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SPANNING FORESTS IN REGULAR PLANAR MAPS

MIREILLE BOUSQUET-MÉLOU AND JULIEN COURTIEL

Abstract. We address the enumeration of p-valent planar maps equipped with a spanning
forest, with a weight z per face and a weight u per connected component of the forest.
Equivalently, we count p-valent maps equipped with a spanning tree, with a weight z per
face and a weight µ := u + 1 per internally active edge, in the sense of Tutte; or the (dual)
p-angulations equipped with a recurrent sandpile configuration, with a weight z per vertex
and a variable µ := u+1 that keeps track of the level of the configuration. This enumeration
problem also corresponds to the limit q → 0 of the q-state Potts model on p-angulations.

Our approach is purely combinatorial. The associated generating function, denoted F (z, u),
is expressed in terms of a pair of series defined implicitly by a system involving doubly hy-
pergeometric series. We derive from this system that F (z, u) is differentially algebraic in z,
that is, satisfies a differential equation in z with polynomial coefficients in z and u. This has
recently been proved to hold for the more general Potts model on 3-valent maps, but via a
much more involved and less combinatorial proof.

For u ≥ −1, we study the singularities of F (z, u) and the corresponding asymptotic be-
haviour of its nth coefficient. For u > 0, we find the standard asymptotic behaviour of planar
maps, with a subexponential term in n−5/2. At u = 0 we witness a phase transition with a
term n−3. When u ∈ [−1, 0), we obtain an extremely unusual behaviour in n−3(lnn)−2. To
our knowledge, this is a new “universality class” for planar maps.

1. Introduction

A planar map is a proper embedding of a connected graph in the sphere. The enumeration of
planar maps has received a continuous attention in the past 60 years, first in combinatorics with
the pionneering work of Tutte [45], then in theoretical physics [22], where maps are considered
as random surfaces modelling the effect of quantum gravity, and more recently in probability
theory [36, 38]. General planar maps have been studied, as well as sub-families obtained by
imposing constraints of higher connectivity, or prescribing the degrees of vertices or faces (e.g.,
triangulations). Precise definitions are given below.

Several robust enumeration methods have been designed, from Tutte’s recursive approach
(e.g. [44]), which leads to functional equations for the generating functions of maps, to the beau-
tiful bijections initiated by Schaeffer [41], and further developed by physicists and combinatorics
alike [11, 19], via the powerful approach based on matrix integrals [27]. See for instance [17] for
a more complete (though non-exhaustive) bibliography.

Beyond the enumerative and asymptotic properties of planar maps, which are now well un-
derstood, the attention has also focussed on two more general questions: maps on higher genus
surfaces [6, 24], and maps equipped with an additional structure. The latter question is par-
ticularly relevant in physics, where a surface on which nothing happens (“pure gravity”) is of
little interest. For instance, one has studied maps equipped with a polymer [29], with an Ising
model [19, 34, 16, 18] or more generally a Potts model, with a proper colouring [46, 47], with
loops models [14, 13], with a spanning tree [40], or percolation on planar maps [2, 10].

In particular, several papers have been devoted in the past 20 years to the study of the
Potts model on families of planar maps [4, 15, 26, 30, 33, 49]. In combinatorial terms, this
means counting maps equipped with a colouring in q colours, according to the size (e.g., the
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2 M. BOUSQUET-MÉLOU AND J. COURTIEL

number of edges) and the number of monochromatic edges (edges whose endpoints have the same
colour). Up to a change of variables, this also means counting maps weighted by their Tutte
polynomial, a bivariate combinatorial invariant which has numerous interesting specializations.
By generalizing Tutte’s formidable solution of properly coloured triangulations (1973-1982), it
has recently been proved that the Potts generating function is differentially algebraic, that is,
satisfies a (non-linear) differential equation1 with polynomial coefficients [9, 8, 17]. This holds
at least for general planar maps and for triangulations (or dualy, for cubic maps).

The method that yields these differential equations is extremely involved, and does not shed
much light on the structure of q-coloured maps. Moreover, one has not been able, so far, to
derive from these equations the asymptotic behaviour of the number of coloured maps, nor the
location of phase transitions.

The aim of this paper is to remedy these problems — so far for a one-variable specialization of
the Tutte polynomial. This specialization is obtained by setting to 1 one of the variables, or by
taking (in an adequate way) the limit q → 0 in the Potts model. Combinatorially, we are simply
counting maps (in this paper, p-valent maps) equipped with a spanning forest. We call them
forested maps. This problem has already been studied in [23] via a random matrix approach,
but with no explicit solution. The generating function F (z, u) that we obtain keeps track of the
size of the map (the number of faces; variable z) and of the number of trees in the forest (minus
one; variable u). The specialization u = 0 thus counts maps equipped with a spanning tree and
was determined a long time ago by Mullin [40].

Here is an outline of the paper. We begin in Section 2 with general definitions on maps,
and on the Tutte polynomial. We recall some of its combinatorial descriptions, and underline
in particular that the series F (z, µ− 1), once expanded in powers of z and µ, has non-negative
coefficients and admits several combinatorial interpretations. This important observation implies
that the natural domain of the parameter u is [−1,+∞) rather than [0,+∞). In Section 3, we
obtain in a purely combinatorial manner an expression of F (z, u) in terms of the solution of
a system of two functional equations. In Section 4 we derive from this system that F (z, u) is
differentially algebraic in z, and give explicit differential equations for cubic (p = 3) and 4-valent
(p = 4) maps. Section 5 is a combinatorial interlude explaining why all series occurring in our
equations, like F (z, u) itself, still have non-negative coefficients when u ∈ [−1, 0].

The rest of the paper is devoted to asymptotic results, still for p = 3 and p = 4: when u > 0,
forested maps follow the standard asymptotic behaviour of planar maps (µnn−5/2) but then
there is a phase transition at u = 0 (where one counts maps equipped with a spanning tree),
and a very unusual asymptotic behaviour in µnn−3(lnn)−2 holds when u ∈ [−1, 0). To our
knowledge, this is the first time a class of planar maps exhibits this asymptotic behaviour. This
proves in particular that F (z, u) is not D-finite, that is, does not satisfy any linear differential
equation in z for these values of u (nor for a generic value of u). This is in contrast with the
case u = 0, for which the generating function of maps equipped with a spanning forest is known
to be D-finite.

Our key tool is the singularity analysis of [31]: its basic principle is to derive the asymptotic
behaviour of the coefficients of a series F (z) from the singular behaviour of F near its dominant
singularities (i.e., singularities of minimal modulus). The first case we study (4-valent maps
with u > 0) is simple: first, one of the two series involved in our system vanishes; the remaining
one, denoted R, satisfies an inversion equation Ω(R(z)) = z for which the (unique) dominant
singularity ρ of R is such that R(ρ) lies in the domain of analyticity of Ω. One obtains for R a
“standard” square root singularity. This is well understood and almost routine. Two ingredients
make the other cases significantly harder:

• when u < 0, R(ρ) is a singularity of Ω,

1with respect to the size variable
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• when p = 3 (cubic maps) we have to deal with a system of two equations; the analysis of
systems is delicate, even in the so-called positive case, which corresponds in our context
to u > 0 (see [28, 5]).

These difficulties, which culminate when p = 3 and u < 0, are addressed in Sections 6 and 7.
Section 6 establishes general results on implicitly defined series. Section 7 focusses on the
inversion equation Ω(R(z)) = z in the case where (up to translation) Ω has a z ln z singularity
at 0. One then applies these results to the asymptotic analysis of forested maps in Sections 8
(4-valent maps) and 10 (cubic maps). Section 9 exploits the results of Section 8 to study some
properties of large random maps equipped with a spanning forest or a spanning tree.

We conclude in Section 11 with a few comments.

2. Preliminaries

2.1. Planar maps

A planar map is a proper embedding of a connected graph (possibly with loops and multiple
edges) in the oriented sphere, considered up to continuous deformation. All maps in this paper
are planar, and we often omit the term “planar”. A face is a (topological) connected component
of the complement of the embedded graph. Each edge consists of two half-edges, each incident to
an endpoint of the edge. A corner is an ordered pair (e1, e2) of half-edges incident to the same
vertex, such that e2 immediately follows e1 in counterclockwise order. The degree of a vertex or
a face is the number of corners incident to it. A vertex of degree p is called p-valent. One-valent
vertices are also called leaves. A map is p-valent if all vertices are p-valent. A rooted map is
a map with a marked corner (e1, e2), called the root and indicated by an arrow in our figures.
The root vertex is the vertex incident to the root. The root half-edge is e2 and the root edge is
the edge supporting e2. This way of rooting maps is equivalent to the more standard way where
one marks the root edge and orients it from e2 to its other half-edge. All maps of the paper are
rooted, and we often omit the term “rooted”. The dual of a map M , denoted M∗, is the map
obtained by placing a vertex of M∗ in each face of M and an edge of M∗ across each edge of
M ; see Figure 1(a). The dual of a p-valent map is a map with all faces of degree p, also called
p-angulation.

(a) (b)

Figure 1. (a) A rooted planar map and its dual (rooted at the dual corner).
(b) A 4-valent leaf-rooted tree.

A (plane) tree is a planar map with a unique face. A tree is p-valent if all non-leaf vertices have
degree p. We consider the edges leading to the leaves as half-edges, as suggested by Figure 1(b).
A leaf-rooted tree (resp. corner-rooted) is a tree with a marked leaf (resp. corner). The number
of p-valent leaf-rooted (resp. corner-rooted) trees with k leaves is denoted by tk (resp. tck) (the
notation should be tk,p and tck,p, but we consider p as a fixed integer, p ≥ 3). These numbers are
well-known [42, Thm. 5.3.10]: they are 0 unless k = (p− 2)`+ 2 with ` ≥ 1, and in this case,

tk =
((p− 1)`)!

`!((p− 2)`+ 1)!
and tck = p

((p− 1)`)!

(`− 1)!((p− 2)`+ 2)!
. (1)

LetM be a rooted planar map with vertex set V . A spanning forest ofM is a graph F = (V,E)
where E is a subset of edges of M forming no cycle. Each connected component of F is a tree,
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and the root component is the tree containing the root vertex. We say that the pair (M,F ) is a
forested map. We denote by F (z, u) the generating function of p-valent forested maps, counted
by faces (variable z) and non-root components (variable u):

F (z, u) =
∑

M p−valent
F spanning forest

zf(M)uc(F )−1, (2)

where f(.) denotes the number of faces and c(.) the number of components. When p = 3,

F (z, u) = (6 + 4u) z3 +
(
140 + 234u+ 144u2 + 32u3

)
z4 +O(z5). (3)

The coefficient (6 + 4u) means that there are 10 trivalent (or cubic) forested maps with 3 faces:
6 in which the forest is a tree, and 4 in which it has two components (Figure 2).

Figure 2. The 10 forested cubic maps with 3 faces.

2.2. Forest counting, the Tutte polynomial, and related models

Let G = (V,E) be a graph with vertex set V and edge set E. The Tutte polynomial of G is
the following polynomial in two indeterminates (see e.g. [12]):

TG(µ, ν) :=
∑
S⊆E

(µ− 1)c(S)−c(G)(ν − 1)e(S)+c(S)−v(G), (4)

where the sum is over all spanning subgraphs of G (equivalently, over all subsets S of edges) and
v(.), e(.) and c(.) denote respectively the number of vertices, edges and connected components.
The quantity e(S) + c(S)− v(G) is the cyclomatic number of S, that is, the minimal number of
edges one has to delete from S to obtain a forest.

When ν = 1, the only subgraphs that contribute to (4) are the forests. Hence the generating
function of forested maps defined by (2) can be written as

F (z, u) =
∑

M p−valent
zf(M) TM (u+ 1, 1). (5)

Note that we write TM although the value of the Tutte polynomial only depends on the under-
lying graph of M , not on the embedding.

Even though this is not clear from (4), the polynomial TG(µ, ν) has non-negative coefficients
in µ and ν. This was proved combinatorially by Tutte [43], who showed that TG(µ, ν) counts
spanning trees of G according to two parameters, called internal and external activities. Other
combinatorial descriptions of TG(µ, ν), in terms of other notions of activity, were given later. Let
us present the one due to Bernardi, which is nicely related to maps [7]. Following Mullin [40], we
call tree-rooted map a map M equipped with a spanning tree T . Walking around T in counter-
clockwise order, starting from the root, defines a total order on the edges: the first edge that
is met is the smallest one, and so on (Figure 3). An edge e is internally active if it belongs to
T and is minimal in its cocycle; that is, all the edges e′ 6= e such that (T \ {e}) ∪ {e′} is a tree
are larger than e. It is externally active if it does not belong to T and is minimal in the cycle
created by adding e to T . Denoting by int(M,T ) and ext(M,T ) the numbers of internally and
externally edges, one has:

TM (µ, ν) =
∑

T spanning tree

µint(M,T )νext(M,T ).
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A non-obvious property of this description is that it only depends on the underlying graph ofM .

1 2

3
4
5

6

7

8

9
10

Figure 3. The edges of a tree-rooted map are naturally order by walking
around the tree. The active edges are those labelled 1, 3, 6 and 9.

Returning to (5), we thus obtain a second description of F (z, u):

F (z, u) =
∑

M p−valent
T spanning tree

zf(M)(u+ 1)int(M,T ). (6)

In particular, it makes sense combinatorially to write u = µ− 1 and take u ∈ [−1,∞).
We now give four more descriptions of F (z, u) in terms of the dual p-angulations. For any

planar map M , it is known that

TM∗(µ, ν) = TM (ν, µ).

Since
TM (1, ν) =

∑
S⊂E, S connected

(ν − 1)e(S)+c(S)−v(M),

we first derive from (5) that

F (z, u) =
∑

M p−angulation

zv(M) TM (1, u+ 1) (7)

=
∑

M p−angulation
S connected subgraph

zv(M)ue(S)+c(S)−v(M)

counts p-angulationsM equipped with a connected (spanning) subgraph S, by the vertex number
of M and the cyclomatic number of S. Also, the “dual” expression of (6) reads

F (z, u) =
∑

M p−angulation
T spanning tree

zv(M)(u+ 1)ext(M,T ). (8)

Our next interpretation of F (z, u), which we will not entirely detail, relies on the connection
between TM (1, ν) and the recurrent (or: critical) configurations of the sandpile model on M . It
is known [39, 25] that

TM (1, ν) =
∑

C recurrent

ν`(C),

where the sum runs over all recurrent configurations C, and `(C) is the level of C. Hence

F (z, u) =
∑

M p−angulation
C recurrent

zv(M)(u+ 1)`(C) (9)

also counts p-angulations M equipped with a recurrent configuration C of the sandpile model,
by the vertex number of M and the level of C.

