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1 Introduction

The aim of the method presented in this paper isharacterize the development of the structuregsudff
pastries during proving. Puff pastries are madiydrs of fat and dough, which is itself composégaste
and gas. During the proving, the dough is expandiisggas fraction is increasing and gas bubbles ar
developing. It is interesting to observe the evolubf the expansion which can be characterizetiffarent
ways. First of all, it is important to detect thayérs of fat since they play a significant roletie
development of the pastry. For example, it is Egéng to determine whether they are continuousotr It

is also interesting to measure the evolution ofgée fraction of the different layers of doughjmé@hted by
the layers of fat, to detect the potential form@atad large bubbles and to observe if they devetogpecific
areas such as near or far from the layers of fat.

Magnetic Resonance Imaging (MRI) is an imaging mémhe which meets most of the requirements for this
application. First of all it is a non-invasive teidue which is mandatory to observe the developroéttie
fragile and highly deformable structures. Moreousr,choosing an appropriate acquisition protocohgl
with its parameters, it is possible to obtain adyoontrast between fat, paste and gas. The siaepabtry
grows approximately from 60x100x5 mmt the beginning of the proving to 60x100x25 franthe end of
the proving. This fits also the MRI potentialitiddowever, in the case of this application, the os#RI
faces two problems which are the relative low valtithe signal to noise ratiSfR) and the relative small
spatial resolution regarding the size of the stmes we want to observe. This is due to severabrea First
of all, and particularly at the end of the provititg dough contains much gas that gives no sigial.signal

is thus decreasing in the dough during proving. édwer, theSNR and the resolution are linked by the
following relations:

SNR o AV \[Tocq

1)

LyLy,
V=N, ¢ (2)
tacg = TR NyNacc (3

whereAV is the elementary volume which corresponds towvanxel* of the image, L, andL,, are the size of
the field-of-view in both directions of the imagkpe, e is the thickness of the virtual slick, andN,, are
the number of the voxels in the image (numberr@diand columnsy,, is the acquisition timey,,. is the

number of the repetitions of the acquisitions befaweraging the signal, in order to reduce theenariTR
is the so-called repetition time which also infloes the contrast in the images.
Thus, the values ofNR, AV and t,., are linked and the choice of the acquisition patans is a

compromise between getting a higNR, a high spatial resolution (ie a smal) and a short,,. One way

! In MRI one picture element, or pixel, of the imagealled a voxel since the signal is the sunhefdignals of all the
protons located in an elementary volume




to increase th&NR would be to increase the acquisition time. Howgesasrwe want to follow the expansion
of the dough, the acquisition time should be liohite order to avoid movement artefacts in the insage
Concerning the value ofV it would be interesting to set it such that thentlayers of fat would be
represented by a line thick of a few pixels in itmages. However, a too small value/df would imply a
low value forSNR. Finally, along with the intrinsic limitations ®fRI, these constraints will set the values
of AV on the order of 1mPfnSince the thickness of the layers of fat aréhndrder of 0.1 mm, this leads to
partial volume effects, that is, each voxel of tlmage will contain a mixture of fat and dough. T8@me
phenomenon will be observed with dough and gasgedime size of the smallest bubbles does not exbteed
resolution of the image. Thus, the MRI images fis aipplication will present relatively loSWR combined
with a strong partial volume effect. As this wik bletailed in the paper, this led us to developethod able
to estimate in each voxel the quantity of each camept, fat, paste and gas while adding some spatial
regularization in order to reduce the effects efnibise.

This report is organized as follows: firstly we Wiresent the model of the MRI signal. As each Voxe
corresponds to a mixture of components, the signhilbe modelled as the sum of the signal of each
component. This will lead to the estimation of salenknowns for each voxel which are the propodiof
each component. This implies the use of severafj@macquired with different acquisition parametard
also the knowledge of “reference signals” for eestmponent. The estimation of the unknowns comesdow
to find the solutions of a criterion composed of 8guared difference between the data and the miodel
order to get rid of the unwanted effects of thesapthis criterion is completed with a regulariaatierm
imposing solutions with a relative spatial smoomerhe optimization algorithm used to minimizesthi
criterion is detailed. Then several simulation hssare presented. First of all the choice of stali
numerical values corresponding to the targetedi@jun is presented. Then the setting of the patar of
the algorithm is detailed. Finally, the results aligided in two parts. First of all we explored the
performance of the method with the hypothesis tefdrence signals are perfectly known. Then weildeta
results including the uncertainty on these pararsetsing Monte-Carlo simulations.

