
HAL Id: hal-00835674
https://hal.science/hal-00835674v2

Submitted on 26 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equation of state of a granular gas homogeneously
driven by particle rotations

Eric Falcon, Jean-Claude Bacri, Claude Laroche

To cite this version:
Eric Falcon, Jean-Claude Bacri, Claude Laroche. Equation of state of a granular gas homoge-
neously driven by particle rotations. EPL - Europhysics Letters, 2013, 103, pp.64004. �10.1209/0295-
5075/103/64004�. �hal-00835674v2�

https://hal.science/hal-00835674v2
https://hal.archives-ouvertes.fr


epl draft

Equation of state of a granular gas homogeneously driven by

particle rotations

E. Falcon(a), J.-C. Bacri and C. Laroche

Univ Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, F-75 013 Paris, France, EU

PACS 45.70.-n – Granular system
PACS 05.20.Dd – Kinetic theory
PACS 75.50.-y – Studies of specific magnetic materials

Abstract – We report an experimental study of a dilute “gas” of magnetic particles subjected to a
vertical alternating magnetic field in a 3D container. Due to the torque exerted by the field on the
magnetic moment of each particle, a spatially homogeneous and chaotic forcing is reached where
only rotational motions are driven. This forcing differs significantly from boundary-driven systems
used in most previous experimental studies on non equilibrium dissipative granular gases. Here,
no cluster formation occurs, and the equation of state displays strong analogy with the usual gas
one apart from a geometric factor. Collision statistics is also measured and shows an exponential
tail for the particle velocity distribution. Most of these observations are well explained by a simple
model which uncovers out-of-equilibrium systems undergoing uniform “heating”.

Introduction. – Granular gases display striking
properties compared to molecular gases: cluster forma-
tion at high enough density [1–3], anomalous scaling of
pressure [2, 3] and collision frequency [4], non-Gaussian
distribution of particle velocity [5]. These differences are
mainly ascribed to dissipation occurring during inelastic
collisions between particles. A continuous input of energy
is thus required to reach a non equilibrium steady state for
a granular gas. This is usually performed experimentally
by vibrating a container wall or the whole container. For
such vibration-fluidized systems, the role of the boundary
condition affects the shape of the particle velocity distri-
bution [5], as well as the extent of energy nonequipartition
[6]. A spatially homogeneous forcing, driving each parti-
cles stochastically, is thus needed to explore the validity
domain of granular gas theories. However, it is hardly
reachable in experiments [7]. Here, we study experimen-
tally the equation of state and the collision statistics of a
spatially homogeneous driven granular gas in a 3D con-
tainer. Magnetic particles subjected to a magnetic field
oscillating in time are used to homogeneously and stochas-
tically drive the system by injecting rotational energy into
each particle. Rotational motion is transferred to trans-
lational motion by the collisions with boundaries or other
particles. To our knowledge, this type of forcing has been
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only used to study magnetic particles in pattern forma-
tion, in suspensions on liquid surface [8], or to measure
their velocity distribution in 2D cells [9]. Beyond direct
interest in out-of-equilibrium statistical physics, granular
medium physics, and geophysics (such as dust clouds or
planetary rings [10]), our study provides an insight into
applied problems such as magnetic hyperthermia for med-
ical therapy [11] or electromagnetic grinders in steel mills
[12], where particle dynamics are controlled by an alter-
nating magnetic field.

Experimental setup. – The experimental setup is
shown in Fig. 1. A cylindrical glass container, 10 cm in
diameter and 14 cm in height, is filled with N magnetic
particles, with 2 ≤ N ≤ 60 corresponding to less than
1 layer of particles at rest. Magnetic particles are consti-
tuted of a disc permanent magnet in Neodymium (NdFeB,
N52, 0.5 cm in diameter and 0.2 cm in thickness) encased
and axially aligned in a home made plexiglas cylinder (d=1
cm in outer diameter, 0.25 cm in thickness, and L = 1 cm
long) – see pictures in Fig. 1. The aim of this casing is to
strongly reduce by factor 38 the dipole-dipole interaction
between two particles compared to the case of magnets
without casing. The magnetic induction of this dipolar
particle, µ0M = 250 G, was measured by a Hall probe at
the top of the cylinder, where M is the magnetization of
the particle, and µ0 = 4π10−7 H/m. Its magnetic moment
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Fig. 1: (Color online) Experimental set up. Right insets show
pictures of a magnetic particle (1 cm scale).