Our final interpretation is in terms of the Potts model. Take q ∈ N. A q-colouring of the
vertices ofG = (V,E) is a map c : V → {1, . . . , q}. An edge ofG ismonochromatic if its endpoints
share the same colour. Every loop is thus monochromatic. The number of monochromatic edges
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is denoted by m(c). The partition function of the Potts model on G counts colourings by the
number of monochromatic edges:

PG(q, ν) =
∑

c:V→{1,...,q}

νm(c).

The Potts model is a classical magnetism model in statistical physics, which includes (for q = 2)
the famous Ising model (with no magnetic field) [48]. Of course, PG(q, 0) is the chromatic
polynomial of G. More generally, it is not hard to see that PG(q, ν) is always a polynomial in q
and ν, and a multiple of q. Let us define the reduced Potts polynomial P̃G(q, ν) by

PG(q, ν) = q P̃G(q, ν).

Fortuin and Kasteleyn established the equivalence of P̃G with the Tutte polynomial [32]:

P̃G(q, ν) =
∑

S⊆E(G)

qc(S)−1(ν − 1)e(S) = (µ− 1)c(G)−1(ν − 1)v(G)−1 TG(µ, ν),

for q = (µ− 1)(ν − 1). Setting µ = 1, we obtain, for a connected graph G

P̃G(0, ν) = (ν − 1)v(G)−1 TG(1, ν).

Returning to (7) finally gives

F (z, u) = u
∑

M p−angulation

(z/u)v(M) P̃M (0, u+ 1). (10)

2.3. Formal power series

Let A = A(z) ∈ K[[z]] be a power series in one variable with coefficients in a field K. We say
that A is D-finite if it satisfies a (non-trivial) linear differential equation with coefficients in K[z]
(the ring of polynomials in z). More generally, it is D-algebraic if there exist a positive integer
k and a non-trivial polynomial P ∈ K[z, x0, . . . , xk] such that P

(
z,A, ∂A∂z , . . . ,

∂kA
∂zk

)
= 0.

A k-variate power series A = A(z1, . . . , zk) with coefficients in K is D-finite if its partial
derivatives (of all orders) span a finite dimensional vector space over K(z1, . . . , zk).

3. Generating functions for forested maps

Fix p ≥ 3. We give here a system of equations that defines the generating function F (z, u) of
p-valent forested maps, or, more precisely, the series zF ′z(z, u) that counts forested maps with a
marked face. We also give simpler systems for two variants of F (z, u), involving no derivative.

3.1. p-Valent maps

Theorem 3.1. Let θ, Φ1 and Φ2 be the following doubly hypergeometric series:

θ(x, y) =
∑
i≥0

∑
j≥0

tc2i+j

(
2i+ j

i, i, j

)
xiyj ,

Φ1(x, y) =
∑
i≥1

∑
j≥0

t2i+j

(
2i+ j − 1

i− 1, i, j

)
xiyj , Φ2(x, y) =

∑
i≥0

∑
j≥0

t2i+j+1

(
2i+ j

i, i, j

)
xiyj , (11)

where tk and tck are given by (1) and
(
a+b+c
a,b,c

)
denotes the trinomial coefficient (a+b+c)!/(a!b!c!).

There exists a unique pair (R,S) of power series in z with constant term 0 and coefficients
in Q[u] that satisfy

R = z + uΦ1(R,S), (12)
S = uΦ2(R,S). (13)

The generating function F (z, u) of p-valent forested maps is characterized by F (0, u) = 0 and

F ′z(z, u) = θ(R,S). (14)
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Remarks
1. These equations allow us to compute the first terms in the expansion of F (z, u), for any fixed
p ≥ 3. This is how we obtained (3).
2. When p is even, then t2i+1 = 0 for all i. In particular, all terms occurring in the definition (11)
of Φ2 are multiples of y, so that S = 0. The simplified system reads:

F ′z(z, u) = θ(R) and R = z + uΦ(R), (15)

with
θ(x) =

∑
i≥0

tc2i

(
2i

i

)
xi and Φ(x) =

∑
i≥1

t2i

(
2i− 1

i

)
xi.

3. When u = 0, an even more drastic simplification follows from (12-13): not only S = 0, but
also R = z, so that (14) becomes an explicit expression of F ′z:

F ′z(z, 0) =
∑
i≥0

tc2i

(
2i

i

)
zi,

or equivalently,

F (z, 0) =
∑
i≥0

tc2i

(
2i

i

)
zi+1

i+ 1
=
∑
`≥1

p((p− 1)`)!

(`− 1)!(1 + (p− 2)`/2)!(2 + (p− 2)`/2)!
z2+(p−2)`/2, (16)

where we require ` to be even if p is odd. This series counts p-valent maps equipped with a
spanning tree, and this expression was already proved by Mullin [40].
4. The series θ and Φi are explicited when p = 4 and p = 3 in Sections 4.2 and 4.3, respectively.

In order to prove Theorem 3.1, we first relate F (z, u) to the generating function of planar maps
counted by the distribution of their vertex degrees. More precisely, let M̄ ≡ M̄(z, u; g1, g2, . . . ;h1, h2, . . .)
be the generating function of rooted planar maps, with a weight z per face, ugk per non-root
vertex of degree k and hk if the root vertex has degree k.

Lemma 3.2. The series F (z, u) is related to M through:

F (z, u) = M̄(z, u; t1, t2, . . . ; t
c
1, t

c
2, . . .).

(a) (b)

(c)

Figure 4. (a) A 4-valent forested map with 9 faces and 2 non-root components.
(b) The same map, after contraction of the forest. (c) Assembling the 3 trees
gives the original forested map.
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Proof. The idea is to contract each tree of a spanning forest, incident to k half-edges, into a
k-valent vertex. It is adapted from [19, Appendix A], where the authors study 4-valent forested
maps for which the root edge is not in the forest. It can also be seen as an extension of Mullin’s
construction for maps equipped with a spanning tree [40]. Finally, it also appears in [23].

Let us now get into the details. First, let us recall that rooted maps have no symmetries: all
vertices, edges and half-edges are distinguishable. In particular, one can fix, for every rooted
planar map M ′ (with arbitrary valences) a total order on its half-edges. This order may have
a combinatorial significance — a good choice is the order in which half-edges are visited when
applying the construction of [20] — but can also be arbitrary.

We now describe a bijection Φ, illustrated in Figure 4, between forested p-valent maps (M,F )
and pairs formed of a map M ′ and a collection (Tv, v ∈ V (M ′)) of p-valent trees associated with
the vertices of M ′, such that the tree associated with the root vertex of M ′ is corner-rooted, the
others are leaf-rooted, and the number of leaves of Tv is the degree of v in M ′.

The map M ′ is obtained by contracting all edges of the forest F (Figure 4(b)). The arrow
that marks the root corner remains at the same place. Now split into two half-edges each edge
of M that is not in F : this gives a collection of p-valent trees, each of them being naturally
associated with a vertex v of M ′. The half-edges of these trees form together the edges of M ′
(Figure 4(c)). If v is the root vertex ofM ′, then Tv inherits the corner-rooting ofM . Otherwise,
we root Tv at the smallest of its half-edges, for the total order on half-edges of M ′.

The following properties are readily checked:
• Tv has k leaves if v has degree k in M ′,
• M and M ′ have the same number of faces,
• the number of vertices of M ′ is the number of components of F .

Let us now prove that Φ is bijective. To recover the forested map (M,F ) from the contracted
map M ′ and the associated collection of trees, we inflate each vertex v of M ′ into the corre-
sponding tree Tv. If v is the root vertex of M ′, the root corner of Tv must coincide with the
root corner of M ′. Otherwise, the root half-edge of Tv is put on the smallest of the half-edges
incident to v in M ′. This proves the injectivity of Φ. Since this reverse construction can be
applied to any map M ′ with a corresponding collection of trees, Φ is also surjective. �

Proof of Theorem 3.1. In a recent paper, Bouttier and Guitter [21] have expressed the series M̄
via a system of equations, established bijectively2. Their expression is actually fairly compli-
cated [21, Eq. (1.4)], but the series zM̄ ′z, which counts maps with a marked face, has a much
simpler expression [21, Eq. (2.6)]:

M̄ ′z =
∑
i≥0

∑
j≥0

h2i+j

(
2i+ j

i, i, j

)
RiSj , (17)

where h0 = 0 and, by [21, Eq. (2.5)],

R = z + u
∑
i≥1

∑
j≥0

g2i+j

(
2i+ j − 1

i− 1, i, j

)
RiSj , S = u

∑
i≥0

∑
j≥0

g2i+j+1

(
2i+ j

i, i, j

)
RiSj . (18)

Theorem 3.1 follows by specialization, using Lemma 3.2.
It remains to check that (12–13) defines a unique pair of series R and S in z with constant

terms 0. This is readily proved by observing that (12) determines R up to order n if we know R
and S up to order n− 1; and that (13) determines S up to order n if we know R up to order n
and S up to order n− 1. �

Remark. The expression of M̄ given in [21, Eq. (1.4)] leads to an explicit expression of F (z, u)
in terms of R and S. However, this expression involves a triple sum (a double sum when p is

2Strictly speaking, they do not take the vertex or face number into account, but both are prescribed by the
distribution of vertex degrees.
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even, see for instance (96)). This is why we prefer handling the expression of F ′. We discuss
this further in the final section.

3.2. Quasi-p-valent maps (p odd)

A map is said to be quasi-p-valent if all its vertices have degree p, apart from one vertex which
is a leaf. Such maps exist only when p is odd. They are naturally rooted at their leaf: the root
corner is the unique corner incident to the leaf and the root edge is the unique edge incident to
the leaf. Let G(z, u) denote the generating function of quasi-p-valent forested maps counted by
faces (z) and non-root components (u) (see Figure 5).

Figure 5. A quasi-cubic forested map with 6 faces and 4 non-root components.

Proposition 3.3. The generating function of quasi-p-valent forested maps is

G(z, u) = (1 + ū)

zS − u∑
i≥2

∑
j≥0

t2i+j−1

(
2i+ j − 2

i− 2, i, j

)
RiSj

 , (19)

where ū = 1/u, the series R and S are defined by (12-13) and the numbers tk by (1). Also,

G′z(z, u) = (1 + ū)S.

As in the previous subsection, the key of this result is to relate G(z, u) to a well-understood
generating function of maps — here, the generating function Γ1 ≡ Γ1(z, u; g1, g2, . . .) that counts
planar maps rooted at leaf, with a weight z per face and ugk per k-valent non-root vertex.

Lemma 3.4. The following analogue of Lemma 3.2 holds for quasi-p-valent forested maps:

G(z, u) = (1 + ū) Γ1(z, u; t1, t2, . . .)

with ū = 1/u.

Proof. The bijection used in the proof of Lemma 3.2 shows that the series Γ1(z, u; t1, t2, . . .)
counts quasi-p-valent forested maps such that the root edge is not in the forest. (With the
notation used in that proof, the root vertex of M ′, of degree 1, remains a trivial tree during the
inflation step). To each such forested map, we can add the root edge to the forest. The resulting
forested map has one less component, hence the factor ū = 1/u. �

Proof of Proposition 3.3. The series Γ1 has also been expressed by Bouttier et al. in terms of
the series R and S of (18) (see [20, Eq. (2.6)]):

Γ1 = zS − u
∑
i≥2

∑
j≥0

g2i+j−1

(
2i+ j − 2

i− 2, i, j

)
RiSj . (20)

This gives the first part of Proposition 3.3. For the second part, we observe that Γ1 is by
definition the coefficient of h1 in the series M̄(z, u; g1, . . . ;h1, . . .) defined above Lemma 3.2.
Hence it follows from (17) that Γ′1 = S (this can also be derived combinatorially from [20]). �
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3.3. When the root edge is outside the forest

We now focus on forested maps such that the root edge is outside the forest. Let H(z, u)
denote the associated generating function.

Proposition 3.5. The generating function of p-valent forested maps where the root edge is
outside the forest is

H(z, u) = ūzR+ ūzS2 − ūz2

− 2S
∑
i≥2

∑
j≥0

t2i+j−1

(
2i+ j − 2

i− 2, i, j

)
RiSj −

∑
i≥3

∑
j≥0

t2i+j−2

(
2i+ j − 3

i− 3, i, j

)
RiSj , (21)

where ū = 1/u, the series R and S are defined by (12-13) and the numbers tk by (1).
When p is even, then S = 0 and the first double sum disappears. In this case, we also have a

very simple expression of H ′z(z, u):

H ′z(z, u) = 2ū(R− z). (22)

Again, the key of this result is to relate H(z, u) to a well-understood generating function of
maps — here, the generating function M ≡ M(z, u; g1, g2, . . .) that counts rooted planar maps
with a weight z per face and ugk per vertex of degree k.

Lemma 3.6. The following analogue of Lemma 3.2 holds:

H(z, u) = ūM(z, u; t1, t2, . . .).

Proof. Let us consider again the bijection used in the proof of Lemma 3.2: the fact that the root
edge of M is not in the forest F means that, in the corner-rooted tree associated with the root
vertex of M ′, the root half-edge is a leaf. It is then equivalent to root this tree at this leaf. �

Proof of Proposition 3.5. The first part of the proposition follows from the known characteriza-
tion of M (see [20, Eq. (2.1)]):

M =
Γ2

1 + Γ2

z
− z2,

where Γ1 is given by (20) and

Γ2 = z2R− uz
∑
i≥3

∑
j≥0

(
2i+ j − 3

i− 3, i, j

)
RiSj − u2

∑
i≥2

∑
j≥0

g2i+j−1

(
2i+ j − 2

i− 2, i, j

)
RiSj

2

,

with R and S satisfying (18). This gives the first part of the proposition.
Observe that M(z, u; g1, g2, . . .) = uM̄(z, u; g1, g2, . . . ; g1, g2, . . .) where M̄ is defined just

above Lemma 3.2. When p is even, the maps obtained by contracting forests have even de-
grees (g2k+1 = 0 for all k), the series S given by (18) vanishes, and the combination of (17)
and (18) gives M̄ ′z(z, u; g1, g2, . . . ; g1, g2, . . .) = 2ū(R − z). Thus H ′z = ūM ′z = M̄ ′z = 2ū(R − z),
as stated in (22). �

4. Differential equations

The equations established in the previous section imply that series counting regular forested
maps are D-algebraic. We compute explicitly a few differential equations.

4.1. The general case

Theorem 4.1. The generating function F (z, u) of p-valent forested maps is D-algebraic (with
respect to z). The same holds for the series G(z, u) and H(z, u) of Propositions 3.3 and 3.5.
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Proof. We start from the expression (14) of F ′(z, u) (as we always differentiate with respect to z,
we simply denote F ′(z, u) for F ′z(z, u)). We first observe that the doubly hypergeometric series
θ, Φ1, Φ2 are D-finite (this follows from the closure properties of D-finite power series [37]).