2 Measurement method

2.1 Signal model

The model of the MRI signal depends on the acdoisiprotocol. Indeed, this imaging modality offers
different ways to acquire a signal. In our casent#rest, two kinds of protocol could be considerBue first
one is the “spin echo” protocol (SE) which providesignal with the same phase whatever the comp&nen
The amplitude depends on the characteristics ofdhgponent which allows distinguishing betweenafad
paste. The second one is the “gradient echo” pobi@E) which is routinely used to quantify fatdbeed,
this protocol provides a signal the phase of wiéctifferent for fat. However, this protocol is peto be
sensitive to local magnetic field variations, whigipically occur at the interfaces with gas. Théads to
unexpected loss of the signal, especially in theglowhere many small bubbles of gas are presefd. Th
would give images with no signal for the dough. ffas reason we chose to use the SE protocol.

As explained in the introduction, we considered d@h voxel contains a mixture of an unknown propo

of three components, fat, paste and gas. We madeyihothesis that the signal of each componenhdid
vary with the localisation within the pastry, irhet words that the signal of a voxel filled with ta paste
would not depend on the position in the pastry. Wthe sample is large regarding the size of thiewdach
acquires the signal, unwanted variations of theaigan be observed near the border. We assumgd tha
thanks to the small size of the sample and to astjpning in the centre of the coil, the signaliicbbe
considered as independent of the position. Thudeuthese hypothesis, the sigsgl;, for each voxek, in
absence of noise, at tinnewith the set of acquisition parametérsan be modelized by:




1
Sxkt = Z OiktPxi (4)
i=1

1
;pxi =1 5)

wherel is the number of components, which will be seB ia the present study,; € [0,1] stands for the
proportion of component in voxel x, Oy, referred hereafter as “reference signals”, cooedp to the
signal of a voxel filled with componentat timet, with the set of parameteks In the remainder of the paper
i will be equal tof, p andg respectively for fat, paste and gas.

subject to

It is to be noted that the reference signals apgestito vary with time mainly because of the vioia of the

temperature. This implies for the targeted applicathat temperature should be measured along thih
acquisition of the images. Since no metallic congmts should be used in the MRI system, opticaé§lare
used for that purpose.

In MRI, the signal of an image acquired with thegmaetersk corresponds to the modulus of a complex
number, the real and imaginary component of whiehaalded with a centered gaussian noise with tme sa

variances. Thus the noise corruption of the MRI signal i$ gaussian but follows a rician law. Taking this
into account, under the non-reductive hypothesia ghase equal @ leads to model the rician-noised

signals®. ., whereR stands for rician, as :

Spkt = J (Syke + Toxkr)? + N (6)

wheren,,, andn,,; are respectively the gaussian additive noise emahl and on the imaginary part of the
complex signal for voxek. For the sake of simplification, we will considegreafter that the noise is not
rician but gaussian and additive with a variancgaktp o?. It can be shown that this hypothesis stands for
SNR > 3 (Gudbjartsson & Patz, 1995). However, as it wdkh shown latel§NR can be lower than 3 in
images of proving puff pastry which will lead tonse bias of the results. The modg}.; of the signal we
used was the noise-free signal added with gaussize and expressed as :

Sxkt = Sxkt T Nxko 7)
wheren,, is a gaussian centered noise with variarfce

The model of the signal being expressed, we amggoi detail how we will estimate the unknowns.
2.2 Estimation of the unknowns

First of all, we considered thét,; can be measured separately and once for all iempgeneous block of
fat and of paste. This point will be detailed latiforeover,0;;,; will be set to 0 for gas, whatever the
temperature, since this component gives no sidials, the unknowns ageg,; which amounts té images,
i.e. ( — 1)X scalar unknowns given constraint (5) and nofindpe number of voxels in the image. In order
to build reliable estimates, we propose to acgiiite I — 1 images using different values of parameters
This is possible in MRI since different settingstioé protocol parameters lead to different sigmapliude.
This will lead to different values df;;.

Moreover, in a view to reduce the noise, some ag@qdtion on the component proportigng can also be
introduced. However, it should be carefully des@jyrso that large variations of the signal be notatized at
the boundaries between distinct regions of theatbjamely the layers of fat and dough or large kb




inside dough. In this paper, we adopt an approadatalied edge-preserving in the field of imageoesion.
More precisely we propose to estimpte- (p,;) using a penalized least-square approach:

p = argmin, J(p) (8)

where

J) = i i( Sxkt — Z Olktpxl> + VE o(|ldpll) (9)

= ceC

®(u) = Vé?% + u? and||.|| denotes the usuah norm. Parameterg,andy are positive weights andl is a
scalar.C represents the set of pairs of adjacent pigets{y, z} with y < z for an arbitrary orderingd, is

the X x 1 finite difference vector such thdfp = [py1 = Dz1s r Pyr — pz,]t.The first term in (9) accounts
for fidelity to data, the second term tends to dase the noise jp while allowing rapid variations. Indeed,
function® has a quadratic behavior near 0 and an asymgtpticear behaviour (see Figure 1). For large
values of||dip|| that is for large values of differences betweeanwtctor proportion of adjacent pixels, the
regularizing term will be lower than it would being a quadratic regularization. This allows to pizea
variations ofp depending on the value of these variations.

