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Abstract

Three-wave solitons backward propagating with respectgarap wave are generated
in nonlinear optical media through stimulated Brillouiragering (SBS) in optical fibers or
through the non-degenerate three-wave interaction inrgtiadx ?) nonlinear media. In
an optical fiber-ring cavity, nanosecond solitary wave rhogenesis takes place when it
is pumped with a continuous wave (c.w.). A backward disgipabtokes soliton is gener-
ated from the hypersound waves stimulated by electrasinidietween the forward pump
wave and the counterpropagating Stokes wave. Superlushiguadi subluminous dissipative
solitons are controlled via a single parameter: the feddbaceinjection for a given pump
intensity or the pump intensity for a given feedback. In a. qpemped optical parametric
oscillator (OPO), backward picosecond soliton generatikes place for non-degenerate
three-wave interaction in the quadratic medium. The resoc@ndition is automatically sat-
isfied in stimulated Brillouin backscattering when the fiieg laser contains a large number
of longitudinal modes beneath the Brillouin gain curve. Hger, in order to achieve quasi-
phase matching between the three optical waves (the forarg wave and the backward
signal and idler waves) in thg(® medium, the nonlinear susceptibility should be periodi-
cally structurated by an inversion grating of sulr period in an optical parametric oscillator
(OPO). The stability analysis of the inhomogeneous statipsolutions presents a Hopf bi-
furcation with a single control parameter which gives riségmporal modulation and then
to backward three-wave solitons. Above OPO threshold, tméimear dynamics yields self-
structuration of a backward symbiotic solitary wave, whiststable for a finite temporal
walk-off, i.e. different group velocities, between the baeard propagating signal and idler
waves.

We also study the dynamics of singly backward mirrorless @B@OPO) pumped by a
broad bandwidth field and also with a highly incoherent pumfpine with the recent experi-
mental demonstration of this BMOPO configuration in a KTRstay We show that this sys-
tem is characterized, as a general rule, by the generatiahighly coherent backward field,
despite the high degree of incoherence of the pump field. fEmwrkable property finds
its origin in the convection-induced phase-locking mea$rarthat originates in the counter-
streaming configuration: the incoherence of the pump istesred to the co-moving field,
which thus allows the backward field to evolve towards a higloherent state.

We propose other realistic experimental conditions that beaimplemented with currently
available technology and in which backward coherent waveggion from incoherent ex-
citation may be observed and studied.
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1 Introduction

In nonlinear wave systems, resonance processes may gaversplitary waves resulting from
energy exchanges between dispersionless waves of diffezktities. Three-wave resonant in-
teraction in nonlinear optical systems [1], plasmas [2]d8§ gases [4] predict symbiotic three-
wave solitary waves in analogy to self-induced transparébf[6]. The structure of them is
determined by a balance between the energy exchanges ratdbeavelocity mismatch be-
tween the three interacting waves. The three-wave inferagiroblem has been the object of
many theoretical studies and numerical simulations as ¥egresl in Refs. [7] [8]. The non-
conservative problem in the presence of a continuous purafpé&en integrated by the inverse
scattering transform (IST) in the non-dissipative case ¢8{ing rise to backscattered solitons.
Our interest has been to study this non-conservative probiethe presence of dissipation or
cavity losses, because this kind of backward structurdtambeen experimentally obtained in
stimulated Brillouin scattering of a c.w. pump wave into akward red-shifted Stokes wave
in long fiber-ring cavities. It has been shown in a Brillouibéi-ring cavity that, spontaneous
structuration of dissipative three-wave solitary wavégsaplace when the source is a c.w. pump
[9, 10, 11, 12]. The periodic round-trip interaction in adgdnssy cavity may be associated to the
non-conservative unlimited interaction [8] [11]. The nioelr space-time three-wave resonant
model between the two optical waves and the dissipative maheoustic wave satisfactorily
explains the generation and the dynamics of the backwaxeling solitary pulses in the fiber-
ring cavities. Stability analysis of the inhomogeneousiatary Brillouin mirror solution in the
c.w.-pumped cavity [10] exhibits a one-parameter Hopfioidtion. Below a critical feedback,
a time-dependent oscillatory regime occurs, and selfrorgéion of a localized pulsed regime
takes place. Experimental results and dynamical simulatmonfirm this scenario. A stable
continuous family of super-luminous and sub-luminous bakl-traveling dissipative solitary
pulses is obtained through a single control parameter [12]. [ A parallel analysis in an un-
bounded one-dimensional medium shows that the integrabdeave super-luminous sym-
metrical soliton is unstable for small dissipation, and thaascades to a turbulent multi-peak
structure. The general non-symmetrical and non-integreé$e is dependent only on the expo-
nential slope of the wave front of the backscattered Stoleg&whus providing the stable super-
and sub-luminous dissipative solitary attractors [8]. Aremwiew of the experimental results for
a large set of input pump powers and Stokes feedback consglisisows a remarkable agreement
with the numerical simulations of the three-wave coheremtial differential equations model
[12]. We will not consider this topic here and refer the reattbea recent review article [13]
where this kind of dissipative soliton has been discusseiiails.

