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Abstract—In the coming years, cloud environments will
increasingly face energy saving issues. While consolidating the
virtual machines running in a cloud is a well-accepted solution
to reduce the energy consumption, ensuring the scalability of
the consolidation service remains a challenging issue. In this
paper, we propose an elastic consolidation service that scales
according to the dynamic needs of the cloud environment.
Our proposition is based on (i) virtualizing the consolidation
manager, (ii) partitioning the consolidation work and (iii)
regulating the consolidation scalability through an autonomic
control loop. Our proposition has been tested and validated
through several experiments.

Keywords-cloud computing; IaaS; elasticity; virtualization;
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I. INTRODUCTION

In order to reduce the maintenance cost of computing
environments, companies are increasingly externalizing their
computing infrastructures which are therefore managed in a
mutualized way in large scale datacenters. Cloud computing
is a paradigm which follows this direction using virtual-
ization. The motivations for cloud computing platforms are
different with regard to the users or the providers: users
want a simple, efficient, reliable and cheap access to the
infrastructure which hosts their applications or data, whereas
providers want to meet the requirements of their customers
while lowering the maintenance cost of the infrastructure.

With the development of cloud infrastructures, the en-
ergy consumption has become an important concern. Many
studies tried to evaluate the energy used by datacenters.
According to the U.S. Environmental Protection Agency
(EPA), server farms were consuming 1.2% of US electricity
in 2005, and 1.5% in 2006. It amounts for a total electricity
cost of about $4.5B (more than the electricity consumed by
the nation’s televisions). Electricity used by datacenters has
doubled between 2000 and 2006 and the projections say it
could have doubled by now.

Consolidation is a well known solution for energy saving
in the context of virtualized systems. It relies on virtual
machine migration in order to transparently and periodically
relocate any application in a datacenter. The placement
policy takes into account the CPU and memory usages,
in order to concentrate the VMs on fewer nodes of the
datacenter, thus allowing unused nodes to be shut down,
or put into low-energy mode.

However due to the scale of the infrastructure, consol-
idation services have to be scalable. The workload of the
consolidation service has a periodically flat and peak shape
and roughly depends on the number of physical and virtual
machines in the environment, which represent the system’s
configuration. One solution would be to rely on replication
and static provisioning to scale the consolidation service; this
naturally leads to energy waste because the consolidation
service will be provisioned to deal with the worst case
working set.

The contribution of this paper is to provide an elastic
consolidation service that dynamically provision just enough
resources for itself to achieve a consolidation in a given
time frame, i.e., the desired timeout. This elastic service
is a control loop that is able to dynamically provision
consolidation managers. By doing this, we promote and
demonstrate the use of elasticity at the level of a IaaS
management layer in the case of a consolidation service.
Our solution is based on:

• the virtualization of the consolidation manager;
• a real time estimation of the working set;
• a simple but efficient probabilistic dynamic partitioning

of the configuration.
While this work is based on a specific consolidation man-

ager, it can be easily adapted to fit any other consolidation
solution as it considers the consolidation computation as
a black box, and enhances it with an elasticity layer. Per-
formance evaluation shows that this solution, albeit simple,
provides very good results.

The rest of this paper is organized as follows: Section II
presents the consolidation service, Section III explains our
design principles, Section IV describes our performance
evaluation, Section V positions our solution in the context of
energy management and finally, Section VI concludes this
paper.

II. CONSOLIDATION

A. Definition

One of the top concerns when dealing with large data-
centers, which is the typical case of cloud infrastructures,
is energy efficiency. This aspect of the so-called green
computing, or environment-friendly computing, is already
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promoted by cloud computing, since gathering the com-
putational resources in one big centralized infrastructure,
in an optimal place with regard to cooling for instance,
can considerably decrease the energy consumption. How-
ever, since cloud computing often relies on a virtualized
infrastructure, further energy efficiency can be achieved
through “consolidation”, which is basically minimizing the
number of running physical machines by optimally placing
the virtual machines of the datacenter. Since the cloud
ecosystem is highly dynamic and the virtual machines’ needs
in terms of resources (memory and CPU) vary, consolidation
has to be done periodically.

