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1 Introduction 
 
The aim of the method presented in this paper is to characterize the development of the structures of puff 
pastries during proving. Puff pastries are made of layers of fat and dough, which is itself composed of paste 
and gas. During the proving, the dough is expanding, its gas fraction is increasing and gas bubbles are 
developing. It is interesting to observe the evolution of the expansion which can be characterized in different 
ways. First of all, it is important to detect the layers of fat since they play a significant role in the 
development of the pastry. For example, it is interesting to determine whether they are continuous or not. It 
is also interesting to measure the evolution of the gas fraction of the different layers of dough, delimitated by 
the layers of fat, to detect the potential formation of large bubbles and to observe if they develop in specific 
areas such as near or far from the layers of fat. 
 
Magnetic Resonance Imaging (MRI) is an imaging technique which meets most of the requirements for this 
application. First of all it is a non-invasive technique which is mandatory to observe the development of the 
fragile and highly deformable structures. Moreover, by choosing an appropriate acquisition protocol along 
with its parameters, it is possible to obtain a good contrast between fat, paste and gas. The size of a pastry 
grows approximately from 60x100x5 mm3 at the beginning of the proving to 60x100x25 mm3 at the end of 
the proving. This fits also the MRI potentialities. However, in the case of this application, the use of MRI 
faces two problems which are the relative low value of the signal to noise ratio (���) and the relative small 
spatial resolution regarding the size of the structures we want to observe. This is due to several reasons. First 
of all, and particularly at the end of the proving, the dough contains much gas that gives no signal. The signal 
is thus decreasing in the dough during proving. Moreover, the ��� and the resolution are linked by the 
following relations: 
 ��� ∝ ∆���	
�	 
 

(1) 

∆� = ��������	 	� 
 

 
(2) 

�	
� = ��	���	

 
 

(3) 

where ∆� is the elementary volume which corresponds to one voxel1 of the image,  �� and �� are the size of 
the field-of-view in both directions of the image-plane, � is the thickness of the virtual slice, �� and �� are 
the number of the voxels in the image (number of lines and columns). �	
� is the acquisition time, �	

 is the 
number of the repetitions of the acquisitions before averaging the signal, in order to reduce the noise and �� 
is the so-called repetition time which also influences the contrast in the images. 
Thus, the values of ���, ∆� and �	
� are linked and the choice of the acquisition parameters is a 
compromise between getting a high ���, a high spatial resolution (ie a small ∆�) and a short �	
� .	One way 

                                                      
1 In MRI one picture element, or pixel, of the image is called a voxel since the signal is the sum of the signals of all the 
protons located in an elementary volume 
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to increase the ��� would be to increase the acquisition time. However, as we want to follow the expansion 
of the dough, the acquisition time should be limited in order to avoid movement artefacts in the images. 
Concerning the value of ∆� it would be interesting to set it such that the thin layers of fat would be 
represented by a line thick of a few pixels in the images. However, a too small value of ∆�  would imply a 
low value for ���. Finally, along with the intrinsic limitations of MRI, these constraints will set the values 
of ∆� on the order of 1mm3. Since the thickness of the layers of fat are in the order of 0.1 mm, this leads to 
partial volume effects, that is, each voxel of the image will contain a mixture of fat and dough. The same 
phenomenon will be observed with dough and gas, since the size of the smallest bubbles does not exceed the 
resolution of the image. Thus, the MRI images for this application will present relatively low ��� combined 
with a strong partial volume effect. As this will be detailed in the paper, this led us to develop a method able 
to estimate in each voxel the quantity of each component, fat, paste and gas while adding some spatial 
regularization in order to reduce the effects of the noise. 
 
This report is organized as follows: firstly we will present the model of the MRI signal. As each voxel 
corresponds to a mixture of components, the signal will be modelled as the sum of the signal of each 
component. This will lead to the estimation of several unknowns for each voxel which are the proportions of 
each component. This implies the use of several images acquired with different acquisition parameters and 
also the knowledge of “reference signals” for each component. The estimation of the unknowns comes down 
to find the solutions of a criterion composed of the squared difference between the data and the model. In 
order to get rid of the unwanted effects of the noise, this criterion is completed with a regularization term 
imposing solutions with a relative spatial smoothness. The optimization algorithm used to minimize this 
criterion is detailed. Then several simulation results are presented. First of all the choice of realistic 
numerical values corresponding to the targeted application is presented. Then the setting of the parameters of 
the algorithm is detailed. Finally, the results are divided in two parts. First of all we explored the 
performance of the method with the hypothesis that reference signals are perfectly known. Then we detail 
results including the uncertainty on these parameters using Monte-Carlo simulations.  
 

