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Abstract
Three-wave solitons backward propagating with respect to apump wave are generated

in nonlinear optical media through stimulated Brillouin scattering (SBS) in optical fibers or
through the non-degenerate three-wave interaction in quadratic (χ (2)) nonlinear media. In
an optical fiber-ring cavity, nanosecond solitary wave morphogenesis takes place when it
is pumped with a continuous wave (c.w.). A backward dissipative Stokes soliton is gener-
ated from the hypersound waves stimulated by electrostriction between the forward pump
wave and the counterpropagating Stokes wave. Superluminous and subluminous dissipative
solitons are controlled via a single parameter: the feedback or reinjection for a given pump
intensity or the pump intensity for a given feedback. In a c.w. pumped optical parametric
oscillator (OPO), backward picosecond soliton generationtakes place for non-degenerate
three-wave interaction in the quadratic medium. The resonant condition is automatically sat-
isfied in stimulated Brillouin backscattering when the fiber-ring laser contains a large number
of longitudinal modes beneath the Brillouin gain curve. However, in order to achieve quasi-
phase matching between the three optical waves (the forwardpump wave and the backward
signal and idler waves) in theχ (2) medium, the nonlinear susceptibility should be periodi-
cally structurated by an inversion grating of sub-µm period in an optical parametric oscillator
(OPO). The stability analysis of the inhomogeneous stationary solutions presents a Hopf bi-
furcation with a single control parameter which gives rise to temporal modulation and then
to backward three-wave solitons. Above OPO threshold, the nonlinear dynamics yields self-
structuration of a backward symbiotic solitary wave, whichis stable for a finite temporal
walk-off, i.e. different group velocities, between the backward propagating signal and idler
waves.

We also study the dynamics of singly backward mirrorless OPO(BMOPO) pumped by a
broad bandwidth field and also with a highly incoherent pump,in line with the recent experi-
mental demonstration of this BMOPO configuration in a KTP crystal. We show that this sys-
tem is characterized, as a general rule, by the generation ofa highly coherent backward field,
despite the high degree of incoherence of the pump field. Thisremarkable property finds
its origin in the convection-induced phase-locking mechanism that originates in the counter-
streaming configuration: the incoherence of the pump is transferred to the co-moving field,
which thus allows the backward field to evolve towards a highly coherent state.
We propose other realistic experimental conditions that may be implemented with currently
available technology and in which backward coherent wave generation from incoherent ex-
citation may be observed and studied.
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1 Introduction

In nonlinear wave systems, resonance processes may give rise to solitary waves resulting from
energy exchanges between dispersionless waves of different velocities. Three-wave resonant in-
teraction in nonlinear optical systems [1], plasmas [2] [3]and gases [4] predict symbiotic three-
wave solitary waves in analogy to self-induced transparency [5] [6]. The structure of them is
determined by a balance between the energy exchanges rates and the velocity mismatch be-
tween the three interacting waves. The three-wave interaction problem has been the object of
many theoretical studies and numerical simulations as we referred in Refs. [7] [8]. The non-
conservative problem in the presence of a continuous pump has been integrated by the inverse
scattering transform (IST) in the non-dissipative case [6], giving rise to backscattered solitons.
Our interest has been to study this non-conservative problem in the presence of dissipation or
cavity losses, because this kind of backward structurationhas been experimentally obtained in
stimulated Brillouin scattering of a c.w. pump wave into a backward red-shifted Stokes wave
in long fiber-ring cavities. It has been shown in a Brillouin fiber-ring cavity that, spontaneous
structuration of dissipative three-wave solitary waves takes place when the source is a c.w. pump
[9, 10, 11, 12]. The periodic round-trip interaction in a long lossy cavity may be associated to the
non-conservative unlimited interaction [8] [11]. The nonlinear space-time three-wave resonant
model between the two optical waves and the dissipative material acoustic wave satisfactorily
explains the generation and the dynamics of the backward-traveling solitary pulses in the fiber-
ring cavities. Stability analysis of the inhomogeneous stationary Brillouin mirror solution in the
c.w.-pumped cavity [10] exhibits a one-parameter Hopf bifurcation. Below a critical feedback,
a time-dependent oscillatory regime occurs, and self-organization of a localized pulsed regime
takes place. Experimental results and dynamical simulations confirm this scenario. A stable
continuous family of super-luminous and sub-luminous backward-traveling dissipative solitary
pulses is obtained through a single control parameter [11] [12]. A parallel analysis in an un-
bounded one-dimensional medium shows that the integrable three-wave super-luminous sym-
metrical soliton is unstable for small dissipation, and that it cascades to a turbulent multi-peak
structure. The general non-symmetrical and non-integrable case is dependent only on the expo-
nential slope of the wave front of the backscattered Stokes wave, thus providing the stable super-
and sub-luminous dissipative solitary attractors [8]. An overview of the experimental results for
a large set of input pump powers and Stokes feedback conditions shows a remarkable agreement
with the numerical simulations of the three-wave coherent partial differential equations model
[12]. We will not consider this topic here and refer the reader to a recent review article [13]
where this kind of dissipative soliton has been discussed indetails.

This review article is devoted to the resonant interaction of three optical waves (called pump,
signal and idler) in a nonlinear quadratic material. The same mechanism, responsible for nanosec-
ond solitary wave morphogenesis in the Brillouin-fiber-ring laser may act for picosecond back-
ward pulse generation in a quasi-phase matched (QPM) optical parametric oscillator (OPO)
[14, 15, 16, 17, 18, 19]. The dissipative character will risefrom the partial reinjection of one
wave (in the singly resonant OPO), two waves (in the doubly resonant OPO) or to the absorption
losses in a backward mirrorless OPO. The resonant conditionfor the wavevectors is automatically
satisfied in stimulated Brillouin backscattering when the fiber ring laser contains a large number
of longitudinal modes beneath the Brillouin gain curve. However, in order to achieve counter-
streaming QPM matching between the three optical waves in the χ (2) medium, a nonlinear sus-
ceptibility inversion grating of sub-µm period is required [20, 21, 22, 23]. In the non-degenerate
three-wave case of a backward quasi-phase matching configuration in the quadratic media where
both signal and idler fields propagate backward with respectto the direction of the pump field,
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the first order quasi-phase-matching pitch is of orderλp/2np wherenp is the refractive index
at the pump wavelengthλp. This can be achieved for example by periodic poling techniques
but up to now the polarization inverted grating of sub-µm period has been only obtained for the
backward idler configuration in a KTiOPO4 crystal which allows the realization of a mirrorless
optical parametric oscillator (MOPO) [24] with remarkablespectral properties [25, 26]. There-
fore, higher-order Bragg condition have been suggested [22]. However, the interest of the first
order configuration is that the solitary waves can be spontaneously generated from noise by a c.w.
pump when the quadratic material is placed inside a singly resonant OPO (where singly stands
here for only one wave reinjection).

Parametric interaction of counter-propagating signal andidler waves has the unique property
of automatically establishing distributed feedback without external mirrors and thus realizing
sources of coherent and tunable radiation. A recent experimental demonstration of such a mir-
rorless optical parametric oscillator (MOPO) has been performed in a 800 nm periodically poled
KTiOPO4 (PPKTP) configuration [24] with a pulse pump. The forward oscillator signal is essen-
tially a wavelenght-shifted replica of the pump spectrum, and the backward generated idler pulse
has a bandwidth of two orders of magnitude narrower than thatof the pump [25, 26]. This sub-
µm periodic configuration where QPM is achieved with a pump andsignal waves propagating in
the forward direction and the idler wave in the backward direction [cf. 1(b)] opens the way for
achieving the shorter periodicity required for a QPM configuration where both signal and idler
backward propagate with respect to the pump wave [cf. 1(d)]. As we say, this doubly-backward
configuration is of interest since the three-wave symbioticsolitary waves can be generated from
noise in the presence of a c.w. pump when the quadratic material is placed inside an optical
parametric oscillator [14, 15, 16, 17, 18, 19]. With a c.w. pump the singly backward OPO yields
stationarity for the backward wave. Nevertheless when the pump is a pulse, the demonstrated
MOPO experimental configuration generates a coherent backward pulse in the absence of exter-
nal feedback. Note that stationarity of the singly backwardconfiguration in a c.w. pumped short
length device is not contradictory with the theoretical existence of backward solitary solutions
when the initial condition is localized [6]. Moreover, a coherent solitary structure can be sus-
tained from a highly incoherent pump and a co-propagating wave [27]. This phenomenon relies
on the advection between the interacting waves and leads to the formation of a novel type of
three-wave parametric soliton composed of both coherent and incoherent fields. In section 5 we
will consider this mechanism by proposing the generation ofa coherent backward pulse from an
incoherent pump pulse in two BMOPO configurations, among which the first one refers to the
experimental configuration demonstrated in Refs. [24, 25, 26].

