∗, then
— add unmarked symbols Aa

α∗ and Aa
α to Γ′ and a marked symbol λaα;

— redefine ∆′(a) as Aa
α∗ |λaα;

— define ∆′(Aα∗) = Aa
α∗ |Aa

α and ∆′(Aα) = α as well as ∆′(λaα) = λ;
—mark a.

To see that this procedure terminates in polynomial time, we define the size ‖α‖ of a
regular expression as 1 for a single symbol, and by the rules ‖α op β‖ = ‖α‖+ ‖β‖+1, and
‖α∗‖ = ‖α‖ + 3 (to ensure that ‖α∗‖ > ‖Aa

α∗ |Aa
α‖). Given an ECFG G, let fG : N → N

be a partial function mapping each n to the number of regular expressions ∆(a) of size
n for unmarked symbol a. For two partial functions f, g : N → N with finite support, we
let f ≺ g be defined lexicographically, i.e., for the largest n on which they differ, either
f(n) is undefined, or f(n) < g(n). Clearly this is a well-ordering, and each step of the
algorithm, which passes from a grammar G

′ to G
′′, guarantees fG′′ < fG′ , showing that

the maximum number of steps is polynomial in the total size of the regular expressions
in ∆. This establishes the termination, and especially the polynomial upper bound of the
procedure. Moreover, the result of the procedure is a simple CFG.
Transforming every tree t′ ∈ T (G) to a tree t ∈ T (G) is straightforward and very similar

to the standard transformation between ranked trees and unranked trees. Whenever there
exists a node u ∈ Dom(t′) labeled with a symbol from Γ′ − Γ, do the following.

(1) Let v be the parent of u.
(2) If u has one child: u′, then delete u in t′ and make u′ as a child of v. All other node

and edges are left untouched.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:21

(3) Similarly, if u has two children: u1, u2, then delete u in t′ and make u1, u2 as children
of v. All other nodes and edges are left untouched.

When all nodes are labeled with symbols from Γ, the tree is in T (G). This completes the
proof of Proposition 8.3.

The last reduction is stated as proposition below.

Proposition 8.4. Given a simple CFG G = (Γ,Λ ∪ {λ},∆), where Λ = {a1, . . . , aℓ},
one can construct, in linear time, an existential Presburger formula ϕG(x1, . . . , xℓ) =
∃ȳψ(x̄, ȳ) such that for every tree t, t ∈ T (G) if and only if ϕG(#a1(t), . . . ,#aℓ(t)) holds.
Moreover, from every solution (k1, . . . , kn) and m̄ such that ψ(n1, . . . , nℓ, m̄) holds, we can
construct effectively a tree t ∈ T (G) such that Parikh(t) = (n1, . . . , nℓ).

We devote the rest of this subsection to the proof of Proposition 8.4. We need a new
notation here. For a tree t over the alphabet Γ ∪ Λ ∪ {λ}, we define a directed graph
Gt = (Vt, Et), where the set of vertices is Vt = Γ∪Λ∪{λ}; and for every a, b ∈ Γ∪Λ∪{λ},
there is an edge (a, b) ∈ Et if there exists a node in t labeled with b and whose parent is
labeled with a. If a symbol a does not appear in the tree t, then it is an isolated vertex in
Gt.
The main idea is to prove that a tree t ∈ T (G) if and only if the quantities defined below:

(1) na = #a(t), for each a ∈ Γ ∪ Λ ∪ {λ};
(2) na↓b is the number of b-nodes whose parents in t is labeled with a;
(3) δa is the length of some path from the root r to the symbol a in the graph Gt,

satisfy the following relations:

(1) na =
∑

b∈Γ∪Λ nb↓a, for each a ∈ Γ ∪ Λ ∪ {λ}.
(2) — na = na↓b + na↓c, if ∆(a) = b|c.