Then, by differentiating (12) and (13) with respect to z, we obtain rational expressions of R′
and S′ in terms of u and the partial derivatives ∂Φ`/∂x and ∂Φ`/∂y, evaluated at (R,S), for
` = 1, 2. (Indeed, differentiating (12) and (13) gives a linear system in R′ and S′. Its determinant
is a power series in z with coefficients in Q[u]. It is non-zero, since it equals 1 at u = 0.)

Let K be the field Q(u). Using (14) and the previous point, it is now easy to prove by
induction that for all k ≥ 1, there exists a rational expression of F (k)(z, u) in terms of{

∂i+jΦ`
∂xi∂yj

(R,S),
∂i+jθ

∂xi∂yj
(R,S)

}
i≥0,j≥0,`∈{1,2}

with coefficients in K. But since θ, Φ1 and Φ2 are D-finite, the above set of series spans a vector
space of finite dimension d overK(R,S). Therefore there exist d elements ϕ1, . . . , ϕd in this space,
and rational functions Ak ∈ K(x, y, x1, . . . , xd), such that F (k)(z, u) = Ak(R,S, ϕ1, . . . , ϕd) for
all k ≥ 1.

Since the transcendance degree [35, p. 254] of K(R,S, ϕ1, . . . , ϕd) over K is (at most) d + 2,
the d+ 3 series F (k)(z, u), for 1 ≤ k ≤ d+ 3, are algebraically dependent, so that F ′ (and thus
F ) is D-algebraic.

The proof is similar for the series G(z, u) andH(z, u), with θ replaced by the adequate D-finite
series derived from (19) and (21). Moreover, since these two expressions involve z explicitly, the
field Q(u) used in the above argument must be replaced by Q(z, u). �

4.2. The 4-valent case

We specialize the above argument to the case p = 4. As explained in the second remark
following Theorem 3.1, the series S vanishes and F ′(z, u) is given by the system (15), with

θ(x) = 4
∑
i≥2

(3i− 3)!

(i− 2)!i!2
xi and Φ(x) =

∑
i≥2

(3i− 3)!

(i− 1)!2i!
xi. (23)

The series θ(x), Φ(x) and their derivatives lie in a 3-dimensional vector space over Q(x) spanned
(for instance) by 1, Φ(x) and Φ′(x). This follows from the following equations, which are easily
checked:

x(27x− 1)Φ′′(x) + 6Φ(x) + 6x = 0, (24)

3θ(x) = 2(27x− 1)Φ′(x)− 42Φ(x) + 12x. (25)

By the argument described above, we can now express first R′, and then F ′ and all its derivatives
as rational functions of u, R, Φ(R) and Φ′(R). But since R = z + uΦ(R), this means a rational
function of u, z, R and Φ′(R). We compute the explicit expressions of F ′, F ′′ and F ′′′, eliminate
R and Φ′(R) from these three equations, and this gives a differential equation of order 2 and
degree 7 satisfied by F ′, the details of which are not particularly illuminating:

9F ′2F ′′5u6+36F ′2F ′′3F ′′′ u5z+144F ′2F ′′4u5−12 (21 z−1)F ′ F ′′5u5+432F ′2F ′′2F ′′′ u4z−48 (24 z−1)F ′ F ′′3F ′′′ u4z

+864F ′2F ′′3u4−96 (27 z−2)F ′ F ′′4u4+4 (27 z−1)(15 z−1)F ′′5u4+1728F ′2F ′′ F ′′′ u3z−288 (21 z−2)F ′ F ′′2F ′′′ u3z

+10368F ′ F ′′′2u2z3+16 (27 z−1)(21 z−1)F ′′3F ′′′ u3z+2304F ′2F ′′2u3−288 (31 z−4)F ′ F ′′3u3

−64 (6uz−162 z2+33 z−1)F ′′4u3+2304F ′2F ′′′ u2z−2304 (6 z−1)F ′ F ′′ F ′′′ u2z

−192 (8uz−54 z2+29 z−1)F ′′2F ′′′ u2z−768 (2u+189 z−7)F ′′′2uz3+2304F ′2F ′′ u2−3072 (3 z−1)F ′ F ′′2u2

−192 (24uz−27 z2+55 z−2)F ′′3u2−1536 (21 z−2)F ′ F ′′′ uz−768 (12uz+81 z2+24 z−1)F ′′ F ′′′ uz+1536 (9 z+2)F ′ F ′′ u

−512 (39uz+81 z2+51 z−2)F ′′2u+36864F ′ z−1024 (12uz−162 z2+33 z−1)F ′′′ z−1024 (36uz+27 z−1)F ′′−24576 z=0.

As discussed in Section 11, we conjecture that F does not satisfy a differential equation of order 2.
We have applied the same method to the series H of Proposition 3.5:

H(z, u) = ūzR− ūz2 − Λ(R)
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where

Λ(x) =
∑
i≥3

(3i− 6)!

(i− 3)!(i− 2)!i!
xi

satisfies
30Λ(x) = x(27x− 1)Φ′(x) + (1− 24x)Φ(x) + 3x2.

This gives for H an equation of order 2 and degree 3:

3 (u+ 1)u2H ′
2
H ′′ + 12u2zH ′H ′′ + 6 (u− 8)uH ′

2
+ 240H

+ 4 (6uz − 54 z + 1)H ′ + 4 (3uz2 + 30uH + 27 z2 − z)H ′′ + 24 z2 = 0.

One reason explaining this more modest size is the simplicity of the expression (22) of H ′.

4.3. The cubic case

We start from the expression of F ′ given in Theorem 3.1. We now have to deal with series θ,
Φ1 and Φ2 in two variables:

θ(x, y) = 3
∑
i≥0

∑
j≥0

2i+j≥3

(4 i+ 2 j − 4)!

(2i+ j − 3)! i!2j!
xiyj ,

Φ1(x, y) =
∑
i≥1

∑
j≥0

2i+j≥3

(4i+ 2j − 4)!

(2i+ j − 2)! (i− 1)! i! j!
xiyj , (26)

Φ2(x, y) =
∑
i≥0

∑
j≥0

2i+j≥2

(4i+ 2j − 2)!

(2i+ j − 1)!i!2j!
xiyj . (27)

Let us first observe that

θ(x, y) = −2Φ1(x, y) + (1− y)Φ2(x, y)− 2x− y2.

Consequently, Theorem 3.1 gives:

F ′ = 2zū+ ūS − (1 + ū)(2R+ S2). (28)

Then, the summations over the variable j that occur in Φ1 and Φ2 can be performed explicitly,
which gives to the cubic case a one-variable flavour. Indeed,

Φ1(x, y) = (1− 4y)
3/2

Ψ1 (t)− x, (29)

Φ2(x, y) =
√

1− 4yΨ2 (t) +
1

4

(
1−

√
1− 4y

)2

, (30)

where t = x/(1− 4y)2 and

Ψ1(z) =
∑
i≥1

(4 i− 4)!

(2 i− 2)! i! (i− 1)!
zi, Ψ2(z) =

∑
i≥1

(4 i− 2)!

(2 i− 1)! i!2
zi.

Our system thus reads:

R = z + u (1− 4S)
3/2

Ψ1 (T )− uR, (31)

S = u
√

1− 4SΨ2 (T ) +
u

4

(
1−
√

1− 4S
)2

, (32)

with T = R/(1− 4S)2.
The series Ψ1(z), Ψ2(z) and their derivatives lie in a 3-dimensional vector space over Q(z)

spanned (for instance) by 1, Ψ1(z) and Ψ2(z). This follows from the following identities, which
are easily checked:

(1− 64z)Ψ′1(z) + 48Ψ1(z) + 2Ψ2(z) = 1, z(1− 64z)Ψ′2(z) + 6Ψ1(z) + 16zΨ2(z) = 8z. (33)
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By the argument of Section 4.1, we can now express R′ and S′ as rational functions of u, R, S,
Ψ1(T ) and Ψ2(T ). But Ψ1(T ) and Ψ2(T ) can be expressed rationally in terms of z, u, R and√

1− 4S using (31) and (32). Hence we obtain rational expressions in u, z, R and
√

1− 4S. In
fact no square root occurs:

R′ =
R(48z − 1 + 16(u+ 1)R+ 2(3 + u)S − 8(u+ 1)S2)

D
,

S′ =
2(3z + (u− 3)R− 12zS + 4(u+ 1)RS)

D
,

with
D = 36z2 + (24z − 1 + 24uz)R+ 4(u+ 1)RS − 4(u+ 1)2RS2 + 4(u+ 1)2R2.

Combining these two equations with (28), one can now express F ′, F ′′ and F ′′′ in terms of u, z, R
and S, and then eliminate R and S to obtain a differential equation of order 2 satisfied by F ′ (of
degree 17). For the generating function G(z, u) of quasi-cubic forested maps (Proposition 3.3),
we replace (28) by

10G = (1 + ū) (z −R+ 6zS + 2(u+ 1)RS) ,

and obtain a differential equation of order 2 and degree 5. It becomes a bit simpler when we
rewrite G = (W + zū)/2:

0 =
(

3u4zW ′
4 − u3(5Wu− uz + z)W ′

3
+ 4 (u+ 1)(5Wu− uz + z)2

)
W ′′

− 48u2z(u+ 1)W ′
3

+ 8u(u+ 1)(5Wu− uz + z)W ′
2

+ 4 (u2 − 1)(5Wu− uz + z)W ′.

Introducing the series W is natural in the solution of the Potts model presented in [8], where
the above equation was first obtained.

5. Combinatorics of forested trees

Equation (5), and the positivity of the Tutte coefficients, show that the series F (z, u) that
counts p-valent forested maps has non-negative coefficients when expanded in (1 + u). We say
that it is (u+ 1)-positive. Section 2.2 presents several combinatorial descriptions of F (z, µ− 1)
(see (6), (8), (9), (10)). This will lead us to study the asymptotic behaviour of the coefficient
of zn in F (z, u) not only for u ≥ 0, but for u ≥ −1. In this study, we will need to know that
several other series are also (u+ 1)-positive. We prove this thanks to a combinatorial argument
that applies to certain classes of forested trees.

5.1. Positivity in (1 + u)

Let T be a tree having at least one edge, and F a set of spanning forests of T . We define a
property of F that guarantees that the generating function AF(u) that counts forests of F by
the number of components is (u+ 1)-positive (after division by u).

Let F ∈ F, and let e be an edge of T . By flipping e in the forest F , we mean adding e to F if
it is not in F , and removing it from F otherwise. This gives a new forest F ′ of T . We say that
e is flippable for F if F ′ still belongs to F. We say that F is stable if for each F ∈ F,

(i) every edge of T not belonging to F is flippable,
(ii) flipping a flippable edge gives a new forest with the same set of flippable edges.

We say that a set E of forested trees is stable if, for each tree T , the set of forests F such that
(T, F ) ∈ E is stable. We consider below a generating function E(z, u) of E, where each forested
tree (T, F ) is weighted by znuk, where n is the size of T (number of edges, of leaves...) and k
the number of components of F , minus 1.

Lemma 5.1. With the above notation, assume F is stable. Then all elements of F have the
same number, denoted by f , of flippable edges. The generating function of forests of F, counted
by components, is AF(u) = u(1 + u)f . Consequently, if E is a stable set of forested trees, then
E(z, u) is (u+ 1)-positive.
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Proof. Condition (i) implies that the forest Fmax consisting of all edges of T belongs to F.
Moreover, we can obtain Fmax from any forest F of F by adding iteratively flippable edges. By
Condition (ii), this implies that any forest F of F has the same set of flippable edges as Fmax.
It also implies that, to construct a forest F of F, it suffices to choose, for each flippable edge of
Fmax, whether it belongs to F or not. Since Fmax has a unique component, and since deleting an
edge from a forest increases by 1 the number of components, the expression of AF(u) follows. �

5.2. Enriched blossoming trees

We now apply the above principle to establish (u + 1)-positivity properties for the series R
and S given by (12–13), and for the series S̃ ≡ S̃(z, u) defined by

S̃(0, u) = 0, S̃ = uΦ2(z, S̃), (34)

where Φ2 is given by (11).
We consider plane trees rooted at a half-edge, which we draw hanging from their root as in

Figure 6. A vertex of degree d is thus seen as the parent of d − 1 children. A subtree consists
of a vertex v and all its descendants. It is naturally rooted at the half-edge incident to v and
located just above it. A blossoming tree is a leaf-rooted plane tree with two kinds of childless
vertices: leaves, represented by white arrows, and buds, represented by black arrows. The edges
that carry leaves and buds are considered as half-edges. (This means that leaves and buds are
not actual nodes of the tree, so that a spanning forest of a blossoming tree does not contain
any of its half-edges.) The root half-edge does not carry any leaf or bud. Each leaf is assigned
a charge +1 while each bud is assigned a charge −1. The charge of a blossoming tree is the
difference between the number of leaves and buds that it contains. This definition is extended
to subtrees.

Definition 5.2. Let p ≥ 3. A p-valent blossoming tree T equipped with a spanning forest F is
an enriched R- (resp. S-) tree if

(i) its charge is 1 (resp. 0),
(ii) any subtree rooted at an edge not in F has charge 0 or 1.

We also consider as an enriched R-tree a single root half-edge carrying at a leaf (Figure 6, left).
The pair (T, F ) is an enriched S̃-tree if each component of F is incident to as many leaves as

buds. In this case it is also an enriched S-tree.

An enriched R-tree is shown in Figure 6. The readers who are familiar with the R- and S-trees
of [20] will recognize that our enriched R- and S-trees are obtained from them by inflating each
vertex of degree k into a (leaf rooted) p-valent tree with k leaves. The following proposition
should not come as a surprise for them.

Proposition 5.3. Let p ≥ 3. The series R, S and S̃ defined by (12), (13) and (34) count re-
spectively enriched R-, S- and S̃-trees, by the number of leaves (z) and the number of components
in the forest (u).

Proof. The equations follow from a recursive decomposition of enriched trees. For instance,
an enriched R-tree is either reduced to a single leaf, with no forest at all (contribution: z),
or contains a root node. This node belongs to a component of the forest. This component is
incident to several half-edges (not belonging to the forest), one of them being the root half-edge.
Each of the other incident half-edges can be a leaf, a bud, or the root of a non-trivial subtree. In
this case, the definition of enriched R-trees implies that this subtree is itself an enriched R-tree
(of charge 1) or an enriched S-tree (of charge 0). Since a single leave is considered as an R-tree,
we can say that every half-edge incident to the root component of the forest carries either a
bud, or an R- or S-tree. If there are i attached R-trees, we must have i − 1 buds for the tree
charge to be 1, and an arbitrary number j of S-trees. The root component of the forest is then
a leaf-rooted tree with k = 2i + j leaves. This gives (12), where the multinomial coefficient
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occurring in Φ1 describes the order in which the i R-trees, the i− 1 buds and the j S-trees are
organized.

The proof of (13) is similar, but now as many buds as R-trees must be attached to the root
component of the forest to make the charge 0.

