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Abstract – We present a numerical and theoretical investigation on the natural convection of a low Prandtl number fluid (Pr = 0.025) in 2D and 3D side-
heated enclosures tilted α = 80◦ with respect to the vertical position. The choice of this inclination angle comes from a previous linear stability analysis of 
the basic (plane-parallel) flow that predicts the same critical Ra for longitudinal oscillatory and stationary transversal modes. In both the 2D and 3D 
enclosures the first transition gradually leads to a transversal stationary centered shear roll. In the 2D geometry the flow becomes time-dependent and 
multicellular (3 rolls) at the onset of a Hopf bifurcation, followed by subsequent period-doubling. On the other hand, in the 3D enclosure, the onset of 
oscillations is due to a fully three-dimensional standing wave composed of three counter-rotating longitudinal rolls. The further evolution of the 3D flow 
qualitatively agrees with previous experiments (J. Crystal Growth, 102 (1990) pp. 54–68): a quasiperiodic flow followed by a frequency locked state. 
The main contribution of this work is the analysis of the flow structure underlying the secondary frequency: a transversal wave composed of two shear 
rolls that coexist with the three longitudinal cells. This is the first numerical work that explicitly illustrates this scenario which was suggested at the onset 
of the biperiodic regime in many of the previous experiments. 

inclined Hadley configuration / instabilities / oscillations / bifurcation / numerical calculation

Nomenclature

Az, Ay aspect ratios: H/L, H/D

g acceleration due to gravity

f1, f2 fundamental frequency and secondary frequency

f
(2D)

1 fundamental frequency for the 2D calculations

Gr Grashof number, gβ�T h4/Lν2

H , D, L dimensions of the enclosure in the x, y and z direction

h,d semi-depth and semi-width of the enclosure, h=H/2, d =D/2

K nondimensional axial temperature gradient at the core

m wavenumber along the y direction

Pr Prandtl number, ν/κ

Ra Rayleigh number, gβ�T h4/Lνκ

∗ Correspondence and reprints.

E-mail address: rafa@fisfun.uned.es (R. Delgado-Buscalioni).
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T nondimensional temperature

�T dimensional temperature difference between the end-walls

δt time step

v = (u, v,w) nondimensional velocity (along x, y and z directions)

Greek symbols

α inclination of the z axis with respect to the vertical direction

β coefficient of thermal expansion

κ thermal diffusivity

ν kinematic viscosity

ρ fluid density

1. Introduction

Since the invention of the Bridgman technique for the production of homogeneous pure semiconductor

crystals, there has been a considerable interest in the flow of liquid metals in shallow cavities with externally

imposed horizontal temperature gradients. Using the Bridgman technique in horizontal cavities it was noticed

that above a certain temperature gradient, undesirable striations of solute were found in the crystal. The early

experiments (see Hurle et al. [1] and references therein) showed that the striations were due to temperature

oscillations, induced by time-dependent flow, that cause the crystal to consecutively solidify and remelt at the

interface. Subsequent experimental and theoretical studies were devoted to the stability of the steady regime

of this type of flow, known as Hadley circulation. A great variety of instabilities were revealed and soon the

Hadley configuration was also thought of as a practical support for investigating the routes to chaos.

The steady basic flow is essentially bidimensional and flows in the section (x, z) of figure 1. For a small

enough temperature gradient it consists of a steady motion that flows upwards in the hot region, downwards in

the cold region and traverses the core of the enclosure as a parallel flow, when far enough from the end walls.

In the inclined configuration the torque created by buoyancy depends also on the cross-stream temperature

differences and for α < 90◦ its effect is to enhance the convection. This fact motivated some studies of the basic

unicellular flow in the inclined configuration that showed that by a suitable choice of the inclination angle,

Figure 1. Geometry of the problem and sketch of the basic flow.
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larger transport rates can be obtained [2,3]. Stability analyses of the basic flow in the inclined configuration

may be found in [4–6]. The presence of a component of the buoyancy force along the heating axis of the

enclosure enables several instability mechanisms, which arise due to momentum-temperature couplings that

are not possible in the horizontal configuration. Furthermore, the inclined geometry makes more accessible the

investigation of interactions between different types of instabilities.

In any case, most of the previous investigations on this type of flow considered horizontal cavities (see [7–9]

for recent reviews). The stability of the basic Hadley circulation to transversal and longitudinal disturbances

was first studied by Hart (see [10,11] and references therein) for infinite long cavities (the parallel flow

solution). His results were then revised by Kuo and Korpela [12] and Laure [13]. Concerning low-Prandtl-

fluids they showed that for Pr > 0.034 the Hadley cell breaks down because of the oscillatory longitudinal

instability, whereas for lower Prandtl number, stationary transversal shear disturbances are the most dangerous.