— na = na↓b = na↓c, if ∆(a) = b · c,
— na = na↓b, if ∆(a) = b,

(3) δr = 0;
(4) for each a ∈ Γ ∪ Λ ∪ {λ} and a 6= r,

δa = −1 ↔ na = 0 ∧
∨

nb↓a 6=0 and δb 6=−1

δa = δb + 1

Note that by default, we set δa = −1, if there is no path from the root to the symbol a in
the graph Gt, which means that the symbol a does not appear in t.
Then, the construction of the desired formula ϕG is straightforward. It uses the variables

xa’s, ya’s and xa↓b’s, for all a ∈ Γ∪Λ and b appears in ∆(a). The intended meaning of each
variable is as follows: xa is for na; xa↓b is for na↓b; ya is for δa.
The formula ϕG is the conjunction of the following:

— xr = 1;
— xa =

∑

b∈Γ∪Λ xb↓a for each a ∈ Γ ∪ Λ;
— xa = xa↓b = xa↓c for each ∆(a) = b · c;
— xa = xa↓b + xa↓c for each ∆(a) = b|c;
— xa = xa↓b for each ∆(a) = b;
— yr = 0;
— for each a ∈ Γ ∪ Λ ∪ {λ},

(ya = −1 ↔ xa = 0) ∧
∨

a appears in ∆(b)

ya = yb + 1 ∧ xb↓a 6= 0 ∧ yb 6= −1.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:22

The total number of variables xa’s and xa↓b’s and ya’s is linear in the size of ∆. We do not
need the variables xa↓b’s, if b does not appear in ∆(a).
By existentially quantifying all the variables xa↓b’s and ya’s, we can then view ϕG as an

existential Presburger formula with xa’s as the free variables.
Proposition 8.4 follows immediately from the lemma below.

Lemma 8.5. Let G = (Γ,Λ,∆) be a simple CFG. The formula ϕG(n̄) holds – where
(n̄) = (na)a∈Γ∪Λ and the witnesses for xa↓b’s and ya’s are: xa↓b = na↓b ∈ N, and ya = da ∈
N, for a, b ∈ Γ ∪ Λ – if and only if there exists a tree t ∈ T (G) such that

(1) na = #a(t) for each a ∈ Γ ∪ Λ,
(2) na↓b is the number of b-nodes whose parents are a-nodes, and
(3) da is the length of some path from the root r to the symbol a in the graph Gt.

Proof. From the definition of Ψ(G), the “if” part is immediate. We prove the other
implication. Let n̄ = (na)a∈Σ such that ϕG(n̄) holds. Let na↓b be the witness for xa↓b for

a, b ∈ Γ∪Λ, and da for ya, for a ∈ Γ∪Λ. Let G̃ = (Ṽ , Ẽ) be a directed graph where the set

Ṽ of nodes is Γ ∪ Λ and the set Ẽ of edges is defined as: (a, b) ∈ Ẽ if and only if na↓b 6= 0.

We shall construct a tree t ∈ T (G) that satisfies (1) and (2) and that Gt = G̃. First, we
construct a directed graph G = (V,E) with the following properties.

(i) For each a ∈ Γ ∪ Λ, there are exactly na nodes labeled a.
(ii) For each a, b ∈ Γ ∪ Λ, there are exactly na↓b edges going from an a-node to a b-node.
(iii) There is exactly one node labeled r and it has no incoming edges (the root node).
(iv) All nodes, except the root node, have exactly one incoming edge.
(v) For all nodes, outgoing edges conform to ∆. That is, for each a ∈ Γ, the outgoing edges

from a-nodes are as follows: if ∆(a) = b · c, there are exactly two outgoing edges: one to
a b-node and one to a c-node; if ∆(a) = b|c, there is exactly one outgoing edge going to
a node labeled by b or c; and if ∆(a) = b, there is exactly one outgoing edge that goes
to a b-node.

Procedure 1 shows the construction of the graph G. Since nr = 1, there is only one root
node in G. Properties (i)-(v) follow directly from the construction and the constraints given
in Ψ(G).
If G were a tree, we would be done: membership in T (G) would follow from (v), property

(1) from (i), and property (2) from (ii) and (v). Therefore, to finish the proof of Lemma
8.5, we show Claim 2 and Claim 4 below.