Sinced is strictly convex, it can be easily shown tfias strictly convex w.r.tp, and, therefore, a unimodal
function of p. However, The minimization qf is not trivial sinceJ is not a quadratic function @f. We
used a non-linear conjugate gradient (CG) algoridunh as the one detailed in (Labat & Idier, 20@8)
minimize J w.r.t p, subject to constraint (2). CG algorithm is iterat We initialized the solution with the
one that minimizes the first term in (9) which @sponds to a least-squares minimization. This $flyea
computable since it is separable (the solutionefach voxel is independent from the others) . Then w
iterated the CG steps until the norm of the gradiéy w.r.t p becomes sufficiently smali.e. ||[VJ(p)|l <

E.

One key point of our method is the choice of thpdrparameters,, y and§. According to the probabilistic
interpretation of criteriond,corresponds to the inverse of the noise varianceéhfokth image. The noise
variance can be estimated directly from the imaggiag the method proposed in (Nowak, 1999). Two
parameters remain to be adjusted. Their settirgsnaide using simulations results as this will beebigped
later on. As these simulations require some réalmsimerical values for all the variables, we folstail how
we determined them.

2.3 Realistic numerical values and choice of the parameters k

In the case of SE protocol the reference signaideanritten as:
Ot = Gpite_TEk/Tzit(l — e_TRk/Tlit)’ (10)

where G represents the global gain of the acouomsiiystem,p;;, T,;; andT;;; respectively the proton
density, transversal and longitudinal relaxatianges for componeritat timet. TE), is the so-called “echo
time” and is a parameter chosen by the user, dsasehe values of the repetition tiffi®,. Preliminary
measurements on a block of fat and a block of pasteved that there was not much difference betwhsen
T, of paste and fat whatever the temperature whitcheigphysical parameters that varies with time thiadl

is susceptible to make the relaxation times v&ywaried from 190 ms for paste and 175 ms for fat54aC,

i.e. at the beginning of the proving, to 236 msgaste and 230 ms for fat at 30°C, i.e. at the afrithe
proving. On the contrary the values @f, were different: T, was around 23 ms for paste whatever the




temperature and varied from 37 ms at 15°C to 8An80°C for fat. This led naturally to the choideTg-
weighted contrast images, that is images with diffevalues of E,. It is to be noted that this can be done
without increasing the acquisition time since tlguasition of at least 2 images can be achievedguso-
called “multi spin echo sequences”. Regarding tbastraints of our MRI system, the only sequence
available was a SE sequence with maximum two echoes

In order to choose the b&&E;,, we computed the Cramer-Rao bound for the firsh tef equation (4), that is
we ignored the regularisation term at this stageaddirements on a block of fat and a block of paste
realized at different temperatures using a spimegguence with differeftE. This led to the estimation of
Tye and My, = Gp,(1 — e~TR/Tit) for the fat and for the paste. Thanks to theseiesmalwe computed
Cramer-Rao bounds for different combinationd’8f andTE,. We chose to determine the bE&sy, for the
temperature at the end of the proving (30°C). Tdweel Cramer-Rao bound for the estimation of fat and
paste was foFE; = 7 ms andl'E, = 32 ms.

The other acquisition parameters were set as fellove set the field of view to 40 x 160 fmwhich is a bit
larger than the maximum size of the pastry at titea# the proving. The resolution was set to 0G5mnt
with a slice thickness of 3 mm. This led to a numdfdinesN,, = 40/0.5 = 80. The other parameters were
set so as to get acceptaBER and acquisition time. The rate of dough expansgiaa evaluated by MRI in
order to determine the maximum acquisition timexgpeared that at the beginning of the proving when
expansion is the fastest and presents a lineavimemavith time, the height of a puff pastry witHalyers of
fat increased by 10 mm per hour. We decided tieiricrease in height during an acquisition shbeldess
than 1 mm and the maximum acquisition duration setsto 5 minutes. Regarding theses constrdiRjs
was set to 400 ms fédr=1 and 2 so as to get a relatively high level ofdlgmal regarding equation (10).
The number of accumulationt,.. was 9 so as to lead to an acquisition tigyg = 4mn 48 sec.