Theoretical explanations for the physical origin of the oscillatory longitudinal instability and analytical trends

for its frequency were given by Hart [10,11] and Gill [14]. After the pioneering experimental works [1], several

experiments investigated the evolution of the flow with increasing values of the control parameter. Hung and

Andereck [15] used mercury in a wide and long enclosure (H ×D×L= 1 × 17.78 × 17.89), Pratte and Hart

[16,17] used the same fluid (Pr ≃ 0.026) and cavities with several aspect ratios. Braunsfurth and Mullin [8]

used a 1 × 1.35 × 4 enclosure and could change the value of the Prandtl number of their working fluid (liquid

gallium) by changing the mean temperature of the enclosure. Recently Davoust et al. [18] used mercury in

a cylindric geometry with a small diameter-to-length aspect ratio (1/10). The experiments showed that once

the oscillatory regime associated to the longitudinal instability is established, the next bifurcation leads to a

biperiodic flow with a (usually lower) secondary frequency. From a dynamical point of view, the details of the

secondary transition depends on the geometry, the aspect ratio and the Prandtl number and was characterized

by either a period doubling transition [17], a subharmonic cascade [19] or by a quasiperiodic flow [8,15,16]

followed in some cases by frequency-locked states [16]. Some previous experimental works have been focused

in the characterization of different types of bifurcations, using the time signals of the flow (see [8,20]). In

these works there was a considerable interest in finding regions of the space of parameters where two different

type of bifurcations intersects. For instance, Braunsfurth and Mullin [8] explored a region of the Pr−Gr space

and found several quasiperiodic states that arise at values of the parameter space near the intersection of two

lines of Hopf bifurcations. Also, the codimension of the problem may be increased by introducing a magnetic

field perpendicular to the plane of the basic flow, whose intensity is determined by Hartman number (see the

experiments in refs. [18,20]). By using this procedure McKell et al. [20] characterized several routes to chaos

from secondary Hopf bifurcations and period-doubling bifurcations.

However, the flow structure at the emergence of the secondary frequency is not so well studied. The inherent

limitations of the experiments were explained by Hung and Andereck [15] (see also [16]). When working

with liquid metals, the most sensitive way to capture the flow structure consists on placing thermistor probes

from point to point across the surface of the enclosure. The deviation in the temperature field produced by

the transverse rolls is extremely small and hence unobservable with the thermistor sensor. As a consequence

the experiments are limited to follow the temperature variations induced by the longitudinal modes. Although

it is therefore very difficult to elucidate what kind of motion is related to the secondary frequency from the

experimental outcome (see the method proposed in [16], which measures the phase lag between the probes),

interesting enough is that all those experimental investigations that tried to understand the connection between

the dynamics and the spatial structure of the flow [15,16,18], suggested that the novel structure underlying

the onset secondary frequency could be a transversal wave composed by shear rolls which coexist, as Ra is

increased, with the longitudinal one.
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On the other hand, the description of a fully developed 3D biperiodic flow in a confined geometry has

rather large overheads for a purely theoretical analysis. Previous theoretical approaches were able to give

trends for the fundamental frequency [10,11] or to perform a weakly non-linear analysis of the interactions

between modes in an unbounded geometry, valid in the neighbourhood of the secondary bifurcation (see

e.g., [21]). In view of these facts, numerical studies are specially needed to observe the detailed flow structure

of these low-Prandtl fluids at pre-chaotic stages. A large part of the numerical calculations on the horizontal

configuration were made using two-dimensional geometry (see [7] for a review). Although a good agreement

was found between them, any investigation in 2D is restricted to transversal instabilities. In 2D enclosures

at low Prandtl number, the flow becomes oscillatory after the onset of stationary shear rolls and it gains in

complexity by several possible paths (see [22,23]), which as a matter of fact, do not satisfactory explain the flow

oscillations found in the previous experiments. Demands for numerical calculations for the three-dimensional

flow were made [15,16]. In particular, one of the cases considered by Pratte and Hart [16] (a Pr = 0.026

fluid in a 1 × 2 × 4 enclosure) has been numerically studied by several authors [24,9]. Henry and Buffat [9]

estimated the critical Grashof number by assuming a Hopf bifurcation and extrapolating to zero oscillation

amplitude. They reported a critical Rayleigh number of Ra = 54.8 ± 0.5 and a frequency of f1 = 13.6ν/H 2,

while the biggest discrepancy previously reported (experimental result) is Ra = 68.74 and 14.3 (see [9] for a

detailed comparison). Nevertheless, in these numerical studies, the flow structure at the onset of the secondary

frequency was not considered. Another fact is that in the 1×2×4 enclosure selected by the previous numerical

calculations [24,9] the transversal and longitudinal instabilities appear respectively as one shear roll in the plane

of the basic flow ((x, z) in figure 1) and one longitudinal roll in the perpendicular plane (x, y). As noted by

Braunsfurth et al. [7] multicellular flows have not yet been reported in three-dimensional numerical results.