2 Measurement method 

2.1 Signal model 

 
The model of the MRI signal depends on the acquisition protocol. Indeed, this imaging modality offers 
different ways to acquire a signal. In our case of interest, two kinds of protocol could be considered. The first 
one is the “spin echo” protocol (SE) which provides a signal with the same phase whatever the components. 
The amplitude depends on the characteristics of the component which allows distinguishing between fat and 
paste. The second one is the “gradient echo” protocol (GE) which is routinely used to quantify fat. Indeed, 
this protocol provides a signal the phase of which is different for fat. However, this protocol is prone to be 
sensitive to local magnetic field variations, which typically occur at the interfaces with gas. This leads to 
unexpected loss of the signal, especially in the dough where many small bubbles of gas are present. This 
would give images with no signal for the dough. For this reason we chose to use the SE protocol.  
 
As explained in the introduction, we considered that each voxel contains a mixture of an unknown proportion 
of three components, fat, paste and gas. We made the hypothesis that the signal of each component did not 
vary with the localisation within the pastry, in other words that the signal of a voxel filled with fat or paste 
would not depend on the position in the pastry. When the sample is large regarding the size of the coil which 
acquires the signal, unwanted variations of the signal can be observed near the border. We assumed that, 
thanks to the small size of the sample and to its positioning in the centre of the coil, the signal could be 
considered as independent of the position.  Thus, under these hypothesis, the signal ����∗ , for each voxel �, in 
absence of noise, at time �, with the set of acquisition parameters � can be modelized by: 
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����∗ =����������
� !  (4) 

subject to  

����� = 1�
� !  

 

(5) 

where # is the number of components, which will be set to 3 in the present study, ���� ∈ [0	,1] stands for the 
proportion of component ) in voxel � at time �, ����, referred hereafter as “reference signals”, corresponds to 
the signal of a voxel filled with component ) at time �, with the set of parameters �. In the remainder of the 
paper ) will be equal to *, � and + respectively for fat, paste and gas. 
 
It is to be noted that the reference signals are subject to vary with time mainly because of the variation of the 
temperature. This implies for the targeted application that temperature should be measured along with the 
acquisition of the images. Since no metallic components should be used in the MRI system, optical fibres are 
used for that purpose. 
 
In MRI, the signal of an image acquired with the parameters � corresponds to the modulus of a complex 
number, the real and imaginary component of which are added with a centered gaussian noise with the same 
variance ,�-. Thus the noise corruption of the MRI signal is not gaussian but follows a rician law. Taking this 
into account, under the non-reductive hypothesis of a phase equal to	0, leads to model the rician-noised 
signal ����. , where � stands for rician, as :  
 ����. =	/0����∗ + 2��3)- + 2���-  

 
(6) 

where 2��3 and 2��� are respectively the gaussian additive noise on the real and on the imaginary part of the 
complex signal for voxel �. For the sake of simplification, we will consider hereafter that the noise is not 
rician but gaussian and additive with a variance equal to ,�-. It can be shown that this hypothesis stands for ��� > 3 (Gudbjartsson & Patz, 1995). However, as it will been shown later, ��� can be lower than 3 in 
images of proving puff pastry which will lead to some bias of the results. The model ���� of the signal we 
used was the noise-free signal added with gaussian noise and expressed as : 
 ���� = ����∗ + 2��, 
 

(7) 

where 2�� is a gaussian centered noise with variance ,�-. 
 
The model of the signal being expressed, we are going to detail how we will estimate the unknowns. 
 

2.2 Estimation of the unknowns 

 
First of all, we considered that ���� can be measured separately and once for all using homogeneous block of 
fat and of paste. This point will be detailed later. Moreover, ���� will be set to 0 for gas, whatever the 
temperature, since this component gives no signal. Thus, the unknowns are ���� which amounts, at one time �, to # images, i.e. (# − 1)7	 scalar unknowns given constraint (5) and noting 7 the number of voxels in the 
image. For the remainder of the paper, in order to lighten the notations, we will note the unknowns ���.	This 
is possible since, as it will be explained later, the estimation will be realised separately for each time �.  ���	thus refer to the unknowns in the current image. 
 
In order to build reliable estimates, we propose to acquire 8 ≥ # − 1 images using different values of 
parameters �. This is possible in MRI since different settings of the protocol parameters lead to different 
signal amplitude. This will lead to different values of ����.  
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 4

 
Moreover, in a view to reduce the noise, some regularization on the component proportions ��� can also be 
introduced. However, it should be carefully designed, so that large variations of the signal be not penalized at 
the boundaries between distinct regions of the object namely the layers of fat and dough or large bubbles 
inside dough. In this paper, we adopt an approach so-called edge-preserving in the field of image restoration. 
More precisely we propose to estimate : = 0���)  using a penalized least-square approach: 
 :; 	= 	 argmin	: 	B0:) (8) 
 
where 

B0:) = �C��D���� −���������
� ! E- + F�Φ0‖I
�:‖)
JK

L
� !