We thus show that the BMOPO system is characterized, as a general rule, by the generation
of a highly coherent backward field, despite the high degree of incoherence of the pump field. In
substance, the incoherence of the pump is shown to be transferred to the co-moving field, which
thus allows the backward field to evolve towards a highly coherent state. The incoherent pump
in the BMOPO dynamics is numerically simulated with a new numerical scheme that solves
the coupled wave equations in the counterpropagating configuration in the presence of group-
velocity dispersion (GVD) by combining the trajectories method for the nonlinear three-wave
interaction and fast Fourier transformation (FFT) to account for the GVD effects. We propose
realistic experimental conditions that may be implementedwith currently available technology
and in which backward coherent wave generation from incoherent excitation may be observed
and studied.

We have already shown, by both analytical and numerical treatments of the degenerate back-
ward OPO in the QPM decay interaction between a c.w. pump and abackward signal wave, that
the inhomogeneous stationary solutions are always unstable, whatever the cavity length and pump
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power values are above threshold of a singly resonant OPO. Starting from any initial condition,
the nonlinear dynamics exhibits self-pulsing of the backward signal with unlimited amplification
and compression. Above a critical steepening of the backward pulse, dispersion may saturate this
singular behavior leading to self-modulated solitary structures [17] [28].

Fig. 1: Wave vector diagrams (momentum conservation) for the non-degenerate three-wave
interaction in: (a) a three-wave forward configuration; (b)a singly backward idler configura-
tion; (c) a singly backward signal configuration; and (d) a doubly backward (signal and idler)
configuration. As we can see the QPM grating show a decreasingphase-reversal period for the
nonlinear susceptibilty represented by the bold broken lines under each configuration.

In this paper we show, by a stability analysis of the non-degenerate backward OPO [18,
19], that the previous particular behavior of unconditional temporal instability of the degenerate
backward OPO is removed for a finite temporal walk-off between the counter-propagating signal
and idler waves, and that we now obtain a regular Hopf bifurcation like in the Brillouin fiber-ring
laser [10]. We will consider self-structuration of three-wave solitary waves in such a backward
OPO with absorption losses.

For a c.w. pumped OPO near degeneracy a unique control parameter L governs the dynami-
cal behaviour; it is shown that at a critical interaction length Lcrit the inhomogeneous stationary
solution bifurcates towards a time-dependent oscillatorysolution. This critical length is finite
if and only if we take into account a finite group velocity delay between both backward propa-
gating waves∆v = |vs− vi | 6= 0 (or temporalwalk-off), wherevs andvi are the signal and idler
group velocities. Moreover, for longer interaction lengths the dynamics gives rise to the gener-
ation of the backward three-wave soliton, whose stability is also ensured by this finite temporal
walk-off ∆v, without requiring additional saturation mechanisms likethe dispersion effect. This
scenariois confirmed by numerical simulations of the nonlinear dynamic equations, and an ex-
cellent agreement is obtained (near the degenerate configuration) for the value ofLcrit evaluated
from the stability analysis and that one obtained from the dynamical simulation. The general
fully non-degenerate configuration involves more complicated mathematics because a set of con-
trol parameters are required and we only show several dynamical behaviours resulting from the
three-wave numerical model. We will conclude this review byconsidering some dynamical be-
haviours of the backward mirrorless OPO pumped with an incoherent pulse, because up to now
this configuration is the only one in which backward MOPO experiments have been performed.
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The paper is organized as follows. In section 2 we recall the three-wave model governing the
spatio-temporal evolution of the slowly varying envelopesof the pump and the backward signal
and idler waves. We also recall the analytical solutions in the form of propagating dissipative
solitary waves propagating backward with respect the cw-pump under a QPM three-wave inter-
action. In section 3 is presented the stability analysis of the nonlinear inhomogeneous stationary
solutions of the non-degenerate backward OPO for finite temporal walk-off. Numerical dynamics
of the self-structuration of symbiotic three-wave solitons leading to stable self-pulsing regimes
is shown in section 4. Finally, the numerical dynamics of thepulsed BMOPO under incoherent
pump excitation is discussed in section 5.

2 Three-wave model and analytical solitary-wave solutions

The spatio-temporal evolution of the slowly varying envelopes of the three resonant counter-
streaming interacting wavesA j(x, t), for a non-degenerate OPO, is given by

(∂t +vp ∂x +γp+ iβp∂tt) Ap = − σpAsAi

(∂t −vs ∂x +γs+ iβs∂tt) As = σsApA∗
i (1)

(∂t −vi ∂x +γi + iβi∂tt) Ai = σiApA∗
s

whereAp(ωp,kp) stands for the c.w. pump wave,As(ωs,ks) for the backward signal wave, and
Ai(ωi ,ki) for the backward idler wave. The resonant conditions in one-dimensional configuration
realize the energy conservation,

ωp = ωs+ωi , (2)

and the momentum conservation,

kp = −ks−ki +KG, (3)

whereKG = 2π/ΛQPM andΛQPM is the grating pitch for the backward quasi-phase matching [cf.
1(d)]. The group velocitiesv j ( j = p,s, i) as well as the attenuation coefficientsγj and disper-
sion coefficientsβ j ≡ v jβ2, j/2 are in general different for each wave. Equations (1) also hold
for standard forward phase-matching configurations in which case all the signs of the velocities
vs,i are positive [cf. 1(a)]. For the singly backward idler (or backward signal) configuration the
momentum conservation (3) must be replaced by (17). These configurations are shown in figure
1(b)(c). The nonlinear coupling coefficients areσ j = 2πde f fv j/(λ jn j), wheren j is the refractive
index at frequencyωj , wavelengthλ j andde f f is the effective nonlinear susceptibility. The chro-
matic dispersion is also taken into account in equations (1); this is necessary when the generated
temporal structures are sufficiently narrow. The effects ofgroup velocity dispersion (GVD) are
represented by the second derivatives with respect to time,so that the dispersion parameters are
given byβ j = |v j |k′′j wherek′′j = (∂2k/∂ω2) j , k being the wave vector modulus,k = n(ω)ω/c.

2.1 Solitary Wave Solution

In the absence of dispersion (β j = 0) equations (1) have been extensively studied in the literature.
Their solitary wave solutions have been first derived in the absence of dissipation (γj = 0) [2, 6, 3].
In the context of stimulated scattering in nonlinear optics, the existence of dissipative solitary
waves when one of the velocitiesvs,i is zero (e.g. vi = 0) has also been shown [9, 29]. More
recently, Craiket al. have proved, for the particular case of degenerate three-wave interaction,
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that solitary waves still exist in the presence of dissipation [30]. On the basis of these previous
theoretical works, we have calculated from equations (1) a particular analytical solution of the
dissipative symbiotic solitary waves of the non-degenerate parametric three-wave interaction.
Looking for a solitary wave structure induced by energy transfer from the pump wave to the
signal and idler pair, we have to assume zero loss for the pump(γp = 0). It is the only way to
keep constant the energy transfer that compensates here forthe signal and the idler losses, so as
to generate stationary field structures. Ifγp was not zero, the pump wave would experience an
exponential decay giving rise to a vanishing energy of the three-wave structure that prevents the
formation of a stationary solitary wave state.
Whenγp = 0 it is easy to find by substitution the following solution to equations (1):