Claim 2. A connected directed graph G = (V,E) that satisfies (i)-(v) is a tree.

Proof. From Properties (iii) and (iv), we can see that the graph G satisfies the equation
|E| = |V | − 1. If we forget about orientation, this equation implies that a connected graph
is a tree [West 2001]. The root (the r-labeled node) gives the tree a unique orientation; we
must show that it is the same one as the one in G. For this, consider any path from the root
to a leaf in the tree, and suppose one edge has an orientation different from G. Let (u, u′)
be the first such edge; that is, in G we have an edge (u′, u). This cannot be the first edge
of the path, as the root has no incoming edge in G. Hence u has a parent u′ in the oriented
tree, and the edge (u′′, u) has the same orientation in both the oriented tree and in G. But
this tells us that u has two incoming edges, which contradicts (iv).

We shall use Claim 3 to prove Claim 4.

Claim 3. In the directed graph G̃, a node a is connected from the root symbol r if and
only if da 6= −1, or equivalently, na 6= 0. Moreover, da is the length of some path from the
root symbol r to a, if da 6= −1.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:23

ALGORITHM 1: Construct Graph G = (V,E)

Data: A solution (n̄a, n̄a↓b)a,b∈Γ∪Λ to the formula Ψ(G).
Result: A tree t ∈ T (G) such that for every a ∈ Γ ∪ Λ
— na = #a(t);

— na↓b = the number of b-nodes in t whose parents are a-nodes.

begin

The set V consists of
∑

a∈Γ∪Λ
na nodes.

for a ∈ Γ ∪ Λ do
Label na number of nodes with a.

end
E := ∅.
for a ∈ Γ do

Let u1, . . . , una be the a-nodes.
if ∆(a) = b · c then

Let n = na = na↓b = na↓c.
Pick a sequence u′

1, . . . , u
′
n of n distinct b-nodes with no incoming edges in E.

Pick a sequence u′′
1 , . . . , u

′′
n of n distinct c-nodes with no incoming edges in E.

E := E ∪ {(ui, u
′
i), (ui, u

′′
i)}i=1,...,n.

end
if ∆(a) = b ∪ c then

Pick a sequence u′
1, . . . , u

′
na↓b

of na↓b distinct b-nodes with no incoming edges in E.

Pick a sequence u′′
1 , . . . , u

′′
na↓c

of na↓c distinct c-nodes with no incoming edges in E.

E := E ∪ {(ui, u
′
i)}i=1,...,na↓b

∪ {(una↓b+j , u
′′
j)}j=1,...,na↓c

.

end
if ∆(a) = b then

Pick a sequence u′
1, . . . , u

′
na↓b

of na↓b distinct b-nodes with no incoming edges in E.

E := E ∪ {(ui, u
′
i)}i=1,...,na↓b

.

end

end

end

Proof. The proof is by straightforward induction on the value da. The base case, da =
0, is trivial as it means a = r. The induction hypothesis is that for each node a with
da = k 6= −1 is connected from the root symbol r by a path of length k.
Suppose b is a node such that db = k + 1. By the construction of ϕG , there exists a node

a such that na↓b 6= 0 and da = k. By the induction hypothesis, a is connected from the root

symbol r with a path of length k, and by the construction of G̃, there exists an edge from
a to b. Thus, our claim holds.

Claim 4. From a directed graph G = (V,E) that satisfies (i)-(v), one can compute in
polynomial time a connected directed graph G′ = (V,E′) that also satisfies (i)-(v).