Our work is based on Entropy [1] which is an open-source
consolidation manager. Based on a given infrastructure’s
configuration (the mapping of the virtual machines on the
physical nodes, the virtual machines’ current memory and
CPU usage and the nodes’ total CPU and memory capacity),
it would try to minimize the cloud’s energy consumption and
computes a new mapping, i.e., new configuration, that would
minimize the number of used nodes while guaranteeing
enough resources for the virtual machines to run normally,
and then reconfigure the system accordingly by issuing
the appropriate migration commands. In its current version,
Entropy can either be executed periodically, as the system’s
configuration is highly dynamic in the context of cloud
computing, particularly regarding the number and placement
of virtual machines, or on an event-driven basis, if we want
to insure a greater reactivity. Figure 1 depicts Entropy’s
reconfiguration loop.

Figure 1. Entropy’s reconfiguration loop [1]

Computing a new configuration is a linear optimization
problem; to solve it, Entropy uses ChocoSolver [4]. The
optimization problem does not only compute the minimal
number of nodes needed to run the current virtual machines,
but computes a consolidation plan as a whole, which also
minimizes the cost of reconfigurations leading to such an
optimal configuration. The cost of a reconfiguration roughly

depends on the number of migration operations needed to
go from a given configuration to the newly computed one.
Entropy also supports live migration to execute the computed
reconfiguration plan, which makes the execution fairly faster
but requires the virtual machines’ disks to be stored in a
distributed file system such as NFS. More details on how
Entropy works can be found in [1] or [2].

While Entropy is undeniably a useful tool, the fact that
it relies on solving a linear optimization problem makes it
potentially unable to compute an acceptable reconfiguration
for realistic configurations’ sizes within reasonable timeouts,
hence the need to enhance its scalability. Since the cloud’s
configuration and scalability vary dynamically, we propose
to scale Entropy dynamically as well.

III. DESIGN PRINCIPLE

The scaling of Entropy, as a service provided by the IaaS
infrastructure, is driven by the dynamic evolution of both
the size and population of the datacenter, which corresponds
to the number of virtual machines and physical nodes. An
important point is that we do not take into consideration
scalability requirements with regard to the clients’ requests
load.

The main principle behind our solution is to create just
enough Entropy instances so as to adapt to the configuration
to be processed. To do so, we use (i) a classical autonomic
computing [5] design, (ii) node partitioning for scalability
purposes and (iii) virtualization in order to enhance the
flexibility of managing the Entropy instances and insure
elasticity.

A. Autonomic Loop

Figure 2. Autonomic systems’ control loop

Our solution is an autonomous Entropy, that is capable
of self-optimization (creating or deleting instances of itself
so as to meet performance requirements). Thus, it has to be
both aware of its environment, and adaptive to its changes. It
interacts with its environment by the means of a control loop,
depicted by Figure 2. This control loop regularly reports
information from the environment to an autonomic manager
which analyses it, takes decisions, and applies the necessary
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changes. This control loop is integrated with Entropy’s loop
which periodically retrieves the system’s configuration in
order to optimize it.

In our case, the information retrieved is the configuration
of the system: after analysis, the control loop decides how
many Entropy VM instances ,i.e., workers, are necessary to
handle the retrieved configuration; execution finally creates
the workers, distributes the configuration over them, and
launches them.

B. Partitioning

To distribute the configuration over the virtual workers, we
made the choice of having independent sub-configurations
so as to avoid the very costly synchronization of the whole-
system’s state between our different workers. To do so, the
currently implemented policy is random node partitioning,
which furthermore guarantees that our workers will statisti-
cally have the same workload.

Once the number of necessary instances, that we call
groups in the following, is computed, the nodes are randomly
distributed between the different groups. This means that
our partitioning is not persistent, even if two consecutive
iterations require the same number of instances, the com-
puted sub-configurations will not necessarily be the same.
This is possible because Entropy does not store the system’s
state (mapping, CPU and memory usage), and retrieves it
via the monitoring tool [3] anyway. Randomness guarantees
load balancing; since the nodes are not equally populated,
it guarantees that, statistically, the random groups will have
about the same number of virtual machines.