Ap = δ −β tanh
[

Γ(x+Vt)
]

As = ηΓ sech
[

Γ(x+Vt)
]

(4)

Ai = κΓ sech
[

Γ(x+Vt)
]

whereβ is the only free parameter. All other parameters depend on the material properties
and onβ . One findsδ = [γsγi/σsσi ]

1/2, Γ = β [σiσs/(V − vs)(V − vi)]
1/2, η = [(V + vp)(V −

vi)/σiσp]
1/2, κ = [(V + vp)(V − vs)/σsσp]

1/2, andV = (vs/γs− vi/γi)/(1/γs−1/γi). This last
expression shows that the velocityV of the solitary wave is fixed by the material parameters,
unlike in the nondissipative case whereV is undetermined [2]. Let us point out that, in order to
keepΓ real, the solitary wave must be either superluminous,V > max(vs,vi), or subluminous,V <
min(vs,vi). Note that the superluminous velocity does not contradictby any means the special
theory of relativity [9] even if the velocityV becomes infinite when the signal and idler waves
undergo identical losses,γs = γi . This can be easily explained by remembering that the velocity
of this type of symbiotic solitary wave is determined by the energy transfer rate, which depends
on the shape of the envelope of each component. The infinite velocity is here simply due to the
fact that the width of the solitary waveΓ−1 also becomes infinite forγs = γi . However, we shall
see that this symmetrical solution is not the more general one and it is not an attractor solution for
a large variety of parameter values. In section 4 we will present another self-similar structure for
the near-degenerate backward interaction which does not present a divergence forγs = γi . The
free wave parameterβ fixes, in combination with the material parameters, the amplitude and the
width of the solitary wave. According to the first equation of(4), β is determined by the initial
pump amplitudeAp = Ep(x = −∞) = β + δ. In practice, this means that, for a given material,
the solitary wave is completely determined by the pump intensity at the input face of the crystal.
Note that if the losses are such thatδ > β the solitary wave no longer exhibits aπ-phase change
[8], contrary to the nondissipative case [2].

Figure 2 shows a typical example of such a dissipative symbiotic solitary wave in a quasi-
phase-matched backward three-wave interaction withλp = 1 µm, λs = 1.5 µm, λ i = 3 µm,
ΛQPM = 2π/KG = 0.233µm, and with a pump field of amplitudeEp = 0.25 MV/m (i.e., a pump
intensity of Ip = 10 kW/cm2) propagating in a quadraticχ (2) material. It is obtained with the
following typical values of the parameters :de f f = 20 pm/V,np = 2.162,ns = 2.142,ni = 2.098,
vp = 1.349× 108 m/s, vs = 1.371× 108 m/s, vi = 1.363× 108 m/s, and the loss coefficients
αs = 2γs/vs = 0.23 m−1 andα i = 2γi/vi = 11.5m−1. Note that these parameters lead to a pulse
width of approximately 10 picoseconds. Therefore, with such pulse durations one can expect
that the zero pump loss approximation (γp = 0) is valid in practice in the neighborhood of the
solitary wave structure. Indeed, if the characteristic absorption lengthvp/γp is much larger than
the pulse widthΓ−1, one can anticipate that the solitary wave undergoes adiabatic reshaping
during propagation so as to adapt locally its profile to the exponentially decaying pump intensity.
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Fig. 2: Envelopes of the dissipative three-wave solitary solution.

3 Self-pulsing in a backward doubly resonant OPO

Let us point out that the self-structuration process requires backward interaction. The mecha-
nism is similar to the Hopf bifurcation appearing in the counter-streaming Brillouin cavity [10].
Numerical simulations with the more usual forward phase-matching conditions only lead to the
steady-state regime. This shows that the distributed feedback nature of the interaction plays a
fundamental role in the pulse generation process. This observation is consistent with the con-
clusions of [23] where complex temporal pattern formation in backward-phase-matched second
harmonic generation is studied and of our previous study of the degenerate backward OPO [28].
But in contrast to this last study, where no regular Hopf bifurcation was found by starting from
the inhomogeneous stationary solutions, since above the threshold the perturbations always grow
in time, we will show hereafter that in the non-degenerate backward OPO a regular Hopf bi-
furcation takes place. Below a critical parameter value, the inhomogeneous stationary solutions
are stable, and above it the bifurcation leads to an also stable self-structured solitary wave. Our
purpose in this section is to prove that in the non-degenerate configuration, the temporal walk-
off, i.e. the group velocity delay between the signal and the idler waves, ensures a regular Hopf
bifurcation and leads to a stable self-structuration of thethree-wave envelopes.
For the sake of simplicity, we will focus here on the near-degenerate OPO regimes [18, 19].
However, our results are more general and can be extended to the fully non-degenerate case in a
similar way. We present here several dynamical behaviours.

We start from the dimensionless form of equations (1) which describe the non-degenerate
backward OPO in the quasi-phase-matching decay interaction between a pump and counter-
propagating signal and idler waves. We write them near the degeneracy with temporal walk-off
on only one field. This is not a restriction but it is more convenient for mathematical calculations.
The general case can be recovered by an appropriate change ofvariables.
By introducing the following scalings:

up =
√

1−d2Ap

Ao
p
, us =

√

2(1−d)
As

Ao
p
, ui =

√

2(1+d)
Ai

Ao
p
, τ = t/τo, ξ =

x
Λ

, L =
ℓ

Λ
(5)

whereAo
p is the incident c.w. pump,τo = 2/(σpAo

p) andΛ = vpτo are the characteristic time and
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length andℓ the cavity length, the dimensionless equations read:

(
∂
∂τ

+
∂

∂ξ
+ µp + iβ̃p

∂2

∂τ 2)up = −usui

(
∂
∂τ

− ∂
∂ξ

+ µs+ iβ̃s
∂2

∂τ 2)us = upu∗i (6)

(
∂
∂τ

−α
∂

∂ξ
+ µi + iβ̃i

∂2

∂τ 2)ui = upu∗s

whereα = vi/vp, vp = vs, µ j = γjτo, and β̃ j = β j/τo. The full description of the OPO
dynamics is obtained by taking into account, in addition to equations (6), the following boundary
conditions for the doubly resonant cavity

us(ξ = L,τ ) = ρs us(ξ = 0,τ ), ui(ξ = L,τ ) = ρi ui(ξ = 0,τ ), up(ξ = 0,τ ) =
√

1−d2 (7)

whereρs =
√

Rs andρi =
√

Ri are the amplitude feedback coefficients. Note that we have in-
troduced the new coefficients 1±d by settingd = (σs−σi)/σp and assuming a near-degenerate
OPO configuration,i.e., σp ≃ σs+σi .

3.1 Inhomogeneous stationary solutions

Without optical attenuation (µ j = 0) and in the absence of dispersion (β j = 0), inhomogeneous
stationary solutionsust

j (ξ ), j = {p,s, i} can be obtained from equations (6) by setting∂/∂τ = 0.
The assumption of zero loss parametersµ j is not restrictive since the main dissipation in the
OPO cavity comes from the finite feedback. In this case, the following conservation relations,
also known as Manley-Rowe relations [31], hold

{

|ust
p |2−|ust

s |2 = ±D2
s

|ust
p |2−α |ust

i |2 = ±D2
i

(8)

For a doubly resonant OPO with the same feedback coefficient for the signal and idler fields, we
haveDs = Di = D. This leads to two types of stationary solutions :(i) D2 = |ust

p |2− |ust
s |2 =

|ust
p |2−α |ust

i |2 and(ii) D2 = |ust
s |2−|ust

p |2 = α |ust
i |2−|ust

p |2.

In case(i), the following inhomogeneous stationary solutions are obtained

ust
p(ξ ) = D tanh−1

(

arccotanh(
ust

p(0)

D
)+

Dξ√
α

)

ust
s

2
= αust

i
2
=

D2

sinh2
(

arccotanh(
ust

p (0)

D )+ Dξ√
α

) (9)

while in case(ii) ,

ust
p(ξ ) = D

ust
p(0)−D tan( Dξ√

α )

D+ust
p(0) tan( Dξ√

α )
ust

s (ξ ) =
√

αust
i (ξ ) =

D

√

1+
ust

p
2(0)

D2

cos( Dξ√
α )+

ust
p (0)

D sin( Dξ√
α )

(10)
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whereust
p(0) =

√
1−d2.