This lack of numerical studies was also mentioned by Henry and Buffat [9] who expressed the interest of

investigating other aspect ratios.

In this paper we present numerical calculations of the natural convection of a fluid with Pr = 0.025 in a

2D (H × L = 1 × 4) enclosure and a 3D one with dimensions 1 × 6 × 4. Both are inclined at α = 80◦ with

respect to the vertical position and heated along the side of length L= 4H . In principle, this set of parameters

was chosen to promote the interaction between longitudinal and transversal multicellular modes. First, the

selection of the angle comes from a previous stability analysis [6], which indicated that for a Pr = 0.025 fluid

the codimension-two line for the transversal and longitudinal instabilities passes through α = 80◦. Second,

the selected width (D = 6H ) is larger than that considered in the previous 3D numerical calculations [24,9]

(D = 2H ) and this fact enables the development of a longitudinal standing wave with multicellular structure

(three counter-rotating rolls) along the (x, y) plane. The resulting flow, at the largest Ra considered, has two

leading frequencies and consists of a longitudinal wave that coexists with two co-rotating transversal cells. The

relevant outcome of this result is the possibility of relating the spatial structure of the flow with its temporal

behaviour at the onset of bi-periodicity.

The rest of the paper continues as follows. Section 2 presents the governing equations. The results concerning

the flow in the 2D geometry are presented in section 3. The bulk of the paper, in section 4, deals with the flow in

the 3D enclosure and focuses its attention on the relation between the dynamical behaviour and flow structure

at the subsequent transitions. Conclusions are given in section 5.

2. Equations of motion

Let us consider the flow in the enclosure of figure 1. The dimensions of the enclosure along x, y and z

directions are respectively H = 2h, D and L. The z-axis is inclined an angle 180◦ − α with respect to

the gravity vector, g and an excess of temperature �T is imposed between the walls separated by L. The
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enclosure is filled with an incompressible fluid with thermal expansion coefficient β, kinematic viscosity ν,

and thermal diffusivity κ . For any non-vertical position α �= {0◦,180◦} mechanical equilibrium is impossible

and a convective motion is established. We assume that the flow is governed by the Navier–Stokes and heat

transport equations with the Boussinesq approximation. By using, h2/ν, h, ν/h,�T and ρ0ν
2/h2 respectively

as scales for time, length, velocity, temperature and pressure the nondimensional equations are (1)–(3)

∇ · v = 0, (1)
(

∂v

∂t
+ v · ∇v

)

= −∇P + ∇2v − 2Ra Pr−1A−1
z T eg, (2)

∂T

∂t
+ (v · ∇)T = Pr−1∇2T . (3)

The walls are rigid (no-slip condition is assumed) and the heat flux perpendicular to the walls is zero (insulating

walls). These conditions, along with the temperature at the end walls, yields the following boundary conditions,

v = 0 at x = ±1, y = ±A−1
y , z=

{

0,2A−1
z

}

, (4)

T = 0 at z= 0; T = −1 at z= 2A−1
z , (5)

∂T

∂x
= 0 at x = ±1, (6)

∂T

∂y
= 0 at y = ±A−1

y , (7)

(8)

where eg = sinα î − cosα k̂, is the gravity vector and v, T , and p the dimensionless velocity, temperature,

and pressure. The Rayleigh number and Prandtl number are defined respectively as Ra = gβ�T h4/Lνκ and

Pr = ν/κ .

3. Two-dimensional flow

3.1. Numerical method

By taking the curl in the Navier–Stokes equation an equation for the vorticity (−∇ × v) is obtained. For the

two dimensional flow in the (x, z)-plane the vorticity is parallel to the y-direction and therefore may be treated

as an scalar quantity. Also, a stream-function can be defined in such a way that the Laplacian of the stream-

function equals the vorticity. A Chebyshev-collocation pseudospectral method has been used for solving the

unsteady vorticity and heat equations in vorticity-stream function variables for the closed two-dimensional

geometry (i.e. for the (x, z)-plane). The spatial approximation in both directions is done by expanding the flow

variables in truncated series of Chebyshev polynomials [25]. The time discretization is obtained through an

Adam-Bashforth, second order Backward Euler scheme [25]. This is a semi-implicit finite difference scheme;

i.e., the diffusive terms are treated implicitly while the non-linear terms are treated explicitly. The equations

for the stream function and vorticity consist of a Stokes-type problem which is solved by using the Influence

Matrix technique [25].