Finally, an S̃-tree is an S-tree in which all attached R-trees are actually leaves. This explains
that (34) is obtained from (13) by replacing each occurrence of R by z. �

Figure 6. Left: The smallest enriched R-tree. Right: An enriched 5-valent
R-tree having 10 leaves (white; charge +1) and 9 buds (black; charge −1).

We now come back to (u+ 1)-positivity.

Proposition 5.4. The set of p-valent enriched R- (resp. S-, S̃-) trees having at least one edge
is stable, in the sense of Section 5.1.

Proof. For enriched R- and S-trees, an edge is flippable if and only if the attached subtree has
charge 0 or 1, and this condition is independent of the forest.

For enriched S̃-trees, an edge is flippable if and only if the attached subtree is incident to as
many leaves as buds, and this condition is again independent of the forest. �

By combining this proposition with Lemma 5.1 and Proposition 5.3, we obtain:

Corollary 5.5. The series ū(R− z), ūS and ūS̃ are (u + 1)-positive. When u = µ − 1, they
count respectively (non-empty) enriched R-, S- and S̃-trees, by the number of leaves (z) and the
number of flippable edges (µ).

When p = 3 for instance, we have, writing µ = u+ 1,

ū(R− z) = 2(2µ+ 1)z2 + 4(10µ3 + 12µ2 + 9µ+ 4)z3 +O(z4),

ūS = 2z + 6(2µ2 + 2µ+ 1)z2 + 8(16µ4 + 28µ3 + 30µ2 + 22µ+ 9)z3 +O(z4),

ūS̃ = 2z + 2(2µ2 + 8µ+ 5)z2 + 8(2µ4 + 12µ3 + 33µ2 + 40µ+ 18)z3 +O(z4).

We will also need the following variant of these results.

Lemma 5.6. Define Φ2 by (11) and S̃ by (34). The series ∂Φ2

∂y (z, S̃) is (u+ 1)-positive.

Proof. Let us extend the definition of S̃-enriched trees to p-valent blossoming trees that, in
addition to leaves and buds, contain also one dangling half-edge, having no charge (Figure 7).
Using the arguments of Proposition 5.3, one can prove that the series u∂Φ2

∂y (z, S̃) counts such
S̃-enriched trees for which the half-edge is incident to the root component (as before, z counts
leaves and u components).

The set of such trees is again stable: indeed, an edge is flippable if it is flippable in the S̃-sense,
and is not on the path from the root to the dangling half-edge. �
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Figure 7. A cubic enriched S̃-tree with a dangling half-edge incident to the root component.

6. Implicit functions: some general results

The singular behaviour of a series Y (z) defined by an implicit equation H(z, Y (z)) = 0 is well-
understood when the singularities of Y occur at a point z such thatH is analytic at (z, Y (z)), but
H ′y(z, Y (z)) = 0. A typical situation is the so-called smooth implicit schema of [31, Sec. VII.4],
which leads to square root singularities in Y .

However, in our asymptotic analysis of 4-valent and cubic forested maps, we will have to deal
with implicit functions Y that become singular at a point z such that H ceases to be analytic
at (z, Y (z)). Our series Y have non-negative real coefficients, which implies that their radius is
also a dominant singularity, and leads us to pay a special attention to the behaviour of Y along
the positive real axis.

In this section, we thus examine how far a real series Y defined by an implicit equation can
be extended along the positive real axis. We first establish a general result for equations of the
form H(z, Y (z)) = 0 (Proposition 6.1), which will apply for instance to the series S̃ defined
by (34). We then specialize this proposition to an inversion equation of the form Ω(Y (z)) = z
(Corollary 6.3). This corollary will apply in particular to the series R defined, in the 4-valent
case, by R = z + uΦ(R) (see (15)).

Proposition 6.1. Let H(x, y) be a real bivariate power series, analytic in a neighbourhood of
(0, 0), satisfying H(0, 0) = 0 and H ′y(0, 0) > 0. Let Y ≡ Y (z) be the unique power series satis-
fying Y (0) = 0 and H(z, Y (z)) = 0. Then Y has a non-zero radius of convergence. Moreover,
there exists ρ > 0 such that:

(a) Y has an analytic continuation, still denoted by Y , in a neighbourhood of [0, ρ], which is
real valued,

(b) H has an analytic continuation, still denoted by H, in a neighbourhood of {(z, Y (z)), z ∈
[0, ρ]} ,

(c) H(z, Y (z)) = 0 for z ∈ [0, ρ],
(d) H ′y(z, Y (z)) > 0 for z ∈ [0, ρ].

Moreover, if ρ̃ is the supremum (in R ∪ {+∞}) of these values ρ, at least one of the following
properties holds:

(i) ρ̃ = +∞,
(ii) lim infz→ρ̃− H

′
y(z, Y (z)) = 0,

(iii) for each y ∈ [lim infz→ρ̃− Y (z), lim supz→ρ̃− Y (z)], H is singular at (ρ̃, y),
(iv) lim supz→ρ̃− |Y (z)| = +∞.

We begin with a simple lemma.

Lemma 6.2. Let a < 0 < b and let Y be a function analytic in a neighbourhood of [a, b], whose
Taylor expansion at 0 has real coefficients. Then Y takes real values on [a, b].

Proof. The functions z 7→ Y (z) and z 7→ Y (z̄) are analytic and coincide in the neighbourhood
of 0 where Y (z) is given by its Taylor expansion. Hence they coincide everywhere, and Y (z) is
real when z is real. �
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Proof of Proposition 6.1. The uniqueness of Y comes from the fact that its coefficients can be
computed by induction using the equation H(z, Y (z)) = 0 and the initial condition Y (0) = 0
(the assumption H ′y(0, 0) 6= 0 is crucial here). Note that these coefficients are real, so that
Lemma 6.2 will apply. But let us first prove that Y has a positive radius of convergence. Since
H ′y(0, 0) > 0, the analytic implicit function theorem at z = 0 implies the existence of a locally
analytic solution Ŷ to the implicit equation H(z, Ŷ (z)) = 0 satisfying Ŷ (0) = 0. The expansion
of Ŷ around 0 must satisfy this equation as well (in the world of formal power series), and thus
coincides with Y . Hence Y has a positive radius.

Now consider the set

I = {ρ > 0 | ρ satisfies conditions (a), (b), (c), (d)} .

This is clearly an open interval of the form (0, ρ̃), and it is non-empty since (a), (b), (c) and (d)
hold in the neighbourhood of 0. Assume that none of the properties (i), (ii), (iii) and (iv) hold
at ρ̃. In particular, ρ̃ is finite. We will reach a contradiction by proving that ρ̃ ∈ I.

Since (iv) does not hold, Y is bounded on [0, ρ̃). By continuity, the set of accumulation points
of {Y (z), z ∈ [0, ρ̃)} is an interval, which coincides with [lim infz→ρ̃− Y (z), lim supz→ρ̃− Y (z)].
For each y in this interval, the point (ρ̃, y) is in the closure of the set {(z, Y (z)), z ∈ [0, ρ̃)} where
H is known to be analytic. Since (iii) does not hold, there exists an element ỹ in this interval
such that H is analytic at (ρ̃, ỹ). In particular, it is continuous at this point, and (c) implies
that H(ρ̃, ỹ) = 0. Finally, since (d) holds, but (ii) does not, H ′y(ρ̃, ỹ) > 0.

These three properties allow us to apply the analytic implicit function theorem: there exists
an analytic function Ỹ defined in a neighbourhood of ρ̃ such that H(z, Ỹ (z)) = 0 and Ỹ (ρ̃) = ỹ.
We want to prove that Ỹ is an analytic continuation of Y at ρ̃, so that, in particular, the interval
[lim infz→ρ̃− Y (z), lim supz→ρ̃− Y (z)] is reduced to the point ỹ.

Since H ′y(ρ̃, ỹ) > 0, there exists δ > 0 and a complex neighbourhood V of (ρ̃, ỹ) such that for
(x, y) and (x, y′) in V ,

|H(x, y)−H(x, y′)| ≥ δ|y − y′|.
We can also assume that Ỹ (x) is well-defined for (x, y) ∈ V .

Since (ρ̃, ỹ) is an accumulation point of {(z, Y (z)), z ∈ (0, ρ̃)}, and Y is continuous, there
exists an interval [z0, z1] ⊂ (0, ρ̃) such that (z, Y (z)) ∈ V for z ∈ [z0, z1]. Then for z in this
interval,

0 = |H(z, Y (z))−H(z, Ỹ (z))| ≥ δ|Y (z)− Ỹ (z)|,
which shows that the analytic functions Y and Ỹ coincide on [z0, z1]. So they coincide where
they are both defined, and Ỹ is an analytic continuation of Y at ρ̃. This tells us that (a) holds
at ρ̃. Now (b) also holds by the choice of ỹ, (c) holds by construction of Ỹ , and (d) holds as
well, as argued above. Thus ρ̃ belongs to I, which cannot be true since it is the supremum of
the open interval I. Hence one of the properties (i), (ii), (iii) and (iv) must hold. �

Corollary 6.3. Let Ω(y) be a real power series such that Ω(0) = 0 and Ω′(0) > 0. Let ω ∈
(0,+∞] be the first singularity of Ω on the positive real axis, if it exists, and +∞ otherwise.
Let Y ≡ Y (z) be the unique power series satisfying Y (0) = 0 and Ω(Y (z)) = z. Then Y has a
non-zero radius of convergence. Moreover, there exists ρ ∈ (0,∞] such that:

(1) Y has an analytic continuation, still denoted by Y , in a neighbourhood of [0, ρ), which
is real valued,

(2) Y is increasing on [0, ρ),
(3) Y (z) ∈ [0, ω) for z ∈ [0, ρ),
(4) Ω(Y (z)) = z for z ∈ [0, ρ),
(5) limz→ρ− Y (z) = τ and limy→τ− Ω(y) = ρ,

where
τ = min{y ∈ [0, ω) | Ω′(y) = 0}

if this set is non-empty, and τ = ω otherwise.
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This result is stated as an existence result for ρ, but (5) actually determines the value of ρ.

Proof. We specialize Proposition 6.1 to H(x, y) = Ω(y)−x. Clearly, H is analytic around (0, 0),
H(0, 0) = 0 and H ′y(0, 0) = Ω′(0) > 0. We take for ρ the value ρ̃ of Proposition 6.1. Then
(1) follows from (a). Conditions (b) and (c) tell us that Ω has an analytic continuation on
{Y (z), z ∈ [0, ρ)}, such that Ω(Y (z)) = z for z ∈ [0, ρ). By differentiating this identity, we
obtain Y ′(z)Ω′(Y (z)) = 1, so that (2) now follows from (d). Thus the existence of an analytic
continuation of Ω on {Y (z), z ∈ [0, ρ)} now translates into (3). The monotonicity of Y also
allows us to define Y (ρ) := limz→ρ− Y (z), which is not necessarly finite.

Let us now derive (5) from the second series of properties of Proposition 6.1. We have already
seen (this is (3)) that Y (ρ) ≤ ω. By Condition (d) of Proposition 6.1, and by definition of τ , the
value Y (ρ) is also less than or equal to τ . Assume Y (ρ) < τ . Then Ω is analytic at Y (ρ), and
by continuity of Ω and Y , ρ = Ω(Y (ρ)) < +∞, so that (i) cannot hold. By definition of τ , we
cannot have (ii). It is easy to see that Conditions (iii) and (iv) do not hold either. So we have
reached a contradiction, and Y (ρ) = τ . Returning to (4) gives ρ = Ω(Y (ρ)) = Ω(τ). �

7. Inversion of functions with a z ln z singularity

The inversion of a locally injective analytic function is a well-understood topic: if Ψ is analytic
in the disk Cs of radius s centered at 0 and Ψ(z) ∼ z as z → 0, then there exist ρ ∈ (0, s) and
ρ′ > 0, and a function Υ analytic on C ′ρ, taking its values in Cρ, such that

∀(y, z) ∈ C ′ρ × Cρ, Ψ(z) = y ⇐⇒ z = Υ(y).

The aim of this section is to see to what extent this can be generalized to a function Ψ(z) having
a singularity in z ln z around 0. Of course we cannot consider disks anymore, and our local
domains will be of the following form:

Dρ,α := {z = reiθ : r ∈ (0, ρ) and |θ| < α}.

Theorem 7.1 (Log-Inversion). Let Ψ be analytic on Ds,π for some s > 0. Assume that as z
tends to 0 in this domain,

Ψ(z) ∼ −cz ln z

with c > 0. Then for each α ∈ (0, π), there exist ρ ∈ (0, s) and ρ′ > 0, and a function Υ analytic
in Dρ′,α, taking its values in Dρ,π, that satisfies

∀(y, z) ∈ Dρ′,α ×Dρ,π, Ψ(z) = y ⇐⇒ z = Υ(y).

Moreover, as y → 0 in Dρ′,α,

Υ(y) ∼ − y

c ln y
.

The proof is rather long. The most difficult part is to prove the existence of a unique preimage
of y under Ψ in Dρ,π, for each y ∈ Dρ′,α (Lemma 7.5). This preimage is of course Υ(y). Proving
the analyticity of Υ is then a simple application of the analytic implicit function theorem.
In order to prove Lemma 7.5, we first study the injectivity and surjectivity of the function
H : z 7→ −z ln z around 0 (Section 7.1), before transferring them to the function Ψ (Section 7.2).

7.1. The function z 7→ −z ln z

Consider the following function

H : C \ R− → C
z 7→ −z ln z,

where ln denotes the principal value of logarithm: if z = reiθ with r > 0 and θ ∈ (−π, π), then
ln z = ln r + iθ. We also define Arg z := θ. Let us begin with a few elementary properties of H.
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Lemma 7.2. The function H satisfies

H(z̄) = H(z). (35)

For z = reiθ with r > 0 and θ ∈ (−π, π),

|H(z)| = r
√

ln2 r + θ2. (36)

The arguments of z and − ln z have opposite signs. If in addition r < 1, then Arg(− ln z) ∈
(−π/2, π/2). Hence

ArgH(z) = Arg z + Arg(− ln z) = θ + arctan

(
θ

ln r

)
. (37)

If in addition r ≤ 1/
√
e, then

|ArgH(z)| ≤ θ. (38)
In particular, H(z) 6∈ R−.

Proof. The first two identities are straightforward. The first part of (37) follows from the
fact that the arguments of z and − ln z have opposite signs. The second part follows from
Arg(− ln z) ∈ (−π/2, π/2). Let us now prove (38). Assume θ ≥ 0. Then Arg(− ln z) ≤ 0 and the
first part of (37) gives ArgH(z) ≤ θ. Moreover, arctanx ≥ x if x ≤ 0, and thus by the second
part of (37),

ArgH(z) ≥ θ +
θ

ln r
≥
(

1− 1

ln (1/
√
e)

)
θ = −θ.

The case where θ ≤ 0 now follows using (35). �

Observe that H is not injective on C: for instance, H(i) = π/2 = H(−i). However, H is
injective in a (slit) neighbourhood of 0.