Let us consider the situation of short enough OPO cavities inorder to avoid total depletion of the
pump inside the cavity and to benefit from the monotonous gainof the singly pumped OPO; oth-
erwise the signal and idler fields oscillate and may return part of this intensity to the pump. This
is achieved by consideringDξ ≪ 1. Thus, to the leading order, the inhomogeneous stationary
solutions (10) are

ust
p(ξ ) ≃

ust
p(0)−D2 ξ√

α

1+up(0) ξ√
α

and ust
s (ξ ) =

√
αust

i (ξ ) ≃
D

√

1+
ust

p
2(0)

D2

1+
ust

p (0)ξ√
α

(11)

Manley-Rowe relations (8) are used atξ = 0 andξ = L, together with the boundary conditions
to determine the integration constants. A second order algebraic equation forD2 is obtained

aD4+bD2−c = 0 (12)

with

a= L2/α , b=(1−R)(1+
√

1−d2L/
√

α )2−2
√

1−d2L/
√

α , c=(1−d2)[1−R(1+
√

1−d2L/
√

α )2]

OnceD is determined from the above expression,us(0) and ui(0) can be calculated via the
Manley-Rowe relations (8).
Note that we will only consider the case(ii) configuration; case(i) can be analysed in a similar
way.

3.2 Stability analysis of the inhomogeneous stationary solutions

Followinf Ref.[18] let us first perform the linear stabilityanalysis of the inhomogeneous station-
ary solutions (10) with respect to space-time-dependent perturbations in the absence of dispersion
and optical attenuation, through

u j(ξ ,τ ) = ust
j (ξ )+δu j(ξ )e−iωτ where j = p,s, i.

It is more convenient to introduce the new variables

P(ξ ) = ust
p(ξ ), S(ξ ) = ust

s (ξ ), I(ξ ) = S(ξ )/
√

α = ust
i (ξ ),

Z(ξ ) = δup(ξ ), Y(ξ ) = δus(ξ ), X(ξ ) = δui(ξ ),

whereP(ξ ), S(ξ ) andI(ξ ) stand for the inhomogeneous stationary solutions andZ(ξ ), Y(ξ ) and
X(ξ ) for the space-time-dependent perturbations. Thus, the linearized problem associated with
equations (6) reads

∂Z
∂ξ

− iωZ = −S(X +
Y√
α

)

∂Y
∂ξ

+ iωY = −PX− SZ√
α

(13)

α
∂X
∂ξ

+ iωX = −PY−SZ

The stability analysis is performed by solving the perturbative equations (13) with the inhomo-
geneous stationary solutions and by taking into account theboundary conditions for the cavity.
This gives rise to an eigenvalue problem with a dispersion relation for the complex frequencyω.
Following [10], [28] and [18] we will look for the stability of the cavity modes with frequency
ℜ (ω) ≃ 2πN/L [N integer andL being the dimensionless lengthℓ/Λ defined in (5)] yielding to
mode instability wheneverℑ (ω) > 0.
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3.2.1 Absence of walk-off

Let us first recall the situation in the absence of temporal walk-off; the signal and idler waves
have the same group velocity leading toα = 1 in equations (13). We proceed as in the degenerate
case [28] and we obtain the following dispersion relation

ao+bosin(ωL)+cocos(ωL) = 0 (14)

where the expressions ofao, bo andco are given in appendix A of Ref.[18]. It should be noted
that equation (14) generalizes the dispersion relation in [28] for the degenerate case because it
applies to the doubly-resonant backward OPO. The instability of each mode is determined from
equation (14) whenℑ (ω) > 0. However, in the absence of walk-off, signal and idler perturbation
equations are decoupled from the pump perturbation equation, and again it leads to unconditional
temporal instability. We recall that this instability leads to the generation of a localized structure
exhibiting unlimited amplification and compression [17] [28], whose collapse may be avoided
by including the natural chromatic dispersion which is present in equations (1).

Since the required grating pitch for first order QPM is extremely small, we must increase
the c.w. pump intensity when using higher order gratings in order to get an actual experimen-
tal configuration. Reference [21] gives a table with the threshold pump intensities and domain
periods for the degenerate backward OPO in four periodic domain structures (KTP, LiNbO3,
GaAs/AlAs). Recently [32], it has been reported an experiment of first order QPM blue light
generation at 412.66 nm, in a 20 mm long surface-poled Ti-indiffused channel waveguide in
LiNbO3 with c.w. pumping, using periodic domain structures as short as 1µm. The authors
have announced generation of 3.46 mW blue light for 70 mW of fundamental power. Based on
such recent progresses in the poling technology of LiNbO3 one can likely hope to experimentally
realize the backward OPO with the allowed pump power for so short grating pitch. We will see
in section 5 that a periodic domain of 800 nm has been obtainedin a bulk PPKTP configuration
to achieve for the first time the pulsed mirrorless OPO. For example, ifΛQPM = 0.5 µm we may
only use a c.w. pump power ten times higher (i.e. Ip,0 = 1 MW/cm2) for the same cavity length
ℓ = 3.7 cm, same characteristic timeτ0 ≃ 0.28 ns, and same low finesseρs =

√
R= 0.46 as that

given in the previous example. If we consider a pulse pump of FWHM of ∆t = 28 ns instead of a
c.w. beam we can even reachIp,0 = 100 MW/cm2 without optical damage [33] (yieldingτ0 = 28
ps andΛ = 0.37 cm).

3.2.2 Finite temporal walk-off

When taking into account a finite temporal walk-offα 6= 1, equations (13) are more complicated
as the dynamics of the pump wave and the signal-idler pair is no longer decoupled. For the sake
of simplicity let us considerD = 0, so thatP = S=

√
α I = 1/(1/

√
1−d2 + ξ /

√
α ). Note that

D = 0 requires thatc = 0 in equation (12). Sinced ≪ 1, it is the second factor in the same
expression ofc which vanishes leading to the relationR= 1/(1+

√

(1−d2L/
√

α )2. The first-
order perturbed system becomes

d
dξ





Z
Y
X



 =





iω −I −S
−I −iω −P

−S/α −P/α −iω/α









Z
Y
X





This system of equations is numerically solved. Since the group velocity delay (temporal walk-
off) of the signal and idler pair is small, we setα = vi/vp ≃ 1+ ε. We expand the solutions
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Fig. 3: Evolution of the imaginary part of the pulsationω as a function of the lengthL close
to the first cavity mode (with Re(ω) ≃ 2π/L). The transition from stable to unstable states is
obtained forLcrit ≃ 0.39.

up to the second order in the small parameterε. The second order is necessary to match the
critical parameter value obtained at the Hopf bifurcation point by the numerical integration of
the normalized governing equations (6); the first order inε being insufficient to characterize the
bifurcation point.
Through the boundary conditions, we obtain the dispersion relation:

ω3y2
oyL +

[

−ω3y2
oyL − iω2yoL+ωL

]

cos(ωL)+
[

iω3y2
oyL + iωyo−ω2yoL−1

]

sin(ωL)

− iε
8yL(yoρo−yLe−iωL)

{

Aoe−2iωL +Boe−iωL +CoeiωL +Do

}

− iε2

24y2
L(yoρo−yLe−iωL)

{

A1e−2iωL +B1e−iωL +C1eiωL +D1

}

= 0 (15)

with yo = 1/
√

1−d2, yL = yo+L, ρo = yo/yL is the amplitude feedback coefficient andL stands
for the dimensionless lengthℓ/Λ. The expressions of the different coefficientsAo,A1,Bo,B1,Co,
andC1, which are functions ofω = ωr + iωi , yL, andyo are given in appendix B of Ref.[18]. First
we recover, as it should be, the dispersion relation (14) when ε = 0 andD = 0. However, the
non-degenerate backward OPO dispersion relation (15) shows that, in contrast to the degenerate
case, there exist a stability domain of the inhomogeneous stationary solutions above threshold.
Moreover, these solutions undergo a Hopf bifurcation, evennear the degenerate configuration,
for a critical lenght of the cavity. Figure 3 shows a typical example of a regular Hopf bifurcation
with the parameters set tod = 0.05 andε = 1/128. We have plottedℑ (ω) from equation (15)
against the propagation lengthL near the first cavity mode (ℜ (ω) ≃ 2π/L). As can be seen from
the figure, Hopf bifurcation occurs atLcrit ≃ 0.39. ForL ≤ Lcrit the inhomogeneous stationary
solutions are stable (see figure 4) whereas ifL > Lcrit the perturbations are amplified generating
a new oscillatory localized structure (see figures 5 and 6).