Figure 2 shows the reference signals of fat fos¢hwvo TE values in function of the temperature. We
approximated the evolution with the temperaturehvetpolynomial function of order 2. For the paste,
dedicated experiment not detailed here, led usisider that the reference signals did not varigheewith

the temperature nor the time and we used the valug25 and 60 fof E; andTE, respectively.

We also acquired images with these parameterdier &0 measure the level of the noise in theseitions.
The variance of the noise was estimated using ta#had proposed in (Nowak, 1999). We measured a
variance equal to 12.25.

We then used these values to characterize the rpefime of our method. The results are presented
hereafter.

3 Resaultsand discussion

First of all we set the values of the regularisaparameterg andé and then we ran simulations in order to
measure the performances. This last aim was reachédo steps. First, we considered that the signal
references were perfectly known and we investig#ttederrors due to the noise and to the algorithfa.
focused mainly on the comparison of the mean egioice one of the outputs of the image analysidavbe
mean quantities, of gas in dough layers for exanipl@ second part, we investigated the uncer&sanin
the results due to the uncertainties on the rebersignals. We focused on the variability of theamerrors
but also of the contrast in the image in orderdseas if the different structures could easilyimistished by
visual inspection.

3.1 Setting of thevaluesof y and 6




We ran successive simulations wjtlvarying from 500 to 10000 by steps of 500 &nehrying from 0.05 to
0.6 by steps of 0.05. The set of valuesyfavas chosen empirically since no probable valuebeaimferreda
priori. On the contrary, the value fércan be compared with the value|lefip|| which corresponds to the
difference between the component proportion of eo#el and of the voxel of the corresponding
neighbourhoodC. Indeeddé can be considered as a threshold above whichdtHanction is no more
guadratic. A,; represents component proport®0,1], we chose values from 0.05 to 0.6.

The simulations were led on virtual Danish pastré#splified to a basic structural element compostd
unique layer of fat surrounded by an homogeneousgfoThe thickness of the fat layer was set to 200,

or 50 um which corresponds to an ideal four, eight andesix layers pastry for an initial thickness of fat
representing one third of the total thickness & gastry. The reference signals of fat were congpute
considering either 22°C at the beginning of theviprg or 30°C at the end. Likewise, the gas proparin
dough was set at either 20% or 80% in order to rcthee range of variations during proving (see Fegdy
especially maps of gas proportions); in the lattese, some bubbles full of gas, of different sizese also
added: 3.5x3.5 mm3x3 mni, 2.5x2.5 mmM 2x2 mnfand 1.5x1.5 mi(see Figure 5).

The choice of the best couple gfand§ was made upon three criterions. First of all wmpoted for each
simulation run the sum of the square errors ofahehe paste and the gas, notéd

X R
. Z Z (Dxi ;(pxi)z an

1
i=1x=1

wherep,; andp,; are respectively the actual and the estimatedgptiop of component in voxelx. As the
algorithm is iterative, the computation time untie convergence of the algorithm was variable. The
simulations were run on a Intel® Core™ 7 CPU M64D&8DGHz. We also took this time into consideration
in order to optimise both the accuracy of the esfiom and the computation time. However, as the
hypothesis on the noise was not valid for the zavigs low SNR, we could not rely only on the value of E
to choose the values gfands . That is why we also used the observation ofestanated images in order
to definitively choose the best couple of value foand §. In other words, the values &f and of the
computation time were indicators of acceptable emland the observation did the final cut.

Figure 3 shows the evolution &fin function of the computation time, i.e. in fulect of the number of the
iterations of the algorithm, for the case with fdayers of fat at the beginning and the end ofgtaing.
This evolution showed a decrease in function ofabeaputation time with an asymptotic behaviour when
the computation time increased. Regarding the vafug, increasing the computation time is not worth
above about 15 sec in our case. We observed sévexges obtained with different couples of valuesiad
this computation time value and we chgse 6500 and § = 0.35. Figure 4 shows the result maps of
proportions calculated using these values of patensiéor a 4 layers pastry at the beginning ofgthaving.
From top to bottom of the proportion of fat, paatel gas are represented and from left to righgtbend
truth, the initialisation of the solution, whichreesponds to the solution without any spatial regsation
and the final estimation. Figure 5 correspondfigosame information for a pastry at the end optio@ing.