M
� !  (9) 

 
 Φ0N) = √P- + N- and ‖. ‖ denotes the usual L2 norm. Parameters C�and F	are positive weights and P is a 
scalar. K represents the set of pairs of adjacent pixels Q = RS, TU with S < T for an arbitrary ordering. I
 	 is 

the 7 × 1 finite difference vector such that I
�: = X��! − �Y!, … , ��� − �Y�[�.The first term in (9) accounts 
for fidelity to data, the second term tends to decrease the noise in : while allowing rapid variations. Indeed, 
function Φ has a quadratic behavior near 0 and an asymptotically linear behaviour (see Figure 1). For large 
values of ‖I
�:‖ that is for large values of differences between the vector proportion of adjacent pixels, the 
regularizing term will be lower than it would be using a quadratic regularization. This allows to penalize 
variations of : depending on the value of these variations.  
 
Since Φ is strictly convex, it can be easily shown that B is strictly convex w.r.t. :, and, therefore, a unimodal 
function of :. However, The minimization of B is not trivial since B  is not a quadratic function of :. We 
used a non-linear conjugate gradient (CG) algorithm such as the one detailed in (Labat & Idier, 2008) to 
minimize B	w.r.t :, subject to constraint (2). CG algorithm is iterative. We initialized the solution with the 
one that minimizes the first term in (9) which corresponds to a least-squares minimization. This is easily 
computable since it is separable (the solution for each voxel is independent from the others) . Then we 
iterated the CG steps until the norm of the gradient of B	w.r.t : becomes sufficiently small, i.e. ‖∇B0:)‖ ≤^.  
 
One key point of our method is the choice of the hyperparameters C�, F and P. According to the probabilistic 
interpretation of criterion, C�corresponds to the inverse of the noise variance for the kth image. The noise 
variance can be estimated directly from the images using the method proposed in (Nowak, 1999). Two 
parameters remain to be adjusted. Their settings are made using simulations results as this will be developed 
later on. As these simulations require some realistic numerical values for all the variables, we first detail how 
we determined them. 
  
 
 

2.3 Realistic numerical values and choice of the parameters k  

 
In the case of SE protocol the reference signals can be written as: 
 ���� = _`���abcd befg⁄ i1 − �ab.d bjfg⁄ k, (10) 
 
where G represents the global gain of the acquisition system, ̀ �� , �-�� and �!��  respectively the proton 
density, transversal and longitudinal relaxations times for component	)	at time �. �l� is the so-called “echo 
time” and is a parameter chosen by the user, as well as the values of the repetition time ���. Preliminary 
measurements on a block of fat and a block of paste showed that there was not much difference between the 
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 5

�! of paste and fat whatever the temperature which is the physical parameters that varies with time and that 
is susceptible to make the relaxation times vary. �! varied from 190 ms for paste and 175 ms for fat at 15°C, 
i.e. at the beginning of the proving, to 236 ms for paste and 230 ms for fat at 30°C, i.e.  at the end of the 
proving. On the contrary the values of  �- were different:  �- was around 23 ms for paste whatever the 
temperature and varied from 37 ms at 15°C to 82 ms at 30°C for fat. This led naturally to the choice of �--
weighted contrast images, that is images with different values of �l�. It is to be noted that this can be done 
without increasing the acquisition time since the acquisition of at least 2 images can be achieved using so-
called “multi spin echo sequences”. Regarding the constraints of our MRI system, the only sequence 
available was a SE sequence with maximum two echoes. 
 
In order to choose the best �l� we computed the Cramer-Rao bound for the first term of equation (4), that is 
we ignored the regularisation term at this stage. Measurements on a block of fat and a block of paste were 
realized at different temperatures using a spin echo sequence with different �l. This led to the estimation of �-� and mn� = _`�i1 − �ab. bjg⁄ k	for the fat and for the paste.  Thanks to these values we computed 
Cramer-Rao bounds for different combinations of �l! and �l-. We chose to determine the best �l� for the 
temperature at the end of the proving (30°C). The lower Cramer-Rao bound for the estimation of fat and 
paste was for �l! = 7 ms and �l- = 32	ms. 
 