In all the studied cases a grid of 31 × 81 collocation points were enough to obtain accuracies of better than

about 2%. The smallest time steps were δt = 10−4h2/ν and correspond to calculations for Ra above the Hopf

bifurcation. We refer to [22] for a detailed study on the grid and time step solution’s dependence in a case
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Figure 2. From left to right, the first three figures correspond to the streamfunction of the 2D stationary flow. The vector field plots correspond to the

3D oscillatory flow at Ra = 30 and Ra = 47 at approximately the center of the enclosure (y = 0.05).

(α = 90◦, H/L= 1/4 and Pr = 0 and 0.015) very similar to that considered in this work. In [22] the typical

meshes were 20 × 60 and similar time steps were used.

3.2. Results

The critical Rayleigh number for the onset of stationary transversal rolls obtained from the stability analysis

of the strictly plane-parallel flow (valid for cavities with L≫ H ) is Ra = 13 (see [6]). In the finite enclosure

the distortion of the basic parallel flow begins to be observed at Ra > 15. As may be seen in figure 2, this

distortion consists of a stationary shear roll that gradually grows at the center of the enclosure and detaches

from the end walls as the Rayleigh number is increased. This gradual transition is an example of imperfect

bifurcation induced by the presence of the end walls similar to those reported for Pr = 0 fluids in the horizontal

enclosure with Az = 1/4 [22,7] and in longer inclined cavities with Pr ≃ 1 [6]. At 55 <Ra � 60 a transition

to oscillatory flow occurs. Snapshots of the flow along a period are shown in figure 3(a). In horizontal cavities

(α = 90◦) and for lower Prandtl number (Pr � 0.015) a similar transition was reported and characterized

as a Hopf bifurcation [22,26,27]. The snapshots shown in figure 3(a) are very similar to those presented by

Pulicani et al. [22] for Pr = 0.015 and α = 90◦, who found the Hopf bifurcation at Gr = 2375. For the same

parameters (Az = 1/4 and Pr = 0.015) Skeldon et al. [23] calculated the dependence of the critical Grashof

number for the onset of oscillations with the inclination angle showing that it has a minimum value around

α ∼ 50◦ (Gr ≃ 1350) while for α = 80◦ it is around Gr ≃ 1950. Nevertheless, as shown also in [23], in the

horizontal enclosure, the critical Grashof number for the onset of oscillations increases rapidly with Pr (e.g.,

Gr = 6231.25 for Pr = 0.021) and for Pr = 0.025 no evidence of oscillations were found for Grashof numbers

up to 9375. Interestingly enough is that for α = 80◦ and Pr = 0.025 we observed oscillations at a much lower

Grashof number, Gr = 2400. Similar abrupt changes between the inclined and the horizontal configurations

were also observed in the onset of transversal instabilities as the value of Pr was increased ([6,4]). These

differences could be explained by considering the energy balance of the critical modes ([6]). Briefly, as Pr

increases, the thermal effects become increasingly important and if the enclosure is inclined and heated-from-

below (α < 90◦) the transversal perturbation can obtain a increasing part of kinetic energy by a destabilizing

mechanism that couples the cross-stream advection of heat and the z-component of the buoyancy force.

As shown in figure 3(a), the first Hopf bifurcation does not break the centro-symmetry of the flow. This

symmetry is preserved until Ra < 90, but for Ra � 100 a period-doubling transition is observed and at

any instant the centro-symmetry is broken. Snapshots of the flow at Ra = 100 and along a period of the

fundamental frequency 1/f
(2D)
1 are shown in figure 3(b). Note that after the period-doubling transition the flow
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Figure 3. Streamfunctions of the two-dimensional flow: (a) Snapshots along a period of motion at Ra = 90 and (b) at Ra = 100 along the period

associated to the fundamental frequency, 1/f
(2D)
1

. The time signal of the streamfunction at x = 0.12 and the central section z=A−1
z is shown in both

cases.

preserves the centro-symmetry between states separated by a period of the fundamental frequency (which is

the semiperiod of the oscillation, as long as the flow is periodic in 2/f
(2D)
1 ). As may be seen in figure 7(c),

the fundamental frequency grows with Ra approximately as the maximum z-velocity of the mean flow

(〈wmax〉 ≃ 0.31Ra4/7Pr−1). A fluid particle needs a time of about (〈wmax〉Az/4)
−1(h2/ν)≃ (0.75 Ra4/7)−1h2/ν

to cross the enclosure along z-direction and return to the starting point. The fundamental frequency increases as

0.53 Ra4/7ν/h2. This indicates that the origin of the oscillation of the shear rolls is the convection of the mean

flow along the z-axis. Spectra with both f
(2D)
1 and f

(2D)
1 /2 are observed at least for 100 � Ra � 190. Although

we did not advance further in the control parameter, it is probable that at large enough Ra a steady branch

with two co-rotating shear rolls coexists with the oscillatory solution. The existence of a bicellular solution

was reported in fluids with Pr = 0 and Pr = 0.015 (with conducting walls) in the work of Pulicani et al. [22].