This review article is devoted to the resonant interactiihiee optical waves (called pump,
signal and idler) in a nonlinear quadratic material. Theesamchanism, responsible for nanosec-
ond solitary wave morphogenesis in the Brillouin-fibergriaser may act for picosecond back-
ward pulse generation in a quasi-phase matched (QPM) omarametric oscillator (OPO)
[14, 15, 16, 17, 18, 19]. The dissipative character will fisan the partial reinjection of one
wave (in the singly resonant OPO), two waves (in the douldgmant OPO) or to the absorption
losses in a backward mirrorless OPO. The resonant conddidhe wavevectors is automatically
satisfied in stimulated Brillouin backscattering when tihefiring laser contains a large number
of longitudinal modes beneath the Brillouin gain curve. Hwer, in order to achieve counter-
streaming QPM matching between the three optical waveseiy th medium, a nonlinear sus-
ceptibility inversion grating of sulpam period is required [20, 21, 22, 23]. In the non-degenerate
three-wave case of a backward quasi-phase matching ccetiiguin the quadratic media where
both signal and idler fields propagate backward with resfmetite direction of the pump field,
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the first order quasi-phase-matching pitch is of ordlgf2n, wheren, is the refractive index
at the pump wavelength,. This can be achieved for example by periodic poling tealnesq
but up to now the polarization inverted grating of suin period has been only obtained for the
backward idler configuration in a KTiORQrystal which allows the realization of a mirrorless
optical parametric oscillator (MOPO) [24] with remarkakleectral properties [25, 26]. There-
fore, higher-order Bragg condition have been suggesteld R@wever, the interest of the first
order configuration is that the solitary waves can be sp@utasly generated from noise by a c.w.
pump when the quadratic material is placed inside a singlgrmant OPO (where singly stands
here for only one wave reinjection).

Parametric interaction of counter-propagating signalidtet waves has the unique property
of automatically establishing distributed feedback withexternal mirrors and thus realizing
sources of coherent and tunable radiation. A recent expati@hdemonstration of such a mir-
rorless optical parametric oscillator (MOPO) has beengueréd in a 800 nm periodically poled
KTiIOPOy4 (PPKTP) configuration [24] with a pulse pump. The forwardikestor signal is essen-
tially a wavelenght-shifted replica of the pump spectrund the backward generated idler pulse
has a bandwidth of two orders of magnitude narrower thandahtite pump [25, 26]. This sub-
um periodic configuration where QPM is achieved with a pumpsigdal waves propagating in
the forward direction and the idler wave in the backwarddion [cf. 1(b)] opens the way for
achieving the shorter periodicity required for a QPM confagion where both signal and idler
backward propagate with respect to the pump watel(d)]. As we say, this doubly-backward
configuration is of interest since the three-wave symbgxidary waves can be generated from
noise in the presence of a c.w. pump when the quadratic rahtermplaced inside an optical
parametric oscillator [14, 15, 16, 17, 18, 19]. With a c.wuthe singly backward OPO yields
stationarity for the backward wave. Nevertheless when thrappis a pulse, the demonstrated
MOPO experimental configuration generates a coherent ladkpulse in the absence of exter-
nal feedback. Note that stationarity of the singly backwardfiguration in a c.w. pumped short
length device is not contradictory with the theoreticalsgaince of backward solitary solutions
when the initial condition is localized [6]. Moreover, a @bant solitary structure can be sus-
tained from a highly incoherent pump and a co-propagatingej27]. This phenomenon relies
on the advection between the interacting waves and leadsetéotmation of a novel type of
three-wave parametric soliton composed of both coherehtramoherent fields. In section 5 we
will consider this mechanism by proposing the generatioa obherent backward pulse from an
incoherent pump pulse in two BMOPO configurations, amonghvitine first one refers to the
experimental configuration demonstrated in Refs. [24, Bh, 2

We thus show that the BMOPO system is characterized, as aagyenk, by the generation
of a highly coherent backward field, despite the high degf@@coherence of the pump field. In
substance, the incoherence of the pump is shown to be tree$te the co-moving field, which
thus allows the backward field to evolve towards a highly cehestate. The incoherent pump
in the BMOPO dynamics is numerically simulated with a new pugal scheme that solves
the coupled wave equations in the counterpropagating agatign in the presence of group-
velocity dispersion (GVD) by combining the trajectoriesthaa for the nonlinear three-wave
interaction and fast Fourier transformation (FFT) to aectdor the GVD effects. We propose
realistic experimental conditions that may be implementétl currently available technology
and in which backward coherent wave generation from incafiezxcitation may be observed
and studied.

We have already shown, by both analytical and numericatrtreats of the degenerate back-
ward OPO in the QPM decay interaction between a c.w. pump &alavard signal wave, that
the inhomogeneous stationary solutions are always urstabhtever the cavity length and pump
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power values are above threshold of a singly resonant OR(@irf from any initial condition,
the nonlinear dynamics exhibits self-pulsing of the baakixsagnal with unlimited amplification
and compression. Above a critical steepening of the backmalse, dispersion may saturate this
singular behavior leading to self-modulated solitary dtes [17] [28].
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Fig. 1. Wave vector diagrams (momentum conservation) fembn-degenerate three-wave
interaction in: (a) a three-wave forward configuration; &kgingly backward idler configura-
tion; (c) a singly backward signal configuration; and (d) aloly backward (signal and idler)
configuration. As we can see the QPM grating show a decrephiagge-reversal period for the
nonlinear susceptibilty represented by the bold brokegslunder each configuration.

In this paper we show, by a stability analysis of the non-degate backward OPO [18,
19], that the previous particular behavior of unconditideenporal instability of the degenerate
backward OPO is removed for a finite temporal walk-off bettiee counter-propagating signal
and idler waves, and that we now obtain a regular Hopf bifizodike in the Brillouin fiber-ring
laser [10]. We will consider self-structuration of threewe solitary waves in such a backward
OPO with absorption losses.