First of all, it is clear from these figures thhé tregularized solutions were closer to the re#fign the non-
regularised solution. The values bffell down from 0.45 to 0.18 for pastry at the beging of the proving
and from 0.32 to 0.22 at the end of the provingrédeer the structural elements such as the layfeiat o
and the gas cavities at the end of the proving \betéer visualized. However, some undesired magblin
effect appeared especially in the cartography efepproportion. It was not possible to get ridho$ teffect
with any couple of values foy and §. This suggested that any such effect that woulduoén the
cartography of the proportion of paste calculatethfreal images should not be interpreted as @yeahis
marbling effect did not affect the shape and dinmrssof the fat layer which can be well visualiZemin the




cartography of the fat proportion; it slightly mbdd the outlines of the large bubbles which cambeever
detected even when their size was as low as 2¥2mm

3.2 Performance of the method for various proportions of fat, paste and gas with a perfect
knowledge of reference signals

In order to assess the performances of the methedran simulations firstly on objects with uniform
proportions and secondly on a proving dough withatitwith a variable gas fraction and an increasing
number of voxels.

3.2.1 Case of objectswith uniform proportions

Virtual objects considered in this part of the $td00x100 voxels) were homogeneous but presented
different proportions of fat, paste and gas in rtteginstitutive voxels. A configuration without fatas
considered, both at the beginning and the end @fipg, with respectively 20% and 80% of gas. These
values were found as typical in the literature. Hpecific configuration of the fat layers, whichlyon
partially filled the voxel, was also consideredttbat the beginning and the end of the provinghls case,
partial volume of fat-dough was set at 50-50%, WHEi representative of an ideal four layers padtve.
considered the temperature equal to 22°C and 38s@ectively at the beginning and the end of th&ipgo
This led to four cases, the characteristics of tiaiee summarized in Table 1. We ran simulationh lgth
regularisation = 6500 andé = 0.35) and without ¥ =0). In order to be in the same conditions agtier
pastries, we limited the number of iterations @& @G algorithm to 18 which corresponds approxinyatie|
the number of iterations used for the settingg andé.

Tablel.
Moment of proving| Temperature (°C) Fat Paste s Ga
Partial volume Beginning 22 50% 40% 10%
of fat-dough
Dough Beginning 22 0% 80% 20%
Partial volume End 30 50% 10% 40%
of fat-dough
Dough End 30 0% 20% 80%

The proportions of each component were computet fitese virtual objects. The mean errBrgi.e. the
bias that is the difference between the actualthadestimated values) and the standard deviatibtiseo
errors4; were computed for each componéand expressed in % with the following formulae:

X

1 .
B; = 100}2(2’;@ — Dxi) (12)
xX=

(13)

X
1
A; =100 HZ(PM — Dxi — Bi)?
x=

Figure 6 showgf,Bp, By, Af, A, andAg with and without regularisation for the four casledined in Table
1. In all the cases, the values of fat and gas weesestimatedB; < 0), while the values of paste were
underestimate@B; > 0). The largest absolute valuesREfwere found for dough alone and they were even




larger at the end of proving wheB = —3%, B, = 6% and B, = —3%. This was attributed to the low
value of signal because of the high proportion ad.gA\dditionally, the model of the signal is lesdid in
this case since we made the hypothesis that thee i®iGaussian and additive, which can be consldese
true only for high values &fNR.

For the layers of fat, i.e. partial volume of fatdadough, the results were slightly better at thd ef
proving. Indeed at the temperature of 30°C theadighfat is higher, thus th&VR is higher too. Moreover,

as the reference signal of paste does not varytesitiperature, the contrast between fat and pakighier at
30°C which leads to estimations less dependenh®moise. This also explains the difference invilees

of A; between the beginning and the end of proving. 83tenmations were more sensitive to the noise in the
signal in the first case, because of the valuah@feference signals. It is to be noted that #ilaes ofB;
were very similar with or without regularisation it means that the regularisation scheme did nibtaag
bias to the results.

On the contraryls, A, andA, were far lower with regularisation than without matter the case. This was
expected since the regularisation scheme was dEbignremove the unwanted effects of the noiseelsev
of uncertainty as low as 1% were hence reachedregtlarization.

The results showed that the behaviour of the metaxidifferent depending on the stage of proving @m

the proportions of the component. At the beginrofgroving the reference signals of fat are lowéiick
decreases both ti#VR and the contrast between fat and paste. Howeeegdh fraction is also low which
compensates this disadvantage. At the end of pgpuime reference signals of fat are higher but the
proportion of gas is higher which tends to raisehgbias for the estimation of the proportion aste. The
results showed that regularisation improved thaltebut did not allow removing the bias.