Also Winters [26] predicts that the bicell is the most stable solution at large Gr . Nevertheless, in the case of

insulating boundaries and larger Prandtl number (Pr = 0.025), the onset of the bi-cell flow is shifted towards

higher values of Ra because of the relatively stronger damping caused by the stably stratified core (for instance,

in [22] the bicell was not reported for Pr = 0.015 and insulating walls).

4. Three-dimensional flow

4.1. Numerical aspects

Using the same values of the Prandtl number and the inclination (Pr = 0.025 and α = 80◦) we carried out

numerical simulations of the flow in a 3D enclosure with the same H/L aspect ratio (1/4) and Ay =H/D =

1/6. We have used a commercial code 1 that solves the coupled mass, momentum and energy conservation

1 CFD2000 by Adaptive Research, Pacific Sierra Corp., 1997.
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Table I. Comparison of several flow quantities obtained for Ra = 93.75 and several meshes and time steps, δt . 〈umax〉t is the time averaged maximum

value of u and A
(y)
w is the maximum amplitude of the spatial variation of w along y-direction measured in the core of the enclosure (L/4< z < 3L/4).

The fundamental frequency scaled with ν/h2 is f1. In all cases the flow is oscillatory.

Mesh δt 〈umax〉t 〈vmax〉t 〈wmax〉t A
(y)
w A

(y)
T

f1

15 × 46 × 35 0.002 93.03 83.75 163.64 37.43 0.170 4.464

15 × 46 × 35 0.001 93.70 83.10 164.02 37.52 0.172 4.481

15 × 46 × 71 0.002 95.52 85.74 169.73 39.03 0.177 4.465

15 × 91 × 35 0.002 96.89 85.90 170.10 39.72 0.175 4.470

Table II. Results for Pr = 0.025, α = 80◦ and Az = 1/4, Ay = 1/6. The notation is as follows: BF, basic stationary flow; S, stationary flow; P1,

oscillatory flow; QP, quasiperiodic flow; P2, periodic flow with two locked frequencies. The fundamental frequency, f1, and the secondary one, f2, are

given in ν/h2 . Results have been obtained with the 16 × 46 × 36 mesh and a time step δt = 0.002h2/ν.

Ra R =K Ra Dynamics f1 f2 n◦ long. cells n◦ trans. cells

� 15 � 15 BF – – 0 0

31.25 28.56 S – – 0 1

46.875 40.5 P1 3.27 – 3 1

62.5 50.44 P1 3.65 – 3 1

93.75 68.81 P1 4.47 – 3 1

156.25 93.29 P1 5.49 – 3 1

195.31 116.21 QP 6.07 1.135 3 2

218.75 118.87 P2 6.35 1.155 (2f1/11) 3 2

equations (equations (1)–(3)) by a finite volume method. The coupling between velocity and pressure is solved

by a PISO algorithm. For a detailed explanation of the numerical method see [28].

In order to check out the grid dependency of the solution, a mesh refinement was made in several cases

which presented both oscillatory and stationary behaviour. In the oscillatory case the dependence with the

time step was also studied. Table I compares the values of some flow quantities obtained with several grids in

calculations made with Ra = 93 (an oscillatory case). Note that the maximum difference between the maximum

mean velocities is about 4% indicating that the more coarse-grained mesh retains the main characteristic of the

flow. A precise representation of the oscillatory solutions has been guaranteed by using time steps of about

10−3h2/ν which yield about 100 time steps per period. In any case, once the longitudinal wave is established

we found an upper boundary for the time step that preserves the stability of the numerical algorithm: for

time steps greater than δt > 0.002h2/ν, it lead either to a non-oscillatory behaviour or to the divergence of

the solution (for δt > 0.005). In order to physically understand this fact, note that the fluid takes a time of

order h/〈umax〉 ∼ 0.01h2/ν to cross the shorter direction of the enclosure (see table I). This clearly implies an

upper threshold for δt , so that to properly reproduce the oscillatory flow, one needs several evaluations of the

flow on its motion along the shorter direction. Concerning the length of the transients, in those calculations

where the longitudinal was present, the transient time varied between 5 and 7h2/ν. These values are of the

same order as the characteristic diffusion time of the wave along the longest direction of the enclosure (y):

(d2/(νκ)1/2 ≃ 6h2/ν). Both facts (the limit for δt and the long transient times) impose large computational

times (for instance for the finer mesh (15 × 91 × 35), 5 hours per cycle in an 400 MHz machine).