Naturally, partitioning will affect the consolidation’s re-
sult, and the more partitions we have, the less effective our
consolidation is. It is true that load balancing significantly
attenuates this effect, but we would still have an error up to
the number of created partitions, on the minimum number of
nodes needed to run the current virtual machines, as shown
by Figure 3.

We can see that consolidating the whole cloud enables
us to free two physical resources, whereas partitioning
the cloud to three sub-clouds makes it impossible for this
optimization to take place. However, our evaluation shows
that this effect can be neglected in the context of big enough
configurations, in which dynamic scalability makes sense.

C. Virtualization

The created Entropy instances are virtualized, i.e., each
instance runs on a dedicated virtual machine. While it might
seem that all we do is parallelize the computation as could
be done using a powerful multi-core machine, we argue that
virtualization for computation’s sake, allows us to benefit
from the cloud’s resources themselves, since the created
instances would be on the cloud’s nodes. Besides, even pure
computational tasks can benefit from virtualization as we
witness the emergence of virtualized grids: Haizea [6] for

Nodes

Node's
Capacity

VMs

Partitions

Reconfiguration Reconfiguration

Figure 3. Partitioning’s effect on consolidation

instance, allows scheduling and management of virtualized
jobs, i.e., jobs running on virtual machines, to benefit from
the increased flexibility and reliability.

Since the cloud will contain both Entropy virtual instances
and the clients’ VMs and to avoid any confusion in the
remaining of this paper, the term VM refers to a client’s
VM unless we explicitly specify that it refers to an Entropy
VM instance.

D. Scaling

The estimation of necessary Entropy workers is done us-
ing the results of prior “gauging” of Entropy: we measure the
performance of Entropy with gradually increasing workload
and number of workers; this is done once and for all. Note
that we do not rely on a predictive algorithm to pre-provision
the Entropy workers, since the information that is needed to
foresee the right number of instances is itself the information
that is processed by Entropy. With this regard, any prediction
would only shift the period of our process.

Scaling up can only be done by provisioning extra
instances. However, in the case of Entropy, where two
iterations are completely independent as Entropy doesn’t
keep knowledge of the system’s state, scaling down can be
done in two different ways:

• At the end of each iteration, delete all created instances.
This way, every iteration will create just the right
number of instances it needs.

• Instances persist after their creation, and are only
deleted if they haven’t been needed for the last N
iterations, N to be determined empirically.

The final design is given by Figure 4. In this design, the
original Entropy has been cut into two parts:

• The Entropy Server, that is centralized, which performs
the partitioning and triggers the creation, deletion or
reconfiguration commands to the hypervisors.
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...

Groups

Entropy Workers

Compute number of needed workers

Partition the cloud's nodes

Wait for workers to get their sub-config

Entropy Server

Get subconfiguration

Compute reconfiguration plan

Send reconfiguration commands

System's
state

Manage
workers

Figure 4. Dynamically Scalable Entropy

• The Entropy Worker, which consolidates the sub-
configuration it is assigned and issues the migration
commands to its’ sub-configuration’s hypervisors.

The communication between the centralized part and the
VM instance is done on a poll basis: once an Entropy
VM instance is created, it retrieves its sub-configuration and
starts processing it immediately.

E. Performance Gain

Let S be the size of the cloud (i.e., the number of virtual
machines × the number of physical machines) and Ent(S),
the cost of the original Entropy. The cost of our virtualized
version is given by:

Entvirt(S) = Ent(S1) + Cvirt

where S1 is the size that has been found to be the appropriate
load for one entropy instance and Cvirt is the cost of
provisioning an Entropy virtual instance, it is not a function
of the number of instances to be created since provisioning
will not take place on the same nodes, and can thus be
achieved in parallel. Moreover, this constant is amortized
thanks to the relative persistence of our virtual instances.