Proposition 7.3. The function H : z 7→ −z ln z is injective on De−1,π.

Proof. Assume there exist z1 and z2 in De−1,π such that H(z1) = H(z2). By Lemma 7.2, the
value H(z1) is not real and negative, and thus lnH(z1) = lnH(z2).

This lemma also implies that for z ∈ De−1,π, we have

lnH(z) = ln z + ln(− ln z). (39)

Hence
| ln z1 − ln z2| = | ln(− ln z1)− ln(− ln z2)|. (40)

Let κ = −max(ln |z1|, ln |z2|) > 1. Then − ln z1 and − ln z2 lie in {z | Re(z) ≥ κ}. This set is
convex, so the (vectorial) mean value inequality gives

| ln(− ln z1)− ln(− ln z2)| ≤ | ln z1 − ln z2| sup
z∈[− ln z1,− ln z2]

| ln′(z)| ≤ 1

κ
| ln z1 − ln z2|.

Combining this with (40) gives | ln z1 − ln z2| = 0, so that z1 = z2. �

We now address the surjectivity of the map H.

Proposition 7.4. For 0 < α < π and ρ small enough (depending on α), we have

D− ρ ln ρ,α ⊂ H(Dρ,π).

Proof. We are going to prove that the inclusion holds for every ρ ∈ (0, 1/e) satisfying

arctan

(
π

| ln ρ|

)
≤ π − α. (41)

Let us fix a complex number seiγ with 0 < s < −ρ ln ρ and |γ| < α. We want to prove the
existence of r < ρ and θ ∈ (−π, π) such that H(reiθ) = seiγ . We proceed in two steps.
(1) There exists a continuous function θ : (0, ρ)→ (−π, π) such that ∀r ∈ (0, ρ),

ArgH(r eiθ(r)) = γ.
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Proof . Fix r ∈ (0, ρ). For θ ∈ (−π, π), Lemma 7.2 gives

f(r, θ) := ArgH(reiθ) = θ + arctan

(
θ

ln r

)
.

Differentiating with respect to θ gives

f ′θ(r, θ) = 1 +
1(

1 + θ2

ln2 r

)
ln r
≥ 1 +

1

ln r
> 0.

Hence f(r, θ) is a continuous increasing function of θ, sending (−π, π) onto (−π−arctan(π/ ln r), π+
arctan(π/ ln r)). Since r < ρ and ρ satisfies (41), this interval contains (−α, α), and thus the
value γ. This proves the existence, and uniqueness (since f increases), of θ(r).

Now in the neighbourhood of (r, θ(r)), we can apply the implicit function theorem to the
equation f(r, θ) = γ, and this shows that θ is continuous on (0, ρ).
(2) There exists r ∈ (0, ρ) such that |H(r eiθ(r))| = s.
Proof . The function

r 7→ |H(r eiθ(r))| = r

√
ln2 r + θ(r)2

is continuous on (0, ρ). It tends to 0 as r tends to 0, and to a value at least equal to −ρ ln ρ as r
tends to ρ. Since α < −ρ ln ρ, the intermediate value theorem implies that there exists r ∈ (0, ρ)
such that |H(reiθ(r))| = s.

This completes the proof of the proposition. �

7.2. The Log-Inversion Theorem

By combining Propositions 7.3 and 7.4, we see that for α ∈ (0, π) and ρ small enough, every
point of D−ρ ln ρ,α has a unique preimage under H in Dρ,π. We now want to adapt this result
to functions Ψ that behave like H in the neighbourhood of the origin.

Lemma 7.5. Let Ψ be analytic on Ds,π for some s > 0. Assume that as z tends to 0 in this
domain,

Ψ(z) ∼ H(z) = −z ln z.

For all α ∈ (0, π), there exist ρ ∈ (0, s) and ρ′ > 0 such that every point of Dρ′,α has a unique
preimage under Ψ in Dρ,π.

Proof. By assumption, Ψ(z)−H(z) = o(z ln z) = o(−|z| ln |z|) as z tends to 0. Let ρ ∈ (0, s) be
small enough for every z ∈ Dρ,π to satisfy

|Ψ(z)−H(z)| < −min

(
1

2
, sin

(
π − α

4

))
|z| ln |z|, (42)

1 +
1

ln |z|
>

1

2
+

α

π + α
, (43)

|z ln z| ≤ −2|z| ln |z|, (44)

− ln
|z|
8
≤ −2 ln |z|, (45)

and assume moreover than ρ is also small enough for the following property to hold:

D− ρ8 ln ρ
8 ,α
⊂ H(D ρ

8 ,π
). (46)

This inclusion is made possible by Proposition 7.4. Several of the above listed conditions can be
described by an explicit upper bound on ρ (for instance, (45) just means that ρ ≤ e−8), but we
will use them in the above form and find convenient to write them so.

Now fix y0 ∈ Dρ′,α with ρ′ = −ρ8 ln ρ
8 . We want to prove that y0 has a unique preimage under

Ψ in Dρ,π. By (46) and Proposition 7.3, it has a unique preimage under H, denoted by z0, in
Dρ,π (in fact, |z0| < ρ/8). We thus want to prove that the functions Ψ− y0 and H − y0 have the
same number of roots in Dρ,π, and we will do so using Rouché’s theorem.
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For ε ∈ (0, |z0|/8), let Γ ≡ Γ(ε) be the contour shown in Figure 8. The interior of Γ converges
to Dρ,π as ε→ 0. Hence for ε small enough, it contains the point z0, and we just need to prove
that Ψ− y0 and H − y0 have the same number of roots inside Γ(ε) for every small enough ε.

ε

ρ

π+α
2

Γ

Figure 8. The contour Γ(ε).

By Rouché’s theorem, it suffices to show that |Ψ−H| < |H − y0| on Γ. Let us decompose Γ
into three (non-disjoint) parts :

Γ1 = Γ ∩ {z : |z| = ρ}, Γ2 = Γ ∩ {z : |z| = ε} and Γ3 = Γ ∩
{
z : |Arg z| > π + α

2

}
.

We will use in the study of Γ1 and Γ2 the following elementary result.

Lemma 7.6. If ρ ≥ |z| ≥ 8 |z′| with z, z′ ∈ C \ (−∞, 0], then

|z ln z − z′ ln z′| ≥ −1

2
|z| ln |z|.

Proof. We have the following lower bounds:

|z ln z − z′ ln z′| ≥ |z ln z| − |z′ ln z′|
≥ −|z| ln |z|+ 2|z′| ln |z′| by (36) and (44),

≥ −|z| ln |z|+ |z|
4

ln
|z|
8

because |z′| ≤ |z|/8,

≥ −1

2
|z| ln |z| by (45).

�

Since |z0| < ρ/8, we can apply this lemma to z ∈ Γ1 and z′ = z0. This gives, using (42):

|H(z)− y0| ≥ −
1

2
|z| ln |z| > |Ψ(z)−H(z)|.

Since ε < |z0|/8, applying Lemma 7.6 to z0 and z ∈ Γ2 gives:

|y0 −H(z)| ≥ −1

2
|z0| ln |z0| ≥ −

1

2
|z| ln |z| > |Ψ(z)−H(z)|.

We are left with the contour Γ3. If z ∈ Γ3, we claim that

|ArgH(z)| ≥ α+
π − α

4
. (47)
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By (35), it suffices to prove this when Arg z ≥ 0. In this case,

ArgH(z) = Arg z + arctan

(
Arg z

ln |z|

)
by (37),

≥
(

1 +
1

ln |z|

)
Arg z since arctanx ≥ x,

>

(
1

2
+

α

π + α

)
Arg z by (43),

≥ α+
π − α

4
since Arg z ≥ π + α

2
.

Hence (47) holds on Γ3. But since |ArgH(z0)| = |Arg y0| < α, we have

|ArgH(z)−ArgH(z0)| > π − α
4

. (48)

We still need one more result to conclude.

Lemma 7.7. For β > 0 and complex numbers a and b in C \ (−∞, 0],

|Arg a−Arg b| ≥ β =⇒ |a− b| ≥ |a| sinβ.

Proof. (1) If |Arg a−Arg b| ≤ π
2 , then

|a− b| =
∣∣∣|a|ei(Arg a−Arg b) − |b|

∣∣∣ ≥ ∣∣∣Im(|a|ei(Arg a−Arg b)
)∣∣∣ ≥ |a| sinβ.

(2) If |Arg a−Arg b| ≥ π
2 , then

|a− b| =
∣∣∣|a| − |b|ei(Arg b−Arg a)

∣∣∣ ≥ ∣∣∣Re
(
|a| − |b|ei(Arg b−Arg a)

)∣∣∣
= |a| − |b| cos (Arg b−Arg a) ≥ |a| ≥ |a| sinβ.

�

By applying this lemma to (48) with β = (π − α)/4, we obtain

|H(z)− y0| ≥ |H(z)| sin
(
π − α

4

)
≥ − sin

(
π − α

4

)
|z| ln |z| by (36)

> |Ψ(z)−H(z)| by (42).

We have finally proved that |Ψ(z) −H(z)| < |H(z) − y0| everywhere on the contour Γ ≡ Γ(ε),
and we can now conclude that Ψ− y0 has, like H − y0, a unique root in Dρ,π. �

We are finally ready to prove the log-inversion theorem (Theorem 7.1).

Proof of Theorem 7.1. Upon writing Ψ = cΨ1 and Υ(y) = Υ1(y/c), we can assume without loss
of generality that c = 1. We then choose ρ and ρ′ as in Lemma 7.5. For y0 ∈ Dρ′,α, we define
Υ(y0) as the unique point z0 of Dρ,π such that Ψ(z0) = y0. We now apply the analytic implicit
function theorem to the equation Ψ(Υ(y)) = y, in the neighbourhood of (y0, z0). The function
Ψ is analytic at z0 and locally injective by Lemma 7.5. Therefore Ψ′(z0) 6= 0, and there exists an
analytic function Ῡ defined in the neighbourhood of y0 such that Ῡ(y0) = z0 and Ψ(Υ(y)) = y
in this neighbourhood.

This forces Υ(y) and Ῡ(y) to coincide in a neighbourhood of y0, and implies that Υ is analytic
at y0 — and hence in the domain Dρ′,α.

Let us conclude with the singular behaviour of Υ near 0. The equation Ψ(Υ(y)) = y, combined
with Ψ(z) ∼ −z ln z, implies that Υ(y)→ 0 as y → 0. Thus

y ∼ −Υ(y) ln(Υ(y))
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as y → 0. Upon taking logarithms, and using (39), this gives

ln y ∼ ln(Υ(y)) + ln(− ln(Υ(y))) ∼ ln(Υ(y)).

Combining the last two equations finally gives Υ(y) ∼ −y/ ln y. �

8. Asymptotics for 4-valent forested maps

Let F (z, u) =
∑
n fn(u)zn be the generating function of 4-valent forested maps, given by

Theorem 3.1. That is, fn(u) counts forested 4-valent maps with n faces by the number of non-
root components. As recalled in Section 2.2, the polynomial fn(µ − 1) has several interesting
combinatorial descriptions in terms of maps equipped with an additional structure, and we will
study the asymptotic behaviour of fn(u) for any u ≥ −1.

Recall that F (z, u) is characterized by (15) where θ and Φ are given by (23). As discussed
after Theorem 3.1, F (z, 0) is explicit and given by (16):

F (z, 0) =

∫
θ(z)dz = 4

∑
i≥2

(3i− 3)!

(i− 2)!i!(i+ 1)!
zi+1,

which makes the case u = 0 of the following theorem a simple application of Stirling’s formula.

Theorem 8.1. Let p = 4, and take u ≥ −1. The radius of convergence of F (z, u) is

ρu = τ − uΦ(τ) (49)

where Φ is given by (23) and {
τ = 1/27 if u ≤ 0,
1− uΦ′(τ) = 0 if u > 0.

The later condition determines a unique τ ≡ τu in (0, 1/27).
In particular, ρu is an affine function of u on [−1, 0]:

ρu =
1

27
− uΦ

(
1

27

)
=

1 + u

27
− u
√

3

12π
. (50)

The function ρu is decreasing, real-analytic everywhere except at 0, where it is still infinitely
differentiable: as u→ 0+,

ρu =
1

27
− uΦ

(
1

27

)
+O

(
exp

(
− 2π√

3u

))
. (51)

Let fn(u) be the coefficient of zn in F (z, u). There exists a positive constant cu such that

fn(u) ∼


cu ρ

−n
u n−3(lnn)−2 if u ∈ [−1, 0),

cu ρ
−n
u n−3 if u = 0,

cu ρ
−n
u n−5/2 if u > 0.

The constant cu is given explicitly in Propositions 8.3 (for u > 0) and 8.4 (for u < 0), and
c0 = 2/(9

√
3π).

The exponent −5/2 found for u > 0 is standard for planar maps (see for instance Tables 1
and 2 in [3]). The behaviour for u < 0 is much more surprising, and, to our knowledge, it is the
first time that it is observed in the world of maps. A plot of ρu is shown in Figure 9. Note that
ρ−1 =

√
3/(12π), a transcendental radius for the series counting 4-valent maps equipped with

an internally inactive spanning tree.
The proof of the theorem uses the singularity analysis of [31, Ch. VI]. We thus need to locate

the dominant singularities of the series F ′ (that is, those of minimal modulus), and to find
how F ′ behave in their vicinity. In order to do this, we begin with the series R, defined by
R = z + uΦ(R), and then move to F ′ = θ(R). We will find that both series have the same
radius ρu. Moreover, since F ′ and ū(R − z) have non-negative coefficients in z, this radius is a
singularity of each (by Pringsheim’s theorem). We will prove that neither F ′ nor R have other
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Figure 9. The radius ρu of F (z, u), as a function of u ≥ −1.

dominant singularities, and obtain estimates of these functions near ρu (the same estimate, up
to a multiplicative factor).

Now the location of ρu, and its nature as a singularity, depend on whether u > 0 or u < 0
(Figure 10). For u > 0, the series R will be shown to satisfy the smooth implicit schema of [31,
Sec. VII.4]. In brief, the dominant singularity ρu of R comes from the failure of the assumption
uΦ′(R(z)) 6= 1 in the implicit function theorem. The value R(ρu) lies in the analyticity domain
of Φ and θ, and the singularities of these series play no role. Both R and F ′ will be proved
to have a square root dominant singularity. If u < 0 however, the series R reaches at ρu the
dominant singularity of Φ and θ, and the singular behaviours of R and F ′ at ρu depend on the
singular behaviours of Φ and θ. In particular, we find that, around ρ ≡ ρu, the function F ′′(z, u)
behaves like 1/ ln(1 − z/ρ), up to a multiplicative constant. Since this cannot be the singular
behaviour of a D-finite series [31, p. 520 and 582], we have the following corollary.