4.2. Results

Table II shows the main characteristics of the flow obtained from our numerical calculations as the Rayleigh

number were increased. In particular, we show the value of the local Rayleigh at the core, R =K Ra (note that
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it is calculated with the local temperature gradient along z direction, −K�T/L), the dynamical behaviour of

the flow, the values of the fundamental and secondary frequencies, f1 and f2, and the number of longitudinal

and transversal cells found in the core of the enclosure. In the following discussion, reference to table II shall

be useful.

4.2.1. Gradual development of a stationary shear roll, Ra � 20

For Ra � 47, the flow remains stable to the longitudinal instability and it is essentially two-dimensional.

Therefore, the comments made in a previous section for the 2D flow remain valid at this stage of the 3D flow.

In particular, for Ra � 20, a transversal shear roll may be observed at the center of the (x, z)-plane and its

amplitude gradually increases with Ra. Figure 2 shows the similarity between the 2D flow and the 3D flow at

the central (x, z)-plane (y ≃ 0) for Ra = 30 and Ra = 50.

4.2.2. The longitudinal oscillatory rolls, Ra � 47

The two-dimensional stationary flow is broken at 31.25< Ra � 47 due to the onset of an oscillatory flow with

three longitudinal (counter-rotating) rolls along the y direction, which may be seen in figure 4 for a slightly

greater value of Ra. For the lowest value of Ra at which we observed the longitudinal wave (Ra = 47), the

value of the local Rayleigh number at the core is R =K Ra = 40, the wavelength is approximately 4H (wave

number m = 0.785) and the frequency is f1 = 3.27ν/h2. For these values of R, m the frequency predicted

by the linear stability analysis is f = 3.45ν/h2, very close to the numerical result. This clearly indicates that

the flow corresponds to the onset oscillatory longitudinal instability obtained in the linear stability of the basic

plane-parallel flow [4].

Some questions may arise concerning the wavenumber selection in the confined geometry. The critical

wavenumber predicted by the linear stability analysis is m = 0.34. This gives a critical wavelength (without

considering the confinement) of about 9H , which is is larger than the width of the enclosure (D = 6H ). On

the other hand, the numerical calculations of Henry and Buffat [9] show that the onset longitudinal standing

wave consists of a Hopf bifurcation which breaks some symmetries of the mean flow. We have observed the

same ruptures of symmetries: the symmetry about y = 0 (x, y, z, u, v,w,T )→ (x,−y, z, u,−v,w,T ) and the

reflection (x, y, z, u, v,w,T )→ (−x, y,2A−1
z − z,−u, v,−w,−1 − T ). Note that the symmetry about y = 0

is broken only if an odd number of longitudinal rolls develops along the y direction. The selection of the three

roll pattern (instead of a unique longitudinal cell) probably occurs because it minimizes the diffusion; also, at

the value of Ra of the transition, its wavenumber may have a slightly faster growth rate, as suggested by the

stability analysis.

Recall that for Ra > 20 a shear roll develops in the center of the (x, z)-plane. Once the oscillatory flow is

established, the transversal cell is convected by the longitudinal standing wave. Along a period of the oscillation

the center of the shear roll moves in a ellipse at each (x, z)-section; the amplitude of the ellipse is maxima at

those values of y where the standing wave has a valley and minima where it has a node (for instance, at the

center section, y = 0). If one observes the sections of the velocity field shown figures 5 and 6, it is seen that

the position of the center of the shear roll describes a sinusoidal path along the y axis. Essentially, the motion

of the center of the transversal cell coincides with the description made in [9] in an enclosure with the same

depth-to-length ratio, H/L= 1/4, and a shorter y-direction (D = 2H ) occupied by one longitudinal roll.

4.2.3. The fundamental frequency, f1

At least for 47 �R � 156 the flow is oscillatory and the power spectra of the time signal shows a fundamental

frequency f1 and its higher harmonics (see figure 8). As mentioned above, in this range of Ra, one shear

roll coexists with the longitudinal wave but the dynamics of the oscillation is essentially governed by the

9



Figure 4. From above to below, snapshots of the vector field, isothermals and isovalues of the z-velocity at the plane z= 1.1A−1
z (near the center of the

enclosure) along a semiperiod of the oscillation. The results correspond to Ra = 62.5 and the fundamental frequency is f1 = 3.65ν/h2 .
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Figure 5. Snapshots of the flow at Ra = 195 at an instant of minimum intensity of the perturbative flow in the (x, y)-plane. (a), (b) and (c) show cuts of

the vector field at respectively y = cte, z= cte and x = cte planes. (d) Magnification of the vector field in the y = cte planes labeled in (a) by 3 and 5.

