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Abstract. We propose an iterative approximate reconstruction algorithm for non-
overdetermined inverse scattering at fixed energy E with incomplete data in dimension
d ≥ 2. In particular, we obtain rapidly converging approximate reconstructions for this
inverse scattering for E → +∞.

1. Introduction

We consider the Schrödinger equation

Hψ = Eψ, H = −∆ + v(x), x ∈ R
d, d ≥ 2, E > 0, (1.1)

where

v ∈ L∞
σ (Rd) for some σ > d, (1.2)

where
L∞

σ (Rd) = {u ∈ L∞(Rd) : ‖u‖σ < +∞},
‖u‖σ = ess sup

x∈R
d

(1 + |x|2)σ/2|u(x)|, σ ≥ 0. (1.3)

For equation (1.1) we consider the classical scattering eigenfunctions ψ+ specified by the
following asymtotics as |x| → ∞:

ψ+(x, k) = eikx + c(d, |k|) ei|k||x|

|x|(d−1)/2
f(k, |k| x|x|) + o

( 1

|x|(d−1)/2

)

,

x ∈ R
d, k ∈ R

d, k2 = E, c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2,

(1.4)

where a priori unknown function f = f(k, l), k, l ∈ R
d, k2 = l2 = E, arising in (1.4) is the

classical scattering amplitude for (1.1).
Given potential v, to determine ψ+ and f one can use, in particular, the Lippmann-

Schwinger integral equation

ψ+(x, k) = eikx +

∫

R
d

G+(x− y, k)v(y)ψ+(y, k)dy,

G+(x, k) = −(2π)−d

∫

R
d

eiξxdξ

ξ2 − k2 − i0
,

(1.5)
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and the formula

f(k, l) = (2π)−d

∫

R
d

e−ilyv(y)ψ+(y, k)dy, (1.6)

where x, k, l ∈ R
d, k2 = l2 = E > 0; see, for example, [BS], [F2].

The scattering amplitude f at fixed energy E > 0 is defined on

ME = {k ∈ R
d, l ∈ R

d : k2 = l2 = E}, E > 0. (1.7)

Following [N8], in addition to f on ME we consider also f
∣

∣

ΓE
and f

∣

∣

Γτ
E

, where

ΓE = {k = kE(p), l = lE(p) : p ∈ B2
√

E},
Γτ

E = {k = kE(p), l = lE(p) : p ∈ B2τ
√

E},

kE(p) =
p

2
+ ηE(p), lE(p) = −p

2
+ ηE(p),

(1.8)

Br = {p ∈ R
d : |p| ≤ r}, r > 0, (1.9)

where E > 0, 0 < τ ≤ 1, d ≥ 2, and ηE is a piecewise continuous vector-function on B2
√

E
such that

ηE(p)p = 0,
p2

4
+ (ηE(p))2 = E, p ∈ B2

√
E . (1.10)

One can see that
Γτ

E ⊆ ΓE ⊂ ME , E > 0, 0 < τ ≤ 1, d ≥ 2. (1.11)

In this work we continue studies on the following inverse scattering problems for
equation (1.1) under assumptions (1.2):

Problem 1.1. Given scattering amplitude f on ME at fixed E > 0, find potential v
on R

d (at least approximately).

Problem 1.2. Given scattering amplitude f on Γτ
E at fixed E and τ , where E > 0,

0 < τ ≤ 1, find potential v on R
d (at least approximately).

In addition, one can see that

dimME = 2d− 2, dimΓτ
E = dimΓE = dimR

d = d for d ≥ 2,

dimME > d for d ≥ 3,
(1.12)

where E > 0, 0 < τ ≤ 1. Therefore, Problem 1.1 is overdetermined for d ≥ 3, whereas
Problem 1.2 is non-overdetermined.

Problem 1.1 has a long history and there are many important results on this problem,
see [ABR], [B], [BAR], [ChS], [E], [F1], [GHN], [G], [HH], [I], [IN], [N1]-[N5], [R], [S1],
[VW], [W], [WY] and references therein. Note also that for spherical potentials v Problem
1.2 for τ = 1 is reduced to Problem 1.1. However, to our knowledge, explicit considerations
of Problem 1.2 were started only recently in [N8]. In addition, concerning known results for
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some other non-overdetermined multi-dimensional coefficient inverse problems, see [BK],
[DKN], [ER1], [HN], [K], [M], [N6], [NS], [S2] and references therein.