4 Nonlinear dynamics of the doubly resonant backward OPO

In the previous section we have carried out the stability analysis of the inhomogeneous stationary
solutions of the doubly resonant backward OPO near the degenerate configuration. This behavior
may be generalized to the fully non-degenerate backward OPOprovided that a finite temporal
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Fig. 4: Doubly resonant backward OPO: asymtotic stationaryspatial profiles at round trip
16384 forL = 0.35 below critical length.

Fig. 5: Doubly resonant backward OPO: temporal oscillatoryregime forL = 0.4 above critical
length.

walk-off between the counter-propagating signal and idlerwaves is present . In this section we
proceed as follows:
(i) we numerically check the previous analytical result in the near-degenerate OPO regime for
D = 0;
(ii) we show that a dynamically critical bifurcation forD 6= 0 can be obtained with the same
feedback parameter values (ρs = ρi) for both signal and idler waves;
(iii) we numerically investigate the self-pulsing regime for thedoubly resonant backward OPO
with different feedback parameter values (ρs 6= ρi) including perturbative dispersion.

To this end we have numerically integrated equations (6) with the boundary conditions (7).
In order to better compare the dynamical behavior with the analytical one, we first neglect
dispersion (̃β j = 0, j = p,s, i) which is only a perturbative effect in the non-degenerate case,
but we include a small dissipation (µ j = 10−2). In order to dynamically investigate the near-
degenerate OPO regime forD = 0, we start from the approximate stationary solutions (11) with a

12



Fig. 6: Doubly resonant backward OPO: temporal pulsed regime for a lengthL = 0.5.

Fig. 7: Doubly resonant backward OPO: pulse maximum amplitude vs. number of round
trips t/tr (wheretr = ℓ/vs is the round-trip time) at the output of the backward OPO cavity
exhibiting stable saturation at a constant amplitude.

group velocity difference (temporal walk-off)|vs−vi |/vp = 1/128. In the near-degenerate OPO
case, the feedbackR= |ρs|2 = |ρi |2 is related to the dimensionless lengthL through the relation
u2

p(L)−Ru2
s(L) = D2, which is now simply reduced toR= [1+ L

√

(1−d2)/α ]−2. Therefore,
we may investigate the near-degenerate OPO dynamics by varying the control parameterL from
0.25 to 0.5. As expected from the stability analysis, we now find a regular Hopf bifurcation of
the stationary state towards a time-dependent oscillatorystate for a critical lengthLcrit between
0.35 and 0.4, in contrast to the full degenerate case [28] or to the near-degenerate caseD = 0
in the absence of temporal walk-off [cf. section 3.2.1], where no Hopf bifurcation exists. The
stationary spatial profiles are shown in figure 4 after 16384 round trips forL = 0.35. This sta-
tionary state bifurcates towards a stable oscillatory regime as illustrated in Fig. 5 forL = 0.4.
For a larger lengthL (and correspondingly smaller feedbackR) we obtain pulsed regimes as that
shown in figure 6 whose stability is ensured by the finite temporal walk-off too, without taking
into account any dispersion effect (cf. Fig.7).
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Fig. 8: Doubly resonant backward OPO: temporal evolution ofa pulse train at the output of
the OPO cavity. Pair of two consecutive pulses at round tript/tr = 28608 forL = 0.5 and
ρs = ρi = 0.81. The amplitude is measured in|Ap,o|/

√
2 units.

The dynamical equations (6) allow us to look further forD 6= 0, while the control parameter
L (sinceR is only a function ofK for D = 0) splits now into two control parametersL andR
related throughu2

p(L)−Ru2
s(L) = D2. For L = 0.25 we obtain the Hopf bifurcation between√

R = 0.80 and 0.81, while for L = 0.5 it happens between
√

R = 0.81 and 0.82, the pulsed
regimes corresponding to lower feedback favors the localization of the structure [11]. For a
typical pulsed regime atL = 0.5 and

√
R= 0.81, we show in figure 7 the saturation of the pulse

maximum amplitude with time when starting from the stationary state, and in figure 8 a pair of
two consecutive pulses in the asymptotic stable state (the width δt is measured intr = ℓ/vs units).
As can be seen from figure 9 the solitary structure is now composed of two embedded pulses of
nearly identical amplitudes moving together, the constantspatial shift between them corresponds
to the temporal walk-off (or different group velocities). The trapping between the signal and
idler envelopes yields the new self-similar structure moving at a characteristic velocity, which is
composed of the couple of embedded pulses maintaining constant spatial shift between them in
spite of the different velocities of both waves.

Let us consider a physical application. In comparison to thetype I (e-e) polarization inter-
action in LiNbO3 proposed in [28] for the full-degenerate case, we may now consider a type II
(e-o-e) polarization interaction in order to move away fromthe degeneracy and to obtain a fi-
nite group velocity delay (or temporal walk-off) between the signal and the idler waves. For the
same quadraticχ (2) material, same pump wave (e-polarized) atλp = 0.775µm, the same idler
wave (e-polarized) atλ i = 1.55 µm, but now a signal wave (o-polarized) atλs = 1.55 µm hav-
ing a different refractive index, the group velocity dispersion ensures a finite temporal walk-off
between both backward waves. For a first order QPM in LiNbO3 the grating pitch is as small
as ΛQPM = 2π/KG = 0.177 µm. For a c.w. pump fieldEp = 0.725 MV/m (i.e., a pump in-
tensity ofIp = 100 kW/cm2) propagating in this configuration we have the following values of
the parameters [33]:de f f = 6 pm/V,np = 2.181,ns = 2.212,ni = 2.140,vp = 1.317×108 m/s,
vs = 1.323×108 m/s,vi = 1.372×108 m/s,γp = 4.6×108 s−1, andγs = γi = 3.1×108 s−1. The
nonlinear characteristic time yieldsτ0 = (σpAp/2)−1 ≃ 0.94 ns, and the nonlinear characteristic
lengthΛ = vpτ0 = 12 cm. We have taken cavity lengths running from 3 cm (L = 0.25) to 6 cm
(L = 0.5) and we obtain a temporal width of the solitary pulses of theorder of 100 ps.
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Fig. 9: Doubly resonant backward OPO: spatial profiles for the three wave amplitudes at round
trip 28672.

Critical bifurcation parameters for doubly resonant backward OPOs with different nonlin-
ear coupling coefficientsσ j and different feedback parameter values (ρs 6= ρi) may be obtained
through the general dynamical equations (1) with boundary conditions (7). Figure 10 displays a
typical self-pulsing regime forσs/σp = 0.675,σi/σp = 0.350,L = 1, β̃ j = 10−6, j = {p,s, i},
ρs = 0.9 andρi = 0.6. As can be seen from this figure the predicted stability of the self-pulsing
regime is not affected by the presence of chromatic dispersion.

