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The model consists of the Cosserat membrane with one director, but without taking into account bending rigidity of the
membrane. Alternative simple models of PT in biomembranes were proposed by Boulbitch (1999), Agrawal and Steigmann
(2008), and Elliott and Stinner (2010).

The non-linear equilibrium conditions of elastic shells undergoing PT of martensitic type were formulated by Eremeyev
and Pietraszkiewicz (2004) and Pietraszkiewicz et al. (2007) within the dynamically exact and kinematically unique theory
of shells developed by Libai and Simmonds (1983, 1998) and Chróścielewski et al. (2004). This version of the non-linear
theory of shells has the structure of the classical Cosserat surface with the translation vector u and rotation tensor Q fields
as the only independent variables. By analogy to the 3D case, the two-phase shell was regarded in Eremeyev and
Pietraszkiewicz (2004) and Pietraszkiewicz et al. (2007) as the Cosserat surface consisting of two material phases divided
by a sufficiently smooth surface curve. Existence of such a curve was confirmed by several experiments on thin-walled
samples. For such a general shell model the first 2D thermomechanical model of PT has recently been worked out by
Eremeyev and Pietraszkiewicz (2009).

In this paper we develop the general non-linear thermomechanics of the resultant Cosserat-type shells undergoing
diffusionless (displacive) phase transitions of martensitic type. In particular, we discuss the thermodynamic condition
allowing one to determine position and quasistatic motion of the phase interface on the deformed shell base surface. Here
we use extended thermodynamics of shells based on the introduction of two temperature fields. The theoretical model is
illustrated by example of stretching and bending of the circular plate undergoing phase transition in the case of small
deformations.

2. Kinematics

In the undeformed placement the shell-like body is represented by the base surface M described by the position vector
xðyaÞ, and orientation of M is defined by the unit normal vector gðyaÞ, with fyag, a 1,2, the surface curvilinear coordinates.

Within the dynamically exact and kinematically unique theory of shells summarised in Libai and Simmonds (1998),
Chróścielewski et al. (2004), Eremeyev and Zubov (2008), in the deformed placement the shell is represented by the
position vector y wðxÞ of the deformed material base surface N wðMÞ with attached three directors ðda,dÞ such that

y xþu, da Qx,a, d Qg, ð1Þ

where w is the surface deformation function, u 2 E the translation vector of M, and Q 2 SOð3Þ the proper orthogonal tensor,
Q T Q�1, detQ þ1, representing the work-averaged gross rotation of the shell cross sections from their undeformed
shapes described by ðx,a,gÞ.

In the shell undergoing phase transition it is assumed that above some level of deformation different material phases A

and B may appear in different complementary subregions NA and NB separated by the curvilinear phase interface D 2 N. For
a piecewise differentiable mapping w we can introduce on M a singular image curve C w�1ðDÞ separating the
corresponding image regions MA w�1ðNAÞ and MB w�1ðNBÞ. The position vectors of C and D are related by
xCðsÞ w�1ðyCðsÞÞ, where s is the arc length parameter along C.

Let us consider a one-parameter family of shell deformations

yðx,tÞ xþuðx,tÞ, daðx,tÞ Q ðx,tÞx,a, dðx,tÞ Q ðx,tÞgðxÞ, ð2Þ

where t is a time-like scalar parameter such that t 0 corresponds to the undeformed placement and t to the deformed
one. Then t _u is the virtual translation vector, and x ax ð _Q Q T

Þ the virtual rotation vector, where axð. . .Þ is the axial
vector associated with the skew tensor ð. . .Þ, _ð. . .Þ d=dtð. . .Þ, while V _xC � m is the virtual translation component in the
exterior normal direction of the phase curve C, m 2 TxM is the unit external normal vector to C, and m � g 0.

In the general resultant theory of shells considered here the following two strain measures are introduced, see
Chróścielewski et al. (2004), Eremeyev and Pietraszkiewicz (2004, 2006), and Pietraszkiewicz et al. (2005):

E ea � aa, K ,a � aa, ea y,a da, ,a
1

2
di
� Q ,aQ T di, ð3Þ

where (aa,g) and (di) are bases reciprocal to the base ðx,a,gÞ and the base ðda,dÞ, respectively.
The curvilinear phase interfaces in shells can be either coherent or incoherent in rotations, see Eremeyev and

Pietraszkiewicz (2004). For the coherent interface both fields y (or u) and Q are supposed to be continuous at C and the
kinematic compatibility conditions along C become, see Eremeyev and Pietraszkiewicz (2004), Eqs. (31) and (34),

1tUþV1FmU 0, 1xUþV1KmU 0, ð4Þ

where the expression 1 . . .U ð. . . ÞB ð. . . ÞA means the jump at C.
The phase interface is called incoherent in rotations if only y (or u) is continuous at C but the continuity of Q may be

violated. In this case the condition (4)1 is still satisfied, but (4)2 may be violated, see Eremeyev and Pietraszkiewicz (2004).

3. Equilibrium equations

The balance equations and corresponding dynamic boundary conditions of the general non-linear theory of shells can
be derived exactly by direct through-the-thickness integration of 3D balance laws of linear and angular momentum of



  

continuum mechanics, see Libai and Simmonds (1998), Chróścielewski et al. (2004), and Eremeyev and Pietraszkiewicz
(2004). In quasistatic problems discussed here the global equilibrium conditions lead to the local Lagrangian equilibrium
equations and the static boundary conditions

Div Nþf 0, Div MþaxðNFT FNT
Þþc 0 in M, ð5Þ

Nm n� 0, Mm m� 0 along @Mf ,

where the tensors N,M 2 E� TxM defined on M are the resultant surface stress measures of the 1st Piola–Kirchhoff type,
f , c are the resultant surface force and couple vector fields acting on N\D, but measured per unit area of M\C, while n� and
m� are the external boundary resultant force and couple vectors applied along the part @Nf of N wðMÞ, respectively.
Additionally, F Grad y y,a � aa is the surface deformation gradient, F 2 E� TxM, Div N N ,a � aa means the surface
divergence of N, while ax T is the axial vector of the skew tensor TT T .

At the curvilinear phase interface C, which is the singular surface curve with regard to the surface stress measures, we
obtain the local Lagrangian dynamic compatibility conditions (Chróścielewski et al., 2004),

1NmU 0, 1MmUþ1y � NmU 0: ð6Þ

Eqs. (6) are just the local balances of forces and couples at C in the quasistatic deformation process of the interface.
Further we assume that the position vector y is the continuous vector function, i.e. we assume that the following

relation holds:

1yU 0 at C: ð7Þ

This means that we consider the phase interfaces which are coherent in translations, but still incoherent in rotations.
Under the condition (7) with (6)1 we obtain 1y � NmU 0 and (6)2 becomes 1MmU 0.