Note also that Problems 1.1, 1.2 can be considered as examples of ill-posed problems;
see [BK], [LRS] for an introduction to this theory.

In the present work we consider Problems 1.1, 1.2 assuming that

v is a perturbation of some known background v0 satisfying (1.2),

where v − v0 is sufficiently regular on R
d and supp (v − v0) ⊂ D,

(1.13)

where D is an open bounded domain (which is fixed a priori).
In particular, for Problem 1.2, under assumptions (1.13), we iteratively construct sta-

ble approximations uj(x,E) to the unknown v(x), x ∈ D, where u1 is a linear reconstruc-
tion in the Born approximation and uj , j ≥ 2, are non-linear approximate reconstructions
from f on Γτ

E ; see Subsections 3.2, 3.3. Our construction is based on direct scattering
results (summarized in Section 2) and on standard Fourier analysis. In addition, our
non-linear approximate reconstructions uj are efficient in the sense that

‖uj(·, E)− v‖L∞(D) = εj(E) (1.14)

rapidly decay as E → +∞, for sufficiently regular v − w and sufficiently large j. In
particular,

εj(E) = O(E−αj ), αj =

(

1 −
(

n− d

n

)j)
n− d

2d
,

as E → +∞, j ≥ 1,

(1.15)

if v−v0 is n-times smooth in L1(Rd), n > d; see Theorem 3.1 of Subsection 3.4. Note that
uj and εj depend also on fixed τ of Problem 1.2.

In addition, in Subsection 3.5 we explain that the construction of uj for each j ∈ N

can be reduced to a finite number of explicit formulas; see Subsection 3.5 for details.

It is also important to note that f on Γ
δ(E)
E only is used in our iterative approximate

reconstruction for Problem 1.2 at high energies E, where

δ(E) = τE−(d−1)/(2d), τ ∈]0, 1]. (1.16)

In addition, δ(E) → 0 as E → +∞. Therefore, Γ
δ(E)
E is a very small part of Γτ1

E for any
fixed τ1 ∈]0, 1] for sufficiently large E. Therefore, our iterative approximate reconstruction
can be viewed as a reconstruction result for Problem 1.2 with incomplete data.

Actually, the iterative approximate reconstruction of the present work complements
related stability results of [N8].

In addition, the iterative reconstruction of the present work was also influenced by
the iterative reconstruction of [N7] for quite different inverse scattering problem.

Let us consider also

Mτ
E = {(k, l) ∈ ME : k − l ∈ B2τ

√
E}, E > 0, τ ∈]0, 1]. (1.17)
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Note that
Γτ

E ⊂ Mτ
E for τ ∈]0, 1],

Mτ
E ⊂ ME for τ ∈]0, 1[, Mτ

E = ME for τ = 1,

dimMτ
E = dimME = 2d− 2 for τ ∈]0, 1].

(1.18)

To our knowledge, no analog of the non-linear approximate reconstructions uj , j ≥ 2,
was given in the iterature even for
Problem 1.1 with ME replaced by Mτ

E for some fixed τ ∈]0, 1[, i.e. for the problem with
much richer data than Problem 1.2 (and, especially, than Problem 1.2 with f given on

Γ
δ(E)
E only, where δ(E) is defined by (1.16)).

On the other hand, for the case of Problem 1.1 with complete data, under assumptions
(1.13), where v − v0 is n-times smooth in L1(Rd), n > d, and v0 ≡ 0, the non-linear
approximate reconstructions uj , j ≥ 2, of the present work are less precise than the
approximate reconstructions of [N4], [N5] with the error term estimated as O(E−s) in the
uniform norm as E → +∞, where s = (n− d)/2 for d = 2, s = (n− d− δ)/2 for any fixed
arbitrary small δ > 0 for d = 3. Indeed,

αj <
n− d

2d
< s, (1.19)

where αj are the numbers of (1.15), s is the number of [N4], [N5].

However, for the problem of approximate but stable finding v on R
d from f on Γ

δ(E)
E

(or even on Mδ(E)
E ) only, where δ(E) is defined by (1.16), our approximate reconstructions

uj for sufficiently large j are rather optimal with respect to their precision (1.14), (1.15)
even in the framework of standards of the Born approximation.