For a c.w. pumped OPO near degeneracy a unique control padogoverns the dynami-
cal behaviour; it is shown that at a critical interactiongtnlLci; the inhomogeneous stationary
solution bifurcates towards a time-dependent oscillagmiytion. This critical length is finite
if and only if we take into account a finite group velocity delzetween both backward propa-
gating waved\v = |vs — V| # O (or temporawalk-off), wherevs andy; are the signal and idler
group velocities. Moreover, for longer interaction lergythe dynamics gives rise to the gener-
ation of the backward three-wave soliton, whose stabisitglso ensured by this finite temporal
walk-off Av, without requiring additional saturation mechanisms ttke dispersion effect. This
scenariois confirmed by numerical simulations of the nonlinear dyitaegquations, and an ex-
cellent agreement is obtained (near the degenerate caatiiguy for the value ot it evaluated
from the stability analysis and that one obtained from theadlyical simulation. The general
fully non-degenerate configuration involves more compéidanathematics because a set of con-
trol parameters are required and we only show several dy@inehaviours resulting from the
three-wave numerical model. We will conclude this reviewcbysidering some dynamical be-
haviours of the backward mirrorless OPO pumped with an iacerft pulse, because up to now
this configuration is the only one in which b%ckward MOPO eipents have been performed.



The paper is organized as follows. In section 2 we recallliheetwave model governing the
spatio-temporal evolution of the slowly varying envelopéshe pump and the backward signal
and idler waves. We also recall the analytical solutionshinform of propagating dissipative
solitary waves propagating backward with respect the compunder a QPM three-wave inter-
action. In section 3 is presented the stability analysisefrtonlinear inhomogeneous stationary
solutions of the non-degenerate backward OPO for finite teatpvalk-off. Numerical dynamics
of the self-structuration of symbiotic three-wave solgdeading to stable self-pulsing regimes
is shown in section 4. Finally, the numerical dynamics ofgghised BMOPO under incoherent
pump excitation is discussed in section 5.

2 Three-wave model and analytical solitary-wave solutions

The spatio-temporal evolution of the slowly varying enyeds of the three resonant counter-
streaming interacting waves (x,t), for a non-degenerate OPO, is given by

(Gt +Vp O+ Vp+1Bpdht) Ap = — OpAA
(O — Vs Ox+ Vs +1Bstit) As = asApAi* (1)
(Gt —Vi Ox+ Vi +iBidt) A = GiAPAS

whereAp(wp, kp) stands for the c.w. pump wavBs(ws, ks) for the backward signal wave, and
Ai(w, ki) for the backward idler wave. The resonant conditions in dineensional configuration
realize the energy conservation,

Wp = Ws+ A, (2)

and the momentum conservation,
kp: _kS_ki+KG7 (3)

whereKg = 211/ Agpm and/Agpw is the grating pitch for the backward quasi-phase matchihg [
1(d)]. The group velocities; (j = p,s,i) as well as the attenuation coefficienpysand disper-
sion coefficients; = vjB, j/2 are in general different for each wave. Equations (1) add h
for standard forward phase-matching configurations in wisase all the signs of the velocities
vsi are positive [cf. 1(a)]. For the singly backward idler (ockaard signal) configuration the
momentum conservation (3) must be replaced by (17). Thesggooations are shown in figure
1(b)(c). The nonlinear coupling coefficients arg= 2mde ¢ tvj/(Ajn;), wheren; is the refractive
index at frequency;, wavelengthj andde+ is the effective nonlinear susceptibility. The chro-
matic dispersion is also taken into account in equationgliis is necessary when the generated
temporal structures are sufficiently narrow. The effectgroip velocity dispersion (GVD) are
represented by the second derivatives with respect to 8mthat the dispersion parameters are
given by B;j = |vj|k{ wherek{ = (0%k/dw?);, k being the wave vector modulus= n(w)w/c.

2.1 Solitary Wave Solution

In the absence of dispersiofij(= 0) equations (1) have been extensively studied in the tileza
Their solitary wave solutions have been first derived in theeace of dissipatiory(= 0) [2, 6, 3].
In the context of stimulated scattering in nonlinear optibe existence of dissipative solitary
waves when one of the velocities; is zero €.g. v = 0) has also been shown [9, 29]. More
recently, Craiket al. have proved, for the pagticular case of degenerate three-wderaction,



that solitary waves still exist in the presence of dissgafB0]. On the basis of these previous
theoretical works, we have calculated from equations (laréiqular analytical solution of the
dissipative symbiotic solitary waves of the non-degemeprametric three-wave interaction.
Looking for a solitary wave structure induced by energy ¢fanfrom the pump wave to the
signal and idler pair, we have to assume zero loss for the pypwe 0). It is the only way to
keep constant the energy transfer that compensates hdtefsignal and the idler losses, so as
to generate stationary field structures.yjfwas not zero, the pump wave would experience an
exponential decay giving rise to a vanishing energy of theetwave structure that prevents the
formation of a stationary solitary wave state.