4. Energy balance equation

According to Simmonds (1984) and Eremeyev and Pietraszkiewicz (2009), the local resultant 2D thermomechanic
balances of energy in the referential description read

r_e rr Div qþN�E3
þM�K 3 in M\C, ð8Þ

q � m q� 0 along @Mh,

where e is the internal surface energy (density), r is the internal surface heat supply minus fluxes through the upper and
lower shell faces, all per unit mass of M, q 2 TxM is the referential surface heat flux vector, ð�Þ3 Q ðd=dtÞ½Q T

ð�Þ� is the co-
rotational time derivative, and the scalar product of two tensors A,B 2 E� TxM is defined by A�B trðAT BÞ.

The corresponding local energy balance along C is

V1reUþ1nn � vUþ1mn �xU 1q � mU 0, ð9Þ

while nn Nm and mn Mm are the internal contact stress resultant and couple vectors at the arbitrary edge @R of R wðPÞ.

5. The entropy inequality

The referential resultant entropy inequality for the shell can also be derived by direct through-the-thickness integration
of the global 3D entropy inequality (The 2nd Law). In the literature there is no agreement which form should take The 2nd
Law, see for example the reviews by Muschik et al. (2001) and Muschik (2008). Besides, in various formulations of The 2nd
Law different ways of introducing the temperature field are proposed.

Thermodynamics of shells from various points of view was presented for example in Green and Naghdi (1970, 1979),
Murdoch (1976a,b), Zhilin (1976), Simmonds (1984, 2005, in press), Rubin (2004, 2006), Makowski and Pietraszkiewicz
(2002), Eremeyev and Zubov (2008) and Eremeyev and Pietraszkiewicz (2009). In the papers various sets of surface fields
responsible for temperature were used and several formulations of the first and second laws of thermodynamics for shells
were discussed.

The simplest version of 2D second law of shell thermodynamics was proposed in Murdoch (1976a,b), where the shell base
surface was equipped with one temperature field y and one corresponding work-conjugate entropy field Z. At the same time,
two different temperatures Y7 of the surrounding media are admitted above and below the base surface. The simplified
version of Murdoch (1976a,b) with Yþ y Y� was used in Eremeyev and Pietraszkiewicz (2009) to formulate the resultant
2D 2nd Law along the curvilinear phase interface in the two-phase shell. In Green and Naghdi (1970, 1979), Simmonds (1984,
2005, in press), and Rubin (2004, 2006) the through-the-thickness averaged temperature and its averaged derivative in the
thickness direction were used as the independent field variables. Various hypotheses for definition of the surface temperature
on the material base surface were discussed in Steinmann and Häsner (2005). In Zhilin (1976) and Eremeyev and Zubov
(2008) two temperature fields Yþ and Y� were used as two independent field variables. In Zhilin (1976) two 2D entropy
inequalities were introduced to represent on the shell base surface one entropy inequality used in 3D continuum mechanics.
Even more general version of 2D shell thermodynamics was discussed in Makowski and Pietraszkiewicz (2002).



  

In the present paper we use on the 3D level the rational thermomechanics proposed by Truesdell and Toupin (1960), in
which The 3D 2nd Law is given in the form

_HZ J, ð10Þ

where the entropy H and the entropy production J are given in the Clausius–Duhem form

H

ZZZ
P
RRZ da, J

ZZZ
P
RR

r

Y
dv

ZZ
@P

q � n

Y
da: ð11Þ

In (11), P is the 3D region with boundary @P occupied by the shell in the reference placement, RRðx,tÞ is the referential
mass (density) per unit volume of P, Zðx,tÞ and rðx,tÞ are the 3D entropy and heat supply per unit mass of P, Yðx,tÞ40 is
the 3D absolute temperature, qðx,tÞ is the heat flux vector through @P with n as the external unit normal, and x is the
position vector of the place in P and on @P.

In shell theory we usually parameterise points in P by x xþxg, where x 2 ½ h�ðxÞ,hþ ðxÞ� is the distance along g from
M to x 2 P, and h h�þhþ is the initial shell thickness.

In this paper we introduce after Murdoch (1976a) the mean referential temperature yðx,tÞ40 and the temperature
deviation jðx,tÞ by
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where Y7 are temperatures of the upper and lower shell faces M7 taken to be equal to those prevailing in the adjoining
external media. Then the direct through-the-thickness integration in (10) with (11) and (12) allows one to represent (10)
in the formZZ

P
r _Z r r
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js
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daþ

Z
@P

qn
y

jsn
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dsþ

Z
@P\@Mh

q�

y�
j�s� qn

y
jsn
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dsZ0, ð13Þ

where
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RRZm dx,
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RRrxm dx
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2
ðqþ � n

þaþ q� � n
�a�Þ, ð14Þ

qn

Z þ
�

q � n�m dx, sn

Z þ
�

q � n�xm dx,

q�
Z þ
�

q� � n�m dx, s�
Z þ
�

q� � n�xm dx,

q� qðx h�gðxÞÞ, qþ qðxþhþgðxÞÞ, q�ðxÞ is the given heat flux vector through the lateral shell boundary surface @P�, y�

and j� are given functions along @Mh, and the geometric parameters m, a7 , n7 , n� are given by Konopińska and
Pietraszkiewicz (2007), Appendix (A.15)–(A.17).

In (14) we have introduced the referential resultant surface quantities: the internal entropy supply Z, the heat supply r

and the extra heat supply s, all per unit surface mass of M, the heat fluxes qn and qn as well as the extra heat fluxes sn and sn

trough the internal @P and external @Mh edges, respectively. The fields qn and sn can be represented as qn q � m and
sn s � m, where q and s are the referential resultant heat flux and extra heat flux vectors.

Introducing (14) into (13) and applying the surface divergence theorem we obtainZZ
P\C
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From (15) follow the local resultant 2D entropy inequalities of the non-linear theory of shells

r _Z r r
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V1rZU 1
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þ1js � mUZ0 along C, ð16Þ



  

q�

y�
j�s� qn

y
jsn

� �
Z0 along @Mh,

g Grad y, h Grad j, g,h 2 TxM:

Two surface fields y and j used here require two respective dual fields, which are the resultant surface entropy Z and
the surface entropy deviation w (please do not identify this field with the deformation function used earlier). These fields
appear naturally as multipliers of y and j after the through-the-thickness integration of the 3D entropy distribution Z in
which the 3D temperature distribution YðxÞ yð1 jyxÞ�1 is used. We can think of w and j as of the dual field variables in
analogy to Z and y.