is m ≡ MVp with Vp = πd2L/4 = 0.78 cm3 the volume of
a particle. The container is aligned between two coaxial
coils, 18 cm (40 cm) in inner (outer) diameter, 12.5 cm
apart, as shown in Fig. 1. A 50 Hz alternating current is
supplied to the coils in series by a variable autotransformer
(Variac 260V/20 A). A vertical alternating magnetic in-
duction B is thus generated in the range 0 ≤ B ≤ 225 G
with a frequency f = 50 Hz. The Helmholtz configuration
of the coils ensures a spatially homogeneous B within the
container volume with a 3% accuracy. The motion of par-
ticles are visualized with a fast camera (Photron Fastcam
SA1.1) at 250 fps or 500 fps. An accelerometer attached
to the lid records the particle collisions with the lid for 500
s to extract the collision frequency and the impact ampli-
tude on the lid. The sampling frequency was fixed at 100
kHz to resolve collisions (∼ 60 µs). We focus here on the
dilute regime with volume fractions of 0.2% ≤ Φ ≤ 8%,
with Φ = NVp/V and V the volume of the container.

Forcing mechanism. – Assume that θ is the angle
between the vertical field B(t) = B sinωt and that m is
the magnetic moment of a particle. A torque m×B is thus
exerted by the field on the magnetic moment of each parti-
cle. The angular momentum theorem reads Id2θ(t)/dt2 =
mB sinωt sin θ, where I = m(3d2/4+L2)/12 = 0.14 g cm2

is the moment of inertia of the particle, and m = 1 g, the
particle mass. This equation is known to display periodic
motions, period doubling, and chaotic motions [13]. The
ratio between the magnetic dipolar energy, Ed = mB, and
the rotation energy at the field frequency, Erot = Iω2/2
controls the stochasticity degree. The synchronization be-
tween the angular frequency of the particles and the mag-
netic field one, ω, is predicted to occur when Ed ≪ Erot,
that is B ≪ Iω2/(2m) = 493 G. When this condition is
violated, as it is for our magnetic field range, chaotic ro-

Fig. 2: (Color online) Snapshots of magnetic granular gas. N =
20. (a) Initial conditions: B = 0, a plexiglas lid is laying on
the particles. When B is increased from (b) to (d), a gas-like
regime develops and the lid is pushed up by the collisions of
magnetic particles on it. For the full time evolution, see movie
N20onset.m4v

tational motion occurs [13] as shown in the movie N1.m4v
for a single particle. The external magnetic field thus gen-
erates a chaotic rotational driving of each particle. A spa-
tially homogeneous forcing is thus obtained where only the
rotational degrees of freedom of each particle are stochas-
tically driven in time.

Gas-like regime. – N particles are placed at the bot-
tom of the container, their axes lying on the horizontal
plane, normal to B (see Fig. 2a). A plexiglas lid lays on
the particles, and its mass is balanced by a counterweight.
When B is increased, a transition occurs at a critical Bc:
particles begin to jump lifting up the lid. We found that
Bc = 75 ± 5 G regardless of N . When B is further in-
creased a stationary gas-like regime is observed with par-
ticles rotating and translating erratically – see Fig. 2b-d
and movie N20onset.m4v. We observe that the axis of ro-
tation of most particles is normal to the particle axis so
their magnetic moments align with the vertical oscillating
magnetic field. The frequency and direction of the parti-
cle rotation are erratic, showing unpredictably reversals.
Their angular frequencies are thus not synchronized with
the forcing frequency, ω = 2πf . The stationary gas-like
regime at fixed B is illustrated for N = 10 and N = 20
in the movies N10.m4v and N20.m4v (slowed down 100
times and 12.5 times, respectively).