Wheny, = 0 it is easy to find by substitution the following solution tguations (1):

Ap =0 — B tanhl (x+Vt)]
As=nT secHl (x+V1)] (4)
A = KT sechl (x+Vt)]

where 3 is the only free parameter. All other parameters depend emtaterial properties
and onB. One findsd = [ysyi/0sai|Y?, T = B[aigs/(V —Vs)(V —Vi)]¥2, n = [(V +Vp)(V —

Vi) /Gi0p] Y2, K = [(V +Vp) (V — Vs) /005|112, andV = (vs/ys —Vi/)/(1/y— 1/)- This last
expression shows that the velociyof the solitary wave is fixed by the material parameters,
unlike in the nondissipative case wh&fas undetermined [2]. Let us point out that, in order to
keepl” real, the solitary wave must be either superlumin¥us,maxvs, vi), or subluminousy <
min(vs,V;). Note that the superluminous velocity does not contraaycany means the special
theory of relativity [9] even if the velocity becomes infinite when the signal and idler waves
undergo identical losseg = ;. This can be easily explained by remembering that the vigloci
of this type of symbiotic solitary wave is determined by tinergy transfer rate, which depends
on the shape of the envelope of each component. The infinibeitseis here simply due to the
fact that the width of the solitary wave ! also becomes infinite foi = . However, we shall
see that this symmetrical solution is not the more genembmal it is not an attractor solution for
a large variety of parameter values. In section 4 we will enésnother self-similar structure for
the near-degenerate backward interaction which does Beept a divergence fog = y;. The
free wave parametéf fixes, in combination with the material parameters, the é@og# and the
width of the solitary wave. According to the first equation(4f, B is determined by the initial
pump amplitudedp, = Ep(x = —) = B+ 4. In practice, this means that, for a given material,
the solitary wave is completely determined by the pump sitgrat the input face of the crystal.
Note that if the losses are such tldat- § the solitary wave no longer exhibitsaphase change
[8], contrary to the nondissipative case [2].

Figure 2 shows a typical example of such a dissipative sytichsolitary wave in a quasi-
phase-matched backward three-wave interaction With= 1 um, As = 1.5 um, Aj = 3 um,
Nopm = 211/Kg = 0.233um, and with a pump field of amplitudg, = 0.25 MV/m (i.e., a pump
intensity ofl, = 10 kW/cn?) propagating in a quadratig(® material. It is obtained with the
following typical values of the parametersdlast = 20 pm/V,np = 2.162,ns = 2.142,n; = 2.098,

Vp = 1.349x 108 m/s, vs = 1.371x 1% m/s, v = 1.363x 10® m/s, and the loss coefficients
as = 2ys/Vs = 0.23 mt anda; = 2y /vi = 11.5m™L. Note that these parameters lead to a pulse
width of approximately 10 picoseconds. Therefore, withhspalse durations one can expect
that the zero pump loss approximatigm & 0) is valid in practice in the neighborhood of the
solitary wave structure. Indeed, if the characteristicoabson lengthvy/y, is much larger than
the pulse widthm—1, one can anticipate that the solitary wave undergoes aiiateshaping
during propagation so as to adapt locally its grofile to theomentially decaying pump intensity.
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Fig. 2: Envelopes of the dissipative three-wave solitatytsmn.

3 Sdf-pulsing in a backward doubly resonant OPO

Let us point out that the self-structuration process regubrackward interaction. The mecha-
nism is similar to the Hopf bifurcation appearing in the ctaurstreaming Brillouin cavity [10].
Numerical simulations with the more usual forward phaséetiag conditions only lead to the
steady-state regime. This shows that the distributed sedhature of the interaction plays a
fundamental role in the pulse generation process. Thisresisen is consistent with the con-
clusions of [23] where complex temporal pattern formatiotackward-phase-matched second
harmonic generation is studied and of our previous studii@tiegenerate backward OPO [28].
But in contrast to this last study, where no regular Hopf f@é&tion was found by starting from
the inhomogeneous stationary solutions, since above tasitbld the perturbations always grow
in time, we will show hereafter that in the non-degeneratektvard OPO a regular Hopf bi-
furcation takes place. Below a critical parameter value ifthomogeneous stationary solutions
are stable, and above it the bifurcation leads to an alsdessaif-structured solitary wave. Our
purpose in this section is to prove that in the non-degeaa@tfiguration, the temporal walk-
off, i.e. the group velocity delay between the signal and the idleresagnsures a regular Hopf
bifurcation and leads to a stable self-structuration otkmee-wave envelopes.

For the sake of simplicity, we will focus here on the nearategyate OPO regimes [18, 19].
However, our results are more general and can be extendkd folly non-degenerate case in a
similar way. We present here several dynamical behaviours.

We start from the dimensionless form of equations (1) whiebctibe the non-degenerate
backward OPO in the quasi-phase-matching decay interabiétween a pump and counter-
propagating signal and idler waves. We write them near tigenkracy with temporal walk-off
on only one field. This is not a restriction but it is more cameat for mathematical calculations.
The general case can be recovered by an appropriate changeadfies.

By introducing the following scalings:

A .
Up:\/l—dz—p Us = \/2(1_d)%7 Ui = \/2(1+d)%’ T:t/To, E:%’ L=
p P

a0 )

>~

whereAj is the incident c.w. pump, = 2/(ap%6\%) and/\ = vpT, are the characteristic time and



length and’ the cavity length, the dimensionless equations read:

(9 0 (92
0 9 02 .

o 9 » g )
(E_aﬁ—i_ui—i_lﬁiﬁﬂh = Upus

wherea =Vi/vp, Vp=Vs, Uj=YjTo, and ﬁj = Bj/To. The full description of the OPO
dynamics is obtained by taking into account, in additionqoations (6), the following boundary
conditions for the doubly resonant cavity

US(E = L,T) = Ps US(E :O,T), ui(E = L,T) = P ui(E :O,T), E 0 T V 1- d2 (7)

whereps = v/Rs andp; = /R, are the amplitude feedback coefficients. Note that we have in
troduced the new coefficientstld by settingd = (0s— i)/ 0p and assuming a near-degenerate
OPO configurationi,e., op ~ 0s+ 0j.