But from The 1st Law (8) we have

rr Div q r_e N� _E M� _K, ð17Þ

where the referential shell stress and strain measures are defined by

N Q T N, M Q T M, E Q T E, K Q T K : ð18Þ

Introducing the surface free energy density defined by

c e yZ jw ð19Þ

we can transform (16)1 into

rd	 rð _cþ _yZþj _wþ _jwÞþN� _EþM� _K
1

y
q � gþryjs yjDiv s yh � sZ0: ð20Þ

In the balance laws (5)1, (8) and in the inequality (20) valid in M\C, the fields r,f ,c,r,s are supposed to be given, the
fields u,Q ,y,j constitute the basic thermo-kinematic independent variables of the shell boundary-value problem, while
the fields N,M,c,Z,w,q,s have to be specified by the constitutive equations. In what follows we discuss the constitutive
equations for thermoelastic and thermoviscoelastic shells with the help of procedure worked out by Coleman and Noll
(1963) in the 3D continuum thermodynamics.

5.1. Thermoelastic shells

The thermoelastic shell behaviour can be defined by the following constitutive equations:

c cðE,K,y,g,j,hÞ,

Z ZðE,K,y,g,j,hÞ, w wðE,K,y,g,j,hÞ,

N NðE,K,y,g,j,hÞ, M MðE,K,y,g,j,hÞ,

q qðE,K,y,g,j,hÞ, s sðE,K,y,g,j,hÞ, ð21Þ

where the constitutive functions and their values are denoted by the same symbols.
Then the local 2nd Law (20) yields

rd	 ðN rc,EÞ�EþðM rc,KÞ�K rðZþc,yÞy rðwþc,jÞj rc,g g rc,h h rjwþryjs yjDiv s yh s
1

y
g qZ0:

ð22Þ

From (22) follows the inequality

rd	 ½N rðcþjwÞ,E�� _Eþ M rðcþjwÞ,K

 �

� _K r ZþðcþjwÞ,y

 � _y rðcþjwÞ,j _j rðcþjwÞ,g � _g

rðcþjwÞ,h � _hþryjs yjDiv s yh � s
1

y
g � qZ0: ð23Þ

Let us recall the procedure of Coleman and Noll (1963) by which the entropy inequality could be used to deduce
constitutive restrictions on a variety of materials. In this procedure it is assumed that time rates of arguments in the
constitutive equations (21), i.e. _E, _K, etc., are all independent of each other. Hence, the inequality (23) should be satisfied
for any constitutive Eqs. (21) and for any admissible values of the state variables E, K, y, j and their rates at any regular
point of M\C.

Let us consider the following family of deformations:

E E0þðt t0ÞE1, K K0þðt t0ÞK1,

y y0þðt t0Þy1þg0 � ðx x0Þþg1 � ðx x0Þðt t0Þ,

j j0þðt t0Þj1þh0 � ðx x0Þþh1 � ðx x0Þðt t0Þ, ð24Þ



  

where E0, E1, K0, K1, y0, y1, g0, g1, j0, j1, h0, and h1 are any constants, while t0 and x0 are any time instant and any point
on the shell surface. Substituting (24) into (23) and taking into account that at t t0, x x0,

E E0, K K0, y y0, j j0, g g0, h h0,

_E E1, _K K1, _y y1, _j j1, _g g1, _h h1,
ð25Þ

we obtain the inequality

rd	 ½N rðcþjwÞ,E��E1þ½M rðcþjwÞ,K��K1 r½ZþðcþjwÞ,y�y1

rðcþjwÞ,jj1 rðcþjwÞ,g � g1 rðcþjwÞ,h � h1þryjs yjDiv s yh � s
1

y
g � qZ0: ð26Þ

Note that in (26), d is the linear function with respect to E1, K1, y1, j1, g1, and h1. Hence, to satisfy (26) we should have the
relations

N r ~c ,E, M r ~c ,K, Z ~c ,y, ~c ,j 0, ~c ,g 0, ~c ,h 0, ð27Þ

where ~c ~cðE,K,yÞ 	cþjw does not depend on j, g and h, and the local 2nd Law reduces to

yj½rs Div s� yh � s
1

y
g � qZ0: ð28Þ

Assuming g 0 and h 0 we find that the first group of terms in (28) has to be non-negative. Hence, to satisfy (28) we
should have

yj½rs Div s�Z0: ð29Þ

Note that the sign and value of j as well as the sign and value of Div s can be positive or negative, while s is given function
with a priory unknown sign and value. Hence, to satisfy (29) with y40 we should have

rs Div s	 cj, ð30Þ

with cZ0. The quantity c is functionally dependent on the state variables E,K,y,g,j,h, in general. The simplest case is
when c const is assumed.

Let us note that for the entropy deviation w we cannot find any restriction similar to that for Z in (27). Indeed, the
relation

ðcþjwÞ,j 0

following from (27)4 yields

w ðw0 cÞ=j,

where w0 w0ðE,K,y,g,hÞ is an arbitrary function. Because c cðE,K,yÞ, w depends linearly on j�1 and has a singularity
when j-0. Moreover, because w0 is arbitrary, the constitutive relation for w should be determined independently of c
taking into account the linear dependence of w on j�1 alone. This dependence w on j seems unwanted because the
thermodynamic state with j 0 is physically reasonable but corresponds to the infinite value of the entropy deviation.

From (27) it also follows that M does not depend on j. But from the elementary knowledge of beam and plate theories
one knows that the case of non-zero temperature gradient leads to the bending of a beam or a plate, see for example
Timoshenko and Woinowsky-Krieger (1985). This means that Ma0 if ja0, in general. Hence, the latter property of the
constitutive Eqs. (27) seems to be unsatisfactory as well. This unwanted consequence of the standard Coleman–Noll
procedure was noted by Simmonds (1984) who proposed to treat _j as an internal variable.

Here we propose another solution how to avoid contradictions. The unsatisfactory behaviour of the above constitutive
equations allows us to conclude that the independence of _E, _K, _y, and _j used above may not hold in the resultant 2D
thermodynamics of shells. Thus, in the present paper we assume that _E, _K, _y, and _j are not independent. In other words,
we do not consider all processes but restrict ourselves to such processes which are consistent with the 2D entropy
inequality (16)1. We can call such processes thermodynamically admissible.

Let us derive the governing equations of thermoelastic shells taking into account these constraints. Assuming that only
_E, _K, and _y are independent and considering the family

E E0þðt t0ÞE1, K K0þðt t0ÞK1, y y0þðt t0Þy1þg0 � ðx x0Þþg1 � ðx x0Þðt t0Þ, ð31Þ

we obtain from (22) that

c cðE,K,y,j,hÞ, N rc,E, M rc,K, Z c,y, ð32Þ

and (22) results in

rd	 rðwþc,jÞ _j rc,h �
_h rj _wþryjs yjDiv s yh � s

1

y
g � qZ0: ð33Þ

Thus, j and w should satisfy the inequality (33).