Proof. The idea is to change a few edges in G in order to connect all components to the
connected component that contains the r-node. We first observe the following. Suppose G
consists of several connected components: G0, G1, . . . , Gl, where G0 is the component that
contains the root node. Then, there exist a node u in G0 and a node u′ in one of G1, . . . , Gl

such that u and u′ are labeled by the same symbol from Σ.
By Claim 3, if da 6= −1 (thus, na 6= 0), the symbol a is connected to the root symbol r

in G̃, and that da is the length of some path from r to a in G̃. So, for every symbol a that
appears in G, there exists a sequence of symbols b0, b1, . . . , bj , respectively, where

— b0 = r,

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:24

— bl = a, and
— for each i = 0, . . . , j − 1, nbi↓bi+1

6= 0.

If the symbol a does not appear in G0, then there are a node u in G0 and a node u′ in one
of G1, . . . , Gl such that both u and u′ are labeled with the same symbol bi ∈ {b1, . . . , bl}.
Let G1 be the component that contains the node u′. By (v), the node u′ has as many

children as u (and it has at least one child as it is not labeled by λ).
If u and u′ have one child each, then let u1 and u2 be their respective children. We can

then connect G0 and G1 by replacing the edges (u, u1) and (u′, u2) with (u, u2) and (u′, u1).
If u and u′ have two children each, then let u1, u

′
1 and u2, u

′
2 be their respective children.

We can then connect G0 and G1 by replacing the edges (u, u1), (u, u
′
1) and (u′, u2), (u

′, u′2)
with (u, u2), (u, u

′
2) and (u′, u1), (u

′, u′1).
It is straightforward to see that after such edge replacement the graph still satisfies

properties (i)-(v), and each edge replacement reduces the number of connected components,
so eventually this algorithm produces a tree t that satisfies (i)-(v). Moreover, the numbers

na↓b do not change during the process, thus, Gt = G̃.

This completes the proof of Lemma 8.5.

9. IMPLEMENTATION OF THE SATISFIABILITY ALGORITHM

There is strong empirical evidence that many NP-complete reasoning tasks are feasible in
practice [Malik and Zhang 2009]. To check whether the same applies to the reasoning tasks
studied here, we have implemented one version of the main algorithm, using an industrial-
strength Presburger solver Z3 [de Moura and Bjørner 2008] (more on it soon). In this section
we give a brief report on our experimental results.
The SMT (Satisfiability Modulo Theories) solver Z3 is an automated satisfiability checker

for many-sorted first-order logic with built-in theories, including support for quantifiers
[de Moura and Bjørner 2008]. For existential formulae (which is our case), Z3 acts as a
decision procedure giving a satisfying assignment when a formula is satisfiable.
We have implemented the satisfiability algorithm for the case when the schema is given

by a simple DTD. Specifically, we have implemented the following:

—The translation of simple DTDs (see Section 8) into Presburger formulae ϕG , as described
in the proof of Proposition 8.4.

—The translation of key and inclusion constraints into Presburger formulae, as described
in the proof of Corollary 6.1.

—The translation of set constraints into Presburger formulae as described in Section 7.

We then used the Z3 solver to check satisfiability of the formulae produced by these trans-
lations. To test the translations, we use the following:

—Two parameterized families of DTDs: a family Fu of DTDs that are unsatisfiable (due
to the presence of recursion), and a family Fs of satisfiable DTDs.

—A parameterized family ofK keys and inclusion constraints over documents that conform
to DTDs from Fs.

—A parameterized family C of set and linear constraints (obtained from key, inclusion,
and denial constraints) over documents that conform to DTDs from Fs.

We measure the following:

—The time needed to translate the instance of our satisfiability problem into a formula
that can be fed to Z3.