longitudinal wave. To show this fact, we shall compare the trend of the numerical calculated values of f1 with

a theoretical prediction for the frequency associated to the longitudinal wave, obtained by extrapolating to the

inclined case the approximation made by Hart [10,11] for the horizontal enclosure

2πfteor =

(

m2K Ra sin(α)〈w′〉

π2 +m2

)1/3

ν/h2, (9)

where 〈w′〉 denotes the x derivative of the mean flow and K the temperature z-gradient at the core region

Note that in equation (9) the nondimensional group associated to buoyancy is K Ra sin(α), instead of Ra which

appears in the relationship given in [10,11]. This means that we are implicitly assuming that: first, for the

angle considered, the contribution of the z-component of the buoyancy force is negligible for the dynamics of

the oscillation; and second, that the perturbative motion originates in the core of the enclosure and hence the

proper relation has to be expressed in terms of the the local Rayleigh number at the core, KRa. In order to

evaluate the terms of equation (9) we have measured K by averaging in the core (between L/4< z < 3L/4)

the temperature z-gradient along one oscillation cycle. The maximum z-velocity of the mean flow, 〈wmax〉 has
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Figure 6. Snapshots of the flow at Ra = 195 at an instant of maximum intensity of the perturbative flow in the (x, y)-plane. The snapshots correspond

to an instant of time separated from those in figure 5 by a quarter of period of the fundamental cycle. For (a), (b), (c) and (d) see the caption of figure 5.

been also evaluated in this way. The mean velocity profile along the x direction is S-shaped and its maximum

is located near |x| = 1/2, hence the relation 〈w′〉 ≃ 2〈wmax〉 is approximately satisfied. Figures 7(b) and 7(c)

show the calculated values of K and 〈wmax〉 versus Ra along with the best fits to the numerical data. Note that

despite the qualitatively differences between 2D and the 3D flows found for Ra> 47, the maximum velocity of

the mean flow coincides in both geometries. It is worthwhile to mention that the trend 〈wmax〉 ∼ Ra4/7κ/h has

been observed for a large range of Pr numbers in inclined heated from bellow cavities (α < 90◦) and that it has

been also theoretically predicted (see [3]). Introducing the trends found for K and 〈w′〉 into equation (9) one

obtains, fteor ∼ Ra3/7. The fundamental frequency of the oscillation is shown in figure 7(a) versus the Rayleigh

number. The best fit using the theoretical trend is f1 = 0.63 Ra3/7ν/h2 and it is shown in dashed lines. As

may be seen in figure 7(a) the qualitative agreement is excellent. Equation (9) gives fteor = 0.3 Ra3/7ν/h2, so

the order of magnitude of the theoretical approximation is consistent with the numerically obtained values of

f1. In conclusion, the dynamics of the fundamental oscillation is controlled by the longitudinal wave and the

presence of the shear roll observed for Ra � 156 does not affect the temporal behaviour of the flow. Also, for

the inclination considered (α = 80◦), the z-component of buoyancy does not alter the basic mechanism of the

oscillations which is essentially the same that for horizontal cavities (see [14,10,11]).
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Figure 7. (a) Fundamental frequency of the 3D and the 2D flow versus Ra; (b) and (c) show respectively the mean temperature z-gradient at the core K

and the maximum value of the mean z-velocity of the flow, 〈Wmax〉, versus Ra.

4.3. Transition to quasiperiodic flow, Ra = 195, and frequency locked state, Ra = 219

For Ra � 195 the time signals present a long period modulation. As shown in the power spectra of figure 8(b),

at Ra = 195, the frequency of the modulation is f2 = 1.135ν/h2, nearly 6 times lower than the fundamental

frequency, f1 = 6.10ν/h2. The Poincare’s sections of the phase orbits (see figure 9(a)) indicate that a transition

to quasi-periodic flow has occurred. At a slightly greater value of the Rayleigh number, Ra = 219, both

frequencies lock to f2 = 2f1/11, with f1 = 6.355ν/h2. Components of frequency f2 = f1/11 are also seen

in the power spectra obtained at Ra = 219 but as may be seen in figure 8, the dominant frequency of the

modulation is 2f1/11 = 1.155ν/h2. Figure 9 shows projection of the orbit in the phase-space and one of its

Poincare’s sections where a number of 11 spots are clearly visible.

