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Abstract. - We report an experimental study of a dilute “gas” of magnetic particles subjected to a
vertical alternating magnetic field in a 3D container. Due to the torque exerted by the field on the
magnetic moment of each particle, a spatially homogeneous and random forcing is reached where
only rotational motions are driven. This forcing differs significantly from boundary-driven systems
used in most previous experimental studies on non equilibrium dissipative granular gases. Here,
no cluster formation occurs, and the equation of state displays strong analogy with the usual gas
one apart from a geometric factor. Collision statistics is also measured, and shows an exponential
tail for the particle velocity distribution. Most of these observations are well explained by a simple
model, and enable to better understand out-of-equilibrium systems uniformly “heated”.

Introduction. – Granular gases display striking
properties compare to molecular gases: cluster forma-
tion at high enough density [1–3], anomalous scaling of
the pressure [2, 3] and of the collision frequency [4], non-
Gaussian distribution of particle velocity [5]. These dif-
ferences are mainly ascribed to dissipation occurring dur-
ing inelastic collisions between particles. A continuous
input of energy is thus required to reach a non equilib-
rium steady state for a granular gas. This is usually per-
formed experimentally by vibrating a container wall or
the whole container. For such vibration-fluidized systems,
the role of the boundary condition affects the shape of
the particle velocity distribution [5], as well as the extent
of energy nonequipartition [6]. A spatially homogeneous
forcing, driving each particles randomly, is thus needed
to probe the validity domain of granular gas theories, but
is hardly reachable experimentally [7]. Here, we exper-
imentally report the equation of state and the collision
statistics of a spatially homogeneous driven granular gas
in a 3D container. Magnetic particles subjected to a mag-
netic field oscillating in time are used to homogeneously
and randomly drive the system by injecting rotational en-
ergy in each particle. Rotational motions are transferred
in translational ones by the collisions with the boundaries
or particles. To our knowledge, this type of forcing has
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been only used to investigate the pattern formation of
magnetic particles either in a 2D cell or suspended on a
liquid surface [8], as well as the velocity distribution of
magnetic particles in a 2D cell [9]. Beyond direct interest
in out-of-equilibrium statistical physics, granular medium
physics, and geophysics (such as dust clouds or planetary
rings [10]), our study provide insight into applied prob-
lems such as magnetic hyperthermia for medical therapy
[11] or electromagnetic grinders in steel mills [12], both
being based on control of magnetic particle dynamics by
alternating magnetic field.

Experimental setup. – The experimental setup is
shown in Fig. 1. A cylindrical glass container, 10 cm
in diameter and 14 cm in height, is filled with N mag-
netic particles, with 2 ≤ N ≤ 60 corresponding to less
than 1 layer of particles at rest. Magnetic particles are
made of a disc permanent magnet (0.5 cm in diameter
and e = 0.2 cm in thickness) encased in a plexiglass cylin-
der (d=1 cm in outer diameter, 0.25 cm in thickness, and
L = 1 cm long), both axes being collinear (see pictures in
Fig. 1). This configuration enables a reduction of a fac-
tor 38 of the dipole-dipole interaction between two par-
ticles. The magnetic induction of this dipolar particle,
µ0M = 250 G is measured by a Hall probe at the top
of the cylinder, M being the magnetization of the par-
ticle, and µ0 = 4π10−7 H/m. Its magnetic moment is
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Fig. 1: (Color online) Experimental set up. Right insets shows
pictures of a magnetic particle (1 cm scale).

m ≡ MVp with Vp = πd2L/4 = 0.78 cm3 the volume of
a particle. The container is placed between two coaxial
coils, 18 cm (40 cm) in inner (outer) diameter, 12.5 cm
apart, the container and the coil axes being collinears as
in Fig. 1. A 50 Hz ac current is supplied to the coils in
series by a variable autotransformer (Variac 260V/20 A).
An ac vertical magnetic induction B is thus generated in
the range 0 ≤ B ≤ 225 G with a frequency f = 50 Hz.
Due to the Helmholtz configuration of the coils, B is spa-
tially homogeneous within the container volume with a
3% accuracy. Motions of particles are visualized with a
fast camera (Photron Fastcam SA1.1) with a 250 fps or
a 500 fps. An accelerometer stuck on the lid records the
collision frequency and the impact amplitude on the lid
during 500 s, the sampling frequency being 100 kHz to
resolve collisions (∼ 60 µs). We focus here on the dilute
regime with volume fractions of 0.2% ≤ NVp/V ≤ 8%,
with V the volume of the container. The particle mean
free path is l ≡ d/(NVp/V ) & 0.1 m, and the Knudsen
number Kn ≡ l/h & 1.