—The number of variables used in the formula fed to Z3.
—The time needed for the solver Z3 to check satisfiability of the formula.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:25

We have run all experiments on a machine with Intel Core 2 Duo processor operating
at 2.4GHz, with 2GB of memory. In all the cases we have run the experiments several
times and report the average time (the deviation was never high though). For all the cases
below, we provide a few sample figures that are sufficient to indicate that for sizes typical
for schemas and constraints, satisfiability can be checked very efficiently. The non-round
numbers of rules and constraints are due to the nature of the parameterized families we
chose: for example, in the first family of parameterized DTDs below, we deal with DTDs
Dn, n > 0, such that the number of rules in Dn is 5n − 1. We then run the algorithm for
n = 10, . . . , 100; the table below reports results for n = 10, 30, 70, and 100.
We first report some sample results for unsatisfiable DTDs from Fu. The number of rules

in DTDs is the same as the number of element types.

of rules # of variables Translation time (s) Z3 time (s)

49 181 0.01 0.02
149 901 0.09 0.11
349 1261 0.14 0.15
499 1783 0.15 0.16

We now report sample results for satisfiable DTDs from Fs. Notice that Z3 time increases,
most likely due to the computation of a satisfying assignment.

of rules # of variables Translation time (s) Z3 time (s)

34 132 0.02 0.04
154 612 0.06 0.43
301 1200 0.1 1.78

Then, we consider DTDs from Fs together with keys and inclusion constraints from K.

of rules # of constraints # of variables Translation time (s) Z3 time (s)

34 23 144 0.01 0.04
154 103 664 0.04 0.25
214 143 924 0.06 0.63
301 201 1403 0.1 3.1

Finally, we report results for DTDs from Fs and set and linear constraints from C.

of rules # of constraints # of variables Translation time (s) Z3 time (s)

34 42 154 0.01 0.05
154 153 714 0.04 0.73
214 214 994 0.06 1.7
304 303 1504 0.1 4.52

The conclusion we can draw from these results is that the approach is indeed feasible.
Note that we are dealing with schemas and constraints, so we have tested DTDs with up to
500 rules, and a significant number of constraints, exceeding 300, and the total translation
and Z3 time has never exceeded 5s.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

1:26

10. CONCLUSIONS

We have studied the consistency problem of set and linear constraints with respect to regular
tree languages given by tree automata. This problem is motivated by many reasoning and
static analysis tasks arising in the context of XML.
We have proved the decidability of our formalism, and established an NP upper bound.

We provided a much simpler proof than those in the literature, which allows us to extend
the result to more complex reasoning tasks and different constraint representations. The key
technique is the encoding of the reasoning tasks as instances of integer linear programming
(or existential Presburger formulae).
We have provided explicit algorithms for all the subtasks, and experimented with encoding

them via an existing SMT solver, showing promising results for DTDs with several hundred
rules together with several hundreds of constraints. In all the cases it was a matter of seconds
to complete the reasoning tasks.
Given these promising initial results, we intend to expand our implementation and build

a fully-fledged system for static analysis of XML schemas and constraints.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their careful reading and constructive comments.

REFERENCES

Alon, N., Milo, T., Neven, F., Suciu, D., and Vianu, V. 2003. XML with data values: typechecking
revisited. J. Comput. Syst. Sci. 66, 4, 688–722.

Arenas, M., Fan, W., and Libkin, L. 2008. On the complexity of verifying consistency of XML specifica-
tions. SIAM J. Comput. 38, 3, 841–880.

Arenas, M. and Libkin, L. 2008. XML data exchange: consistency and query answering. Journal of the
ACM 55, 2.

Björklund, H., Martens, W., and Schwentick, T. 2008. Optimizing conjunctive queries over trees using
schema information. In Mathematical Foundations of Computer Science. Springer, 132–143.

Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., and Segoufin, L. 2011. Two-variable logic
on data words. ACM Transactions on Computational Logic 12, 4.

Bojanczyk, M., Muscholl, A., Schwentick, T., and Segoufin, L. 2009. Two-variable logic on data trees
and XML reasoning. Journal of the ACM 56, 3.

Bouyer, P., Petit, A., and Thérien, D. 2001. An algebraic characterization of data and timed languages.
In CONCUR. Springer, 248–261.

Buneman, P., Davidson, S., Fan, W., Hara, C., and Tan, W.-C. 2002. Keys for XML. Computer Net-
works 39, 5.