Indeed, in the Born approximation (linear approximation near v0 ≡ 0) the problem
of finding v on R

d from f on Mδ
E , where E > 0, δ ∈]0, 1[, d ≥ 2, is reduced to finding v

on R
d from its Fourier transform v̂ on B2δ

√
E , where

v̂(p) = (2π)−d

∫

R
d

eipxv(x)dx, p ∈ R
d. (1.20)

This linearized inverse scattering problem can be solved by the formula

v(x) = vlin
appr(x,E, δ) + vlin

err(x,E, δ), x ∈ R
d,

vlin
appr(x,E, δ) =

∫

B
2δ

√
E

e−ipxv̂(p)dp,

vlin
err(x,E, δ) =

∫

R
d\B

2δ
√

E

e−ipxv̂(p)dp.

(1.21)

In addition, we have that:

ε(E, δ)
def
= ‖vlin

err(x,E, δ)‖L∞(R
d
)
=

O((δ
√
E)−(n−d)) if δ

√
E → +∞

(1.22)
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under the assuption that v is n-times smooth in L1(Rd), n > d. In addition,

ε(E, δ(E)) = O((δ(E)
√
E)−(n−d)) = O(E−α), α =

n− d

2d
, E → +∞ (1.23)

for δ(E) given by (1.16).
Finally, one can see that αj → α for j → +∞, where αj are the numbers of (1.15)

and α is the number of the Born approximation estimates (1.22), (1.23).

2. Preliminaries of direct scattering

In this section we summarize some results related with the Lippmann- Schwinger
integral equation (1.5) for the scattering eigenfunctions ψ+ and with formula (1.6) for the
scattering amplitude f .

It is convenient to write the Lippmann-Schwinger integral equation (1.5) as

(I − A(k))ϕ(·, k) = e(·, k), (2.1)

where
ϕ(x, k) = Λ−σ/2ψ+(x, k), e(x, k) = Λ−σ/2eikx,

A(k) = Λ−σ/2G+(k)Λ−σ/2(Λσv), k ∈ R
d\{0}, x ∈ R

d,
(2.2)

where I is the identity operator, Λ denotes the multiplication operator by the functions
(1 + |x|2)1/2, G+ denotes the integral operator with the Schwartz kernel G+(x − y, k) of
(1.5), v is the multiplication operator by the function v(x), σ is the number of (1.2). In
addition, we recall that the following estimate holds:

‖Λ−sG+(k)Λ−s‖
L2(R

2
)→L2(R

2
)
≤ a0(d, s)|k|−1,

k ∈ R
d, |k| ≥ 1, for s > 1/2,

(2.3)

see [E], [J] and references therein.
Using (2.3) one can see that

‖A(k)‖
L2(R

d
)→L2(R

d
)
≤ a0(d, σ/2)‖v‖σ|k|−1, k ∈ R

d, |k| ≥ 1, (2.4)

where ‖ · ‖σ is defined in (1.3).
As a corollary of (2.1), (2.2), (2.4), we have that

‖ϕ(·, k)−
m

∑

j=0

(A(k))je(·, k)‖
L2(R

d
)
≤ 2

(

a0(d, σ/2)‖v‖σ

|k|

)m+1

c1(d)

for k ∈ R
d, |k| ≥ ρ1(d, σ, ‖v‖σ), m ∈ N ∪ 0,

(2.5)

where

c1(d, σ) = ‖e(·, k)‖
L2(R

d
)
=

(
∫

R
d

dx

(1 + |x|2)σ/2

)1/2

,

ρ1(d, σ,N) = max(2a0(d, σ/2)N, 1).

(2.6)
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Actually, formula (2.5) is a well-known method for solving the Lippmann-Schwinger inte-
gral equation (1.5) for sufficiently high energies.

Let now ϕi, Ai denote ϕ, A for v = vi satisfying (1.2), where i = 1, 2. Using the
identity

(I − A2(k))
−1 − (I − A1(k))

−1 =

(I − A2(k))
−1(A2(k) − A1(k))(I − A1(k))

−1,
(2.7)

one can see that

ϕ2(·, k) − ϕ1(·, k) =

(I − A2(k))
−1(A2(k) − A1(k))(I −A1(k))

−1e(·, k).
(2.8)