5 Backward coherent pulse from incoherently pumped mirrorless OPO

The numerical dynamics of a c.w. pumped singly backward OPO,experimentally adapted for an
integrated cavity or IOPO (see for exemple [34, 35, 36, 37]),either for counter-propagating sig-
nal or for counter-propagating idler does not generate backward solitary structures. Even for high
OPO finesses the laser output is always stationary. Note thatthis does not contradict the exis-
tence of backward solitons in singly counter-propagating configurations if the backward wave is
initially localized [2] [3] [27]. It simply means that such solitary waves cannot be spontaneously
generated from quantum noise and a c.w. pump. Nevertheless,we shall see in this section that
the singly backward OPO configuration is interesting from another point of view, namely the
generation of a coherent backward pulse from an incoherent pump pulse. In this section we
will show that recent experimental demonstration of a backward mirrorless optical parametric
oscillator (BMOPO) with a pump pulse in the quasi-phase-matched (QPM) periodic polarized
KTiOPO4 crystal [24, 25, 26] opens the way for achieving ultra-coherent output from a highly
incoherent pump pulse. In a first time we consider a coherently phase modulated pump because
in the experiments the broadening of the pump is done via a coherent chirp [25, 26].
The pump phase modulations are transferred to the co-propagating wave moving at nearby the
same group velocity of the pump through theconvection-induced phase-locking mechanism[27]
[39] [40] [42]. For the highly incoherent pump we present thecase of perfect group-velocity
matching of the pump and the co-propagating idler wave, which may be achieved in a type I OPO
for a pump at 1.060µm, a counterpropagating signal at 1.676µm and an idler at 2.882µm. We
will show that the degree of coherence of the backward signalfield turns to be more than three
orders of magnitude greater than that of the incoherent pump, with approximately the same pump
power and crystal length as in the experiments.
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Fig. 10: Doubly resonant backward OPO: temporal amplitude signal output of the backward
OPO in the stable asymptotic pulsed regime measured in cavity round tripst/tr for L = 1,
ρs = 0.90ρi = 0.60 andβ̃ j = 10−6, j = p,s, i.

Parametric interaction of counterpropagating optical waves has the unique property of auto-
matically establishing distributed feedback without external cavity mirrors; the mirrorless opti-
cal parametric oscillator has been the object of several studies [31] [43] [21] [44]. The recent
BMOPO experiments exhibit useful spectral properties and have been performed in a configura-
tion of type I atλp = 0.8616µm, λs = 1.2179µm andλ i = 2.9457µm with a grating period
of ΛQPM = 0.8 µm. This singly backward configuration overcomes the extremely low sub-µm
grating periodicity required for the doubly backward OPO (cf. sections 3 and 4).

We have already proposed two experimental configurations intype II singly resonant KTP
IOPO’s [40] and in a type I{eee} singly resonant Ti:LiNbO3 IOPO [42], to show the locking
mechanism in standard high finesse forward propagating OPO’s feeded with a c.w. pump. We
will also show in this section the feasibility of coherent backward generation from an incoherent
pump pulse in a mirrorless BMOPO configuration feeded with a pulse pump.

5.1 MOPO threshold and dynamical equations

A theoretical model yields an estimate of the MOPO thresholdfor counterpropagating plane
waves [21], which is reached when the spatial gain exceedsπ/2 :

Ipth =
ε0cnpnsniλsλ i

2ℓ2d2
e f f

(16)

whereε0 is the permittivity of free space,ℓ the interaction length,de f f the effective quadratic
nonlinear coefficient, andns,i, λs,i the respective signal and idler refractive index and wavelength.
For example, for a PPKTP crystal ofde f f = 8 pm/V we have:

ℓ = 1 cm =⇒ Ipth = 0.64 GW/cm2

ℓ = 6.5 mm =⇒ Ipth = 1.08 GW/cm2
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The momentum mismatch for the optical parametric generation process for the singly backward
QPM configuration yields now

kp = ±ks∓ki +KG, (17)

where(+ks,−ki) stands for backward idler propagation and(−ks,+ki) for backward signal prop-
agation [cf. figure 1 respectively (b) and (c)], whith a resulting larger QPM grating period as that
of the doubly backward OPO configuration. The schematic vector diagram and periodically
domain-inverted ferroelectric crystal of the counterpropagating interaction are shown in figure 1,
and equations (1) become:

(∂t +vp ∂x +γp+ iβp∂tt) Ap = − σpAsAi

(∂t ±vs ∂x +γs+ iβs∂tt) As = σsApA∗
i (18)

(∂t ∓vi ∂x +γi + iβi∂tt) Ai = σiApA∗
s.

with respectively(+vs,−vi) for the backward idler propagation and(−vs,+vi) for the backward
signal propagation.

The input parameters in the model are the properties of the nonlinear medium and the pump
amplitude at the input face,Ap(x = 0, t), generating outputs ofAp(x = L, t), and either for the
backward idler configuration [Fig.1(b)]As(x = L, t) andAi(x = 0, t) or for the backward sig-
nal configuration [Fig.1(c)]As(x = 0, t) and Ai(x = L, t), wherex = 0 andx = L denote the
positions of the input and output faces with respect to the pump beam. For the numerical treat-
ment of the coupled wave equations for counter-propagatinginteractions, the standard split-step
one-directional integration algorithm, usually employedfor co-propagating interactions, is not
suitable due to the fact that Eqs.(19) represent a problem with two simultaneous, but spatially
separate, boundary conditions, i.e., the pump wave and the copropagating wave (either the signal
or the idler) are initially given at one end of the medium, while the backward wave (either the idler
or the signal) is input from the other end of the medium. For such problems, there are two main
appropriate numerical methods: the shooting or trajectories method and the relaxation method.
For the problem at hand, the trajectories method is more convenient, whereby we eventually want
to simulate a counterpropagating three-wave mixing process driven by a pump field with a quasi-
random phase distribution. The trajectories method with the use of a Runge-Kutta algorithm has
been extensively used for the treatment of stimulated Brillouin back-scattering problems [7, 8].
The linewidth narrowing experimentally studied in Brillouin lasers [45] has been simulated in a
Brillouin fiber-ring laser with the help of this method [9]. In that case, it is the acoustic wave
that absorbs the phase fluctuations of the pump and allows thebackward Stokes wave to increase
its coherence. In order to numerically integrate the nonlinear counterpropagation dynamics in a
MOPO in the presence of group-velocity dispersion (GVD), which introduces second-order time
derivatives, we have developed a new numerical scheme whichcombines the trajectories method
with fast Fourier transformation (FFT) to account for the GVD effects in the spectral domain
[47].

The scheme accurately conserves the number of photons and the Manley-Rowe invariants
of Eqs.(19). As in the standard split-step approach, the evolution of Eqs.(19) is for each time
step (typically 1 fs long) first treated by linear propagation of the fields in the Fourier domain,
thereby accounting for the GVD effects and the group-velocity difference between the pump and
the co-propagating wave. The originality with respect to the standard split-step schemes with
multiply-repeated FFT and inverse FFT procedures where exponential spectral cut-off filtering
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Fig. 11: Scheme for the Runge-Kutta-FFT numerical model forthe backward mirrorless OPO.

is introduced at the edges of the spectrum, is that we here introduce smoothed exponentially-
decreasing prolongations of the outgoing complex amplitudes (over a length d) in the x-space
of the MOPO crystal of length L in order to render a periodic problem (cf. Fig. 11). Thus the
FFT is correctly performed in the extended interaction domain of length M = L + 2d without
arbitrary cut-offs. Then, after inverse FFT, the backward nonlinear interaction with spatially
separate boundary conditions is treated by using the trajectories method. Integration over the
trajectories in the nonlinear step of the algorithm was performed by using a 4th -order fixed-step
Runge-Kutta method. The space- time is discretized in 2N points with N = 16 to 18, which,
for instance, when N = 16 allows for a total bandwidth of 35 THzwith the resolution of 0.5
GHz. The algorithm is seeded by an appropriate model pump field entering from one side of
the nonlinear crystal and homogeneously spatially-distributed signal and idler fields with powers
corresponding to a half photon per mode and with random phases, representing quantum noise.
During the field evolution, we checked that the Manley-Rowe invariants were preserved to the
accuracy of better than 10−5, even after numerically evolving Eqs.(19) over 6×106 time steps.
The results obtained with our method were compared with those obtained using a 4th -order
finite-difference scheme. For the chirped input pump pulse,where differentiability is ensured,
the same quantitative results are obtained with both methods. The latter scheme, however, is not
adapted for incoherent pulses.