Corollary 8.2. For u ∈ [−1, 0), the generating function F (z, u) of 4-valent forested maps is not
D-finite. The same holds when u is an indeterminate.

Recall that F (z, u) is, however, differentially algebraic (Theorem 4.1).

8.1. The series Φ and θ

Recall the definition (23) of these series. The ith coefficient of θ is asymptotic to 27i/i2,
up to a multiplicative constant, and the same holds for Φ. Hence both series have radius of
convergence 1/27, converge at this point, but their derivatives diverge.

This is as much information as we need to obtain the asymptotic behaviour of fn(u) when
u > 0. When u < 0, we will need to know singular expansions of Φ and θ near 1/27. Let us first
observe that

Φ(x) = x

(
2F1

(
1

3
,

2

3
; 2; 27x

)
− 1

)
(52)

where 2F1(a, b; c;x) denotes the standard hypergeometric function with parameters a, b and c:

2F1(a, b; c;x) =
∑
n≥0

(a)n(b)n
(c)n

xn

n!
,
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Figure 10. Plot of R(z, u), for z ∈ [0, ρu]. Left: when u = 1, and more
generally u > 0, R does not reach the dominant singularity of Φ (which is
1/27 ' 0.037). Right: When u = −1/2, and more generally when u ∈ [−1, 0],
we have R(ρu) = 1/27.

with (a)n the rising factorial a(a+1) · · · (a+n−1). The series 2F1

(
1
3 ,

2
3 ; 2; 27x

)
can be analytically

continued in C\[1/27,+∞), and its behaviour as z approaches 1/27 in this domain is given by [1,
Eq. (15.3.11)]. Translated it terms of Φ, this gives, as ε→ 0,

Φ

(
1

27
− ε
)

=

√
3

12π
− 1

27
+

√
3

2π
ε ln ε+

(
1−
√

3

2π

)
ε+O(ε2 ln ε). (53)

One also has:

Φ′
(

1

27
− ε
)

= −
√

3

2π
ln ε− 1 +O(ε ln ε). (54)

The series θ is related to Φ by (25). It has the same analyticity domain as Φ, with local expansion
at 1/27:

θ

(
1

27
− ε
)

=
2

3
− 7
√

3

6π
+

2
√

3

π
ε ln ε+

7
√

3

π
ε+O(ε2 ln ε). (55)

Also,

θ′
(

1

27
− ε
)

= −2
√

3

π
ln ε− 9

√
3

π
+O(ε ln ε). (56)

8.2. When u > 0

As in [31, Def. VI.1, p. 389], we call ∆-domain of radius ρ any domain of the form

{z : |z| < r, z 6= ρ and |Arg(z − ρ)| > φ}
for some r > ρ and φ ∈ (0, π/2).

Proposition 8.3. Assume u > 0. Then the series R(z, u) is aperiodic and satisfies the smooth
implicit schema of [31, Def. VII.4, p. 467]. Its radius is given by (49), and satisfies (51). The
series R is analytic in a ∆-domain of radius ρ ≡ ρu, with a square root singularity at ρ:

R(z, u) = τ − γ
√

1− z/ρ+O(1− z/ρ), (57)
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where τ is defined as in Theorem 8.1, and γ =
√

2ρ
uΦ′′(τ) with Φ given by (23).

The series F ′(z, u) is also analytic in a ∆-domain of radius ρ, with a square root singularity
at ρ:

F ′(z, u) = θ(τ)− γθ′(τ)
√

1− z/ρ+O(1− z/ρ), (58)

where γ is given above and θ is defined by (23). Consequently, the nth coefficient of F satisfies,
as n→∞,

fn(u) ∼ θ′(τ)

√
ρ3

2πuΦ′′(τ)
ρ−nn−5/2.

This proposition establishes the case u > 0 of Theorem 8.1.

Proof. The results that deal with R are a straightforward application of Definition VII.4 and
Theorem VII.3 of [31, p. 467-468]. Using the notation of this book, G(z, w) = z + uΦ(w) is
analytic for (z, w) ∈ C×{|w| < 1/27}. The so-called characteristic system holds at (ρ, τ) where
τ is the unique element of (0, 1/27) such that Gw(ρ, τ) = uΦ′(τ) = 1, and ρ := τ − uΦ(τ). The
existence and uniqueness of τ is guaranteed by the fact that Φ′(w) increases (strictly) from 0
to +∞ as w goes from 0 to 1/27. The aperiodicity of R is obvious from the first terms of its
expansion: R = z + 3z2u+ 6u(3u+ 5)z3 +O(z4).

We now move to F ′ = θ(R). Since R(ρ, u) = τ < 1/27, and R has non-negative coefficients,
there exists a ∆-domain of radius ρ in which R is analytic and strictly bounded (in modulus)
by 1/27. Since θ has radius 1/27, the series F ′ = θ(R) is also analytic in this domain, and its
singular behaviour around ρ follows from a Taylor expansion. One then applies the Transfer
Theorem VI.4 from [31, p. 393] to obtain the behaviour of the nth coefficient of F ′, which is
(n+ 1)fn+1(u). The estimate of fn(u) follows.

It remains to find an estimate of ρu as u → 0+. Recall that uΦ′(τ) = 1. Thus τ ≡ τu
approaches 1/27 as u→ 0, and (54) gives

ln(1/27− τ) = −2π(1 + ū)√
3

+ o(1)

with ū = 1/u, so that

τ − 1

27
∼ − exp

(
−2π(1 + ū)√

3

)
. (59)

Since ρ = τ − uΦ(τ), this gives (51) in view of the expansion (53) of Φ. �

8.3. When u < 0

Proposition 8.4. Let u ∈ [−1, 0). The series R and F ′ have radius ρ ≡ ρu given by (50).
They are analytic in a ∆-domain of radius ρ, and the following estimates hold in this domain,
as z → ρ:

R(z)− 1

27
∼ − 2πρ√

3u

1− z/ρ
ln(1− z/ρ)

, (60)

F ′′(z) + 4ū ∼ 72
√

3πū2ρ

ln(1− z/ρ)
. (61)

Consequently, the nth coefficient of F satisfies, as n→∞,

fn(u) ∼ 72
√

3πū2 ρ
−n+3

n3 ln2 n
.

Since (61) cannot be the singular behaviour of a D-finite series [31, p. 520 and 582], this proves
Corollary 8.2. This proposition also establishes the case u < 0 of Theorem 8.1.
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Proof. We begin as before with the series R. The equation R = z+ uΦ(R) reads Ω(R) = z with
Ω(y) = y − uΦ(y). Clearly Ω(0) = 0 and Ω′(0) = 1 > 0, so that we can apply Corollary 6.3, in
which the role of Y is played by R. Let ω, τ and ρ be defined as in this corollary. It follows
from Section 8.1 that ω = 1/27. Since u < 0, Ω′(y) = 1 − uΦ′(y) does not vanish on [0, 1/27).
Hence τ = 1/27 as well. By Property (5) of Corollary 6.3,

ρ = Ω

(
1

27

)
=

1

27
− uΦ

(
1

27

)
,

which, combined with (53), gives (50).
Corollary 6.3 tells us that R has an analytic continuation along [0, ρ). Moreover, R(z) increases

from 0 to 1/27 on [0, ρ), and the equation

R = z + uΦ(R) (62)

holds in the whole interval [0, ρ).
By Corollary 5.5, the series ū(R − z) has non-negative coefficients. As R itself, it is analytic

along [0, ρ). By Pringsheim’s theorem, its radius is at least ρ, and this holds for R as well. We
will now study the behaviour of R in the neighbourhood of ρ, and prove that it is singular at
this point, so that ρ is indeed the radius of R.

For z ∈ C \ R−, let us define

Ψ(z) := ρ+
z − 1

27
+ uΦ

(
1− z

27

)
.

As explained above, 1−27R(ρ−y) increases from 0 to 1 as y goes from 0 to ρ, and the functional
equation (62) satisfied by R reads, for y ∈ [0, ρ),

Ψ(1− 27R(ρ− y)) = y. (63)

By (53), we have Ψ(z) ∼ −cz ln z where

c = −
√

3u

54π
> 0.

Let us apply the log-inversion theorem (Theorem 7.1) to Ψ, with α = 3π/4 (we now denote r
and r′ the numbers ρ and ρ′ of Theorem 7.1): There exists r > 0 and r′ > 0, and a function
Υ analytic on Dr′,α = {|z| < r′ and |Arg z| < 3π/4}, such that Ψ(Υ(y)) = y. Furthermore,
Υ(y) is the only preimage of y under Ψ that can be found in Dr,π = {|z| < r and |Arg z| < π}.
Comparing with (63) shows that for y small enough and positive, one has Υ(y) = 1−27R(ρ−y).
Returning to the original variables, this means that, for z real and close to ρ−,

R(z) =
1

27
(1−Υ(ρ− z)) ,

so that R can be analytically continued on {|z − ρ| < r and |Arg(z − ρ) | > π/4}. Moreover,
the final statement of Theorem 7.1 gives (60). This shows that R is singular at ρ, which is thus
the radius of R.

In order to prove that R is analytic in a ∆-domain of radius ρ, we now have to prove that it
has no singularity other than ρ on its circle of convergence. So let µ 6= ρ have modulus ρ. Since
R := ū(R − z) has positive coefficients and |R(ρ)| < +∞, the series R converges at µ, and so
does R. Recall that Φ is analytic in C\ [1/27,+∞). Hence (62), which holds in a neighbourhood
of 0, will hold in the closed disk of center ρ if we can prove the following lemma.

Lemma 8.5. For |z| ≤ ρ and z 6= ρ, we have R(z) 6∈ [1/27,+∞).

Proof. We have already seen that the property holds (since R is increasing) on the interval [0, ρ).
On the interval [−ρ, 0], the function R is real (Lemma 6.2) and continuous. Hence, if R exits
(−∞, 1/27) on this interval, there exists t ∈ [−ρ, 0] such that R(t) = 1/27. Let t be maximal for
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this property. Then R(z) ∈ C \ [1/27,+∞) on a complex neighbourhood of (t, 0], and (62) holds
there. By differentiating it, we obtain

R′(z) =
1

1− uΦ′(R(z))
6= 0. (64)

In particular, R′(0) = 1. But since R(t) = 1/27 > R(0) = 0, the function R′(z) must vanish in
(t, 0), which is impossible in view of its expression above.

Assume now that z is not real, and let us prove that R(z) is not real either. First,

| ImR(z)| = | Im(z + uR(z))| ≥ | Im z|+ u | ImR(z)|. (65)

Then:

| ImR(z)| = | Im (R(z)− R(Re z)) | ≤ |R(z)− R(Re z)|
< |z − Re z| max

y∈[Re z,z]
|R′(y)| ≤ | Im z|max

|y|≤ρ
|R′(y)|. (66)

The strict inequality comes from the fact that R′ is not constant over [Re z, z]. But R′ is a power
series with positive coefficients, and thus for |y| ≤ ρ,

|R′(y)| ≤ R′(ρ) = ū (R′(ρ)− 1) = ū

(
lim
t→ρ

1

1− uΦ′(R(t))
− 1

)
= −ū, (67)

because Φ′(z) tends to +∞ as z → 1/27. Returning to (66) gives | ImR(z)| < −ū| Im z|, and
this inequality, combined with (65), gives | ImR(z)| > 0. �

So we now know that (62) holds everywhere in the disk of radius ρ, with R only reaching the
critical value 1/27 at ρ. By differentiation, (64) holds as well. Let us return to our point µ 6= ρ,
of modulus ρ. We now want to apply the analytic implicit function theorem to (62) at the point
(µ,R(µ)). We know that Φ is analytic around R(µ). Could it be that uΦ′(R(µ)) = 1? By (64),
this would imply that |R′(z)|, and thus |R′(z)|, is not bounded as z approaches µ in the disk.
However, R′ has non-negative coefficients and R′(ρ) has been shown to converge (see (67)). Thus
R′(z) remains bounded in the disk of radius ρ, and in particular uΦ′(R(µ)) 6= 1. The analytic
implicit function theorem then implies that R is analytic at µ.

In conclusion, we have proved that there exists a ∆-domain of radius ρ where R is analytic
and avoids the half-line [1/27,+∞).

Let us now turn our attention to F ′ = θ(R). Since θ is analytic in C \ [1/27,+∞), the
series F ′ is analytic in the same ∆-domain as R. The estimate (60) of R, combined with the
expansion (55) of θ, does not give immediately the singular behaviour of F ′. Another route
would be possible, but it is more direct to work with F ′′ instead. Indeed,

F ′′(z) = R′(z)θ′(R(z)) =
θ′(R(z))

1− uΦ′(R(z))
. (68)

By (54) and (56),

θ′(1/27− ε)
1− uΦ′(1/27− ε)

= −4ū− 2ū

(
9− 4π(1 + ū)√

3

)
1

ln ε
+O(1/ln2 ε)

= −4ū+
72
√

3πū2ρ

ln ε
+O(1/ln2 ε),

in view of (50). This, combined with (68) and the estimate (60) of R(z), gives (61). One finally
applies the Transfer Theorem VI.4 from [31, p. 393] to obtain the behaviour of the nth coefficient
of F ′′, which is (n+ 2)(n+ 1)fn+2(u). The estimate of fn(u) follows. �
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9. Large random maps equipped with a forest or a tree

We still focus in this section on 4-valent maps, equipped either with a spanning forest or with
a spanning tree. In each case, we define a Boltzmann probability distribution on maps of size n,
which involves a parameter u and takes into account the number of components of the spanning
forest, or the number of internally active edges of the spanning tree (equivalently, the level of
a recurrent sandpile configuration, as explained in Section 2.2). We observe on several random
variables the effect of the phase transition found at u = 0 in the previous section.

9.1. Forested maps: Number and size of components

Fix n ∈ N and u ∈ [0,+∞). Consider the following probability distribution on 4-valent
forested maps (M,F ) having n faces :

Pc(M,F ) =
uc(F )−1

fn(u)
,

where c(F ) is the number of components of F , and fn(u) counts 4-valent forested maps by the
number of non-root components. Under this distribution, let Cn be the number of components
of F , and Sn the size (number of vertices) of the root component. When u = 0, only tree-rooted
maps have a positive probability, Cn = 1 and Sn = n − 2, the total number of vertices in the
map. Let us examine how this changes when u > 0.

Proposition 9.1. Assume u > 0. Under the distribution Pc, we have, as n→∞:

Ec(Cn) ∼ uΦ(τ)

τ − uΦ(τ)
n,

where Φ is given by (23) and τ ≡ τu is the unique solution in (0, 1/27) of uΦ′(y) = 1.
The size Sn of the root component admits a discrete limit law: for k ≥ 1,

lim
n→+∞

Pc(Sn = k) =
4 (3 k)!

(k − 1)! k! (k + 1)!

τk

θ′(τ)
(69)

with θ defined by (23).