Thus, our approach guarantees a constant cost, with
only a small trade-off due to the partitioning mechanism,
whereas applying Entropy to the cloud as a whole grows
exponentially with its size.

IV. EVALUATION

In this section, after briefly presenting the technical con-
text and the methodology of our experiments, we discuss
their results in order to validate the efficiency of our elastic
consolidation manager.

A. Technical Context

The infrastructure used for our experiments is a pri-
vate cloud managed by OpenStack [7], which is an EC2
compatible IaaS management solution, running on 2 racks
with 6 Intel(R) Xeon(R) CPU E5645 @2.40GHz cores and
32 GB of RAM each, interconnected by a 1 Gbit/s isolated
LAN. All the managed virtual machine instances are of type
m1.small as described by Amazon EC2, i.e., with 2 GB of
memory and 1 virtual CPU.

Note that this infrastructure is only used to host the
Entropy VM instances, the configurations being consolidated
are generated in order to have loads big enough to stress the
scalability of Entropy.

B. Methodology

With this evaluation, our aim is to:
• see if we actually achieve any performance gain by

using more workers, keeping in mind the limitation
discussed in Section III-B;

• show the interest of having an elastic consolidation
manager.

To do so, we consider a cloud infrastructure of 200 homo-
geneous physical machines, each having 3GB of memory,
consuming 100W when idle and at most 200W. For this
infrastructure, we generate different virtual machines which
have variant requirements (CPU usage: 20%, 40% or 60%;
memory: 500MB, 1GB or 2GB).

We first vary the load of our cloud infrastructure and
compute the optimal consumption using 1 up to 10 Entropy
workers; the load is given by:

load = max

(
totalMemory

totalMemCapacity
,

totalCpu

totalCpuCapacity

)
Our metric when comparing the results given by the

different sizes of workers is the error with regard to the
theoretical optimal consumption, that is:

error =
consumption− optimalConsumption

optimalConsumption

Note that the theoretical optimal consumption in which we
use just enough physical machines is straightforward to have
as it is given by:

A = totalCpu× consMax− consMin

100

B = ceil

(
totalCpu

totalCpuCapacity

)
× consMin

optimalConsumption = A+B

where A linearly computes the ratio of consumption based
on the total ratio of CPU usage and B multiplies the
minimum number of necessary physical machines by their
minimum consumption.
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What is actually hard is to find a configuration that
corresponds to this optimal consumption while maintaining
the constraints related to the needs of each virtual machine
and the capacities of the physical machines, hence the
interest of Entropy.

This first experiment will serve as a gauging on which we
will base our scaling decisions for the elasticity evaluation.
Our program retrieves configurations with random loads and
try to compute a result within a given error margin by
provisioning as many workers as needed.

Note that for all the experiments, Entropy’s timeout is set
to 1 minute.

C. Distributed Entropy

Figure 5 shows the results given by Entropy with different
numbers of workers, for the same loads which vary from 10
to 50%.
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Figure 5. Comparing consumption results, for 200 PMs

We can see that for a cloud loaded at only 10%, we
do not always improve the result by adding more workers
which is justified by the limitation discussed in III-B. On the
other hand, for more important loads, we do achieve better
optimization by using more workers.

Figure 6 depicts the error rates for this experiment.
Based on these values, in order to have a result within an
error margin of 20%, we will need the following minimum
numbers of workers, depending on the load:

Loads 10% 20% 30% 40% 50%
Workers 4 6 8 9 10

D. Elastic Entropy

Now that we have gauged Entropy, we can use it to
elastically adapt to any load in order to provide a result with
an error of no more than 20%. Figure 7 shows a random
load profile and Figure 8 shows the corresponding behavior
of our elastic consolidation manager.
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We can see that the number of workers adapts to the
load in order to guarantee an error rate of less than 20%.
Note that in order to have that same performance with a
static provisioning, we will have to maintain 10 workers all
the time although the maximum number of 10 workers is
only needed once, thus the advantage of having an elastic
solution.