Using (2.2), (2.3), (2.4), (2.8), we obtain that

‖ϕ2(·, k) − ϕ1(·, k)‖L2(R
d
)
≤ 4a0(d, σ/2)‖v2 − v1‖σc1(d, σ)|k|−1

for k ∈ R
d, |k| ≥ ρ1(d, σ,N),

(2.9)

where c1, ρ1 are defined in (2.6), ‖vi‖σ ≤ N for i = 1, 2.
Due to (1.6), we have also that

v̂(k − l) = f(k, l)− (2π)−d

∫

R
d

e−ilxv(x)(ψ+(x, k) − eikx)dx, (k, l) ∈ ME , (2.10)

where v̂ is defined by (1.20).
In particular, as a corollary of (2.10) and (2.5) for m = 0, we have that

|f(k, l)− v̂(k − l)| ≤ 2(2π)−da0(d, σ/2)(c1(d, σ)‖v‖σ)2E−1/2,

(k, l) ∈ ME , E1/2 ≥ ρ1(d, σ, ‖v‖σ),
(2.11)

where c1, ρ1 are defined in (2.6).
Our iterative reconstruction algorithm for Problem 1.2 is based on formulas (2.5),

(2.9), (2.10), (2.11) and is presented in the next section.

3. Iterative approximate reconstruction for Problem 1.2

3.1. Assumptions and notations. We consider

Wn,1(Rd) = {u : ∂Ju ∈ L1(Rd), |J | ≤ n},
‖u‖n,1 = max

|J|≤n
‖∂Ju‖

L1(R
d
)
, n ∈ N ∪ 0,

(3.1)

where

J ∈ (N ∪ 0)d, |J | =

d
∑

i=1

Ji, ∂
Ju(x) =

∂|J|u(x)

∂xJ1
1 . . . ∂xJd

d

.
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We assume that v satisfies (1.13), where the assumption that v − v0 is sufficiently
regular is specified as

v − v0 ∈ Wn,1(Rd) for some n > d. (3.2)

We set
w = v − v0 (3.3)

and consider the decompositions

v(x) = v+(x, κ) + v−(x, κ),

v0(x) = v+
0 (x, κ) + v−0 (x, κ),

w(x) = w+(x, κ) + w−(x, κ),

(3.4)

where x ∈ D, κ > 0,

u+(x, κ) =

∫

p∈R
d
, |p|≤κ

e−ipxû(p) dp,

u−(x, κ) =

∫

p∈R
d
, |p|>κ

e−ipxû(p) dp,

û(p) = (2π)−d

∫

R
d

eipxu(x) dx

(3.5)

for u = v, v0, w.
Due to (3.3)-(3.5), we have that

v(x) = v+(x, κ) + v−0 (x, κ) + w−(x, κ), (3.6)

v+(x, κ) = v+
0 (x, κ) + w+(x, κ), (3.7)

where x ∈ D, κ > 0.

3.2. Reconstruction in the Born approximation. We define

v1(x,E, τ1)
def
= v+

1 (x,E, τ1) + v−0 (x, 2τ1
√
E), (3.8a)

v+
1 (x,E, τ1)

def
=

∫

p∈R
d
, |p|≤2τ1

√
E

e−ipxf(kE(p), lE(p))dp, (3.8b)

x ∈ D, 0 < τ1 ≤ τ, E > 0,

where v−0 is the function of (3.4), (3.6), f is the scattering amplitude for v, and kE , lE are
defined in (1.8). Actually, v1 of (3.8a) is a reconstruction in the Born approximation for
Problem 1.2.

Lemma 3.1. Let v satisfy (1.13), (3.2) and ‖v‖σ ≤M1, ‖v − v0‖n,1 ≤M2. Then:

|v1(x,E, τ1) − v(x)| ≤ c2(d, σ)M2
1

(2τ1
√
E)d

√
E

+
c3(d, n)M2

(2τ1
√
E)n−d

for x ∈ D, 0 < τ1 ≤ τ,
√
E ≥ ρ1(d, σ,M1),

(3.9)
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|v1(x,E, τ1(E)) − v(x)| ≤
(

c2(d, σ)M2
1 (2τ)d +

c3(d, n)M2

(2τ)n−d

)

E−(n−d)/(2n)

for x ∈ D, τ1(E) = τ E−(n−1)/(2n),
√
E ≥ ρ1(d, σ,M1),

(3.10)

where 0 < τ ≤ 1, v1 is defined by (3.8), ρ1 is defined in (2.6), and c2 = c2(d, σ), c3 = c3(d, n)
are some positive constants.

Lemma 3.1 is proved in Section 4.
Under the assumptions of Lemma 3.1,

u1(x,E) = v1(x,E, τ1(E)), x ∈ D,

u1(x,E) = v0(x), x ∈ R
d\D,

(3.11)

can be considered as an optimal reconstruction in the Born approximation for Problem 1.2
with respect to the error decay in L∞(D) as E → +∞.