3.2.2 Particular case of the proving of a dough without fat

It is particularly interesting to measure the antaafngas in the dough for example to assess thengaa
fraction in a particular area. This can be donsiyming the proportion of gas in this area anddilig the
result by the size of the area. The error depentfs dn the gas fraction and on the size of the. ahe@rder
to evaluate the errors in function of both varigble have simulated the proving of a dough witliatoThe
initial surface was 4147 voxels, the final one W&§62. Thus, contrary to the results presentechén t
previous section the size of the area varied ptapwily to the increase in the amount of gas inglo The
results presented here are without regularisaiiccest has been shown previously that regulansatioes
not bring any improvement on the mean error.

We chose to represent the evolution of the sumabfpfaste and gas in function of time (Figure jleked

the sum of the proportion of fat and paste shoelddnstant over time. For the paste the sum averwas
decreasing with a loss of up to 30% at the endth@rcontrary, the sum of the estimated proportibfab
which should be zero, was increasing. Finally thrant of gas was overestimated. The linear regmessi
between estimated and actual gas proportion witlneercept forced to zero presented a determination
coefficient of 0.98 and a slope of 1.05. This mehat the amount of air was overestimated by 5%éan.

3.3 Sensitivity of the method regarding the uncertainty on the reference signals

As the method relies on the knowledge of the “miee signal0;,; we have studied the sensitivity of the
method regarding the uncertainty on these const8etgeral questions were addressed:

- What is the uncertainty on the estimation of thapprtions of each component?

- How is the contrast between the layers of fat aeddyers of dough affected by the uncertainty?

- What is the effect of the regularisation on theseentainties?




For this application, as explained before and titated in Figure 2, it was considered that fat aignas
varying with temperature regarding the following/la

Ofjr = a;0;° + b;; + ¢ (14)

and that the reference signal of paste was conatahtvas respectively equal to 325 and 60 a.uj fonl
and 2 respectively.

As the temperature was involved in the value ofrefierence signal of fat we considered an unceytamits
measurement. It was considered as aMag0, ay), notingV' (i, o) the gaussian law the mean of whichuis
and the standard deviation is. This took into account both the uncertainty of heasurement of the
temperature'(0,1°C), which is realised jointly with the acquisition tbfe images, and the variation of the
temperature in the pastry estimated¢0,1°C). This led tosy = 1.4 °C. We neglected the variation of the
temperature during the acquisition of the image.alge took into account the uncertainty on the ficehts
a;, bj, c; adjusted on a given experimental set (here 5 gooft signals acquired in the same condition as
during proving. This led to a “model uncertaintyi 0y ;; following a IawN(O, Ufmj) with o7, ; =1.6/100
Of;c at the beginning of the proving amd,,; =2.7/100 Of;; at the end of the proving. Moreover, we
considered that the reference signal of fat hagatiad natural variation around the estimated meslne
with a IaWN(O, aij) with oy, ; = 3/100 Of;;. Concerning the reference signals of the paste weidered
thanks to a dedicated experiment not detailed lbat,they did not depend on the process of prosimg
that their uncertainty followed a uniform lau/(0, 4,;) centered around O and with a width equalifg.
We took4,; = 8/100 0, whatevey andt. We also considered that the reference signalasfephas a
spatial natural variation around the estimated meafue with a law V'(0,0p,;) With gy, =
6/100 Oy ;. Finally we took into account the uncertainty of gignal due to the noise.

We ran 1000 Monte-Carlo simulations following teheme:

For one operating temperatuig:
Choose randomly one temperatdgen NV (6;, ay).
Choose randomlgy ; in N(ajetz + b0 + ¢j,0pp;) forj =1andj = 2
Choose randoml@,, ;. in U(0,;, Ay;) forj = 1 andj = 2
For each voxel in the image:
Choose randoml@y ¢, in V' (0y ¢, 07,;) for j = 1 andj = 2
Choose randoml@,, iz, in V' (0t 0py;) for j = 1 andj = 2
Simulate the signal using equation (6) with thevabieference signals replacifg,; with 0;;, for
i = f andi = p and using 12.25 for the standard deviation ohthise

The same virtual objects as those described imose8tl were used for this part of the study. Wingoted
the mean error8;. We also computed the contrast to noise ra@tdR, between the voxels containing fat,
paste and gas, that is the voxels corresponditigettayers of fat, and the voxels containing ordgtp and
gas, that is the doughNR was computed on the map of the proportions offat.the pastry at the end of
the proving we computed als&R between dough and large bubbles of gas. This wapated on the map
of gas proportions.