  

Let us take the relation

w c,j ð34Þ

as the constitutive equation for w, which is analogous to (32)4, and assume the relation

c,h 0: ð35Þ

Note that with (35) the surface free energy density c does not depend on g and h, but depends on j, and now M depends
on j, in general.

With (34) and (35) the local 2nd Law (33) reduces to

rj _wþryjs yjDiv s yh � s
1

y
g � qZ0: ð36Þ

To satisfy (36) instead of (30), we should have the following relation:

r _wþyrs yDiv s cj, cZ0: ð37Þ

The reduced dissipation inequality (37), with c 0 or when j 0 is assumed for a moment, becomes

yh � s
1

y
g � qZ0, ð38Þ

so that the sum of two last terms in (36) together have to be non-negative as well.
The simplest cases of the constitutive equations for q and s satisfying the reduced inequality (38) may be taken similar

to the referential Fourier law in 3D continuum mechanics. These equations are

q cJg, s c?h, ð39Þ

where cJ is the positive heat conductivity of the shell in tangential direction and c? is the positive heat conductivity of the
shell in the transverse normal direction.

For the thermoelastic shells the local energy balance Eq. (8) reduces to the form

rðy _Zþj _wÞ rr Div q: ð40Þ

Both relations (40) and (37) play the role of the thermoconductivity equations in the theory of thermoelastic shells. The
two equations are necessary to determine two fields: the surface temperature y and the surface temperature deviation j.
When s 0, the Eq. (37) contains as the special case the equation for temperature deviation established for the
thermoelastic beams by Simmonds (2005).

5.2. Thermoviscoelastic shells of differential type

The discussion given in Section 5.1 above may be extended to the case of inelastic shell behaviour. Let us consider the
more general case of thermoviscoelastic shells of the differential type defined by the following constitutive equations:

fc,Z,w,N,M,q,sg fc,Z,w,N,M,q,sgðE,K, _E, _K,y,g, _y, _g ,j,h, _j, _hÞ: ð41Þ

Here we additionally take into account dependence of the constitutive equations on the first derivatives with respect to time-like
parameter of thermo-kinematic variables and their spatial gradients. Eqs. (41) are analogous to the 3D constitutive equations of
the differential type of the complexity 1 (the Kelvin–Voigt type model), which were discussed in Truesdell (1984, 1991).

Let the equilibrium and dissipative parts of the surface stress measures N and M be additionally decomposed according to

N NEþND, M MEþMD,

NE NEðE,K,y,g,j,hÞ, ME MEðE,K,y,g,j,hÞ,

NDðE,K,0,0,y,g,0,0,j,h,0,0Þ 0, MDðE,K,0,0,y,g,0,0,j,h,0,0Þ 0:

ð42Þ

Substituting (41) and (42) into (20) we obtain

rd ðNE rc,EÞ EþðME rc,KÞ K rðZþc,yÞ y rc, _E
€E rc, _K

€K

rc,g � _g rc, _g � €g rðwþc,jÞ _j rc,h �
_h

rc, _j €j rc, _h �
€hþND �

_EþMD �
_K

1

y
g � q yh � s rj _wþryjs jyDiv sZ0: ð43Þ

The analysis of (43) similar to that in Section 5.1 leads to the relations

c cðE,K,y,jÞ,

NE rc,E, ME rc,K, Z c,y, w c,j,

r _wþrys yDiv s cj, cZ0, ð44Þ



  

ND�
_EþMD�

_K
1

y
g � q yh � sZ0:

Let us note that here the surface free energy density c and the equilibrium surface stress measures NE, ME are the same
as in the case of thermoelastic shells, while ND, MD, q, and s may depend on the full list of arguments including the
temperature deviation j, its surface gradient and their time-like derivatives.

6. Thermodynamic continuity condition

Let us discuss the relations (4), (6), (9) and (16)2 for jumps of various fields at C. We remind that these relations should
be satisfied for arbitrary shells, also elastic, thermoelastic and thermoviscoelastic. This is so because these relations either
represent continuity as (4), or the balance equations of some fields at the singular curve C quasistatically moving on the
base surface M. Additionally, we assume that the surface temperature field y and its deviation j are continuous on the
whole M, that is

1yU 0, 1jU 0 along C: ð45Þ

The second thermoconductivity Eq. (37) leads to the relation

V
1

y
1rwU 1s � mU 0 along C: ð46Þ

In the derivation of this relation one uses the classical technique of the theory of partial differential equations, see for
example Courant and Hilbert (1989), Truesdell (1966) or Maugin (1998) in the case of PT. Formally, the derivation
procedure reduces to exchange of the differential operators Divð� � �Þ and ð� � � Þ� by the algebraic operators ð� � �Þ � m and

Vð� � �Þ, respectively.
Eliminating 1q � mU from (9) and (16)2, we have

V1rðyZ eÞU 1nn � vU 1mn �xUþ1yjs � mUZ0:

Substituting (19) into this inequality, we derive that

V1rcU 1nn � vU 1mn �xU V1rjwUþ1yjs � mUZ0:

Using (45) and (46), the following relation holds along C:

V1rcU 1nn � vU 1mn �xU	 yd2
C Z0, ð47Þ

where d2
C Z0 denotes the surface entropy production at C.

Using the identities

1nn � vU /nnS � 1vUþ1nnU �/vS, 1mn �xU /mnS � 1xUþ1mnU �/xS,

where / . . .S 1
2½ð. . . ÞAþð. . . ÞB� is the mean value at C, and taking into account the static balance Eqs. (6) we obtain the

relation

V1rcU /nnS � 1vU /mnS � 1xU yd2
C along C,

or

V1rcU m � NT1vU m �MT1xU yd2
C along C:

For the coherent phase interface

yd2
C Vf1rcU m � NT1FmU m �MT1KmUg along C, ð48Þ

while for the phase interface incoherent in rotations

yd2
C Vf1rcU m � NT1FmUg along C: ð49Þ

The entropy production yd2
C remains always non-negative for all thermomechanical processes. This allows us to

postulate the kinetic equation, describing motion of the phase interface for all quasistatic processes, in the form

V F ðm � 1CUmÞ, ð50Þ

where F is the non-negative definite kinetic function depending on the jump of C at C, i.e. F ðBÞZ0 for B40, where

C Cc 	 rcA NT F MT K

for the coherent interface,

C C i 	 rcA NT F

for the one incoherent in rotations, A 1 g� g, and 1 is the 3D unit tensor.
Tensors Cc and Ci in the non-linear shell theory play the role of the Eshelby tensors or the energy-momentum tensors

known in 3D continuum mechanics. Let us note that these tensors have various applications not only in the theory of PT



  

but also in the configurational mechanics (Berezovski et al., 2008; Gurtin, 2000; Maugin, 1993; Kienzler and Herrman,
2000). In particular, in Kienzler and Herrman (2000) properties of the Eshelby tensor were used to formulate the
conservation laws and the path-independent integrals in the linear theory of plates and shells.