3.3. Iterative step. The iterative step of our reconstruction is based, in particular, on
the following lemma:

Lemma 3.2. Let v satisfy (1.13), f be the scattering amplitude of v, and vappr(·, E)
be an approximation to v such that

|vappr(x,E)− v(x)| ≤ βE−α, x ∈ D,
√
E ≥ ρ1(d, σ,N), (3.12a)

vappr(x,E) ≡ v0(x), x ∈ R
d\D, (3.12b)

for some α, β > 0 and some N such that

‖v‖σ ≤ N, ‖vappr(·, E)‖σ ≤ N,
√
E ≥ ρ1(d, σ,N), (3.13)

where ρ1 is defined in (2.6). Then the following estimate holds:

|f(k, l)− fappr(k, l) + v̂appr(k − l, E)− v̂(k − l)| ≤
(2π)−da0(d, σ/2)c1(d, σ)c4(D, σ)NβE−α−(1/2),

(k, l) ∈ ME , E
1/2 ≥ ρ1(d, σ,N),

(3.14)

where fappr is the scattering amplitude for vappr, v̂appr(·, E) is the Fourier transform of
vappr(·, E), v̂ is the Fourier transform of v, (see definition (1.20)), c4(D, σ) is given by
(4.12).

Lemma 3.2 is proved in Section 4.
In the iterative step of our reconstruction we assume that v satisfies (1.13), (3.2) and

‖v‖σ ≤M1, ‖v − v0‖n,1 ≤M2, as in lemma 3.1.
Note that vappr = u1 of (3.11) satisfies (3.12), (3.13) for α = α1, β = β1, N = N1,

where

α1 =
n− d

2n
, β1 = c2(d, σ)M2

1 (2τ)d +
c3(d, n)M2

(2τ)n−d
,

N1 = M1 + c5(D, σ)β1(ρ1(d, σ,M1))
−α1 , c5(D, σ) = sup

x∈D
(1 + |x|2)σ/2.

(3.15)
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Then proceeding from the approximation vappr = uj(·, E) with number j, satisfying (3.12),
(3.13) for α = αj , β = βj , N = Nj , the approximation vappr = uj+1(·, E) with number
j + 1 is constructed as follows:
(1) We find the scattering amplitude fj and the Fourier transform ûj(·, E) for uj(·, E),

where E1/2 ≥ ρ1(d, σ,Nj);
(2) In a similar way with (3.8), we define

vj+1(x,E, τj+1)
def
= v+

j+1(x,E, τj+1) + v−0 (x, 2τj+1

√
E), (3.16a)

v+
j+1(x,E, τj+1)

def
=

∫

p∈R
d
, |p|≤2τj+1

√
E

e−ipx×

(f(kE(p), lE(p)) − fj(kE(p), lE(p)) + ûj(kE(p) − lE(p), E))dp, (3.16b)

x ∈ D, 0 < τj+1 ≤ τ, E1/2 ≥ ρ1(d, σ,Nj),

where v−0 , f , kE , lE are the same that in (3.8);
(3) Finally, in a similar way with (3.11), we define

uj+1(x,E) = vj+1(x,E, τj+1(E)), x ∈ D,

uj+1(x,E) = v0(x), x ∈ R
d\D,

τj+1(E) = τ E−(n−1−2αj)/(2n),

(3.17)

where E1/2 ≥ ρ1(d, σ,Nj).
In addition, we have the following lemma:

Lemma 3.3. Under the assumptions of our iterative step, the following estimates
hold:

|vj+1(x,E, τj+1) − v(x)| ≤ c6(D, σ)Njβj
(2τj+1E

1/2)d

Eαj+(1/2)
+

c3(d, n)M2

(2τj+1E1/2)n−d

for x ∈ D, 0 < τj+1 ≤ τ ≤ 1, E1/2 ≥ ρ1(d, σ,Nj), j ∈ N,

(3.18)

|uj+1(x,E)− v(x)| ≤
(

c6(D, σ)Njβj(2τ)
d +

c3(d, n)M2

(2τ)n−d

)

E−(1+2αj)(n−d)/(2n)

for x ∈ D, E1/2 ≥ ρ1(d, σ,Nj), j ∈ N,

(3.19)

where vj+1, uj+1 are defined by (3.16), (3.17), ρ1 is defined in (2.6).
Lemma 3.3 is proved in Section 5.
In addition, uj+1(·, E) of (3.17) satisfies (3.12), (3.13) for α = αj+1, β = βj+1,

N = Nj+1, where

αj+1 =
(1 + 2αj)(n− d)

2n
, βj+1 = c6(D, σ)Njβj(2τ)

d +
c3(d, n)M2

(2τ)n−d
,

Nj+1 = M1 + c5(D, σ) max
1≤i≤j

βi(ρ1(d, σ,Ni))
−αi , j ∈ N.