5.2 BMOPO I actual experimental realization

The QPM three-wave resonant coupling in the experimental achieved backward MOPO of type I
in a bulk PPKTP crystal [24, 25, 26] correspond to the following parameters [46]:

λp = 0.8616µm; np = 1.8400;vp/c = 0.5269;β2,p = 0.2473 ps2/m

λs = 1.2179µm; ns = 1.8243;vs/c = 0.5372;β2,s = 0.1343 ps2/m

λ i = 2.9457µm; ni = 1.7806;vi/c = 0.5334;β2,i = −0.6413 ps2/m

where
ΛQPM =

[np

λp
− ns

λs
+

ni

λ i

]−1
= 0.8012µm

∆v/vs = |vp−vs|/vs = 0.0195,

and the counter-propagation interaction corresponds to figure 1(b).
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Let us show the dynamical behaviours for a BMOPO of 6.5 mm length pumped with a 54 ps
pulse duration ofIp = 2.34 GW/cm2 maximum intensity. BMOPO operation in a PPKTP crystal
of periodΛ = 800 nm is simulated with a linearly-chirped pump pulse with acentral wavelength
of 861.7 nm. The input pump amplitude is chosen to be Gaussianand given by

Ap(x = 0, t) = A0
pexp[iφp(t)]exp{−2ln2[(t− t0)/∆t0]

2 (19)

The spectral and temporal shapes of the pulse are determinedby the phase modulation,φp(t) and
the FWHM temporal length,∆t0. With a linear chirp, the phase modulation is quadratic in time,
φp(t) = α2t2, where the value of the chirp parameterα2 =−0.244 rad/ps2 is chosen to obtain the
chirp rate ofdωp/dt = −0.49 rad/ps2. With this chirp, a temporal intensity FWHM of∆t0 = 52
ps gives a FWHM spectral width of 4.04 THz.

Fig. 12: BMOPO I: Temporal field amplitude output of pump (a),signal (b) and counterprop-
agating idler (c) waves in the achieved experimental configuration [26], for a pump of 52 ps
temporal duration and 4.04 THz chirped pump bandwidth.

Fig. 13: (a) Undepleted input and depleted output pump spectrum of ∆νp = 4.04 THz, (b)
the forward signal spectrum with∆ν f = 1.78 THz and (c) the backward idler spectrum with
∆νb = 51 GHz.

As the pump pulse enters the crystal, a forward signal and a backward idler are generated
with similar spectral characteristics as those obtained inthe experiment [26]. The temporal pump
output amplitude and output co-propagating signal and backward idler amplitudes are illustrated
in Fig 12. The pump and the parametric spectra at the pump intensity of 2.34 GW/cm2 are
illustrated in Fig 13, showing a backward idler with a spectral width of ∆νi = 51 GHz, which is
narrow compared to the widths of the pump,∆νp = 4.04 THz, and the forward signal,∆νs = 1.78
THz. By integrating the spectra, it is found that the conversion into parametric waves here is
Is(L)/Ip(0) = 0.036 for the signal andIi(0)/Ip(0) = 0.014 for the idler. As expected from the
convection-induced phase-locking mechanism, the phase modulation in the pump is essentially
transferred to the forward signal, while the phase of the backward idler is approximately constant.
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Fig. 14: Pump depletion, 1− Ip(L)/Ip(0), and conversion efficiencies for the signal,
Is(L)/Ip(0), and for the idler,Ii(0)/Ip(0), in the MOPO as function of the pump bandwidth
for linearly-chirped pulses at the pump intensity ofIp = 2.57 GW/cm2. The three lower curves
correspond to the experimental condition,|vs−vp|/vs = 0.0195, which clearly show a decrease
in the efficiency as the pump bandwidth increases. The upper curve shows that the pump de-
pletion is essentially independent of the pump bandwidth whenvs−vp = 0.

By running simulations with pump pulses of different spectral widths, it is observed that the
conversion efficiency decreases as the pump spectrum broadens when the group-velocity differ-
ence between the forward wave and the pump is the same as in theexperiments. This behavior
is due to the nonzero convective velocity|vp−vs| of the co-moving waves, i.e. a finite temporal
walk-off, which makes the spectral components in the signalmove past those in the pump. On
the other hand, for perfect group-velocity matching (vs = vp = 0), there is no temporal walk-off
and the conversion efficiency is constant as the pump spectrum broadens, since the pump and
the signal move at the same velocity. The pump depletion, 1− Ip(L)/Ip(0), and the conversion
efficiencies into signal,Is(L)/Ip(0), and idler,Ii(0)/Ip(0), were systematically investigated for
linearly-chirped Gaussian pump pulses where the temporal pulse shape was held constant with a
FWHM length of 52 ps and a peak intensity of 2.57 GW/cm2. The spectral width was controlled
by varying the chirp parameterα2 from 0 to -0.30 rad/ps2, corresponding to a FWHM bandwidth
from the transform limit up to about 5 THz. In Fig. 14, the three lower curves show how the
pump depletion and the conversion efficiency into signal andidler decrease as the pump band-
width increases. Each point on the curves corresponds to a mean value over a set of simulations
with random initial phases, i.e. the phase modulation is given byφ(t) = α2t2+φ0, whereφ0 is a
random number. The efficiency is slightly different for eachchoice ofφ0 and the value typically
varies within the vertical bar of the plus signs associated to each point. At some points, there
is an apparent increase in the efficiency with an increased pump bandwidth, which is due to the
limited set of random initial phases(n = 6) used for the averaging. However, the main behavior
is that a broader pump input spectrum decreases the efficiency of the BMOPO process when the
group-velocities of the forward wave and the pump are not matched. The upper curve in Fig. 14
shows the pump depletion when the group velocities of the pump and the forward propagating
wave are matched,vp = vs. This gives a direct comparison between the two cases and shows that
the nonlinear interactions in a BMOPO become more efficient in the case of exact group-velocity
matching. Furthermore, the pump depletion (or the conversion efficiency) then also becomes
rather insensitive to the spectral quality of the pump, due to the absence of temporal walk-off.
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Fig. 15: Temporal evolution of the amplitudes in a BMOPO withthe interacting wavelengths
corresponding to exact group-velocity matching, pumped with stochastic phase modulated
pulses and a bandwidth of∆νp = 23 THz: (a) the forward pump, (b) the backward signal,
and (c) the forward idler.

Fig. 16: (a) Incoherent pump spectrum with a bandwidth of∆νp = 23 THz, (b) the back-
ward signal spectrum with∆νs = 23 GHz, (c) the forward idler spectrum with∆νi = 10 THz.
Coherence gain of 1000.

5.3 Incoherent pump pulse

One question that arises is if a BMOPO can operate when it is pumped with incoherent pulses.
It is not obvious that such pulses can generate a spectrally-narrow backward-propagating para-
metric wave which is a characteristic feature of a BMOPO. In the conventional co-propagating
configuration, the generation of a temporally coherent wavefrom a temporally incoherent pump
has been numerically studied for i.e. parametric down-conversion [48] and has been experi-
mentally verified for second-harmonic generation [49]. In order to answer the question in the
counterpropagating BMOPO configuration, we used a pump pulse with randomly distributed
phase variations, characterized by an exponential correlation function,

〈

Ap(x = 0, t ′+ t)A∗
p(x = 0, t)

〉

=
∣

∣Ap
∣

∣

2
exp(−|t|/τc) , (20)

whereτc = 1/π∆νp is the correlation time. More precisely, we use a numerical scheme to gen-
erate a Gaussian spectrum with randomly-distributed phases and a small random variation in the
amplitude, which simulates a real laser output where the amplitude exhibits small fluctuations
over its Gaussian shape. In order to obtain a well-behaved Gaussian input, we impose a Gaus-
sian profile on the Fourier spectrum and the pump amplitude isentered as the inverse Fourier
transform.