After Abeyaratne and Knowles (2006), Berezovski et al. (2008), and Eremeyev and Pietraszkiewicz (2010) we assume
F ðBÞ in the form

F ðBÞ

kðB B0Þ

1þxðB B0Þ
, BZB0,

0, B0oBoB0,

kðBþB0Þ

1 xðBþB0Þ
, Br B0:

8>>>>><
>>>>>:

ð51Þ

Here B0 describes the effects associated with nucleation of the new phase and action of the surface tension, see Abeyaratne
and Knowles (2006), x is a parameter describing the limit value of the phase transition velocity (Berezovski et al., 2008),
and k is a positive kinetic factor.

Summarising, in the case of finite deformations the thermomechanic BVP for the shell undergoing phase transition
consists of the equilibrium Eqs. (5)1 supplemented by the appropriate static and kinematic boundary conditions for N,M,u,
and Q , the energy balance Eq. (8) with appropriate boundary conditions for y and j, the surface entropy inequality (16)2,
as well as the balance Eqs. (4), (6), (45) and (50) along the interface C, all supplemented with the constitutive equations
derived in Sections 5.1 or 5.2. The Eq. (50) is used to find position of the curvilinear interface C in its quasistatic motion.

7. Stretching and bending of the circular plate undergoing PT

Let us consider the axisymmetric quasistatic deformation of thermoelastic circular plate with simply supported
external boundary under the action of tensile forces F and distributed transverse loads q, see Fig. 1. We assume that strains
are small everywhere and that the deformation process is isothermal with the constant surface temperature y and the
constant surface temperature deviation j. When deformation is small one can essentially simplify expressions for the
strain measures (3). In such a case ea and ,a are given by, see Chróścielewski et al. (2004),

ea u,a ! � x,a, ,a !,a, ð52Þ

where ! is the infinitesimal rotation vector such that Q 
 1þ! � 1 if J!J51. Hence, in the case of small strains the strain
measures are given by

E Grad u ! � 1, K Grad !: ð53Þ

Note that in such a case we approximately have NffiN, MffiM, EffiE, KffiK.
We assume that the plate consists of two phases, say A and B. All quantities related to these phases we denote by using

indices A and B, respectively.
Let us consider the following constitutive equations for the phases A,B:

2rcA,B aA,B
1 tr2 ~EJþaA,B

2 tr ~E
2

J þa
A,B
3 trð ~E

T

J
~EJÞþaA,B

4 g � EETgþbA,B
1 tr2 ~KJþb

A,B
2 tr ~K

2

J þb
A,B
3 trð ~K

T

J
~KJÞþb

A,B
4 g � KKTg

þaðy y0ÞtrEþbjtrðg� KÞþ2rcA,B
0 ðy,jÞ: ð54Þ

Here ak, bk are the tangential stiffness and bending stiffness parameters, k 1,2,3,4, a and b are the coefficients descri-
bing the coupling between temperature and stress measures, ~E E EA,B

p , ~K K KA,B
p , where EA,B

p and KA,B
p are phase

transformation strains, EJ AE 2 TxM � TxM, KJ AK 2 TxM � TxM, y0 is the reference mid-surface temperature, and c0 is
the surface free energy density when strains are zero. We assume that EA,B

p eA,B
p A, KA,B

p kA,B
p g� A with eB

p 0, kB
p 0.

Such phase transformation strain measures correspond to an isotropic extension and bending of the material surface under
the phase transition. The function (54) generates the following constitutive equations for the isotropic thermoelastic shell:

N a1Atr ~EJþa2
~E

T

J þa3
~EJþa4g� ETgþaðy y0ÞA,

M b1Atr ~KJþb2
~K

T

J þb3
~KJþb4g� KTgþbjg� A,

Fig. 1. Bending and tension of a two phase circular plate.



  

rZ atrE rc0 ,y, rw btrðg� KÞ rc0 ,j: ð55Þ

In Chróścielewski et al. (2004) the following relations for the elastic moduli appearing in (54) and (55) were used:

a1 Cn, a2 0, a3 Cð1 nÞ, a4 asCð1 nÞ,

b1 Dn, b2 0, b3 Dð1 nÞ, b4 atDð1 nÞ,

C
Eh

1 n2
, D

Eh3

12ð1 n2Þ
, ð56Þ

where E and n are the Young modulus and the Poisson ratio of the bulk material, respectively, as and at are dimensionless
shear correction factors, while h is the shell thickness.

Let us consider the axisymmetric deformation of the plate described by

u uðrÞerþwðrÞez, ! WðrÞef, ð57Þ

where r, f are cylindrical coordinates, and er , ef, ez are the mid-surface base vectors. We initially assume existence of one
phase interface C to be a circle with an unknown radius a. Thus, the plate consists of two phases, say A and B, separated by
the circle C.

Using (53) and (57) we obtain

E u0er � erþ
u

r
ef � efþðw

0 WÞez � er , K W0ef � er
W
r

er � ef, ð58Þ

where ð. . .Þ0 denotes the derivative with respect to r. The stress measures take the form

N Nrrer � erþNffef � efþNzrez � er , M Mfref � erþMrfer � ef: ð59Þ

From (55) and (58) it follows that

Nrr a1 u0 þ
u

r

� �
þa3u0 ð2a1þa3Þepþaðy y0Þ,

Nff a1 u0 þ
u

r

� �
þa3

u

r
ð2a1þa3Þepþaðy y0Þ,

Nzr a4ðw
0 WÞ, Mfr b3W

0
þb3kp bj,

Mrf b3

W
r
þb3kpþbj: ð60Þ

The equilibrium Eqs. (5) reduce here to three ordinary differential equations

N0rrþ
1

r
ðNrr NffÞþ f 0, N0zrþ

1

r
Nzrþq 0,

M0frþ
1

r
ðMfrþMrfÞþcf 0, ð61Þ

where f f � er , q f � ez, cf c � ef. Nzr can be found immediately under the assumption of constant values of the function
q and is given by the relation

Nzr
q

2r
þ

c1

r
,

where c1 is an integration constant.
Substituting (60) into (61) we obtain three 2nd-order ODE for u, w, and W. In the case of constant values of the functions

f, q, and cf, the general solution of this system is given by

w w0þ
c1r2

2
þc2lnr

cfr3

9b3

qr4

64b3

qr

2a4
,

u d1rþ
d2

r

fr2

3ða1þa3Þ
,

W c1rþ
c2

r

cfr2

3b3

qr3

16b3

, ð62Þ

where c1, c2, d1, d2, and w0 are integration constants. Note that the assumed constant values of y and j as well as
dependence of N and M on ep and kp do not influence the form of solution (62), but have to be taken into account when one
determines the integration constants from boundary conditions.