The other acquisition parameters were set as follows: we set the field of view to 40 x 160 mm2 which is a bit 
larger than the maximum size of the pastry at the end of the proving. The resolution was set to 0.5 x 0.5 mm2 
with a slice thickness of 3 mm. This led to a number of lines �� = 40 0.5 =⁄ 80. The other parameters were 
set so as to get acceptable ��� and acquisition time. The rate of dough expansion was evaluated by MRI in 
order to determine the maximum acquisition time. It appeared that at the beginning of the proving when the 
expansion is the fastest and presents a linear behaviour with time, the height of a puff pastry with 4 layers of 
fat increased by 10 mm per hour.  We decided that the increase in height during an acquisition should be less 
than 1 mm and the maximum acquisition duration was set to 5 minutes. Regarding theses constraints ��� 	 
was set to 400 ms for � = 1	 and 2 so as to get a relatively high level of the signal regarding equation (10). 
The number of accumulations �	

 	was 9 so as to lead to an acquisition time �	
� = 4mn 48 sec. 
 
Figure 2 shows the reference signals of fat for these two TE values in function of the temperature. We 
approximated the evolution with the temperature with a polynomial function of order 2. For the paste, a 
dedicated experiment not detailed here, led us to consider that the reference signals did not vary, neither with 
the temperature nor the time and we used the values of 325 and 60 for �l! and �l-	 respectively. 
  
We also acquired images with these parameters in order to measure the level of the noise in these conditions. 
The variance of the noise was estimated using the method proposed in (Nowak, 1999). We measured a 
variance equal to 12.25. 
 
We then used these values to characterize the performance of our method. The results are presented 
hereafter. 
 

3 Results and discussion 
 
First of all we set the values of the regularisation parameters γ and δ  and then we ran simulations in order to 
measure the performances. This last aim was reached in two steps. First, we considered that the signal 
references were perfectly known and we investigated the errors due to the noise and to the algorithm. We 
focused mainly on the comparison of the mean errors since one of the outputs of the image analysis would be 
mean quantities, of gas in dough layers for example. In a second part, we investigated the uncertainties on 
the results due to the uncertainties on the reference signals. We focused on the variability of the mean errors 
but also of the contrast in the image in order to assess if the different structures could easily distinguished by 
visual inspection. 
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3.1 Setting of the values of v and w 

 
We ran successive simulations with F varying from 500 to 10000 by steps of 500 and P varying from 0.05 to 
0.6 by steps of 0.05. The set of values for F was chosen empirically since no probable value can be inferred a 
priori. On the contrary, the value for P can be compared with the value of ‖I
�:‖ which corresponds to the 
difference between the component proportion of one voxel and of the voxel of the corresponding 
neighbourhood K. Indeed P can be considered as a threshold above which the Φ function is no more 
quadratic. As ��� represents component proportion ∈ [0	,1], we chose values from 0.05 to 0.6.  
 
The simulations were led on virtual Danish pastries, simplified to a basic structural element composed of a 
unique layer of fat surrounded by an homogeneous dough. The thickness of the fat layer was set to 200, 100 
or 50 µm which corresponds to an ideal four, eight and sixteen layers pastry for an initial thickness of fat 
representing one third of the total thickness of the pastry. The reference signals of fat were computed 
considering either 22°C at the beginning of the proving or 30°C at the end. Likewise, the gas proportion in 
dough was set at either 20% or 80% in order to cover the range of variations during proving (see Figure 4, 
especially maps of gas proportions); in the latter case, some bubbles full of gas, of different sizes were also 
added: 3.5×3.5 mm2, 3×3 mm2, 2.5×2.5 mm2, 2×2 mm2 and 1.5×1.5 mm2  (see Figure 5).  
 
The choice of the best couple of  F and P was made upon three criterions. First of all we computed for each 
simulation run the sum of the square errors of the fat, the paste and the gas, noted  l: 
 

l =��x0��� − �̂��)-7L
� !

�
� !  

 

(11) 

 
 
where ��� and �̂�� are respectively the actual and the estimated proportion of component ) in voxel �. As the 
algorithm is iterative, the computation time until the convergence of the algorithm was variable. The 
simulations were run on a Intel® Core™ i7 CPU M640@2.80GHz. We also took this time into consideration 
in order to optimise both the accuracy of the estimation and the computation time.  However, as the 
hypothesis on the noise was not valid for the zones with low ���, we could not rely only on the value of E 
to choose the values of F and	P . That is why we also used the observation of the estimated images in order 
to definitively choose the best couple of value for F and P. In other words, the values of l and of the 
computation time were indicators of acceptable values and the observation did the final cut.  
 
Figure 3 shows the evolution of l in function of the computation time, i.e. in function of the number of the 
iterations of the algorithm, for the case with four layers of fat at the beginning and the end of the proving. 
This evolution showed a decrease in function of the computation time with an asymptotic behaviour when 
the computation time increased. Regarding the value of l, increasing the computation time is not worth 
above about 15 sec in our case. We observed several images obtained with different couples of values around 
this computation time value and we chose F = 6500 and P = 0.35. Figure 4 shows the result maps of 
proportions calculated using these values of parameters for a 4 layers pastry at the beginning of the proving. 
From top to bottom of the proportion of fat, paste and gas are represented and from left to right the ground 
truth, the initialisation of the solution, which corresponds to the solution without any spatial regularisation 
and the final estimation. Figure 5 corresponds to the same information for a pastry at the end of the proving. 
 