(3.20)

9
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Note also that

Nj1 ≤ Nj2 , ρ1(d, σ,Nj1) ≤ ρ1(d, σ,Nj2) for 1 ≤ j1 ≤ j2. (3.21)

3.4. Final theorem. Proceeding from lemmas 3.1, 3.2, 3.3 and formulas (3.15), (3.20),
(3.21) we obtain the following theorem:

Theorem 3.1. Let v satisfy (1.13), (3.1) and ‖v‖σ ≤ M1, ‖v − v0‖n,1 ≤ M2. Let
uj(·, E) be constructed from f

∣

∣

Γ
δ(E)

E

by the iterations of subsections 3.2, 3.3, where f is

the scattering amplitude for v, δ(E) = τE−(d−1)/(2d), 0 < τ ≤ 1, and j ∈ N; see formulas
(3.11), (3.16), (3.17). Then the following estimates hold:

‖uj(·, E)− v‖L∞(D) ≤ βjE
−αj for E1/2 ≥ ρ1(d, σ,Nj−1), (3.22)

where

αj =

(

1 −
(

n− d

n

)j)
n− d

2d
, (3.23)

βj = βj(M1,M2, D, σ, n, τ), Nj = Nj(M1,M2, D, σ, n, τ) are constructed recurrently via
(3.15), (3.20) (with N0 = M1).

Theorem 3.1 is proved in Section 5.
3.5. Explicit formulas. One can see that:

(1) u1(·, E) is constructed by explicit formulas from f

∣

∣

∣

∣

Γ
δ(E)
E

and v0 for
√
E ≥ ρ1(d, σ,M1)

(see Subsection 3.2 and formula (5.9)) and

(2) uj+1(·, E) is constructed by explicit formulas from uj(·, E), f

∣

∣

∣

∣

Γ
δ(E)
E

, fj

∣

∣

∣

∣

Γ
δ(E)
E

and v0 for

√
E ≥ ρ1(d, σ,Nj) and each j ∈ N (see Subsection 3.3 and formula (5.9)). However,

fj is constructed from uj via (1.5), (1.6) with ψ+ = ψ+
j , v = vj , where (1.5) is not

yet an explicit formula for ψ+
j .

Thus the construction of uj(·, E), j ≥ 2, of Subsections 3.3, 3.4 is not reduced yet
to explicit formulas. In order to have a similar construction involving explicit formulas
only we can proceed as follows. Instead of uj , j ≥ 2, we can construct ũj(·, E), j ≥ 2,√
E ≥ ρ1(d, σ,M1), via (3.16), (3.17) with fj , ûj , uj+1 replaced by f̃appr

j , ˆ̃uj , ũj+1, where
ˆ̃uj is the Fourier transform of ũj as before, whereas f̃appr

j is the approximation to the

scattering amplitude f̃j of ũj , defined as follows. Proceeding from (1.6), (1.5), (2.2), (2.5),
we define

f̃appr
j (k, l) = (2π)−d

∫

R
d

e−ilyΛσ/2v(y)ϕ̃appr
j (y, k)dy, (3.24)

ϕ̃appr
j (·, k) =

mj
∑

ν=0

(Ãj(k))
νe(·, k), (3.25)
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where (k, l) ∈ ME , mj is the minimal natural number such that mj ≥ 2αj , Ãj(k) is
defined as A(k) of (2.2) with v replaced by ũj , e(·, k) is defined in (2.2). Here αj is the
number of (3.23), j ∈ N.

Using estimate (2.5) with v replaced by ũj and using the proof of Lemma 3.3, one can
show that

‖ũj(·, E)− v‖L∞(D) = O(E−αj ) as E → +∞, (3.26)

as for the initial uj . However, now because of the finite sum in (3.25), ũj is constructed
via a finite number of explicite formulas for each j ≥ 2.