  

The boundary conditions for the plate are given by the relations

Nrr F, w 0, Mfr 0 ð63Þ

at the external boundary r b of the plate, and

1NrrU 1NzrU 0, 1MfrU 0, 1uU 1wU 0, 1WU 0 ð64Þ

at the coherent phase interface r a, or

1NrrU 1NzrU 0, Mfr 0, 1uU 1wU 0 ð65Þ

at the phase interface r a incoherent in rotations.
For the assumed loading we have f 0 and cf 0.
The kinetic Eq. (50) takes the form

da

dt
F ðBÞ at r a, ð66Þ

where B is given by

B 1rc Nrru0 Nzrw0 MfrW
0U

for the coherent phase interface, and

B 1rc Nrru0 Nzrw0U

for the interface incoherent in rotations.
After calculating the integration constants from the boundary conditions (63), (64) or (65), Eq. (66) becomes the ODE

with respect to a,

da

dt
F̂ ða; F,q, . . .Þ, ð67Þ

where F̂ ða; F,q, . . .Þ is the value of F ðBÞ after substitution of the integration constants into B.

7.1. Stretching

Let us consider the simplest case when y y0, j 0, q 0, and kp 0. In this case one has the plane stress state with

w 0, W 0, u d1rþ
d2

r
, Nzr 0, Mrf Mfr 0:

There is no difference between the coherent phase interface and the one incoherent in rotations, and B 1rc Nrru0U.
For the sake of simplicity let us assume that both phases have the same elastic moduli, i.e. EA EB, nA nB, and differ

only by the phase transformation strain eA and values of the surface free energy densities at zero strains, so that
d	 rcB

0 rcA
0a0.

Let us begin with the thermodynamic equilibrium. There are at least two solutions with one phase interface. Note that
non-uniqueness of solutions of the boundary-value problems for elastic bodies undergoing phase transformations is a
standard situation, see e.g. Eremeyev and Zubov (1991), Freidin et al. (2006), and Yeremeyev et al. (2007) for the 3D case.

We assume that at the initial moment the plate consists of one phase, say the phase A. The first solution describes the
case when the new phase B nucleates in the centre of the plate, i.e. at the point r a. At the initial moment F 0, and the
plate consists of one phase A and a 0. When F F1

n
the new phase nucleates in the centre of the plate, and the interface

radius a increases from 0 to b when F attains the value F2
n
. If F4F�2 then the plate consists entirely of the phase B.

Dependence of a on F is given in Fig. 2 as the solid curve.
The second solution describes the case when the phase B appears at the plate boundary. If F F1

n
and the new phase

appears at r b, then a decreases from b to 0 when F�1 oFoF�2, see Fig. 2 (dashed curve), and then the plate consists again
entirely of the phase B. If the same elastic moduli of material phases are assumed, these two-phase solutions exist on the

Fig. 2. Dependence of the phase interface radius a on the external loads F. The solid curve describes the nucleation of the new phase B in the centre of the

plate, while the dashed curve concerns the creation of the new phase at the plate boundary.



  

same interval of F and are symmetric under mirror reflection on the line F ðF�1þF�2Þ=2. In the general case of different
elastic moduli this symmetry is violated. The loading diagram for the plate is presented in Fig. 3, where U u(b)/b is the
dimensionless translation of the plate boundary. The diagram consists of three parts. The line AB relates to the two-phase
state and corresponds the Maxwell line (Abeyaratne and Knowles, 2006). In contrast to the solution given in Eremeyev and
Pietraszkiewicz (2009), where the two-phase state is described by the horizontal line, here we have the decreasing part of
the diagram. This is analogous to the loading diagram for the two-phase elastic sphere (Eremeyev and Zubov, 1991; Freidin
et al., 2006; Yeremeyev et al., 2007). The decreasing part of the loading diagram indicates that there is an instability in the
force-controlled loading. In Fig. 4 we present dependence of the total energy C on F, where

C
Z b

0
rcr dr:

Now we consider the quasistatic deformation. In this case the kinetic equation takes the form

da

dt
F̂ ða; FÞ: ð68Þ

Following Eremeyev and Pietraszkiewicz (2009) we assume the constant loading rate. This means that F F0t for loading
and F F0t for unloading. Here F0 describes the constant loading velocity. Using substitution t F/F0 or t F/F0 we can
transform (68) to the form

da

dF
8F̂ ða; FÞ, ð69Þ

where sign (–) is used for the loading process while (þ) for unloading, and the kinetic factor k is replaced by k̂ k=F0.
Further we restrict ourselves to the solution when the new phase nucleates in the centre of the plate. In this case the

initial data for (69) are a(F1
n
) 0 for loading and a(F2

n
) 1 for unloading. The loading diagrams are presented in Figs. 5–7. In

Fig. 5 we assume x 0 and B0 0. The shape and size of the hysteresis loop depend on the parameter k̂ alone. The dashed
segment AB depicts the equilibrium part of the diagram. When k̂ increases the area of hysteresis loop decreases. Examples
of several deformation paths for different values of k̂ are given in Fig. 5, see the loops AB0BA0, AB00BA00, AB000BA000, etc. With the
growing k̂ we obtain the narrowing loops. The limit k̂-1 corresponds both to the infinitely large kinetic factor k and to
the infinitely small loading velocity F0. In the limit k̂-1 the hysteresis loop reduces to the equilibrium segment AB.

In Fig. 6 we use non-zero values of B0 but again assume x 0. In this case the equilibrium segments of the loading
diagram can be found from the equations B 7B0. The phase transformation begins when B B0 for loading and B B0

for unloading. Hence, in the thermodynamic equilibrium we have the parallelogram A0B0B00A00. The size of hysteresis loop
increases with the increase of B0 and, as in the previous case, depends on k̂.

In Fig. 7 we present the hysteresis loops in the general case of the kinetic function, i.e. we use non-zero values of B0 and
x in (51). Since F ðBÞjx 04F ðBÞjxa0, the phase interface velocity V da/dt is lower in the case of x 0. Hence, the size of
hysteresis loop is smaller in the case when xa0. In Fig. 7 the hysteresis loops are given at the same values of k̂ as in the
previous case, but with xa0. The grey region in Fig. 7 denotes the region of the maximal hysteresis loop shown in Fig. 6. In
the thermodynamic equilibrium we have again the parallelogram A0B0B00A00 as a limit of the hysteresis loops. Influence of
the parameter x is more pronounced far from the thermodynamic equilibrium and for dynamic processes.