Method. – Measurements are performed as follows.
A mass M is added on the lid (0.82 ≤ M ≤ 10 g with a
0.82 g step). The lid then stabilizes due to the collisions of
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Fig. 3: (Color online) Hysteretic evolution of 〈h〉 for increasing
(•) and decreasing (�) magnetic field B. N = 10, M = 4.7
g. The dashed line is 〈h〉 ∼ B1/2. Inset: Typical temporal
evolution of h(t) for B = 101 G, N = 10 and M = 4.7 g. The
dashed line is 〈h〉=3.3 cm.

particles at a height that depends on B (constant-pressure
experiment). The height reached by the lid h(t) exhibits
fluctuations in time around a mean height 〈h〉 as shown in
the inset of Fig. 3. h(t) is measured by an angular position
transducer (12.3 mm/V sensitivity) at a 200 Hz sampling
frequency during 200 s. The sensor output voltage is linear
with the angle, and the height h. Note that the results
reported below are unaffected when performing constant-
volume experiments (the lid height is kept constant by
adding a mass on the lid that depends on B).

Fluidization onset. – The mean height reached by
the lid 〈h〉 is shown in Fig. 3 as a function of B for fixed N
and M . For increasing B, a steep jump occurs at the onset
Bc, whereas a smoother behavior is observed for decreas-
ing B. The onset of the particle fluidization is hysteretic,
occurring at Bi

c for increasing B, and at Bd
c < Bi

c for de-
creasing B. One finds Bd

c = 56 ± 1 G and Bi
c = 75 ± 5

G regardless of N . The thresholds come from the bal-
ance between the particle magnetic energy, Em, and its
gravitational energy, Eg = mgd, required to lift the parti-
cle over one diameter d (g is the acceleration of gravity).
When B is decreased, Em corresponds to the particle dipo-
lar energy, Ed = mB, and one finds Bd

c = mgd/m ≃ 63
G. When B is increased, particles are initially in contact,
and Em is the sum of the dipole-dipole interaction energy
of two particles in contact, Edd = µ0m

2/(12Vp) [14], and
the dipolar energy of a single particle Ed. By balancing
Edd − Ed with Eg, one has Bi

c − Bd
c = µ0M/12 ≃ 21 G

which matches the experimental value. The hysteresis is
thus due to the additional dipole-dipole interaction needed
to separate two particles initially in contact. The ratio of
the dipolar-dipolar interaction energy, Edd, to the dipolar
one, Ed, reads Edd/Ed = µ0M/(12B). Thus, Edd ≪ Ed
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Fig. 4: (Color online) 〈h〉 vs. increasing B for different particle
numbers N = 4, 10, 15, 20, 30 and 40 (from bottom to top).
M = 6.9 g. Inset: best rescaling 〈h〉/N1/2 vs. B1/2. The
dashed line has a slope of 0.08 cm/G1/2.
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Fig. 5: (Color online) 〈h〉 vs. increasing B for different masses
added M = 2.3, 3.1, 3.9, 4.7, 5.3, 6.9, 8.6 and 10 g (from top
to bottom). N = 15. Inset: best rescaling 〈h〉/M1/2 vs. B1/2.
The dashed line has a slope of 0.97 cm g1/2/G1/2.

for B ≫ Bc, whereas Edd ≃ Ed/3 ≃ Eg/3 at the onset of
fluidization (B = Bd

c ). Thus, the role of dipole-dipole in-
teractions is only limited to the vicinity of the hysteresis.

Equation of state. – Here, we will investigate an
empirical equation of state of our system where dipole-
dipole interactions are negligible, that is for B ≫ Bc. Far
from the onset, the height reached by the lid is found to
scale as 〈h〉 ∼ Bx with x = 0.45 ± 0.05 (see Fig. 3). It
means that the gaseous regime expands more and more
when B increases. Note that a power-law scaling with
the onset distance, 〈h〉 ∼ (B − Bc)

0.3 can be also fitted
for decreasing B. For fixed M , 〈h〉 is shown in Fig. 4
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as a function of B for different particle numbers N . The
larger N is, the higher is the height reached by the lid
for a fixed B. The best rescaling is displayed in the inset
of Fig. 4, and shows that 〈h〉/N1/2 ∼ B1/2. For fixed
N , 〈h〉 is shown in Fig. 5 as a function of B for different
added mass M on the lid. The larger M is, the smaller
is the height reached by the lid for a fixed B. The best
rescaling is displayed in the inset of Fig. 5, and shows that
〈h〉M1/2 ∼ B1/2. To sum up, one finds an experimental
state equation for the magnetic granular gas

M〈h〉2 = kNB , (1)

where k = 0.05 g cm2/G is a constant.