In order to find the changes in the flow structure at the onset of the secondary frequency we put particular

attention in the (x, z)-sections of the velocity field. Recall (see table II) that the flow has a unique transversal

cell, at least for 20 � Ra � 156 but at Ra = 193 two transversal co-rotating cells are clearly visible in the (x, z)-

sections of the flow. The biperiodic flow consists on the three longitudinal rolls (related to the longitudinal wave

that yields the fundamental period of the flow) and two transversal shear rolls that slightly oscillate along the

z axis, with a period that corresponds to the secondary frequency. This bicellular pattern in the (x, z)-sections

is directly observable from the velocity field when and where the intensity of the perturbative flow associated

to the longitudinal wave is weaker. This is illustrated in figures 5 and 6. Figure 5 shows a snapshot of the flow

for Ra = 193 which was taken around at an instant of minimum intensity of the (x, y) perturbative flow. In

this figure, the transversal bicellular flow may be directly observed in the (x, z) sections labeled by (1), (3)

and (5) (the sections on the planes labeled by (3) and (5) have been magnified in figures 5(d) and 6(d)). As

seen in figure 5(c), around these planes the perturbative z-velocity associated to the longitudinal wave reaches

also its minimum intensity. Figure 6 illustrates the flow at an instant separated from the snapshots in figure 5

by roughly a quarter of the fundamental period. By the instant of figure 6, the intensity of the longitudinal rolls

has increased to its maximum value and its presence apparently destroys the bicellular pattern, which is not

directly visible at this stage of the fundamental cycle.
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Figure 8. Time signal of the x-velocity obtained at x/h = −0.09, y = −0.80A−1
y and z = 1.26A−1

z (with x ∈ [−1,1], y ∈ [−A−1
y ,A

−1
y ] and

z ∈ [0,2A−1
z ]) and its power spectra for (a) Ra = 62.5, (b) Ra = 195 and (c) Ra = 219.

5. Conclusions

We have carried out numerical calculations of the convection of a low Prandtl number fluid (Pr = 0.025)

in an inclined enclosure with dimensions H × D × L = 1 × 6 × 4 heated along its side of length L. For

α = 90◦ the enclosure is in horizontal position and the linear stability analysis of the basic unicellular flow

(see [12,15]) predicts that, as the Rayleigh number increases, the first instability to appear is the transversal

stationary shear instability followed by a longitudinal oscillatory instability. Respectively, these instabilities

are two and three-dimensional in nature. In this work, calculations have been made for a slightly smaller

inclination, α = 80◦, at which the stability analysis [5] yields the same value of the critical Rayleigh number

for both types of instabilities. The three-dimensional (3D) calculations were done by a finite volume method
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Figure 9. (a) Bidimensional projections of the torus in the phase-space and Poincare’s sections obtained at Ra = 193; (b) in the quasiperiodic regime

and at Ra = 219; (c) in a frequency locked state for which the the lowest frequency of the system is 11 times smaller that the fundamental one, f1

(remark the 11 spots in (c)).

in a enclosure with 1 × 6 × 4 and were compared with calculations in the two-dimensional 1 × 4 enclosure,

made by a spectral method. For Ra < 47 the flow is bidimensional in nature and the 2D and 3D calculations

gives similar results. In particular, at Ra > 15 a stationary shear roll begins to be formed in the center of the

enclosure and its intensity gradually develops with Ra, according to an imperfect transition caused by the finite

length (L= 4H ) of the enclosure. The further transitions to time dependent flows are of different nature in the

2D and 3D situations. In the 2D enclosure, a Hopf bifurcation occurs at 55 <Ra � 60 and the flow grows in

complexity, loosing its centro-symmetry when a period-doubling bifurcation occurs at 90<Ra � 100. The 3D

calculations show that the flow becomes three-dimensional at a lower value of Ra (31.25 < Ra � 47), due to

the onset of the longitudinal oscillatory instability with three rolls along the width of the enclosure (D = 6H ).

The primary frequency grows as f1 ∼ Ra3/7ν/h2; a trend which agrees with our theoretical relationship

inspired by the analysis of Hart [10,11]. A secondary frequency appears at Ra = 193 and the 3D flow becomes

quasiperiodic. Several transitions to biperiodic flow have been reported in previous studies on horizontal

cavities and for different aspect ratios and Prandtl numbers [8,15,16,18]. A rather common hypothesis made

in former experiments is that the secondary frequency could be due to a traveling wave formed by transversal

rolls [15,16,18]. The present work gives the first numerical evidence on the connection between both facts. We

have found that the onset of a quasiperiodic flow coincides with the formation of a bicellular transversal pattern

that coexists with the longitudinal wave at least for Ra � 193 and whose associated frequency locks to 2/11

times the fundamental one as Ra increases.

To conclude, it is worthwhile to mention that the inclined configuration enables a new dimension in

the parameter space and therefore makes more feasible the study of several types of instabilities and their
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corresponding interactions for suitable choices of the operating parameters [6,5]. This may be achieved using

an experimental setup which may be simpler than the introduction of the Hartman number via a magnetic field

[18,20].
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