First of all, it is clear from these figures that the regularized solutions were closer to the reality than the non-
regularised solution. The values of l fell down from 0.45 to 0.18 for pastry at the beginning of the proving 
and from 0.32 to 0.22 at the end of the proving. Moreover the structural elements such as the layers of fat 
and the gas cavities at the end of the proving were better visualized. However, some undesired marbling 
effect appeared especially in the cartography of paste proportion. It was not possible to get rid of this effect 
with any couple of values for F and P. This suggested that any such effect that would occur in the 
cartography of the proportion of paste calculated from real images should not be interpreted as a reality. This 
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 7

marbling effect did not affect the shape and dimensions of the fat layer which can be well visualized from the 
cartography of the fat proportion; it slightly modified the outlines of the large bubbles which can be however 
detected even when their size was as low as 2×2mm2. 
 
 

3.2 Performance of the method for various proportions of fat, paste and gas with a perfect 
knowledge of reference signals 

 
In order to assess the performances of the method, we ran simulations firstly on objects with uniform 
proportions and secondly on a proving dough without fat with a variable gas fraction and an increasing 
number of voxels. 

3.2.1 Case of objects with uniform proportions 

 
Virtual objects considered in this part of the study (100×100 voxels) were homogeneous but presented 
different proportions of fat, paste and gas in their constitutive voxels. A configuration without fat was 
considered, both at the beginning and the end of proving, with respectively 20% and 80% of gas. These 
values were found as typical in the literature. The specific configuration of the fat layers, which only 
partially filled the voxel, was also considered, both at the beginning and the end of the proving. In this case, 
partial volume of fat-dough was set at 50-50%, which is representative of an ideal four layers pastry. We 
considered the temperature equal to 22°C and 30°C respectively at the beginning and the end of the proving. 
This led to four cases, the characteristics of which are summarized in Table 1. We ran simulations both with 
regularisation (F = 6500 and P = 0.35) and without (F =0). In order to be in the same conditions as for the 
pastries, we limited the number of iterations of the CG algorithm to 18 which corresponds approximately to 
the number of iterations used for the settings of F	and P.  
 
Table1. 
 

  Moment of proving Temperature (°C) Fat  Paste  Gas 
Partial volume 
of fat-dough 

Beginning 22  50% 40% 10% 

Dough Beginning 22  0% 80% 20% 
Partial volume 
of fat-dough 

End 30 50% 10% 40% 

Dough End 30 0% 20% 80% 
 
 
The proportions of each component were computed from these virtual objects. The mean errors {� 	(i.e. the 
bias that is the difference between the actual and the estimated values) and the standard deviations of the 
errors |�	were computed for each component )	and expressed in % with the following formulae: 

{� = 100 17�0��� − �̂��)L
� !  

 

(12) 

|� = 100} 17 − 1�0��� − �̂�� − {�)-L
� !  

 

(13) 

Figure 6 shows	{~ , {�, {�, |~ , |� and |� with and without regularisation for the four cases defined in Table 
1. In all the cases, the values of fat and gas were overestimated	0{� < 0), while the values of paste were 
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underestimated	0{� > 0). The largest absolute values of {� were found for dough alone and they were even 
larger at the end of proving where {~ = −3%, {� = 6% and {� = −3%. This was attributed to the low 
value of signal because of the high proportion of gas. Additionally, the model of the signal is less valid in 
this case since we made the hypothesis that the noise is Gaussian and additive, which can be considered as 
true only for high values of ���.  
 
For the layers of fat, i.e. partial volume of fat and dough, the results were slightly better at the end of 
proving. Indeed at the temperature of 30°C the signal of fat is higher, thus the ��� is higher too. Moreover, 
as the reference signal of paste does not vary with temperature, the contrast between fat and paste is higher at 
30°C which leads to estimations less dependent on the noise. This also explains the difference in the values 
of |� between the beginning and the end of proving. The estimations were more sensitive to the noise in the 
signal in the first case, because of the values of the reference signals. It is to be noted that the values of {� 
were very similar with or without regularisation which means that the regularisation scheme did not add any 
bias to the results.   
 
On the contrary |~ , |� and |� were far lower with regularisation than without no matter the case. This was 
expected since the regularisation scheme was designed to remove the unwanted effects of the noise. Levels 
of uncertainty as low as 1% were hence reached with regularization. 
 