Forcing mechanism. – Assume θ the angle between
the vertical field B(t) = B sinωt and a magnetic moment
of a particle m. A torque m×B is thus exerted by the field
on the magnetic moment of each particle. The angular
momentum theorem writes Id2θ(t)/dt2 = mB sinωt sin θ,
with I = m(3d2/4 + L2)/12 = 0.14 g cm2 the moment
of inertia of the particle, and m = 1 g the particle mass.
This equation is known to display periodic motions, period
doubling, and chaotic motions [13]. The ratio between
the magnetic dipolar energy, Ed = mB, and the rota-
tion energy at the field frequency, Erot = Iω2/2 controls
the stochasticity degree. The synchronization between the
angular frequency of the particles and the magnetic field
one, ω, is predicted to occur when Ed ≪ Erot, that is
B ≪ Iω2/(2m) = 493 G. When this condition is violated,
as it is the case for our range of B, chaotic rotational mo-
tions occur [13] as it is shown for a single particle in the

Fig. 2: (Color online) Snapshots of magnetic granular gas.
N = 20. (a) Initial conditions: B = 0, a plexiglass lid is
laying on the particles. When B is increased from (b) to (d),
a gas-like regime develops and the lid rises up due to the col-
lision of magnetic particles on it. For full evolution, see movie
N20onset.m4v

movie N1.m4v. The external magnetic field thus generates
an erratic rotational driving of each particle. A spatially
homogeneous forcing is thus obtained where only the ro-
tational degrees of freedom of each particle are erratically
driven.

Gas-like regime. – N particles are placed at the bot-
tom of the container, their axes being in the horizontal
plane, normal to B (see Fig. 2a). A plexiglass lid lays on
the particles, its mass being balanced by a counterweight.
When B is increased, a transition occurs at a critical Bc

where particles begin to jump and lift up the lid. We
found that Bc = 75 ± 5 G whatever N . When B is fur-
ther increased a stationary gas-like regime is observed with
particles rotating and translating erratically - see Fig. 2b-
d and movie N20onset.m4v. We observe that the axis of
rotation of most particles is normal to the particle axis in
order to align the direction of its magnetic moment with
the vertical oscillating magnetic field. The frequency and
direction of the particle rotation are erratic, showing un-
predictably reversing. Their angular frequencies are thus
not synchronized with the forcing frequency, ω = 2πf .
The stationary gas-like regime at fixed B is illustrated for
N = 10 and N = 20 in the movies N10.m4v and N20.m4v
slowed down 100 times and 12.5 times, respectively.

Method. – Measurements are performed as follows.
A mass M is added on the lid (0.82 ≤ M ≤ 10 g with a
0.82 step) and the lid is stabilized due to the collision of
particles at a height that depends on B (constant-pressure
experiment). The height h(t) reached by the lid exhibits
fluctuations in time around a mean height 〈h〉 as shown
in the inset of Fig. 3. h(t) is measured by an angular
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Fig. 3: (Color online) Hysteretic evolution of 〈h〉 for an increas-
ing (•) and decreasing (�) magnetic field B. N = 10, M = 4.7
g. Dashed line is 〈h〉 ∼ B1/2. Inset: Typical temporal evolu-
tion of h(t) for B = 101 G, N = 10 and M = 4.7 g. Dashed
line is 〈h〉=3.3 cm.

position transducer (12.3 mm/V sensitivity) at a 200 Hz
sampling frequency during 200 s, the sensor output voltage
being linear with the angle, and h. Note that the results
reported here are unaffected when performing constant-
volume experiments (the lid height is kept constant by
adding a mass on the lid that depends on B).

Fluidization onset. – The mean height 〈h〉 reached
by the lid is shown in Fig. 3 as a function of B for fixed N
and M . The onset of the particle fluidization is hysteretic,
occurring at Bi

c for increasing B, and at Bd
c < Bi

c for
decreasing B. One finds Bd

c = 56± 1 G and Bi
c = 75± 5

G whatever N . The thresholds come from the balance
between magnetic energy, Em, of a particle and the gravity
energy, Eg = mgd, needed to vertically move it over its
diameter, d, where g is the acceleration of gravity. When
B is decreased, Em corresponds to the particle dipolar
energy, Ed = mB, and one finds Bd

c = mgd/m ≃ 63 G.
When B is increased, particles are initially in contact, and
Em is the sum of the dipole-dipole interaction energy of
two particles in contact, Edd = µ0m

2/(12Vp) [14], and
the dipolar energy of a single particle Ed. By balancing
Edd − Ed with Eg, one has Bi

c − Bd
c = µ0M/12 ≃ 21 G

as found experimentally. The hysteresis is thus due to the
additional field needed to separate two particles initially
in contact. One has also Ed/Edd = 12B/(µ0M) ≫ 1 for
B ≫ Bc.