3.1 Inhomogeneous stationary solutions

Without optical attenuationyj = 0) and in the absence of dispersid) & 0), inhomogeneous
stationary solutiona?‘(f), j ={p,s,i} can be obtained from equations (6) by setéh@1 = 0.
The assumption of zero loss parametgfss not restrictive since the main dissipation in the
OPO cavity comes from the finite feedback. In this case, tHevitng conservation relations,
also known as Manley-Rowe relations [31], hold

‘ust|2 |ust‘2 :I:D2 (8)
‘ust|2 G‘U5t|2 :I:D2

For a doubly resonant OPO with the same feedback coeffimenhé signal and idler fields, we
haveDs = D; = D. This leads to two types of stationary solutiong): D? = [u$}|? — |ug'|? =

U3|? — ar|uf(? and (i) D? = |ug[? — |ul]? = ar|uf']? — U2,

In case(i), the following inhomogeneous stationary solutions araioled

U0
uf(é) = Dtanh? <arccotanl(1 ())+3_§>
D2
UStZ = C{Ustzz . (9)
) " sinR? (arccotanl(]upgo)) + %)

while in case(ii),

uzl(0) — Dtan( %) D\/1+“St2(°)
up(§) =D () = vaul(E) = (10)

D+u(Otan %) cog 9% ) + 5% sin( %)




whereu(0) = v1—d2.

Let us consider the situation of short enough OPO cavitiesder to avoid total depletion of the
pump inside the cavity and to benefit from the monotonous gftine singly pumped OPO; oth-
erwise the signal and idler fields oscillate and may returhgfahis intensity to the pump. This

Is achieved by consideringé < 1. Thus, to the leading order, the inhomogeneous stationary
solutions (10) are

2(0)
ust(o) i DZL Di/1+ up >
p D
BEOx———JT and @)= Vaw(§) =

Manley-Rowe relations (8) are usedét= 0 andé = L, together with the boundary conditions

to determine the integration constants. A second ordebedgeequation foD? is obtained
aD*+bD?—c=0 (12)

with

a=L?%/a, b=(1-R)(1+v1-d2L/va)?>-2V/1-d?L/va, c=(1-d?)[1-R(1+1-d?L/va)?

OnceD is determined from the above expressiog,0) and u;(0) can be calculated via the

Manley-Rowe relations (8).

Note that we will only consider the cagg) configuration; casé) can be analysed in a similar
way.

3.2 Stability analysis of the inhomogeneous stationary solutions

Followinf Ref.[18] let us first perform the linear stabilignalysis of the inhomogeneous station-
ary solutions (10) with respect to space-time-dependetrtations in the absence of dispersion
and optical attenuation, through

uj(&,7) = us'(&) +8u;(&)e”'®T where j=p,s,i.
It is more convenient to introduce the new variables

P(&)=up(&), S(&)=u(&), 1(§)=S(&)/Va=u(),

Z(&) =0up(&), Y(&)=0us(&), X(&)=ou(&),

whereP(&), S(¢) andl (&) stand for the inhomogeneous stationary solutionsz§d, Y (&) and

X(&) for the space-time-dependent perturbations. Thus, tealdired problem associated with
equations (6) reads

0Z Y

oYy . SZ

- Y = —PX—— 1
0.,E+|w NG (13)
oxX .

aﬁﬂwx = —PY-SZ

The stability analysis is performed by solving the perttidgaequations (13) with the inhomo-
geneous stationary solutions and by taking into accounbthumdary conditions for the cavity.
This gives rise to an eigenvalue problem with a dispersitation for the complex frequenay.
Following [10], [28] and [18] we will look for the stability fathe cavity modes with frequency
O(w) ~2nN/L [N integer and. being the dimensionless lengtp\ defined in (5)] yielding to
mode instability whenever(w) > 0. 9



3.2.1 Absence of walk-off

Let us first recall the situation in the absence of tempordkw#; the signal and idler waves
have the same group velocity leadingte= 1 in equations (13). We proceed as in the degenerate
case [28] and we obtain the following dispersion relation

a0+ bosin(wL) +cocogwL) =0 (14)

where the expressions af, by andc, are given in appendix A of Ref.[18]. It should be noted
that equation (14) generalizes the dispersion relatior28j for the degenerate case because it
applies to the doubly-resonant backward OPO. The instabilieach mode is determined from
equation (14) whenl(w) > 0. However, in the absence of walk-off, signal and idler ydyation
equations are decoupled from the pump perturbation equatia again it leads to unconditional
temporal instability. We recall that this instability lesath the generation of a localized structure
exhibiting unlimited amplification and compression [178[2whose collapse may be avoided
by including the natural chromatic dispersion which is présn equations (1).