The results showed that the behaviour of the method was different depending on the stage of proving and on 
the proportions of the component. At the beginning of proving the reference signals of fat are lower which 
decreases both the ��� and the contrast between fat and paste. However the gas fraction is also low which 
compensates this disadvantage. At the end of proving, the reference signals of fat are higher but the 
proportion of gas is higher which tends to raise up the bias for the estimation of the proportion of paste. The 
results showed that regularisation improved the results but did not allow removing the bias. 

3.2.2 Particular case of the proving of a dough without fat 

 
It is particularly interesting to measure the amount of gas in the dough for example to assess the mean gas 
fraction in a particular area. This can be done by summing the proportion of gas in this area and dividing the 
result by the size of the area. The error depends both on the gas fraction and on the size of the area.  In order 
to evaluate the errors in function of both variables we have simulated the proving of a dough with no fat. The 
initial surface was 4147 voxels, the final one was 15762. Thus, contrary to the results presented in the 
previous section the size of the area varied proportionally to the increase in the amount of gas in dough.  The 
results presented here are without regularisation since it has been shown previously that regularisation does 
not bring any improvement on the mean error.  
 
We chose to represent the evolution of the sum of fat, paste and gas in function of time (Figure 7). Indeed  
the sum of the proportion of fat and paste should be constant over time.  For the paste the sum over time was 
decreasing with a loss of up to 30% at the end. On the contrary, the sum of the estimated proportion of fat 
which should be zero, was increasing. Finally the amount of gas was overestimated. The linear regression 
between estimated and actual gas proportion with an intercept forced to zero presented a determination 
coefficient of 0.98 and a slope of 1.05. This meant that the amount of air was overestimated by 5% in mean.   
 

3.3 Sensitivity of the method regarding the uncertainty on the reference signals 

 
As the method relies on the knowledge of the “reference signal” ���� we have studied the sensitivity of the 
method regarding the uncertainty on these constants. Several questions were addressed: 

- What is the uncertainty on the estimation of the proportions of each component? 
- How is the contrast between the layers of fat and the layers of dough affected by the uncertainty? 
- What is the effect of the regularisation on these uncertainties? 
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 9

 
For this application, as explained before and illustrated in Figure 2, it was considered that fat signal was 
varying with temperature regarding the following law: 
 �~�� = ����- + ���� + Q�   (14) 
 
and that the reference signal of paste was constant and was respectively equal to 325 and 60 a.u. for � = 1 
and 2 respectively. 
As the temperature was involved in the value of the reference signal of fat we considered an uncertainty in its 
measurement. It was considered as a law �00, ,�), noting �0�, ,) the gaussian law the mean of which is  � 
and the standard deviation is  ,. This took into account both the uncertainty of the measurement of the 
temperature		�00,1°�), which is realised jointly with the acquisition of the images, and the variation of the 
temperature in the pastry estimated to �00,1°�). This led to ,� = 1.4	°�.	We neglected the variation of the 
temperature during the acquisition of the image. We also took into account the uncertainty on the coefficients ��, ��, Q� adjusted on a given experimental set (here 5 points) of signals acquired in the same condition as 
during proving. This led to a “model uncertainty” on �~�� following a law	�i0, ,~��k with ,~�� =1.6/100 �~�� at the beginning of the proving and ,~�� =2.7/100 �~�� 	at the end of the proving. Moreover, we 
considered that the reference signal of fat has a spatial natural variation around the estimated mean value 
with a law �i0, ,~��k	with  ,~�� = 3 100⁄ �~�� .	Concerning the reference signals of the paste we considered 
thanks to a dedicated experiment not detailed here, that they did not depend on the process of proving and 
that their uncertainty followed a uniform law �00, |��) centered around 0 and with a width equal to |��.	 
We took |�� = 8 100⁄ ���� whatever	� and �. We also considered that the reference signal of paste has a 
spatial natural variation around the estimated mean value with a law �i0, ,���k	with  ,��� =6 100⁄ �~�� .	Finally we took into account the uncertainty of the signal due to the noise. 
 
We ran 1000 Monte-Carlo simulations following this scheme: 
 
For one operating temperature �� :  
Choose randomly one temperature ��	in �0��, ,�). 
Choose randomly �~�� in �0����- + ���� + Q�, ,~��) for � = 1 and � = 2 
Choose randomly ���� in �0���, |��) for � = 1 and � = 2 
For each voxel in the image: 

Choose randomly �~��� in �i�~��,,~��k for � = 1 and � = 2 
Choose randomly ����� in �i����,,���k for � = 1 and � = 2 
Simulate the signal using equation (6) with the above reference signals replacing ���� with ����� for ) = * and ) = � and using 12.25 for the standard deviation of the noise 

 
 
The same virtual objects as those described in section 3.1 were used for this part of the study. We computed 
the mean errors {�. We also computed the contrast to noise ratio, ���, between the voxels containing fat, 
paste and gas, that is the voxels corresponding to the layers of fat, and the voxels containing only paste and 
gas, that is the dough. ��� was computed on the map of the proportions of fat. For the pastry at the end of 
the proving we computed also ��� between dough and large bubbles of gas. This was computed on the map 
of gas proportions. 
 