Fig. 3. Equilibrium F U diagram for the two phase plate.

Fig. 4. Dependence of C on the external loads F.



  

7.2. Stretching and bending

Let us consider stretching and bending of the elastic plate given in Fig. 1 with one coherent interface. We assume again
that j 0. In general, if ja0 then bending of a thermoelastic plate appears, but for thin plates this influence is negligible
for qa0. In the linear theory of plates the boundary-value problems for the in-plane deformation and for the deflection can
be solved independently. But for the plate with a phase interface the kinetic Eq. (50) is non-linear. Moreover, the
characteristic feature of PT is the transformation strain which creates in-plane strains and stresses. Hence, for the plate
undergoing PT bending and stretching problems are coupled, in general. The translation and rotation fields are given by

w w0þ
c1r2

2
þc2lnr

qr4

64b3

qr

2a4
,

u d1rþ
d2

r
, W c1rþ

c2

r

qr3

16b3

:

Substituting these formulas into (63) and (64) we obtain values of the integration constants w0, c1, c2, d1, and d2 for both
phases. It can be proved that w(r) and w0ðrÞ are continuous function, so B becomes B 1rc Nrru0U Mfrkp.

As in the previous case, we begin from the thermodynamic equilibrium. Now we have two loading parameters, F and q,
and q influences the phase transformation, in general. At the initial moment F 0 and q 0, and the plate consists of one
phase A. When F attains the value F1

n
(q) the new phase B nucleates in the centre of the plate. Here the value F1

n
(q) decreases

linearly with increase of q, so that there exists the value qn such that the new phase appears at F 0, i.e. F1
n
(0) F1

n
and

F1
n
(qn) 0. Dependence of the phase interface radius a on F for different values of q is given in Fig. 8(a), while dependence of

a on q is shown in Fig. 8(b). When F attains the value F2
n

the new phase occupies the whole plate so that for F4F�2 the plate

consists entirely of the phase B. In our model F2
n

does not depend on q. On the F q diagram there is the region where the
two-phase state of the plate exists, see Fig. 9. It is clear that non-zero values of transverse loads q extend the region where
the phase transformation is possible. On the other hand, the influence of F is more significant than the influence of q.

Fig. 5. F U diagram for the two phase plate, x¼ 0, B0 ¼ 0, and the kinetic function F ¼ kB.

Fig. 6. F U diagram for the two phase plate, x¼ 0, and the kinetic function becomes as in Eremeyev and Pietraszkiewicz (2009).

Fig. 7. F U diagram for the two phase plate, F takes the form (51). The grey region denotes the maximal hysteresis loop shown in Fig. 6.



  

For example, F�1 5bq� for reasonable values of the material parameters, so one needs to apply higher values of q to reach
the two-phase state. Hence, we can say that F is the primary loading parameter which is responsible for the phase
transformation. In Fig. 10 we present a as the function of two variables, F and q.

Since q changes the value of F when the new phase nucleates, the loading diagram changes as well. In Fig. 11 (a), F U

diagrams are given for different values of q. The segments AB, AB0, and AB00 correspond to different values of q and
different two-phase states of the plate. The ordinate of the point A is equal to F2

n
, and this value does not depend on q,

while the ordinates of the points B, B0, and B00 are F1
n

F1
n
(0), F1

(1)*
F1
n
(q1), F1

(2)*
F1
n
(q2) with q1oq2. Thus, the increase of

q leads to the increase of angle of the segment AB, AB0, etc.
For quasistatic processes the kinetic equation takes the form

da

dt
F̂ ða; F,qÞ: ð70Þ

Since F is recognised as the primary parameter responsible for the phase transformation, let us consider again the constant
loading rate for F with constant q. This means that we consider q as a parameter. Assuming F F0t for loading and F F0t

for unloading, we can transform (70) to the form

da

dF
8F̂ ða; F,qÞ, ð71Þ

where k is replaced by k̂ k=F0.

Fig. 8. Dependence of the phase interface radius a on the external loads: (a) a vs F for different values of q, curves 1 4 relate to 0¼ q1 oq2 oq3 oq4 and

(b) a vs q for different values of F.

Fig. 9. Region on the F q diagram where the two phase state exists.

Fig. 10. Dependence of the phase interface radius a on F and q.



  

The loading diagrams for qa0 are presented in Fig. 11(b). Here we assume that x 0 but Ba0. The dashed lines denote
the equilibrium part A0B0B00A00 of the loading diagram which are limits when k̂-1. The grey rectangle shows the
equilibrium part if q 0. For qa0 the size of the hysteresis loop is greater than in the case q 0, in general.

The simple examples considered above demonstrate that the boundary-value problem for the two-phase plate can be
solved within the framework of the general theory of thermoelastic shells presented in the previous sections and in
Eremeyev and Pietraszkiewicz (2009). Let us note some features of the solutions. As in 3D case, the 2D problem discussed
here has non-unique solutions, in general. Moreover, we have assumed that there exists only one phase interface, although
even in the axisymmetric deformation one can consider two or more interfaces. In particular, the experimental data of He
and Sun (2010a,b) show that the number of interfaces depends on the loading rate and thermal effects. We also note that
the solution is sensitive to the problem parameters, such as the elasticity moduli, transformation strains, and the kinetic
function.

8. Discussion and conclusions

As we have mentioned in Introduction, the literature on experimental investigations of thin-walled structures made of
materials undergoing PT is extensive. The stress-induced PT are widely observed in superelastic shape memory alloys
(SMA) and shape memory polymers, such as NiTi, NiMnGa, AgCd, AuCd, CuAlNi, polyurethane, etc. Here we briefly discuss
some peculiarities of PT in thin-walled structures and their influence on the problem statements within 2D thermo-
mechanics of two-phase shells.

The standard shape of specimen used in experiments is similar to the shape of plate, strip, band, or tube. Thin plates or
strips made of SMA are widely used in experimental mechanics. Tension of the SMA plate is studied in many works
applying various techniques, see e.g. Vivet and Lexcellent (2001), Lexcellent et al. (2002), Pieczyska et al. (2005, 2006a,b),
Daly et al. (2007), Tobushi et al. (2009), Zhang et al. (2010), He and Sun (2010a,b) and Pieczyska (2010). In particular,
optical and infrared techniques, the profilometry, etc. are used. Tension and torsion of a thin SMA strip was investigated by
Tobushi et al. (2009). Tension and torsion of SMA microtubes are also widely investigated to understand the behaviour of
martensitic materials, see Siddons and Moon (2001), Li and Sun (2002), Sun and Li (2002), Sittner et al. (2003), Feng and
Sun (2006, 2007), Ng and Sun (2006), Favier et al. (2007), Schlosser et al. (2007), Wang et al. (2007), Buenconsejo et al.
(2008), Lagoudas (2008), He and Sun (2009a,b) and Mao et al. (2010). These experiments demonstrate the macroscopic
domain of new phase formation, its evolution during loading and annihilation after unloading. In the case of strips new
phase forms as a few bands across the strip. In the case of tubes the new phase may appear as a helical band which width
and shape depend on acting loads. The cylindrical bands are also observed, see Li and Sun (2002) and Ng and Sun (2006).
The cylindrical bands and their evolution during loading were considered analytically by Eremeyev and Pietraszkiewicz
(2009) applying the shell theory. The phase boundary between ‘‘old’’ and ‘‘new’’ phases, for example austenite–martensite
phases, in many cases can be interpreted as a coherent sharp phase interface.