Calvanese, D., Giacomo, G. D., Lenzerini, M., and Vardi, M. 2009. An automata-theoretic approach
to regular XPath. In Database Programming Languages. 18–35.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D., Tison, S., and
Tommasi, M. 2007. Tree Automata: Techniques and Applications.

David, C., Libkin, L., and Tan, T. 2011. Efficient reasoning about data trees via integer linear program-
ming. In Int. Conf. on Database Theory.

de Moura, L. M. and Bjørner, N. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for the
Construction and Analysis of Systems. 337–340.

Demri, S. and Lazic, R. 2009. Ltl with the freeze quantifier and register automata. ACM Transactions on
Computational Logic 10, 3.

Fan, W. and Libkin, L. 2002. On XML integrity constraints in the presence of dtds. Journal of the
ACM 49, 3.

Figueira, D. 2009. Satisfiability of downward xpath with data equality tests. In Symp. on Principles of
Database Systems. ACM, 197–206.

Genevés, P. and Layaida, N. 2006. A system for the static analysis of XPath. ACM Transactions on
Information Systems 24, 4, 475–502.

Givan, R., McAllester, D. A., Witty, C., and Kozen, D. 2002. Tarskian set constraints. Information
and Computation 174, 105–131.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

Efficient Reasoning about Data Trees via Integer Linear Programming 1:27

Jurdzinski, M. and Lazic, R. 2007. Alternation-free modal mu-calculus for data trees. In Symp. on Logic
in Computer Science. IEEE Computer Society, 131–140.

Kaminski, M. and Tan, T. 2008. Tree automata over infinite alphabets. In Pillars of Computer Science.
Springer, 386–423.

Kopczynski, E. and To, A. W. 2010. Parikh images of grammars: Complexity and applications. In Symp.
on Logic in Computer Science. IEEE Computer Society.

Libkin, L. and Sirangelo, C. 2010. Reasoning about XML with temporal logics and automata. Journal
of Applied Logic 8, 2, 210–232.

Malik, S. and Zhang, L. 2009. Boolean satisfiability: from theoretical hardness to practical success. Com-
munications of the ACM 52, 8, 76–82.

Martens, W., Neven, F., and Schwentick, T. 2007. Simple off the shelf abstractions for XML schema.
SIGMOD Record 36, 3, 15–22.

Marx, M. 2005. Conditional XPath. ACM Transactions on Database Systems 30, 4, 929–959.

Milo, T., Suciu, D., and Vianu, V. 2003. Typechecking for XML transformers. J. Comput. Syst. Sci. 66, 1,
66–97.

Neven, F. 2002. Automata, logic, and XML. In Computer Science Logic. Springer, 2–26.

Neven, F. and Schwentick, T. 2002. Query automata over finite trees. Theoretical Computer Sci-
ence 275, 1-2, 633–674.

Neven, F., Schwentick, T., and Vianu, V. 2004. Finite state machines for strings over infinite alphabets.
ACM Transactions on Computational Logic 5, 3, 403–435.

Pacholski, L. and Podelski, A. 1997. Set constraints: a pearl in research on constraints. In Principles
and Practice of Constraint Programming. 549–562.

Papadimitriou, C. 1981. On the complexity of integer programming. Journal of the ACM 28, 765–768.

Robinson, A. and Voronkov, A. 2001. Handbook of Automated Reasoning. MIT Press.

Schwentick, T. 2004. XPath query containment. SIGMOD Record 33, 1, 101–109.

Thatcher, J. 1967. Characterizing derivation trees of context-free grammars through a generalization of
finite automata theory. J. Comput. Syst. Sci. 1, 317–322.

Verma, K., Seidl, H., and Schwentick, T. 2005. On the complexity of equational horn clauses. In Con-
ference on Automated Deduction. Springer, 337–352.

Vianu, V. 2001. A Web odyssey: from Codd to XML. In Symp. on Principles of Database Systems. ACM,
1–15.

West, D. 2001. Introduction to Graph Theory. Prentice Hall.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: December 2012.