We used the definition of the ��� proposed in (Song et al., 2004) .	���� between voxels belonging to two 
different domains noted �! and �- and measured on the image of the proportions ) was defined as: 
 ���� = √2 μ�∈�j0���) − μ�∈�e0���)/,-�∈�j0���) + ,-�∈�e0���) 
 

(15) 
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It is difficult to define a universal threshold value for ��� below which the contrast is not be high enough 
relative to noise to distinguish between the two given structures. Moreover, the clearness of the images also 
depends on the size of the structures under study and the detectability of structures by the human eye also 
involves a priori knowledge such as expected shapes and localisation. For the contrasts between fat layers 
and dough, values between -0.7 and 6.4 were found. Figure 8 shows four examples of low contrasts between 
fat and dough, from 0.4 to 1.2. The dynamic of the display was between -0.5 and +0.5 (-0.5 is black, +0.5 is 
white). Thanks to these images we can consider that above a contrast equal to 1.2 it is possible to distinguish 
between the fat layer and the dough. Concerning the contrasts between gas and dough, higher values were 
found, between 2.5 and 5.   Figure 9 shows examples of different gas maps with contrasts between gas and 
dough equal to 2.5, 3, 4 and 5. The dynamic of the display was between 0.7 and +1.2 (0.7 is black, +1.2 is 
white). We can see that the smallest bubbles can hardly be detected at contrast 3, easier above. 
 
Results from the Monte-Carlo simulations were very different for the beginning and the end of proving.  
 
For the end of the proving, Figure 10 shows the distribution computed over the 1000 simulated maps of fat 
proportion of the values of ���~ between layers of fat and dough with and without regularisation. Figure 11 
shows the same distribution for the values of ���� between dough and bubbles of gas computed on the 
maps of gas proportion. It is clear that regularisation increased the contrast between the different structures 
by a factor of 2 at least and that the uncertainty on the reference signals did not significantly modify the 
values of this contrast. With regularisation the contrasts were respectively around 6 and 4 for fat layers and 
bubbles of gas in dough. This can be considered as high enough to ensure the visual analysis of the 
structures.  
 
These simulations also allowed us to evaluate the dispersion of the values of 	{� due to the uncertainty of the 
reference signals. {~ , {� and {�,  in the dough were respectively equal to -3.4±0.15, 6.7±0.7 and -3.3±0.6 
both with and without regularisation since the bias is not dependent on this factor as seen before.  This means 
that the uncertainty on the reference signals did not make the values of 	{� vary very much at the end of 
proving.  
 
Concerning the beginning of proving, the results showed a very high variability. Figure 12 shows the same 
distribution as Figure 10 for the beginning of proving. The contrasts were lower than at the end of the 
proving and reached in some cases small values, below the threshold value of 1.2. However it is to be noted 
that these cases are not very frequent in the case with regularization. These low values of contrast are due to 
the fact that the difference between the reference signals of fat and paste was lower than at the end of the 
proving. {~ , {� and {�, in the dough were respectively equal to –2.6±2.2, 3.9±4.9 and –1.2±2.8 both with 
and without regularisation. Although the mean of the bias were smaller than at the end of the proving, its 
dispersion was very high. This means that at the beginning of the proving the measurement of mean 
proportions should be considered with a higher uncertainty than at the end of the proving. This is due to the 
fact that the reference signals of fat vary much more with the temperature than at the end of the proving as 
can be seen in Figure 2. We can observe a higher dispersion of the contrast in the regularised case. In fact the 
mean of the dough, μ�∈�e0���) in equation (15), and the variances in the fat layer and in the dough, ,-�∈�j0���)	and	,-�∈�e0����, were quasi-constant over the simulation runs. On the contrary the mean in the 
fat layer, μ�∈�j0����,	 varied in function of the reference signals, especially those of the fat. It varied from 0 
to 0.5 without regularisation and from 0 to 0.3 with regularisation. As the values of the variances were 
smaller with regularisation, this made the contrast more sensitive to  μ�∈�j0���� and thus the dispersion of 
the values higher for the contrast.  
 