4. Proofs of Lemmas 3.1 and 3.2

Proof of lemma 3.1. Due to (3.6), we have that

v(x) = v+(x, 2τ1
√
E) + v−0 (x, 2τ1

√
E) + w−(x, 2τ1

√
E), x ∈ D. (4.1)

Due to (3.8), (4.1), (3.5), we have that

v1(x,E, τ1) − v(x) = δ+1 v(x,E, τ1) + δ−1 v(x,E, τ1),

δ+1 v(x,E, τ1)
def
=

∫

p∈R
d
, |p|≤2τ1

√
E

e−ipx(f(kE(p), lE(p)) − v̂(p))dp,

δ−1 v(x,E, τ1)
def
= −w−(x, 2τ1

√
E), x ∈ D.

(4.2)

Using (2.11) and the definitions of kE(p), lE(p) of (1.8) we obtain that

|δ+1 (x,E, τ1)| ≤ 2(2π)−da0(d, σ/2)(c1(d, σ)‖v‖σ)E−1/2×
(2τ1

√
E)d|B1|, x ∈ D,

√
E ≥ ρ1(d, σ, ‖v‖σ),

(4.3)

where |B1| denotes the standard Euclidean volume of B1, i.e.

|B1| =

∫

p∈R
d
, |p|≤1

dp. (4.4)

In order to estimate δ−1 v(x,E, τ1) we use that if w ∈Wn,1(Rd), then

|ŵ(p)| ≤ a1(n, d)‖w‖n,1(1 + |p|)−n, p ∈ R
d. (4.5)

Using the definition of w− of (3.3)-(3.5) and estimate (4.5) we obtain that

|δ−1 (x,E, τ1)| ≤
∫

p∈R
d
, |p|≥2τ1

√
E

a1(n, d)‖v − v0‖n,1

(1 + |p|)n
dp ≤

|Sd−1|a1(n, d)‖v − v0‖n,1

n− d

1

(2τ1
√
E)n−d

, x ∈ D,

(4.6)

11
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where |Sd−1| denotes the standard Euclidean volume of S
d−1, i.e.

|Sd−1| =

∫

θ∈S
d−1

dθ. (4.7)

Estimate (3.9) follows from (4.2), (4.3), (4.6). Estimate (3.10) follows from (3.9).
Lemma 3.1 is proved.

Proof of Lemma 3.2. Using formula (1.6) for the scattering amplitude we obtain that

f(k, l) = v̂(k − l) + δf(k, l),

δf(k, l)
def
= (2π)−d

∫

R
d

e−ilxv(x)(ψ+(x, k)− eikx)dx,

fappr(k, l) = v̂(k − l, E) + δfappr(k, l),

δfappr(k, l)
def
= (2π)−d

∫

R
d

e−ilxvappr(x,E)(ψ+
appr(x, k)− eikx)dx,

(k, l) ∈ ME ,
√
E ≥ ρ1(d, σ,N),

(4.8)

where ψ+
appr denotes the scattering solutions for vappr.

In addition, we have that

δf(k, l)− δfappr(k, l) =

(2π)−d

∫

R
d

e−ilx(v(x) − vappr(x,E))(ψ+(x, k) − eikx)dx+

(2π)−d

∫

R
d

e−ilxvappr(x,E)(ψ+(x, k) − ψ+
appr(x, k))dx,

(4.9)

|δf(k, l)− δfappr(k, l)| ≤

(2π)−d

∫

R
d

Λσ/2|v(x) − vappr(x,E)|Λ−σ/2|ψ+(x, k) − eikx|dx+

(2π)−d

∫

R
d

Λσ/2|vappr(x,E)|Λ−σ/2|ψ+(x, k) − ψ+
appr(x, k)|dx,

(4.10)

where Λ denotes the function (1 + |x|2)1/2. Using (4.10), (2.5) for m = 0, (2.6), (2.9) for
v1 = v, v2 = vappr, (3.12), (3.13), we obtain that

|δf(k, l)− δfappr(k, l)| ≤
2(2π)−da0(d, σ/2)c1(d, σ)‖Λσ/2‖L2(D)Nβ E

−α−(1/2)+

4(2π)−da0(d, σ/2)c1(d, σ)‖Λ−σ/2‖
L2(R

d
)
‖Λσ‖L∞(D)Nβ E

−α−(1/2) =

(2π)−da0(d, σ/2)c1(d, σ)c4(D, σ)Nβ E−α−(1/2)

(4.11)
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for (k, l) ∈ ME ,
√
E ≥ ρ1(d, σ,N), where

c4(D, σ) = 2‖Λσ/2‖L2(D) + 4‖Λ−σ/2‖
L2(R

d
)
‖Λσ‖L∞(D). (4.12)

Note also that

‖Λ−σ/2‖
L2(R

d
)
= c1(d, σ), ‖Λσ/2‖L2(D) ≤ ‖Λσ‖L∞(D)‖Λ−σ/2‖

L2(R
d
)
.