As a result of the phase-locking mechanism, the transfer of phase modulation to the forward
wave becomes more efficient when the group velocities of the pump and the forward parametric
wave are exactly matched [39], which was already proposed for c.w. pumped forward OPO’s
[40] [42]. This was shown in Fig. 14. Forz-polarized waves in PPKTP, matching of the group
velocities can be achieved by designing the experiment so that the pump and the forward wave
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are on different sides of the maximum on the group-velocity curve: the singly backward wave
may be now the signal, the co-propagating pump and idler waves satisfyingvp = vi .

However, the combination of exact group-velocity matchingand quasi-phase matching re-
quires either a very short QPM period, which is hard to fabricate, or that the pump wavelength
is substantially longer, which increases the BMOPO threshold. One example of a set of wave-
lengths that fulfill group-velocity matching are

λp = 1.0600µm; np = 1.8298;vp/c = 0.5341;βp = 0.1752 ps2/m

λs = 1.6764µm; ns = 1.8129;vs/c = 0.5405;βs = 0.0290 ps2/m

λ i = 2.8826µm; ni = 1.7826;vi/c = 0.5341;βi = −0.5784 ps2/m

where
ΛQPM =

[np

λp
+

ns

λs
− ni

λ i

]−1
= 0.4567µm

∆v
vp

=
|vp−vi

vp
= 0

We perform the numerical dynamics from equations (2) with (−vs,+vi). Around the point
of group-velocity matching, the BMOPO becomes more efficient and the spectral quality of the
pump can be reduced without a large effect on the conversion efficiency. This is illustrated by
running a simulation with a stochastic pump with a FWHM temporal length of 50 ps and where
the spectral width is increased to 23 THz. At the pump intensity of 3.5 GW/cm2, the results
are shown in Fig. 15 and Fig. 16. The BMOPO starts oscillatingafter t − t0 = 60 ps and the
conversion efficiencies areIb(0)/Ip(0) = 0.025 for the signal andI f (L)/Ip(0) = 0.015 for the
idler. Due to the group-velocity matching, the bandwidth ofthe backward signal is only 23 GHz.
This value is significantly smaller than the bandwidth of backward wave in Fig. 16c, even though
the pump bandwidth here has been increased by almost a factorof 6. In the case of group-velocity
matching under the stated operational conditions, the spectral width of the backward-generated
wave is reduced by a factor of 1000 compared to the width of theinput pump spectrum. The
random phase fluctuations in the pump are efficiently transferred to the forward idler, which
obtains a spectral width of 10 THz.

For the experimental verification of BMOPO operation with anincoherent pump, a laser
source is required that generates sub-ns pulses of energiesaround 100µJ, at the same time as
the pulses are incoherent. Good candidates for such a pump source are figure-eight fiber lasers
operating in noise-like pulse mode with pulse lengths around 1 ns [50], which could be amplified
to the required energies in fiber amplifiers.

5.4 Convection-induced phase-locking mechanism

The coherent properties of the parametric three-wave interaction driven from an incoherent pump
has been the object of an analytical study where the autocorrelation functions are mathematically
evaluated in the presence of dispersion [39] and the convection-induced phase-locking mecha-
nism has been proposed for forward OPO’s configurations [40][42]. Let us present here some
simple analytical arguments enlighting the convection-induced phase-locking mechanism from
equations (2) for the singly backward signal configuration [case (c) of figure 1], Let us assume
the dispersioless case (β j = 0), σs = σi = σp/2 = σ , and the linear undepleted pump limit with
γp = 0.
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The incoherent pump may be modeled by a stationary single-variable stochastic functionAp(z)
of autocorrelation function

〈Ap(z−z′)A∗
p(z

′)〉
|Ap(0)|2 = exp(−|z|

λc
)

with a coherence lengthλc in the frame traveling at its group velocityvp,

z= x−vpt,

the correlation time beingτc ≃ 1/π∆νp, where∆νp is the incoherent (broad)-bandwidth of the
pump spectrum. The role of convection in the coherence of thegenerated wavesAs andAi may be
analyzed by integrating the third equation (19) along the characteristic of the idler wave. Then,
the second equation (19) yields

DAs = σ2
∫ t

0
e−γi(t−t ′)Ap(z)A

∗
p(z

′)As(x
′, t ′)dt′

where
D = ∂/∂ t −vs∂/∂x+γs

z′ = z− (vi −vp)(t− t ′) ; x′ = x−vi(t − t ′)

If vi = vp we havez′ = z and we can extract the pump amplitudes from the integral

Ap(z)A
∗
p(z

′) = |Ap(z)|2,

showing that the signal dynamics is independent of the pump phase fluctuationsΦp(z).
This means that the rapid random phase fluctuations of the pump do not affect the signal

which undergoes slow phase variations and thus evolves towards a highly coherent state during
its parametric amplification.
Let us now consider the idler wave from the third equation (2):

Ai(x, t) = σ
∫ t

0
e−γi(t−t ′)Ap(z

′)A∗
s(x

′, t ′)dt′.

When vi = vp we have z′ = z and Ap(z′) becomes independent oft ′ which leads to an idler
amplitudeAi proportional to the pump amplitudeAp i.e., the idler field absorbs the noise of the
co-moving pump field. Note that thispump-idler phase-locking mechanismdoes not require an
exact matching of the group-velocitiesvi = vp. It is indeed sufficient that

|vi −vp| ≪ λcγi = vptcγi ,

to remove the pump field from the integral so that the idler field follows the pump fluctuations.
This phase-locking mechanisms may be demonstarted in realistic experimental configurations as
studied in details in Ref.[39].

6 Summary

We have shown by a stability analysis of the non-degenerate backward OPO where both the
signal and idler fields propagate backward with respect to the direction of the pump field that
the inhomogeneous stationary solutions regularly bifurcate towards a time-dependent oscillatory
solution contrarily to the degenerate case. We obtain a regular Hopf bifurcation for a critical
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interaction lengthLcrit , which is finite only if a finite group velocity delay between the signal and
the idler waves is taken into account.
This result has been confirmed by numerical simulations of the nonlinear dynamic equations,
and an excellent agreement has been obtained near the degenerate configuration. AboveLcrit

self-structuration of symbiotic backward solitary waves -of some ps temporal duration - takes
place. The finite temporal walk-off between the backscattered signal and idler waves also ensures
the stability of the solitary waves. These short stable and coherent pulses could be very inter-
esting for optical telecommunication. However, the susceptibility inversion grating of sub-µm
period required for QPM in the nonlinear quadratic materials is still a technological challenge.

We have also considered mirrorless optical parametric oscillation in a PPKTP crystal, first by
using linearly-chirped pump pulses with bandwidths of up to4 THz in order to simulate recent
experiments, and second by using highly incoherent pump pulses up to 23 THz bandwidth. It
has been shown that the spectral bandwidth of the backward-generated pulse is more than two
orders of magnitude narrower than that of the pump. In a general situation, the gain in temporal
coherence of the backward-generated wave is limited by the group-velocity mismatch between
the pump and the forward-generated wave. This mismatch alsolimits the conversion efficiency in
the BMOPO. Numerically, we proved that the same conclusionsare valid regardless of the nature
of the phase modulation present in the pump wave by simulating operation of a BMOPO pumped
by waves containing stochastic phase distributions. Moreover, we propose a generic BMOPO
configuration where exact group-velocity matching can be achieved, thereby maximizing the
gain in temporal coherence in the backward-propagating wave and making the efficiency of the
device insensitive to the nature of the phase modulation present in the pump wave. This opens up
an intriguing possibility for narrowband generation in MOPOs pumped with incoherent beams,
e.g. derived from several lasers. Albeit the realization ofsuch a MOPO requires QPM crystals
which are slightly beyond the state-of-the-art of the current poling technology, the requirements
are not unrealistic and can be met with the continuing development in fabrication techniques of
submicrometer-periodicity nonlinear crystals. Improvedfabrication techniques could also lead
to the possibility of poling longer crystals. As the threshold intensity scales inversely to the
square of the length of the structured region, an increase ofthis length from 6.5 mm to 18 mm
results in a threshold intensity around 100 MW/cm2, which is comparable to that in conventional
co-propagating PPKTP OPOs.
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