We used the definition of theNVR proposed in (Song et al., 2004JNR; between voxels belonging to two
different domains note#, ands, and measured on the image of the proportiomas defined as:

CNR; = 2 —2E5 (Pxi) — Uxes, D) (15)

\/szesl (pxi) + szesz (pxi)




It is difficult to define a universal threshold ual for CNR below which the contrast is not be high enough
relative to noise to distinguish between the twaegistructures. Moreover, the clearness of the énadso
depends on the size of the structures under stodythe detectability of structures by the human &ge
involves a priori knowledge such as expected shapdslocalisation. For the contrasts between faria
and dough, values between -0.7 and 6.4 were fdtigdre 8 shows four examples of low contrasts betwe
fat and dough, from 0.4 to 1.2. The dynamic ofdreplay was between -0.5 and +0.5 (-0.5 is blaék5 s
white). Thanks to these images we can consideathate a contrast equal to 1.2 it is possible strdjuish
between the fat layer and the dough. Concerningdimrasts between gas and dough, higher values wer
found, between 2.5 and 5. Figure 9 shows exangfld#fferent gas maps with contrasts between gas a
dough equal to 2.5, 3, 4 and 5. The dynamic ofdibplay was between 0.7 and +1.2 (0.7 is black? 4dl.
white). We can see that the smallest bubbles cattynae detected at contrast 3, easier above.

Results from the Monte-Carlo simulations were \different for the beginning and the end of proving.

For the end of the proving, Figure 10 shows thé&idigion computed over the 1000 simulated map&bf
proportion of the values @fNR; between layers of fat and dough with and withegutarisation. Figure 11
shows the same distribution for the valuesCR, between dough and bubbles of gas computed on the
maps of gas proportion. It is clear that reguldigsaincreased the contrast between the differgottires

by a factor of 2 at least and that the uncertaomythe reference signals did not significantly nipdhe
values of this contrast. With regularisation thatcasts were respectively around 6 and 4 for fadrmand
bubbles of gas in dough. This can be consideretiigts enough to ensure the visual analysis of the
structures.

These simulations also allowed us to evaluate ig@edsion of the values a#; due to the uncertainty of the
reference signals3s, B, andB,, in the dough were respectively equal to -3.4%06.7+0.7 and -3.3+0.6
both with and without regularisation since the igagot dependent on this factor as seen befohés mieans
that the uncertainty on the reference signals didnmake the values oB; vary very much at the end of
proving.

Concerning the beginning of proving, the resultsvadd a very high variability. Figure 12 shows thens
distribution as Figure 10 for the beginning of gngv The contrasts were lower than at the end ef th
proving and reached in some cases small valueswliigke threshold value of 1.2. However it is tonogted
that these cases are not very frequent in thewiiseegularization. These low values of contrast due to
the fact that the difference between the referesigeals of fat and paste was lower than at theadritie
proving. B, B, and By, in the dough were respectively equal to —2.6+2.9+4.9 and —1.2+2.8 both with
and without regularisation. Although the mean af thas were smaller than at the end of the provisg,
dispersion was very high. This means that at thginbéng of the proving the measurement of mean
proportions should be considered with a higher tacey than at the end of the proving. This is tlu¢he
fact that the reference signals of fat vary muchienwith the temperature than at the end of theipgoas
can be seen in Figure 2. We can observe a highpeiion of the contrast in the regularised castadt the
mean of the doughu,es,(px;) In equation (15), and the variances in the faedagnd in the dough,
O'ergl (py;) and O'ergz (pyi), were guasi-constant over the simulation runsti@rcontrary the mean in the
fat layer,uyes, (px;), varied in function of the reference signals, esdlgcthose of the fat. It varied from 0
to 0.5 without regularisation and from 0 to 0.3 twiegularisation. As the values of the variancesewe
smaller with regularisation, this made the contraste sensitive tou,es, (py;) and thus the dispersion of
the values higher for the contrast.

The combined effects of the uncertainty on theregfee signals and of the noise did not have theesam
conseqguence at the beginning and the end of théngroThe uncertainties were higher at the begignin
However in both cases the regularization signifigammproved the contrast in the estimated imagks o
proportions allowing in most cases the visualizatibthe structures.
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4 Conclusion

We developed a method to estimate the proportigheo€omponents included in each voxel of a MRIgena
and this was applied to the characterization ofi€apastries during proving. The method was basetthe
modelling of the signal as a sum of the signal athe component weighted by their proportion. The
estimated proportions were those which minimizefdirection that was the sum of the squared difference
between the data and the model and a regulariztitaarensured the smoothness of the solutionegliired

the a priori knowledge of two reference signald &ad paste). The noise in MRI is Rician, however t
method was based on the hypothesis of a Gaussis& no

The choice of the parameters of the algorithm #edtthe weight of the regularization term in thigecion
was determined using simulated images. Using thassmeters, and assuming excellent estimationiseof t
reference signals, we showed that, in the casercdgplication, the mean error (systematic biasy swanilar
with or without regularization and depended ondbmponents and their proportion while the dispersib

the results was lower with regularization. Fat gad proportions were overestimated while pasteqution
was underestimated. The absolute values of thevaiasd from less that 1% up to 6% depending on the
component and on the time of proving. The erroesewarger for high gas proportidre. at the end of the
proving because of the lowSNR. The standard deviation varied from 0.3% up to%.5These values are
not very high and acceptable for the targeted epttin.