Model. – Due to the stochastic forcing, a fraction
of the magnetic energy is continuously injected into rota-
tional energy of each particle. Since the out-of-equilibrium
system is in a stationary state, the injected energy should
be dissipated in average by collisions. A constant exchange
of energy occurs during collisions between rotational and
translational degrees of freedom as shown in numerical
simulations [16]. Thus, the balance between magnetic en-
ergy and translational kinetic energy dissipated during col-
lisions leads to v2 ∼ mB. Accordingly, the typical particle
velocity, scales as

v(B) ∼
√
B . (2)

More precisely, if we assume simple collision rules (i.e.
with no rotation) for the sake of simplicity, the energy
loss by a particle of mass m during a collision with the lid

of mass M is mv2

2 (1 − ǫ2) M
m+M , where ǫ is the particle-

boundary restitution coefficient. The energy balance fi-

nally leads to v ∼
√

mB m+M
mM(1−ǫ2) .

Let us now model the fact that the lid motion under
gravity is stabilized at an altitude h due to particle col-
lisions. One thus balances τl, the time of flight under
gravity of the lid subjected to particle collisions, and τ ,
the particle time of flight between 2 collisions with the lid

at the height h. One has τl = vl/g with vl the lid velocity,
and τ = 2h/v for N = 1. For N particles, τ is given by
the experimental results of the next section

τ ∼ h2

LNv(B)
, (3)

where L has the dimension of a length, and is experimen-
tally found to be independent of N and h (see below). L
is thus the particle size.

Balancing τl with τ then leads to h2 ∼ NvvlL/g. The
lid velocity is vl = v(1 + ǫ) m

m+M from simple inelastic

collision rules. Thus, using the expressions for h2, vl and
v, the theoretical state equation reads

Mgh2 ∼ NBL , (4)

which is in good agreement with the experimental one of
Eq. (1). For a more accurate description, complex inelastic
collision rules should be included [15, 16] since linear and
angular particle velocities are coupled.
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Fig. 6: (Color online) Bottom inset: Temporal signal of the
accelerometer showing 35 collisions in 1 s (N = 10, h = 5 cm,
B = 157 G). Main: τ vs. h2/(N

√
B) for: (•) 1 ≤ N ≤ 60

(B = 180 G, h = 5 cm), (�) 90 ≤ B ≤ 222 G (N = 10, h = 5
cm), and (�) 2 ≤ h ≤ 11 cm (N = 15, B = 180 G). The
dot-dashed line has a unit slope. Top inset: PDF(A/A) for
90 ≤ B ≤ 222 G (N = 15, h = 5 cm).

Collision statistics. – Additional experiments have
been performed with the lid fixed to a height h. Using an
accelerometer attached to the lid, particle collisions with
the lid are recorded for T = 500 s. A typical accelera-
tion time series is shown in the bottom inset of Fig. 6.
Each peak corresponds to the acceleration undergoes by
a particle during its collision on the lid. The acceleration
peak amplitude, A, and the time lag, τ , between two suc-
cessive collisions on the lid are randomly distributed. A
thresholding technique is applied to the signal to detect
the collisions [4]. Figure 6 shows that the mean time lag
scales as τ = κh2/

(

NB1/2
)

with κ = 0.18 s G1/2/cm2

over 2 decades when varying one single parameter h, B
or N while keeping the other two fixed. An experimen-
tal verification of Eq. (2) is as follows. The mean am-
plitude of acceleration peaks is experimentally found to
scale as A ∼ h0N0B1/2 as shown in Fig. 7. For an im-
pulse response of the accelerometer to a single collision,
the product of the acceleration peak amplitude, A, times
the duration of the collision, δt, is equal to the magnitude
of the particle velocity v, and thus v = Aδt (δt ≃ 60 µs is
roughly constant). Hence, one has v ∼ B1/2 in agreement
with Eq. (2). The translational granular temperature near
the wall thus scales as Tw ∼ h0N0B1.