State equation. – Far from the onset, Fig. 3 shows
that 〈h〉 scales as B1/2 meaning that the gaseous regime
expands more and more when B increases. For fixed M ,
〈h〉 is shown in Fig. 4 as a function of B for different
particle numbers N . The larger N is, the higher is the
height reached by the lid for a fixed B. The best rescal-
ing is displayed in the inset of Fig. 4, and shows that
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Fig. 4: (Color online) 〈h〉 vs. increasing B for different particle
numbers N = 4, 10, 15, 20, 30 and 40 (from bottom to top).
M = 6.9 g. Inset: best rescaling 〈h〉/N1/2 vs. B1/2. Dashed
line has a slope 0.08 cm/G1/2.
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Fig. 5: (Color online) 〈h〉 vs. increasing B for different masses
added M = 2.3, 3.1, 3.9, 4.7, 5.3, 6.9, 8.6 and 10 g (from top
to bottom). N = 15. Inset: best rescaling 〈h〉/M1/2 vs. B1/2.
Dashed line has a slope 0.97 cm g1/2/G1/2.

〈h〉/N1/2 ∼ B1/2. For fixed N , 〈h〉 is shown in Fig. 5 as a
function of B for different added mass M on the lid. The
larger M is, the smaller is the height reached by the lid
for a fixed B. The best rescaling is displayed in the inset
of Fig. 5, and shows that 〈h〉M1/2 ∼ B1/2. To sum up,
one finds an experimental state equation for the magnetic
granular gas

M〈h〉2 = kNB , (1)

where k = 0.05 g cm2/G is a constant.

Model. – Due to the stochastic forcing, a fraction
of the magnetic energy is continuously injected in each
particle. Since an out-of-equilibrium stationary state is
reached, the injected energy is dissipated in average dur-
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ing collisions. Although the dissipated energy involved ro-
tational and translational parts, both can be assumed to
be proportional [16]. Thus, the balance between magnetic
energy and translational kinetic energy dissipated during
collisions leads to v2 ∼ mB. Thus, the typical particle
velocity, scales as

v(B) ∼
√
B . (2)

More precisely, assuming simple collision rules (i.e. with
no rotation) for the sake of simplicity, the energy loss by
a particle of mass m during a collision with the lid of

mass M is mv2

2 (1−ǫ2) M
m+M , ǫ being the particle-boundary

restitution coefficient. The energy balance finally leads to

v ∼
√

mB m+M
mM(1−ǫ2) .

Let us now model the fact that the lid motion under
gravity is stabilized at an altitude h due to the particle
collisions. One thus balances τl, the time of flight under
gravity of the lid subjected to particle collisions, and τ ,
the time of flight of particles between 2 collisions with the

lid at the altitude h. One has τl = vl/g with vl the lid
velocity, and τ = 2h/v for N = 1. For N particles, the
collision frequency, 1/τ , has to enhance by a large particle
density, and a large scattering cross section (∼ Vp). It thus
makes sense to divide τ by the volume fraction NVp/V ,
with V = Sh, S being the container area. Then, one has

τ =
2h2S

Nv(B)Vp
. (3)

Balancing τl with τ then leads to h2 = NvvlVp/(2gS).
The lid velocity is vl = v(1+ ǫ) m

m+M from simple inelastic

collision rules. Thus, using the expressions for h2, vl and
v, the theoretical state equation reads Mgh2 ∼ NB(

Vp

S )
in good agreement with the experimental one of Eq. (1).
For a more accurate description, complex inelastic collision
rules should be included [15, 16] since linear and angular
particle velocities are coupled.

Collision statistics. – Additional experiments have
been performed with the lid fixed to an altitude h. A
typical temporal recording of the accelerometer is shown
in the bottom inset of Fig. 6. Each peak corresponds to
the acceleration undergoes by a particle during its colli-
sion on the lid. The acceleration peak amplitude, A, and
the time lag, τ , between two successive collisions on the
lid are randomly distributed. A thresholding technique is
applied to the signal to detect the collisions [4]. Figure 6
shows that the mean time lag scales as τ = κh2/