Proof. We have

Ec(Cn − 1) =
∑

(M,F )

(c(F )− 1)
uc(F )−1

fn(u)
= u

f ′n(u)

fn(u)
= u

[zn−1]F ′′zu(z, u)

[zn−1]F ′z(z, u)
. (70)

It follows from the definition (15) of R and F that

F ′′zu(z, u) =
Φ(R)θ′(R)

1− uΦ′(R)
. (71)

We now use singularity analysis. The functions Φ and θ are analytic at τ = R(ρ, u), the number
τ satisfies 1 = uΦ′(τ), and a singular estimate of R− τ is given by (57). This gives, as z → ρ,

F ′′zu(z, u) ∼ Φ(τ)θ′(τ)

uΦ′′(τ)γ
√

1− z/ρ
where γ is as in Proposition 8.3. An estimate of F ′z(z, u) is given by (58). Our estimate of
Ec(Cn) then follows from a transfer theorem, and the fact that ρ = τ − uΦ(τ).

To study Sn, we add to our generating function F (z, u) a weight x for each vertex belonging
to the root component. Lemma 3.2 becomes

F (z, u, x) = M̄(z, u; 0, 0, 0, t4, 0, t6, . . . ; 0, 0, 0, x tc4, 0, x
2 tc6, . . .).

(Recall that t2 = t2k+1 = tc2 = tc2k+1 = 0 for every k ≥ 0 when p = 4.) Thanks to (17), the first
equation of (15) becomes

xF ′z(z, u, x) = θ(xR),
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where R = R(z, u) is as before. We can express Pc(Sn = k) is terms of F ′z:

Pc(Sn = k) =
[zn−1xk]F ′z(z, u, x)

[zn−1]F ′z(z, u, 1)
=

[zn−1xk+1]θ(xR)

[zn−1]θ(R)
.

We can now apply Proposition IX.1 from [31, p. 629]. Proposition 8.3 guarantees that its
hypotheses are indeed satisfied, and this gives (69), using the expression (23) of θ. �

9.2. Tree-rooted maps: Number of internally active edges

Fix n ∈ N and u ∈ [−1,+∞). Consider the following probability distribution on 4-valent
tree-rooted maps (M,T ) having n faces :

Pi(M,T ) =
(u+ 1)i(M,T )

fn(u)
,

where i(M,T ) is the number of internally active edges in (M,T ). Eq. (6) shows that this is
indeed a probability distribution. Under this distribution, let In denote the number of internally
active edges. As shown by (9), In can also be described as the level `(C) of a recurrent sandpile
configuration C of an n-vertex quadrangulation M , drawn according to the distribution

Ps(M,C) =
(u+ 1)`(C)

fn(u)
.

Proposition 9.2. The expected number of internally active edges undergoes a (very smooth)
phase transition at u = 0: as n→∞,

Ei(In) ∼ κu n, (72)

with

κu =
(1 + u)Φ(τ)

τ − uΦ(τ)

where Φ is given by (23) and τ ≡ τu is defined in Proposition 8.1. The function κu is real-analytic
everywhere except at 0, where it is still infinitely differentiable: as u→ 0+,

κu =
(1 + u)Φ(1/27)

1/27− uΦ(1/27)
+O

(
exp

(
− 2π√

3u

))
.

Proof. We have

Ei(In) =
∑

(M,T )

i(M,T )
(u+ 1)i(M,T )

fn(u)
= (u+ 1)

f ′n(u)

fn(u)
= (u+ 1)

[zn−1]F ′′zu(z, u)

[zn−1]F ′z(z, u)
. (73)

Comparing with (70), we see that for u > 0, we have Ei(In) = (1 + ū)Ec(Cn). Thus (72) follows
from Proposition 9.1 when u > 0. The expansion of κu near 0+ follows from the estimate (59)
of τ and the expansion (53) of Φ.

Let us now take u ∈ [−1, 0). The series F ′′zu is still given by (71), which can also be written
Φ(R)F ′′zz (by (68)), or ū(R− z)F ′′zz. In view of the estimates (60) and (61) of R and F ′′zz, we find

[zn−1]F ′′zu(z, u) ∼ ū(1/27− ρ)[zn−1]F ′′zz(z, u).

Returning to (73) gives (72) by singularity analysis, since ρ = 1/27− uΦ(1/27).
When u = 0, we have R = z. Hence (71) reads F ′′zu(z, 0) = Φ(z)θ′(z), while F ′z(z, 0) = θ(z).

As above, (72) follows from (73) by singularity analysis, using (53), (55) and (56). �
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10. Asymptotics for cubic forested maps

We study in this section the singular behaviour of the series F (z, u) that counts cubic forested
maps by the number of components, and the asymptotic behaviour of its nth coefficient fn(u).
As expected, we observe a “universality” phenomenon: our results are qualitatively the same as
for 4-valent maps (Theorem 8.1). However, the cubic case is more difficult since we now have to
deal with a pair of equations:

R = z + uΦ1(R,S), S = uΦ2(R,S),

where Φ1 and Φ2 are given by (26) and (27). Our results are less complete than in the 4-valent
case: when u < 0, we only determine the singular behaviour of F ′(z, u) as z approaches the
radius of F ′ on the real axis. We do not know if F ′ has dominant singularities other than its
radius. Consequently, we have not obtained the asymptotic behaviour of fn(u) when u < 0.

Theorem 10.1. Let p = 3, and take u ≥ −1. The radius of convergence of F (z, u) reads

ρu = τ − uΦ1(τ, σ)

where the pair (τ, σ) satisfies
σ = uΦ2(τ, σ)

and  64τ = (1− 4σ)2 if u ≤ 0,

(1− uΦx1(τ, σ)) (1− uΦy2(τ, σ)) = u2Φy1(τ, σ)Φx2(τ, σ) if u > 0.

The series Φ1 and Φ2 are given by (26) and (27), and Φxi (resp. Φyi ) denotes the derivative of
Φi with respect to its first (resp. second) variable.
In particular, ρu is an algebraic function of u on [−1, 0]:

ρu =
3(1− u2)2π4 + 96u2π2(1− u2) + 512u4 + 16u

√
2
(
π2(1− u2) + 8u2

)3/2
192π4(1 + u)3

. (74)

Let fn(u) be the coefficient in zn in F (z, u). There exists a positive constant cu such that

fn(u) ∼
{
cu ρ

−n
u n−3 if u = 0,

cu ρ
−n
u n−5/2 if u > 0.

For u ∈ [−1, 0], the series F ′(z) ≡ F ′(z, u) has the following singular expansion as z → ρ−u :

F ′(z) = F ′(ρu) + α(ρu − z) + β
ρu − z

ln(ρu − z)
(1 + o(1)) , (75)

where

β =
4u− 3

√
2
√
π2(1− u2) + 8u2

2u2
< 0.

Remarks
1. As in the 4-valent case, the singular behaviour of F ′ obtained when u < 0 is incompatible
with D-finiteness [31, p. 520 and 582].

Corollary 10.2. For u ∈ [−1, 0), the generating function F (z, u) of cubic forested maps is not
D-finite. The same holds when u is an indeterminate.

2. The series F (z, 0) has a simple explicit expression given by (16):

F (z, 0) = 3
∑
`≥1

(4`)!

(2`− 1)!(`+ 1)!(`+ 2)!
z`+2.

The above theorem follows in this case from Stirling’s formula. One has σ = 0 and ρ0 = τ = 1/64.
We will thus focus below on the cases u > 0 and u < 0.
3. At u = −1, one finds ρ−1 = π2/384, a beautiful transcendental radius of convergence for the
series counting cubic maps equipped with an internally inactive spanning tree.
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10.1. The series Φ1, Φ2, Ψ1 and Ψ2

We have performed in Section 4.3 a useful reduction by showing that the bivariate series
Φ1(x, y) and Φ2(x, y) can be expressed in terms of the univariate hypergeometric series Ψ1

and Ψ2 (see (29–30)). The ith coefficient of Ψ1 is asymptotic to 64i/i2, up to a multiplicative
constant, and the same holds for Ψ2. Hence both series have radius of convergence 1/64, converge
at this point, but their derivatives diverge. In fact,

Ψ1(z)/z = 2F1(1/4, 3/4; 2; 64z),

so that Ψ1 can be analytically defined on C \ [1/64,+∞). The same holds for Ψ2(z) in view
of (33). It follows from [1, Eq. (15.3.11)] that, as ε→ 0 in C \ R−,

Ψ1

(
1

64
− ε
)

=

√
2

24π
+

√
2

2π
ε ln ε−

√
2

2π
ε+O

(
ε2 ln ε

)
. (76)

By (33), we also have

Ψ2

(
1

64
− ε
)

=
1

2
−
√

2

π
+

4
√

2

π
ε ln ε+

12
√

2

π
ε+O

(
ε2 ln ε

)
. (77)

Let us now return to Φ1 and Φ2. The series
√

1− 4y has radius 1/4, the series Ψ1 and Ψ2

have radius 1/64, and thus Φ1(x, y) and Φ2(x, y) converge absolutely for |y| < 1/4 and 64|x| <
(1−4|y|)2 (Figure 11, left). The expressions (29) and (30) show that Φ1 and Φ2 have an analytic
continuation for y ∈ C\ [1/4,+∞) and x/(1−4y)2 ∈ C\ [1/64,+∞) (Figure 11, right). As Ψ′1(t)
and Ψ′2(t) tend to +∞ when t → 1/64, there is no way to extended analytically Φ1 or Φ2 at a
point of the critical parabola {64x = (1− 4y)2}.
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Figure 11. Left: The domain of absolute convergence of the series Φ1 and Φ2,
in the real plane. Right: A domain where an analytic continuation exists. No
analytic continuation exists at a point of the parabola.
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10.2. When u > 0

Proposition 10.3. Assume u > 0. The series R, S and F ′ have the same radius of convergence,
denoted ρu, which satisfies the conditions stated in Theorem 10.1. The three series are analytic
in a ∆-domain of radius ρu, with a square root singularity at ρu. In particular,

fn(u) ∼ cuρ−nu n−5/2

for some positive constant cu.

Proof. Recall that these three series are defined by the system (28), (31), (32). The analysis
of systems of functional equations can be a tricky exercise, even in the positive case3 and with
2 equations only. In particular, the connection between the location of the radius and the
solution(s) of the so-called characteristic system is subtle (see [28, 5]). In our case however, the
equation that defines S does not involve the variable z explicitely, and this allows us to proceed
safely in two steps. As in Section 5.2, we first define S̃ ≡ S̃(z, u) as the unique power series in z
satisfying S̃(0, u) = 0 and

S̃ = uΦ2(z, S̃) (78)

= u
√

1− 4S̃ Ψ2

(
z

(1− 4S̃)2

)
+
u

4

(
1−

√
1− 4S̃

)2

. (79)

We will first study S̃, and then move to R, which is now defined by the following equation:

R = z + uΦ1(R, S̃(R)) (80)

= z + u(1− 4S̃(R))3/2Ψ1

(
R

(1− 4S̃(R))2

)
− uR, (81)

where we have denoted for short S̃(z) = S̃(z, u). Of course, S = S̃(R).
So let us begin with S̃. One can prove that (78) fits in the smooth implicit function schema

of [31, Def. VII.4], but we can actually content ourselves with an application of Proposition 6.1,
where S̃ plays the role of Y . The series H(x, y) = y− uΦ2(x, y) satisfies the assumptions of this
proposition. Define ρ̃ as in the proposition. Since S̃ has non-negative coefficients, the points
(z, S̃(z)) form, as z goes from 0 to ρ̃, an increasing curve starting from (0, 0) in the plane R2.
Condition (b), together with the properties of Φ2 described in Section 10.1, implies that this
curve cannot go beyond the parabola 64x = (1 − 4y)2. This rules out the possibilities (i) and
(iv). Now H ′y(x, y) = 1 − uΦ′2(x, y) approaches −∞ as (x, y) approach the parabola, and thus
Condition (d) rules out the possibility (iii). The curve (z, S̃(z)) thus ends (at z = ρ̃) before
reaching the parabola. Moreover (ii) holds: H ′y(ρ̃, S̃(ρ̃)) = 0, or equivalently,

1 = u
∂Φ2

∂y
(ρ̃, S̃(ρ̃)). (82)

(The lim inf of (ii) becomes here a true limit because of the positivity of the coefficients of Φ2

and S̃.) By (a), the radius of S̃ is at least ρ̃. Finally, it follows from (78) that for z ∈ [0, ρ̃),

S̃′(z) = u
∂Φ2

∂x (z, S̃(z))

1− u ∂Φ2

∂y (z, S̃(z))
. (83)

By (82), this derivative tends to +∞ as z → ρ̃. Hence S̃ has radius ρ̃. Figure 12 (left) illustrates
the behaviour of S̃ on [0, ρ̃].

Let us now consider the equation (80) that defines R, and prove that it fits in the smooth
implicit function schema of [31, Def. VII.4, p. 467-468]. With the notation of this definition,

3By this, we mean a system given by equations of the form Ri = Fi(R1, . . . , Rm) where the series Fi have
non-negative coefficients.
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Figure 12. Left: Plot of S̃(z) for u = 1 and z ∈ [0, ρ̃]. The points (z, S̃(z))

remain below the parabola 64z = (1 − 4S̃)2. The plot was obtained using the
expansion of S̃(z) at order 80 (this is why the divergence of S̃′ at ρ̃ is not very
clear on the picture), and the estimate ρ̃ ' 0.01032. Right: Plot of (R(z), S(z))

for u = 1 and z ∈ [0, ρ], with ρ ' 0.0098. This curve follows the plot of S̃, but
stops at the point (R(ρ), S(ρ)), for which R(ρ) < ρ̃.

G(z, w) = z + uΦ1(w, S̃(w)). The properties of S̃ established above show that G is analytic in
C× {w : |w| < ρ̃}. The characteristic equation 1 = G′w(ρ, τ) does not involve ρ and reads

1 = u

(
∂Φ1

∂x
(τ, S̃(τ)) + S̃′(τ)

∂Φ1

∂y
(τ, S̃(τ))

)
. (84)

The right-hand side of this equation increases from 0 to +∞ as τ goes from 0 to r (because, as
observed above, S̃′(ρ̃) = +∞). Hence (84) determines a unique value of τ in (0, ρ̃). The equation
τ = G(ρ, τ) gives the value of ρ:

ρ = τ − uΦ1(τ, S̃(τ)). (85)
Let σ = S̃(τ). The combination of (85), (78), (84) and (83) proves the properties of ρ, τ and σ
stated in Theorem 10.1.

The rest of the argument is analogous to the end of the proof of Proposition 8.3. First, R is
irreducible as shown by the first terms of its expansion at 0:

R = z + 2u(2u+ 3)z2 + 4u(42u2 + 63u+ 10u3 + 35)z3 +O(z4).