The number of lid-particle collisions is Ncoll = T /τ .
Typically, 1.5 103 ≤ Ncoll ≤ 9 104 for 1 ≤ N ≤ 60
(T = 500 s, h = 5 cm and B = 180 G). Although the num-
ber of the particle-particle collisions is not measured, it
should be much less than the particle-wall ones. Indeed, an
estimation of the Knudsen number leads to Kn ≡ l/h & 1
with l ≡ d/Φ & 0.1 m the mean free path, and Φ the
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Fig. 7: (Color online) Experimental scaling of the mean par-
ticle velocity near the wall obtained from the accelerometer
measurements. Main: A vs.

√
B for N = 15, and h = 6 cm.

Top inset: A vs. N for B = 180 G, and h = 6 cm. Bottom
inset: A vs. h for B = 180 G, and N = 15.

volume fraction.

For various B at fixed N , the probability density func-
tions (PDF) of A show exponential tails that collapse on
a single curve when rescaled by A (see top inset of Fig.
6). Similar results are found at fixed B regardless of N .
Moreover, since A = v/δt, the tail of the velocity’s PDF
is thus found to scale as exp(−c v/v) independently of the
volume fraction since v ∼ h0N0B1/2. Consistently, the
time lag distribution is found to scale as exp(−c′τ/τ ), c
and c′ being dimensionless constants.

Discussion. – We have obtained the equation of state
of a dissipative granular gas driven stochastically by in-
jecting rotational energy into each particle. With usual
notations (the pressure P on the lid ∼ Mg/S, and the
container volume V = Sh), the equation of state of Eq.
(4) thus reads

PV ∼ NEc
L

h
, (5)

with Ec ∼ 〈v2〉 ∼ B the mean translational kinetic energy
per particle of velocity v. Surprisingly, this equation is
close of the equation of state of a perfect gas (PV = NEc)
with a geometric correction: the particle-container length
ratio. This can be partially ascribed to particle-wall inter-
actions since the Knudsen number Kn & 1. Moreover, it
differs from the equation of state of a dissipative granular
gas driven by a vibrating wall PV ∼ Ec with Ec ∼ Vθ(N)

with V the forcing velocity of the wall, and θ(N) a decreas-
ing function from θ = 2 at low N to θ ≃ 0 at large N when
the clustering phenomenon occurs [3]. Here, no clustering
is observed even when the volume fraction is increased up
to 40%. To our knowledge, no clustering instability has

been also observed in numerical simulations of dissipative
granular gases that are only driven by rotational degrees
of freedom [7]. We also show that the magnetic field B
in our experiment is the analogous of the thermodynamic
temperature for molecular gases, or the analogous of the
granular temperature for dissipative granular gases since
〈v2〉 ∼ B. The distribution of particle velocity near the
top wall displays an exponential tail and is independent of
the particle density. It is thus not Gaussian as for an ideal
gas, or stretched exponential and density dependent as for
a boundary-forced granular gas [5]. Finally, the collision
frequency ∼ 1/〈τ〉 is found to scale as N

√
B. This result

is consistent with the collision frequency of ideal gases
∼ N

√

〈v2〉, but not with the one of vibro-fluidized dissi-
pative granular gases in dilute regime ∼ N1/2V [4]. This
difference is related to the spatially homogeneous nature
of forcing.

Conclusion. – We have experimentally studied for
the first time a 3D granular gas driven stochastically by
injecting rotational energy into each particle. This dif-
fers from previous experimental studies of granular gas
where the energy was injected by vibrations at a bound-
ary. The equation of state is experimentally identified
and the collision statistics measured (distribution of ve-
locity, scalings of the particle rms velocity and mean col-
lision frequency with the forcing). Several differences are
reported with respect to thermodynamiclike gas and/or
non equilibrium vibro-fluidized dissipative granular gas:
(i) the gas-like state equation has a geometric correction
(container-particle length ratio), (ii) no cluster formation
occurs at high density, and (iii) the particle velocity dis-
tribution displays an exponential tail. The use of this new
type of forcing will be of primary interest to test experi-
mentally the hypothetical equipartition of rotational and
translational energy, a feature not guaranteed for out-of-
equilibrium systems [17].
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