Monte-Carlo simulations showed that these resudtisewnot influenced very much by the uncertaintythan
reference signals at the end of the proving. Howédseger uncertainties were found at the beginrohg
proving due to the values of the reference sigoélgt. Indeed, at this stage of proving they wienger,
decreasing the contrast between fat and paste tteyd were also more sensitive to the value of the
temperature. We computed the contrast-to-noise &atd found that it was higher with regularizatiom
matter the proving time. We showed that the regzdtion of the solutions did improve the visualiaatof

the structures confirming the interest of this apgh.

As a perspective to this work, we will first testranethod on actual MRI images of Danish pastrigsnd
proving. In order to improve our method and paftidy to remove the biases, it would be interestm¢pke
into account the fact that the noise is Rician moidGaussian. This will lead to a different expiasof the
criterion to be minimized. Moreover we also intetledadd constraints on the proportions which are in
between 0 and 1.
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Figure 1: Variations of®(u) = V6% + u2,6 > 0

Reference signals of fat for the two echoes in function of the temperature
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Figure 2: Reference signals of fat for the two echoes ircfion of the temperature and the corresponding
polynomial approximations.




E in function of computation time
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Figure 3: evolution ofE for different combination of values fgrandd in function of the computation time
and for the beginning and the end of the provingblack, the points corresponding to the valueallfn
chosen. Case of a “four fat-layers” pastry
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Figure 4: from top to bottom, proportion of fat, paste agabk. In the case of a pastry with a layer of fat
whose thickness corresponds to a four-layers pasityat the beginning of the proving. From leftitgit,

the “ground truth” of the simulation run, the iaifsation of the solution and the final estimatfon y =
6500 ands = 0.35.
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Figure 5: from top to bottom, proportion of fat, paste agab. In the case of a pastry with a layer of fat
whose thickness corresponds to a four-layers pastdyat the end of the proving. From left to right
“ground truth” of the simulation run, the initiadison of the solution and the final estimation fpr= 6500
andé = 0.35.
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Layer of fat, i.e. partial volume of fat-dough, at the beginning of the proving Dough at the beginning of the proving
30 30

25 25
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15 15
® without regularisation ® without regularisation
m with regularisation m with regularisation
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5
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Layer of fat, i.e. partial volume of fat-dough, at the end of the proving Dough at the end of the proving
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Figure 6: ErrorsB; andA; for a layer of fat (i.e. partial volume of fat-ddygand the dough at the beginning
of the proving on the first raw and at the endhaf proving on the second raw. The errors are egpdes
%. In blue the results without regularisation, éd with regularisation
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Evolution of the sum of estimated fat, paste and gas in function of time 2
for a fat-free dough (simulation results) s
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Figure 7: Evolution of the sum of fat, paste and gas imaving dough in function of time

Figure 8: Example of fat maps with different values of cast.CNR from left to right, top to bottom is 0.4,
0.6,0.8,1,1.2,1.4,1.6 and 1.8. The black apwads to -50%, white to +50%.

Figure 9: Example of gas maps with different values of casttCNR from left to right is 2.5, 3, 4 and 5.
The black corresponds to 70%, white to 120%.
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distribution of the values of CNR in fat images between fat and dough at the end of
the proving with and without regularisation
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20 ——CNR fat vs dough in fat images
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Figure 10: distribution of the values @fNR; between layers of fat and dough at the end optbeing with

and without regularisation. The values were obthiinem 1000 Monte-Carlo simulations including the
uncertainty on the signal references and on theasig

distribution of the values of CNR in gas images between dough and gas at the end
of the proving with and without regularisation
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0
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Figure 11: distribution of the values @fNR, between dough and gas at the end of the provitigamid
without regularisation. The values were obtainednfl000 Monte-Carlo simulations including the
uncertainty on the signal references and on theakig
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distribution of the values of CNR in fat images between fat and dough at the
beginning of the proving with and without regularisation

40

—+—CNR fat vs dough in fat images
with regularisation

~#-CNR fat vs dough in fat images
without regularisation

Ve

Figure 12: distribution of the values @fNR; between layers of fat and dough at the beginnfrigeo
proving with and without regularisation. The valwesre obtained from 1000 Monte-Carlo simulations
including the uncertainty on the signal refereraes on the signal
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