By Theorem VII.3 of [31, p. 468], it has radius ρ, and is analytic in a ∆-domain of radius ρ. It
takes the value τ at ρ, with a square root singularity there. By composition with the series S̃,
which has radius ρ̃ > τ , the same properties hold for S = S̃(R), and finally for the series F ′
given by (14) (since θ(x, y) is analytic in R2 for 64x < (1− 4y)2).

The behaviour of R and S is illustrated in Figure 12 (right). �

10.3. When u < 0

Proposition 10.4. Let u ∈ [−1, 0). The series R, S and F ′ have radius ρ ≡ ρu given by (74).
As z → ρ−u , these three series admit an expansion of the form (75), with β > 0.
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Proof. As a preliminary remark, recall that F (z, u) is (u+1)-positive, with several combinatorial
interpretations described in Section 2.2. By Pringsheim’s theorem, the radius of F is also its
smallest real positive singularity. By Corollary 5.5, the same holds for R, S and S̃. This will be
used frequently in the proof, without further reference to Pringsheim’s theorem.

As in the case u > 0, we proceed in two steps, and study first the series S̃ defined by (78),
and then the series R defined by (80). Let us begin with S̃, and apply Proposition 6.1 with
H(x, y) = y − uΦ2(x, y). Let us rule out the possibilities (i), (ii) and (iv).
(i) Could S̃ ≡ S̃(z, u) have an analytic continuation on (0,+∞)? That is, an infinite radius
of convergence? Corollary 5.5 implies that the radius of S̃ is at most the radius of S̃(z,−1),
which counts (by the number of leaves) enriched S̃-trees with no flippable edge. Since these
trees can have arbitrary large size (Figure 13), S̃(z,−1) is not a polynomial. Its coefficients are
non-negative integers, and hence its radius is at most 1. The same thus holds for S̃(z, u).

Figure 13. A cubic enriched S̃-tree with no flippable edge.

(ii) By Lemma 5.6, the series ∂Φ2

∂y (z, S̃(z)) has non-negative coefficients. Since its constant term
is 0, the function 1−u∂Φ2

∂y (z, S̃(z)) is increasing on [0, ρ̃), with initial value 1: this rules out (ii).
(iv) By Corollary 5.5, S̃ is negative and decreases on [0, ρ̃). Assume that it tends to −∞. Since
ρ̃ is finite, this implies that

lim
z→ρ̃−

Ψ2

(
z

(1− 4 S̃(z))2

)
= Ψ2(0) = 0.

But then (79) gives

(1 + ū) S̃ = −u
√

1− 4S̃/2 + o
(√

1− 4S̃
)
,

which is impossible if S̃ → −∞.
We conclude that (iii) holds, so that Φ2 has no analytic continuation at (ρ̃, S̃(ρ̃)). Given the

properties of Φ2 described in Section 10.1, this means that

64ρ̃ = (1− 4S̃(ρ̃))2.

The radius of S̃ is at least ρ̃, the value of which we will determine explicitely later. Figure 14
shows a plot of S̃ for u = −1/2. One can in fact prove that ρ̃ is the radius of S̃, but we will not
use that.

Let us now consider the equation (80) that defines R, and apply Corollary 6.3 with Ω(y) =

y − uΦ1(y, S̃(y)). We have just seen that, as y goes from 0 to ρ̃, the pair (y, S̃(y)) reaches
for the first time the critical parabola at ρ̃. Hence, with the notation of Corollary 6.3, the first
singularity of Ω on the positive real axis satisfies ω ≥ ρ̃. Let us define τ and ρ as in Corollary 6.3.

Could it be that Ω′(τ) = 0? By Corollary 6.3, R(z) increases on (0, ρ) and Ω′(R(z)) =
1/R′(z) ≥ 0. So could it be that R′(z) tends to +∞ as z tends to ρ? No: by Corollary 5.5,
ū(R′(z) − 1) has non-negative coefficients, and thus is always larger that its value at z = 0,
which is 0. Since u < 0, this gives R′(z) ≤ 1 on (0, ρ), and we conclude that Ω′(τ) > 0. Hence
τ = ω ≥ ρ̃.
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Figure 14. A plot of S̃(z) for u = −1/2 and z ∈ [0, ρ̃]. The curve reaches the
parabola 64z = (1 − 4S̃)2 at ρ̃. The plot was obtained using the expansion of
S̃(z) up to order 25. Plotting the pairs (R(z), S(z)) for z ∈ [0, ρ) gives the same
curve.

Since R(z) increases from 0 to ω on [0, ρ], there exists a unique ρ̂ such that R(ρ̂) = ρ̃. Since
S̃ has radius at least ρ̃, the series S = S̃(R) has also radius at least ρ̂. The plot of the pairs
(R(z), S(z)) for z ∈ [0, ρ̂] coincides with the plot of (z, S̃(z)) for z ∈ [0, ρ̃] shown in Figure 14.

We will now use the system (31–32) defining R and S to obtain expansions of R and S near
ρ̂. These expansions will be found to be singular at ρ̂: this implies that ρ̂ = ρ is the radius of R
and S.

We adopt the following notation: z = ρ̂− x, R(z) = ρ̃− r, S(z) = S(ρ̂)− s and

R(z)

(1− 4S(z))2
=

1

64
− ε. (86)

The quantities x, r, s and ε tend to 0 as z tends to ρ̂. Let us begin by expanding (32) for z close
to ρ̂. Using the expansion (77) of Ψ2 near 1/64, we obtain

a1 + b1s+ c1ε ln ε+ d1ε = O(ε2 ln ε) +O(s2) +O(s ε ln ε), (87)

with

a1 =
1 + u

4
δ2 − u

√
2

π
δ +

u− 1

4
,

b1 = −2u
√

2

πδ
+ 1 + u, c1 =

4
√

2

π
uδ, d1 = 3c1,

and δ =
√

1− 4S̃(ρ̃). In particular, a1 must vanish, which gives the value of δ:

δ =

√
1− 4S̃(ρ̃) =

2
√

2u+
√
π2(1− u2) + 8u2

π(1 + u)
. (88)
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(The choice of a minus sign before a square root would give a negative value, which is impossible

for δ =
√

1− 4S̃(ρ̃).) Note that u has a rational expression in terms of δ:

u = − π(δ2 − 1)

πδ2 − 4
√

2δ + π
.

We will replace all occurrences of u by this expression, to avoid handling algebraic coefficients.
Let us now return to the expansion (87). Given that δ > 0, we have b1 > 0 for u ∈ [−1, 0).

Hence s = O(ε ln ε), and (87) can be rewritten as

b1s+ c1ε ln ε+ d1ε = O(ε2 ln2 ε). (89)

Let us now move to (86). Using ρ̃ = δ4/64, it gives

b2s+ d2ε+ e2r = O(ε2 ln2 ε) (90)

with b2 = −8δ2, d2 = 64δ4, e2 = −64. Finally, the equation (32) that defines R gives

a3 + b3s+ c3ε ln ε+ d3ε+ e3r + f3x = O(ε2 ln2 ε), (91)

where, in particular,

a3 = 96(πδ2 − 4
√

2δ + π)ρ̂+ δ3(2
√

2δ2 − 3πδ + 4
√

2).

Since a3 must vanish, we obtain a rational expression of ρ̂ in terms of δ, and then, using (88), an
explicit expression which coincides with (74). We do not give here the expressions of b3, c3, d3, e3

and f3, which are rational in δ. They are easy to compute. Let us just mention that f3 6= 0.
Now, using (89), (90) and (91) in this order, we obtain for s, r and finally x expansions in ε

of the form

s = c4 ε ln ε+ d4 ε+O(ε2 ln2 ε), (92)
r = c5 ε ln ε+ d5 ε+O(ε2 ln2 ε), (93)
x = c6 ε ln ε+ d6 ε+O(ε2 ln2 ε). (94)

In particular, c6 6= 0 for u ∈ [−1, 0) and the latter equation gives x ∼ c6 ε ln ε, so that lnx ∼ ln ε
and thus

ε =
x

c6 lnx
(1 + o(1)) . (95)

To conclude, we use (94) to express ε ln ε as a linear combination of x and ε (plus O() terms),
and (95) to express ε in terms of x. This replaces (92) and (93) by

s =
c4
c6
x+

d4c6 − c4d6

c26

x

lnx
(1 + o(1)),

r =
c5
c6
x+

d5c6 − c5d6

c26

x

lnx
(1 + o(1)).

These equations, written explicitely, read

S(z) =
1− δ2

4
+

4π

δ
√
π2(1− u2) + 8u2

(ρ̂− z)− 2
√

2π

uδ

ρ̂− z
ln(ρ̂− z)

(1 + o(1)) ,

R(z) = ρ̃− πδ

2
√
π2(1− u2) + 8u2

(ρ̂− z)−
√

2πδ

4u

ρ̂− z
ln(ρ̂− z)

(1 + o(1)) ,

as z → ρ̂. In particular, R and S are singular at ρ̂, so that ρ̂ = ρ is their common radius.
Using (28), we finally compute an expansion of F ′(z) near ρ, which gives (75). The coefficient

β of (ρ− z)/ ln(ρ− z) does not vanish on [−1, 0), and F ′ has radius ρ as well. �
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11. Final comments

11.1. Universality

Our asymptotic results remain incomplete when p = 3, as we have not been able to obtain
the asymptotic behaviour of fn(u) for negative values of u (but only the singular behaviour of
F ′(z, u)). We still expect fn(u) to behave like cuρ−nu n−3(lnn)−2, as in the 4-valent case.

We have also examined general even values of p. As explained below Theorem 3.1, the series
S vanishes, so that we only deal with one equation (in R). When p = 6 for instance, it reads:

R = z + uΦ(R) = z + u
∑
`≥1

(5`)!

`!(4`+ 1)!
R2`+1.

New difficulties arise from the periodicity of Φ and R, but we still expect the same behaviour
for the numbers fn(u), even though R and F will have multiple singularities on their circle of
convergence.

We also plan the study of general (non-regular) forested maps.

11.2. A differential equation involving F , rather than F ′?

The two differential equations (DEs) obtained for the series F in Section 4, for the 4-valent,
and then for the cubic case, are in fact equations of order 2 satisfied by F ′. It is natural to ask
if F itself satisfies a DE of order 2. Let us examine in detail the case p = 4.

Returning to Lemma 3.2, we first need an expression of M̄ . Since t2i+1 = tc2i+1 = 0 when
p = 4, we can content ourselves with an expression of M̄ valid when g2i+1 = 0 for all i. Such
an expression is easily obtained from the expression (17) of M̄ ′z. Indeed, S = 0 in the even case,
and the equations (17) and (18), written as

M̄ ′z = θ̄(R), R = z + uΦ̄(R),

imply at once
M̄ = Ψ̄(R)

where

Ψ̄(x) =

∫
θ̄(x)

(
1− uΦ̄′(x)

)
dx

=
∑
i≥1

h2i

(
2i

i

)
xi+1

i+ 1
− u

∑
i≥1,j≥0

h2ig2j+2(2j + 1)

(
2i

i

)(
2j

j

)
xi+j+1

i+ j + 1
.

This should be compared to Eq. (1.4)in [21], which reads, in the even case,

M̄ =
∑
n≥1

h2n

(
2n

n

)
Rn+1

n+ 1
− u

∑
n≥1,q≥0,k>q

h2ng2k

(
2n+ 2q

n+ q

)(
2k − 2q − 2

k − q − 1

)
Rn+k

n+ q + 1
.

Our (simpler) expression is obtained by summing over q.
Hence for p = 4, Lemma 3.2 gives

F (z, u) = 4
∑
i≥2

(3i− 3)!

(i− 2)!i!2
Ri+1

i+ 1
− u

∑
i≥2,j≥1

(3i− 3)!

(i− 2)!i!2
(3j)!

j!3
Ri+j+1

i+ j + 1
= Ψ(R), (96)

where Ψ(x) = Ψ1(x)− uΨ2(x),

Ψ1(x)

∫
θ(x), Ψ2(x) =

∫
θ(x)Φ′(x)dx,

and now R is defined by R = z + uΦ(R), where Φ is given by (23).
Now assume that F is differentially algebraic of order 2: there exists a non-zero polynomial

P such that
P (F, F ′, F ′′, z, u) = 0.
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Equivalently,
P (Ψ(R), θ(R), R′θ′(R), z, u) = 0.

Using z = R − uΦ(R), R′ = (1 − uΦ′(R))−1 and the equations (24) and (25) that relate θ, Φ,
and their derivatives, we conclude that either Ψ(x) is algebraic over Q(x, u,Φ(x),Φ′(x)), or Φ
and Φ′ are algebraically related over Q(x). Let us examine these two possibilities.

1. Can Ψ(x) be algebraic over Q(x, u,Φ(x),Φ′(x))? Given that

15Ψ1(x) = 15

∫
θ(x)dx = 54x2 − 2(1 + 81x)Φ(x) + 8x(27x− 1)Φ′(x)

and

3Ψ2(x) = 3

∫
θ(x)Φ′(x)dx = 12xΦ(x)− 2(1− 27x)Φ(x)Φ′(x)− 48Φ2(x) + 12

∫
Φ2(x)

x
dx,

this is equivalent to saying that
∫

Φ(x)2/xdx is algebraic over Q(x,Φ(x),Φ′(x)). Or, using (52),
that the hypergeometric function

f(x) = 2F1

(
1

3
,

2

3
; 2;x

)
is such that g(x) :=

∫
xf2(x)dx is algebraic over Q(x, f(x), f ′(x)) (here, we use the fact that

20

∫
xf(x)dx = 9x2f(x) + 9x2(1− x)f ′(x).

)
A related question is whether g is a linear combination of f2, ff ′, (f ′)2. Given that

2f(x) + 18(x− 1)f ′(x) + 9(x− 1)f ′′(x) = 0,

the vector space spanned over Q(x) by these 3 series contains all products f (i)f (j) and is closed
by differentiation. This would imply that g satisfies a linear DE of order 4 with coefficients in
Q(x). Starting from the order 4 DE satisfied by g′,

−4g′(x) + 8x(x− 1)g′′(x) + 27x(x− 1)2g(3)(x) + 9x2(x− 1)2g(4)(x) = 0,

the Maple command ode_int_y tells us that g satisfies no linear DE of order 4. Following
discussions with Alin Bostan and Bruno Salvy, this seems to imply actually that g is not algebraic
over Q(x, f, f ′).

2. Now could it be that F ′ satisfies a DE of order 1? This would imply that Φ and Φ′ are
algebraically linked over Q(x), or, equivalently, that f and f ′ are algebraically linked over Q(x).
One can prove that this is not the case, by combining the fact that f ′(x) diverges at 1 like
ln(1− x), while f(1) =

√
3/(12π) is finite and transcendental.

These considerations lead us to believe that we have found in Section 4.2 the equation of
minimal order satisfied by F .

Acknowledgements. We are grateful to Yvan Le Borgne and Andrea Sportiello for inter-
esting discussions on this problem, and to Alin Bostan and Bruno Salvy for their help with
hypergeometric series.
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