V. RELATED WORK

Concerning energy control, some solutions in the state of
the art focus on a single node while other solutions work at
the granularity of a distributed system. Most of them have
initially focused on energy management for laptop pow-
ered by electric battery [8][9][10]. Other solutions [11][12]
take into account cooling and thermal factors to place the
workload in areas of a datacenter that are easier to cool.
More recently some works addressed energy management
on cluster, grid and cloud infrastructures. Most of these
researches are based on (i) hardware with voltage and
frequency control (e.g DVFS), (ii) resource allocation and
virtualization.

In particular, many modern processors, memory chips
and disk architectures embed power-saving features so that
the system can adapt the energy consumption by switching
hardware state through ACPI interfaces. Indeed, there is an
emerging class of servers that are designed around proces-
sors with dynamic voltage scaling mechanisms (DVFS) [13].
Using this ability, a processor adjust its voltage and fre-
quency according to the workload to optimize energy con-
sumption independently on each node of a cluster. Re-
searchers have developed different DVFS based algorithms
and policies to save energy. Reducing power consumption
by reducing the clock frequency of the processor has been
widely studied [14][15]. Flautner et. al. [16] explored a
software-managed dynamic voltage scaling policy that sets
CPU speed on a task basis rather than by time intervals. [17]
proposes a power budget guided job scheduling policy that
maximizes overall job performance for a given power bud-
get. They argue that using DVFS under a power constraint,
performance can be significantly improved as it allows more
jobs to run simultaneously leading to shorter wait times.

[18][19][20] focused on dynamic resource provisioning in
response to dynamic workload changes. These techniques
monitor workloads or other SLA metrics experienced by
a server and adjust the instantaneous resources available
to the server, with or without virtualization. Depending
on the granularity of the server, single or replicated, the
dynamically provisioned resources can be a whole virtual
machine in the case of replicated servers or more fine grain
resources such as CPU cycles or memory in the case of
a single server. In the case of replicated servers, energy
efficiency is achieved using a workload-aware, just-right
dynamic provisioning mechanism and the ability to power

down subsystems of a host system that are not required by
the virtual machines mapped to it.

Concerning virtualization, some works address the prob-
lem at the virtual machine management level in such a way
that the performance goals are met and the energy consump-
tion is minimized. Hermenier [1][2] developed a system
which relies on virtual machine migration for transparently
relocating any application in the cluster. The placement pol-
icy takes into account the CPU and memory usage, in order
to concentrate the workload on fewer nodes of the cluster,
thus allowing unused nodes to be shutdown. Menasce[21]
proposes an autonomic controller and showed how it can
be used to dynamically allocate CPUs in virtualized en-
vironments with varying workload levels by optimizing a
global utility function. Song[22] proposes an adaptive and
dynamic scheme for adjusting resources (specifically, CPU
and memory) between virtual machines on a single server
to share the physical resources efficiently.

To the best of our knowledge, our work is the first to use
an elastic capability at the level of the IaaS management
layer itself in the case of a consolidation service. Only [23]
describes a closed work in the case of migrating all virtual
machines from a datacenter to another for maintenance
purposes. This management operation is however driven by
a human administrator. We share the basic assumption of
virtualizing the management service whereas we distinguish
ourselves by the real time estimation of the working set, by
our probabilistic dynamic partitioning technique and by the
kind of management service we addressed.

VI. CONCLUSION

This paper has proposed an elastic consolidation service
that adjusts its size to the dynamic needs of the cloud
environment. Our proposition relies on virtualizing the con-
solidation service, which allows easily scaling this service
by provisioning dedicated virtual machines to process the
consolidation. Since these virtual machines persist for a
certain period of time, the provisioning cost is amortized and
can thus be neglected. Any of these virtual machines is in
charge of consolidating a partition of the cloud environment,
defined by a probabilistic node partitioning policy. By doing
so, the exponential cost of consolidation becomes quasi-
constant. Whereas our solution is quite simple, a perfor-
mance evaluation shows that it provides good results.
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