Estimate (3.14) follows from (4.8), (4.11).
Lemma 3.2 is proved.

5. Proofs of Lemma 3.3 and Theorem 3.1

Proof of Lemma 3.3. In a completely similar way with (4.1) we have that

v(x) = v+(x, 2τj+1

√
E) + v−0 (x, 2τj+1

√
E) + w−(x, 2τj+1

√
E), x ∈ D, (5.1)

where v+, v−0 , w− are the functions of (3.4), (3.6). Due to (3.16), (5.1), (3.5), in a similar
way with (4.2) we have that

vj+1(x,E, τj+1) − v(x) = δ+j+1v(x,E, τj+1) + δ−j+1v(x,E, τj+1),

δ+j+1v(x,E, τj+1)
def
=

∫

p∈R
d
, |p|≤2τj+1

√
E

e−ipx×

(f(kE(p), lE(p)) − fj(kE(p), lE(p)) + ûj(kE(p) − lE(p), E)− v̂(p))dp,

δ−j+1v(x,E, τj+1)
def
= −w−(x, 2τj+1

√
E), x ∈ D.

(5.2)

Using (3.14) for fappr = fj , v̂appr = ûj , α = αj , β = βj , N = Nj and using the definitions
of kE(p), lE(p) of (1.8), in a similar way with (4.3) we have that

|δ+j+1v(x,E, τj+1)| ≤ c6(D, σ)NjβjE
−αj−(1/2)(2τj+1

√
E)d,

x ∈ D,
√
E ≥ ρ1(d, σ,Nj),

(5.3)

where
c6(D, σ) = (2π)−da0(d, σ/2)c1(d, σ)c4(D, σ)|B1|. (5.4)

In addition, in a completely similar way with (4.6) we have that

|δ−j+1v(x,E, τj+1)| ≤ |Sd−1|a1(n, d)‖v − v0‖n,1

n− d

1

(2τj+1

√
E)n−d

, x ∈ D. (5.5)

Estimate (3.18) follows from (5.3), (5.5). Estimate (3.19) follows from (3.18), (3.17) and
from the identities

E−(n−1−2αj)/(2n)E1/2 = E(1+2αj)/(2n),

Ed(1+2αj)/(2n)E−αj−(1/2) = E−(1+2αj)(n−d)/(2n).
(5.6)
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This completes the proof of Lemma 3.3.

Proof of Theorem 3.1. Due to (3.15), (3.20), we have that

α1 =
n− d

2n
, αj+1 =

n− d

2n
+ αj

n− d

n
, j ∈ N. (5.7)

Formulas (5.7) imply (3.23). Indeed, the sequence αj , j ∈ N, is uniquely defined by (5.7)
and αj of (3.23) satisfy (5.7). In particular,

n− d

2n
+

(

1 −
(

n− d

n

)j)
n− d

2d

n− d

n
=

n− d

2n
+
n− d

2d

n− d

n
−

(

n− d

n

)j+1
n− d

2d
=

(

1 −
(

n− d

n

)j+1)
n− d

2d
, j ∈ N.

(5.8)

Next, due to (5.7), (3.23) and due to the definition of τj(E), j ∈ N, of (3.10), (3.17) we
have that

τj1(E) = τE−(n−1−2αj1
)/(2n) ≤ τj2(E) = τE−(n−1−2αj2

)/(2n) ≤ δ(E) = τE−(d−1)/(2d)

(5.9)
for 0 < τ ≤ 1, 1 ≤ j1 ≤ j2, E ≥ 1.

Using the definition of uj , j ∈ N, of (3.11), (3.17) and using inequalities of (3.21) and

(5.9) we obtain that uj(·, E) are correctly defined in terms of f

∣

∣

∣

∣

Γ
δ(E)
E

for

E1/2 ≥ ρ1(d, σ,Nj−1), j ∈ N.
Finally, estimates (3.22) follow from estimates (3.10), (3.19) and formulas (3.15),

(3.20).
This completes the proof of Theorem 3.1.
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