Since the required grating pitch for first order QPM is extegnmsmall, we must increase
the c.w. pump intensity when using higher order gratingsrdiento get an actual experimen-
tal configuration. Reference [21] gives a table with the shodéd pump intensities and domain
periods for the degenerate backward OPO in four periodicailorstructures (KTP, LiNbg)
GaAs/AlAs). Recently [32], it has been reported an expeninaé first order QPM blue light
generation at 412.66 nm, in a 20 mm long surface-poled Tiffusked channel waveguide in
LINbO3 with c.w. pumping, using periodic domain structures as tshsrl um. The authors
have announced generation of 3.46 mW blue light for 70 mW oflaimental power. Based on
such recent progresses in the poling technology of Liplb@e can likely hope to experimentally
realize the backward OPO with the allowed pump power for swtgirating pitch. We will see
in section 5 that a periodic domain of 800 nm has been obtamadyulk PPKTP configuration
to achieve for the first time the pulsed mirrorless OPO. FangXe, if Agpm = 0.5 um we may
only use a c.w. pump power ten times highieg.(l,0 = 1 MW/cn¥) for the same cavity length
¢ = 3.7 cm, same characteristic timg~ 0.28 ns, and same low finespe= v/R= 0.46 as that
given in the previous example. If we consider a pulse pump/@HM of At = 28 ns instead of a
c.w. beam we can even realgjp = 100 MW/cn¥ without optical damage [33] (yielding = 28
ps and\ = 0.37 cm).

3.2.2 Finitetemporal walk-off

When taking into account a finite temporal walk-aft£ 1, equations (13) are more complicated
as the dynamics of the pump wave and the signal-idler paiw ismger decoupled. For the sake
of simplicity let us consideb = 0, so thatP = S= \/al =1/(1/v/1-d2+¢&/\/a). Note that

D = 0 requires that = 0 in equation (12). Sincd < 1, it is the second factor in the same
expression ot which vanishes leading to the relati®= 1/(1++/(1—d2L/\/a)?. The first-
order perturbed system becomes

d Z iw —1 -S Z
— Y = —I —iw —P Y
o <X) (S/a —P/a iw/a) <X>

This system of equations is numerically solved. Since tloegrelocity delay (temporal walk-
off) of the signal and idler pair is small, wiosetz Vi/Vp >~ 1+ €. We expand the solutions
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Fig. 3: Evolution of the imaginary part of the pulsatianas a function of the length close
to the first cavity mode (with Ref) ~ 277/L). The transition from stable to unstable states is
obtained for ¢t ~ 0.39.

up to the second order in the small parameterThe second order is necessary to match the
critical parameter value obtained at the Hopf bifurcati@mpby the numerical integration of
the normalized governing equations (6); the first order being insufficient to characterize the
bifurcation point.

Through the boundary conditions, we obtain the dispersatation:

W2y + [ — W2y —iw?yel + ooL] cogwL) + [i W Y3YL +iwyo — WPyl — 1} sin(wL)
F il il il
_ _ e +Bye +Coed“+D
8y (YoPo — y e '%b) {A° ° o O}
g2
24YE (YoPo —yLe '@k

) {Ae 2 1 Bie i 1.Cié“ Dy | = 0 (15)

withyo =1/v1—-d?, y. =Yo+L, po = Yo/YL is the amplitude feedback coefficient andtands
for the dimensionless lengthA. The expressions of the different coefficieAts Aq, Bo, B1, Co,
andCy, which are functions ofv = w +i, Yy, andy, are given in appendix B of Ref.[18]. First
we recover, as it should be, the dispersion relation (14)wéhe 0 andD = 0. However, the
non-degenerate backward OPO dispersion relation (15)stway, in contrast to the degenerate
case, there exist a stability domain of the inhomogeneai®sary solutions above threshold.
Moreover, these solutions undergo a Hopf bifurcation, evesr the degenerate configuration,
for a critical lenght of the cavity. Figure 3 shows a typiceample of a regular Hopf bifurcation
with the parameters set thb= 0.05 ande = 1/128. We have plotted(w) from equation (15)
against the propagation lendtmear the first cavity modé{(w) ~ 2m1/L). As can be seen from
the figure, Hopf bifurcation occurs &t;it ~ 0.39. ForL < Lt the inhomogeneous stationary
solutions are stable (see figure 4) whereds ¥ Lt the perturbations are amplified generating
a new oscillatory localized structure (see figures 5 and 6).

4 Nonlinear dynamics of the doubly resonant backward OPO

In the previous section we have carried out the stabilityymmaof the inhomogeneous stationary

solutions of the doubly resonant backward OPO near the @egtnconfiguration. This behavior

may be generalized to the fully non-degenerate backward pie@ded that a finite temporal
11
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Fig. 5: Doubly resonant backward OPO: temporal oscillategime forL. = 0.4 above critical
length.

walk-off between the counter-propagating signal and idlaves is present . In this section we
proceed as follows:

(i) we numerically check the previous analytical result in teardegenerate OPO regime for
D=0;

(i) we show that a dynamically critical bifurcation fé&r # 0 can be obtained with the same
feedback parameter valugs; & pj) for both signal and idler waves;

(i) we numerically investigate the self-pulsing regime for doaibly resonant backward OPO
with different feedback parameter valugs ¢ p;) including perturbative dispersion.