(

NB1/2
)

with κ = 0.18 s G1/2/cm2 over 2 decades when varying
one single parameter h, B or N while keeping the other
two fixed. This result is in good agreement with the model
of Eqs. (2) and (3). Another experimental verification of
Eq. (2) is as follows. The mean amplitude of acceleration
peaks is experimentally found to scale as A ∼ h0N0B1/2 as
shown in Fig. 7. For an impulse response of the accelerom-
eter to a single collision, the product of the acceleration
peak amplitude, A, times the duration of the collision, δt,
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Fig. 6: (Color online) Bottom inset: Temporal signal of the
accelerometer showing 35 collisions in 1 s (N = 10, h = 5 cm,
B = 157 G). Main: τ vs. h2/(N

√
B) for: (•) 1 ≤ N ≤ 60

(B = 180 G, h = 5 cm), (�) 90 ≤ B ≤ 222 G (N = 10, h = 5
cm), and (�) 2 ≤ h ≤ 11 cm (N = 15, B = 180 G). Dot-dashed
line has a unit slope. Top inset: PDF(A/A) for 90 ≤ B ≤ 222
G (N = 15, h = 5 cm).
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Fig. 7: (Color online) Experimental scaling of the mean par-
ticle velocity near the wall obtained from the accelerometer
measurements. Main: A vs.

√
B for N = 15, and h = 6 cm.

Top inset: A vs. N for B = 180 G, and h = 6 cm. Bottom
inset: A vs. h for B = 180 G, and N = 15.

is equal to the magnitude of the particle velocity v, and
thus v = Aδt (δt ≃ 60µs is roughly constant). One has
thus v ∼ B1/2 in agreement with Eq. (2). The transla-
tional granular temperature near the wall thus scales as
Tw ∼ h0N0B1.

For various B at fixed N , the probability density func-
tions (PDF) of A show exponential tails that collapse on
a single curve when rescaled by A (see top inset of Fig. 6).
Similar results are found at fixed B whatever N . More-
over, since A ∼ v, the tail of the velocity’s PDF is thus
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found to scale as exp(−c v/v) independently of the vol-
ume fraction since v ∼ h0N0B1/2. Consistently, the time
lag distribution is found to scales as exp(−c′τ/τ ), c and
c′ being dimensionless constants.

Discussion. – We have obtained the equation of state
of a dissipative granular gas driven homogeneously by the
rotations. With usual notations (the pressure P on the lid
∼ Mg/S, and the container volume V = Sh), the equation

of state thus reads PV ∼ NEc
Vp

V , with Ec ∼ 〈v2〉 ∼ B
the mean translational kinetic energy per particle of veloc-
ity v. Surprisingly, this equation is close of the equation
of state of a perfect gas (PV = NEc) with a geometric
correction: the particle-container volume ratio. This can
be partially ascribed to particle-wall interactions since the
Knudsen number Kn & 1. Moreover, it differs from the
equation of state of a dissipative granular gas driven by
a vibrating wall PV ∼ Ec with Ec ∼ Vθ(N) with V the
forcing velocity of the wall, and θ(N) a decreasing func-
tion from θ = 2 at low N to θ ≃ 0 at large N when the
clustering phenomenon occurs [3]. Here, no clustering is
observed even when the volume fraction is increased up to
40%. We also show that the magnetic field B in our ex-
periment is the analogous of the thermodynamic tempera-
ture for molecular gases, or the analogous of the granular
temperature for dissipative granular gases since one has
〈v2〉 ∼ B. The distribution of particle velocity near the
top wall displays an exponential tail and is independent of
the particle density. It is thus not Gaussian as for an ideal
gas, or stretched exponential and density dependent as for
a boundary-forced granular gas [5]. Finally, the collision
frequency ∼ 1/〈τ〉 is found to scale as N

√
B. This result

is consistent with the collision frequency of an ideal gas
∼ N

√

〈v2〉, but not with the one of a vibro-fluidized dis-
sipative granular gas in a dilute regime ∼ N1/2V [4]. This
difference is related to the spatially homogeneous forcing.

Conclusion. – We have experimentally studied, for
the first time, a 3D granular gas driven homogeneously
in volume by particle rotations. This differs from previ-
ous experimental studies of granular gas where the energy
was injected by vibration at a boundary. The equation of
state is experimentally identified and the collision statis-
tics measured (scaling of the particle rms velocity and the
mean collision frequency with the forcing). Several differ-
ences are reported with respect to thermodynamiclike gas
and/or non equilibrium vibro-fluidized dissipative granu-
lar gas: (i) the gas-like state equation has a geometric
correction (container-particle aspect ratio), (ii) no cluster
formation occurs at high density, and (iii) the particle ve-
locity distribution displays an exponential tail. The use
of this new type of forcing will be of primary interest to
experimentally test the possible equipartition of rotational
and translational energy, a feature not guaranteed for out-
of-equilibrium systems [17].
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