 
The combined effects of the uncertainty on the reference signals and of the noise did not have the same 
consequence at the beginning and the end of the proving. The uncertainties were higher at the beginning. 
However in both cases the regularization significantly improved the contrast in the estimated images of 
proportions allowing in most cases the visualization of the structures. 
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4 Conclusion 
 
We developed a method to estimate the proportion of the components included in each voxel of a MRI image 
and this was applied to the characterization of Danish pastries during proving. The method was based on the 
modelling of the signal as a sum of the signal of each component weighted by their proportion. The 
estimated proportions were those which minimized a function that was the sum of the squared difference 
between the data and the model and a regularization that ensured the smoothness of the solutions. It required 
the a priori knowledge of two reference signals (fat and paste). The noise in MRI is Rician, however the 
method was based on the hypothesis of a Gaussian noise.   
 
The choice of the parameters of the algorithm that set the weight of the regularization term in the criterion 
was determined using simulated images. Using these parameters, and assuming excellent estimations of the 
reference signals, we showed that, in the case of our application, the mean error (systematic bias) was similar 
with or without regularization and depended on the components and their proportion while the dispersion of 
the results was lower with regularization. Fat and gas proportions were overestimated while paste proportion 
was underestimated. The absolute values of the bias varied from less that 1% up to 6% depending on the 
component and on the time of proving.  The errors were larger for high gas proportion, i.e. at the end of the 
proving because of the lower ���. The standard deviation varied from 0.3% up to 1.5 %. These values are 
not very high and acceptable for the targeted application.  
 
Monte-Carlo simulations showed that these results were not influenced very much by the uncertainty on the 
reference signals at the end of the proving. However larger uncertainties were found at the beginning of 
proving due to the values of the reference signals of fat. Indeed, at this stage of proving they were lower, 
decreasing the contrast between fat and paste, and they were also more sensitive to the value of the 
temperature. We computed the contrast-to-noise ratio and found that it was higher with regularization no 
matter the proving time. We showed that the regularization of the solutions did improve the visualization of 
the structures confirming the interest of this approach.  
 
As a perspective to this work, we will first test our method on actual MRI images of Danish pastries during 
proving. In order to improve our method and particularly to remove the biases, it would be interesting to take 
into account the fact that the noise is Rician and not Gaussian. This will lead to a different expression of the 
criterion to be minimized. Moreover we also intend to add constraints on the proportions which are in 
between 0 and 1.  
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Figure 1: Variations of �0��  √w� 1 ��, w 4 � 

 
 

 
 
Figure 2: Reference signals of fat for the two echoes in function of the temperature and the corresponding 
polynomial approximations. 
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Figure 3: evolution of l for different combination of values for F and P in function of the computation time 
and for the beginning and the end of the proving. In black, the points corresponding to the values finally 
chosen. Case of a “four fat-layers” pastry 
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Figure 4: from top to bottom, proportion of fat, paste and gas. In the case of a pastry with a layer of fat 
whose thickness corresponds to a four-layers pastry and at the beginning of the proving. From left to right, 
the “ground truth” of the simulation run, the initialisation of the solution and the final estimation for  F 
6500 and P  0.35.  
 
 
 
 
 

 
 

Figure 5: from top to bottom, proportion of fat, paste and gas. In the case of a pastry with a layer of fat 
whose thickness corresponds to a four-layers pastry and at the end of the proving. From left to right, the 
“ground truth” of the simulation run, the initialisation of the solution and the final estimation for  F  6500 
and P  0.35.  
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Figure 6: Errors {� and |�	for a layer of fat (i.e. partial volume of fat-dough) and the dough at the beginning 
of the proving on the first raw and at the end of the proving on the second raw. The errors are expressed in 
%. In blue the results without regularisation, in red with regularisation 
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Figure 7: Evolution of the sum of fat, paste and gas in a proving dough in function of time  
 
 

 
 
Figure 8: Example of fat maps with different values of contrast. ��� from left to right, top to bottom is 0.4, 
0.6, 0.8, 1, 1.2, 1.4, 1.6 and 1.8. The black corresponds to -50%, white to +50%.  
 

 
 
Figure 9: Example of gas maps with different values of contrast. ��� from left to right is 2.5, 3, 4 and 5. 
The black corresponds to 70%, white to 120%. 
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Figure 10: distribution of the values of ���~ between layers of fat and dough at the end of the proving with 
and without regularisation. The values were obtained from 1000  Monte-Carlo simulations including the 
uncertainty on the signal references and on the signal. 
 

 
 
Figure 11: distribution of the values of ���� between dough and gas at the end of the proving with and 
without regularisation. The values were obtained from 1000  Monte-Carlo simulations including the 
uncertainty on the signal references and on the signal. 
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Figure 12: distribution of the values of ���~ between layers of fat and dough at the beginning of the 
proving with and without regularisation. The values were obtained from 1000  Monte-Carlo simulations 
including the uncertainty on the signal references and on the signal 
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