Another interesting example of PT in thin-walled structures are tents and tunnels discovered and investigated in detail
in Bhattacharya et al. (1999), Hane (1999), James and Hane (2000), Shu (2000, 2002) and Bhattacharya and James (2005).
For example, tent- or dome-shaped structures appear in martensitic thin films during PT. Each tent consists of four
triangles of a new phase with different crystal lattices separated by four edges. These edges can be considered as the phase
interfaces incoherent in rotations. It was shown that these two-phase structures can be energetically preferable in
comparison with other one- and two-phase stressed states.

Summarising the peculiarities of PT in thin-walled structures described in works mentioned above, we have found that:

� Thin-walled elements made of SMA demonstrate the similar behaviour as the 3D elements with PT, i.e. there exist
hysteresis loops, the reversible pseudoelasticity, etc. On the other hand, the behaviour of thin-walled structures may

Fig. 11. (a) Equilibrium F U diagrams for the two phase plate, F1

(1)n
¼F1

n

(q1), F1

(2)n
¼F1

n

(q2) with q1 oq2, and (b) F U diagrams for the two phase plate

under quasistatic loading with qa0 and x¼ 0.



  

differ from the one of bulk bodies. In thin structures some possible transformations related to 3D PT are forbidden due
to geometric restrictions, see Bhattacharya (2003) for details. Also differences in the microstructure influence PT; for
example, depending on the method of production the columnar structures are observed in thin films but not in bulk
bodies, see Miyazaki et al. (2009).
� PT is highly sensitive to the value of loading and rate of the loading. For example, the number of new phase strips in

microtubes increases with the rate of tension, see Zhang et al. (2010).
� The temperature evolution plays a significant role in the new phase formation and the phase interface evolution. In

particular, the nonhomogeneous temperature field due to PT are used by Pieczyska et al. (2006a, 2009); Pieczyska
(2010) for the visualisation of PT. Dependence of number of bands in microtubes on the rate of loading can be explained
as the transition from the isothermal loading to adiabatic one, see Zhang et al. (2010) and He and Sun (2010b).
� Depending on the loading type there are two possibilities in PT: the homogeneous deformations or nonhomogeneous

ones with the formation of macroscopic phase interfaces and of bands consisting of the new phase. For example, Sun
and Li (2002) has shown that torsion leads to the homogeneous deformation while tension results in the helical band
formation. In the general case, the results of action of biaxial loadings (torsion and tension) on PT depends on the values
of torsional and tensional forces.
� Although the microstructure near the phase interface can be very complicated, see e.g. Bhattacharya (2003) and

Bhattacharya and James (2005), one can use the sharp interface model by introducing the effective surface energy
density as in Stupkiewicz (2007) and Petryk and Stupkiewicz (2010). PT in shells with the line tension were considered
by Pietraszkiewicz et al. (2007).
� PT are sensitive to various imperfections, boundary conditions and other parameters, in general.
� Such thin structures as tunnels, tents, and thin films demonstrate, in general, large deflections (in comparison with

thickness) and rotations with possible wrinkling.

Thin plates, strips, and tubes made of SMA are used not only as specimens, but also as working elements of
microelectromechanical systems (MEMS), see e.g. Shu (2002), Bhattacharya and James (2005) and Tobushi et al. (2009),
and books by Bhattacharya (2003), Lagoudas (2008) and Miyazaki et al. (2009).

In order to model these peculiarities of behaviour of PT in thin-walled structures, one needs to develop the general
thermomechanical theory taking into account the non-linear deformations during PT, large translations and rotations, and
hence the geometrical nonlinearity, the temperature field evolution, the anisotropy of phases., etc. We believe that to
meet all requirements the consistent 2D thermomechanical model of PT should be formulated in the most general form
using the resultant 2D non-linear shell theory (Libai and Simmonds, 1983, 1998; Chróścielewski et al., 2004) with
appropriate resultant 2D thermodynamics. Applying the thermodynamic driving force and using kinetics of the interface,
the new phase domain morphology and its evolution can appropriately be modelled by the sharp interface model. Such 2D
model has definite advantages with respect to 3D modelling, because this allows one to avoid solving the complicated 3D
boundary-value problems of thermomechanics with PT in thin regions.

In this paper we have developed the resultant, two-dimensional thermomechanics of shells undergoing diffusionless,
displacive phase transitions of martensitic type of the shell material, which meets all the requirements mentioned above.
In the formulation we have extended our previous (Eremeyev and Pietraszkiewicz, 2009, 2010) resultant surface entropy
inequality by completing it with the referential surface temperature deviation field and its dual – the referential surface
entropy deviation field – as well as with some extra surface fields related to those deviation fields. We have also provided
the corresponding extended constitutive equations for thermoelastic and thermoviscoelastic shells of differential type.

Along the curvilinear phase interface we have derived appropriate thermodynamic continuity condition and have
proposed the corresponding kinetic equation, which allow one to determine position and quasistatic motion of the
interface relative to the base surface.

The above resultant thermomechanic shell model with PT has been illustrated by two axisymmetric numerical
examples of stretching and bending of the circular plate undergoing phase transition. The numerical results indicate that:
(a) as in the 3D theory of phase transformations in elastic bodies, the solution is non-unique, in general; (b) presence of
decreasing branch of the loading diagram indicates existence of instability during the force-controlled loading; (c) the
quasistatic loading diagrams contain hysteresis loops which shape and size depend on the material parameters, kinetic
function and loading rate; and (d) the in-plane and out-of-plane deformations of the plate undergoing PT are coupled due
to the non-linear kinetic equation and the phase transformation strains.

In order to apply our resultant 2D thermodynamical model of PT for verification of realistic 2D experimental observations
on thin-walled samples presented in papers cited above, one still needs to develop 2D numerical codes based on extended
finite element method (XFEM) for shells with moving singular curves. This poses a serious challenge for the next years.
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