To this end we have numerically integrated equations (6) tie boundary conditions (7).
In order to better compare the dynamical behavior with thalydical one, we first neglect
dispersion B; = 0, j = p,s,i) which is only a perturbative effect in the non-degeneraisec
but we include a small dissipatiompj( = 10-2). In order to dynamically investigate the near-
degenerate OPO regime for= 0, we start froiréthe approximate stationary solutions (1t &
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Fig. 7: Doubly resonant backward OPO: pulse maximum angsitts. number of round
trips t/t; (wheret, = ¢/vs is the round-trip time) at the output of the backward OPO tgavi
exhibiting stable saturation at a constant amplitude.

group velocity difference (temporal walk-offys — vi| /vp = 1/128. In the near-degenerate OPO
case, the feedbadk= |ps|? = |pi|? is related to the dimensionless lengtithrough the relation
u3(L) — R(L) = D?, which is now simply reduced t8 = [1+L+/(1—d?)/a] 2. Therefore,
we may investigate the near-degenerate OPO dynamics byngahge control parametérfrom
0.25 to 05. As expected from the stability analysis, we now find a ragtlopf bifurcation of
the stationary state towards a time-dependent oscillatatg for a critical lengthi; between
0.35 and @4, in contrast to the full degenerate case [28] or to the degenerate cade = 0

in the absence of temporal walk-off[ section 3.2.1], where no Hopf bifurcation exists. The
stationary spatial profiles are shown in figure 4 after 163fi#hd trips forL = 0.35. This sta-
tionary state bifurcates towards a stable oscillatorymegas illustrated in Fig. 5 foc = 0.4.
For a larger lengtlh. (and correspondingly smaller feedbe&kwe obtain pulsed regimes as that
shown in figure 6 whose stability is ensured by the finite terapwalk-off too, without taking
into account any dispersion effect(Fig.7).
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Fig. 8: Doubly resonant backward OPO: temporal evolution pfilse train at the output of
the OPO cavity. Pair of two consecutive pulses at roundtifip= 28608 forL = 0.5 and
ps= p; = 0.81. The amplitude is measured|mp7o|/\/§ units.

The dynamical equations (6) allow us to look further £ O, while the control parameter
L (sinceRis only a function ofK for D = 0) splits now into two control parameteltsand R
related throughug(L) — RW§(L) = D2. For L = 0.25 we obtain the Hopf bifurcation between

vR=0.80 and 081, while forL = 0.5 it happens betweef/R = 0.81 and 082, the pulsed
regimes corresponding to lower feedback favors the loatdim of the structure [11]. For a
typical pulsed regime dt = 0.5 andyv/R = 0.81, we show in figure 7 the saturation of the pulse
maximum amplitude with time when starting from the statiyrstate, and in figure 8 a pair of
two consecutive pulses in the asymptotic stable state (itih @t is measured ity = ¢/vs units).

As can be seen from figure 9 the solitary structure is now campof two embedded pulses of
nearly identical amplitudes moving together, the constpatial shift between them corresponds
to the temporal walk-off (or different group velocities).nd trapping between the signal and
idler envelopes yields the new self-similar structure mg\at a characteristic velocity, which is
composed of the couple of embedded pulses maintainingarsgpatial shift between them in
spite of the different velocities of both waves.

Let us consider a physical application. In comparison totyipe | (e-e) polarization inter-
action in LINbG; proposed in [28] for the full-degenerate case, we may novgicen a type I
(e-0-e) polarization interaction in order to move away frthma degeneracy and to obtain a fi-
nite group velocity delay (or temporal walk-off) betweem tignal and the idler waves. For the
same quadratig? material, same pump wave (e-polarizedpgt= 0.775 um, the same idler
wave (e-polarized) atj = 1.55 um, but now a signal wave (o-polarized)/at= 1.55 um hav-
ing a different refractive index, the group velocity disgien ensures a finite temporal walk-off
between both backward waves. For a first order QPM in Liglbd& grating pitch is as small
as\gpm = 21/Kg = 0.177 um. For a c.w. pump fiel&E, = 0.725 MV/m (.e., a pump in-
tensity ofl, = 100 kW/cnt) propagating in this configuration we have the followingues of
the parameters [33Hett = 6 pm/V, np = 2.181,ng = 2.212,n; = 2.140,vp, = 1.317x 10° m/s,
Vs =1.323x 10 m/s,v; = 1.372x 108 m/s,yp = 4.6 x 1B s1, andys =y =3.1x 10®s~L. The
nonlinear characteristic time yields = (0pAp/2) "1 ~ 0.94 ns, and the nonlinear characteristic
length/A = vpTp = 12 cm. We have taken cavity lengths running from 3 ¢m=(0.25) to 6 cm
(L = 0.5) and we obtain a temporal width of the solitary pulses ofaifter of 100 ps.
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Fig. 9: Doubly resonant backward OPO: spatial profiles ferttiree wave amplitudes at round
trip 28672.

Critical bifurcation parameters for doubly resonant baatdvOPOs with different nonlin-
ear coupling coefficients; and different feedback parameter valugs+# pi;) may be obtained
through the general dynamical equations (1) with boundangitions (7). Figure 10 displays a
typical self-pulsing regime foos/ o, = 0.675,0i/0p = 0.350,L = 1, Bj = 1075, j = {p,s,i},
ps= 0.9 andp; = 0.6. As can be seen from this figure the predicted stability efd#lf-pulsing
regime is not affected by the presence of chromatic dispersi

5 Backward coherent pulse from incoherently pumped mirrorless OPO

The numerical dynamics of a c.w. pumped singly backward GfR@erimentally adapted for an
integrated cavity or IOPO (see for exemple [34, 35, 36, Fiher for counter-propagating sig-
nal or for counter-propagating idler does not generatewawak solitary structures. Even for high
OPO finesses the laser output is always stationary. Notehtsatioes not contradict the exis-
tence of backward solitons in singly counter-propagatimgfigurations if the backward wave is
initially localized [2] [3] [27]. It simply means that sucloktary waves cannot be spontaneously
generated from quantum noise and a c.w. pump. Neverth&lesshall see in this section that
the singly backward OPO configuration is interesting fromthar point of view, namely the
generation of a coherent backward pulse from an incohenemtpppulse. In this section we
will show that recent experimental demonstration of a barkMmirrorless optical parametric
oscillator (BMOPO) with a pump pulse in the quasi-phaseemad (QPM) periodic polarized
KTIOPOy crystal [24, 25, 26] opens the way for achieving ultra-cenéoutput from a highly
incoherent pump pulse. In a first time we consider a cohgr@hthse modulated pump because
in the experiments the broadening of the pump is done via areahchirp [25, 26].
The pump phase modulations are transferred to the co-patipggvave moving at nearby the
same group velocity of the pump through ttenvection-induced phase-locking mechani2wj
[39] [40] [42]. For the highly incoherent pump we present tase of perfect group-velocity
matching of the pump and the co-propagating idler wave, viriay be achieved in a type | OPO
for a pump at 1060 um, a counterpropagating signal a616 um and an idler at 382 um. We
will show that the degree of coherence of the backward sifiglal turns to be more than three
orders of magnitude greater than that of the incoherent puitip approximately the same pump
power and crystal length as in the experiments.
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Fig. 10: Doubly resonant backward OPO: temporal amplitugiess output of the backward
OPO in the stable asymptotic pulsed regime measured inycamiind tripst/t, for L = 1,
ps=0.90 pi = 0.60 andB; = 1075, j = p,s,i.

Parametric interaction of counterpropagating opticalegavas the unique property of auto-
matically establishing distributed feedback without exé cavity mirrors; the mirrorless opti-
cal parametric oscillator has been the object of severdies31] [43] [21] [44]. The recent
BMOPO experiments exhibit useful spectral properties aavebeen performed in a configura-
tion of type | atAp, = 0.8616 um, As = 1.2179 um andA; = 2.9457 um with a grating period
of Agpm = 0.8 um. This singly backward configuration overcomes the extighosy sub-um
grating periodicity required for the doubly backward ORD ¢ections 3 and 4).

We have already proposed two experimental configuratiomgpe Il singly resonant KTP
IOPO’s [40] and in a type feeé singly resonant Ti:LiNb@ IOPO [42], to show the locking
mechanism in standard high finesse forward propagating ©f®@ted with a c.w. pump. We
will also show in this section the feasibility of coherentkaard generation from an incoherent
pump pulse in a mirrorless BMOPO configuration feeded withilagpump.

5.1 MOPO threshold and dynamical equations

A theoretical model yields an estimate of the MOPO thresHotdcounterpropagating plane
waves [21], which is reached when the spatial gain excegds

| socnpnsni)\s)\i
pth= "5 32
wheregy is the permittivity of free space, the interaction lengthde ¢ the effective quadratic

nonlinear coefficient, andk;, Asj the respective signal and idler refractive index and wangle
For example, for a PPKTP crystal dfs = 8 pm/V we have:

(16)

f=1lcm = Ipn=0.64 GW/cn?

(=65mm = lgn=108 GW/cn?



The momentum mismatch for the optical parametric generatiocess for the singly backward
QPM configuration yields now

Kp = ks F ki +Kg, (17)

where(+ks, —k;) stands for backward idler propagation greks, +k;) for backward signal prop-
agation ff. figure 1 respectively (b) and (c)], whith a resulting largétNpgrating period as that
of the doubly backward OPO configuration. The schematicorediagram and periodically
domain-inverted ferroelectric crystal of the counter@ggting interaction are shown in figure 1,
and equations (1) become:

(G +Vp Ox+ Yp+1Bpdkt) Ap = — OpAsA
(Gt £ Vs Ox+ Vs +1BsOt) As = asApAi* (18)
(G FVi Ox+ Y +iBict) A = GiAAS.

with respectively(+vs, —Vv;) for the backward idler propagation afidvs, +V;) for the backward
signal propagation.

The input parameters in the model are the properties of thénear medium and the pump
amplitude at the input facéd,(x = 0,t), generating outputs oky(x = L,t), and either for the
backward idler configuration [Fig.1(bAs(x = L,t) andA;j(x = 0,t) or for the backward sig-
nal configuration [Fig.1(c)As(x = 0,t) and Aj(x = L,t), wherex = 0 andx = L denote the
positions of the input and output faces with respect to thepbeam. For the numerical treat-
ment of the coupled wave equations for counter-propagatiegactions, the standard split-step
one-directional integration algorithm, usually employed co-propagating interactions, is not
suitable due to the fact that Eqs.(19) represent a probldéimtwo simultaneous, but spatially
separate, boundary conditions, i.e., the pump wave andpr@pagating wave (either the signal
or the idler) are initially given at one end of the medium, \elihe backward wave (either the idler
or the signal) is input from the other end of the medium. Fahsaroblems, there are two main
appropriate numerical methods: the shooting or trajeesomethod and the relaxation method.
For the problem at hand, the trajectories method is moressoant, whereby we eventually want
to simulate a counterpropagating three-wave mixing podesen by a pump field with a quasi-
random phase distribution. The trajectories method wighue of a Runge-Kutta algorithm has
been extensively used for the treatment of stimulatedd&nil back-scattering problems [7, 8].
The linewidth narrowing experimentally studied in Briliadasers [45] has been simulated in a
Brillouin fiber-ring laser with the help of this method [9]n that case, it is the acoustic wave
that absorbs the phase fluctuations of the pump and allowsaitievard Stokes wave to increase
its coherence. In order to numerically integrate the n@alrcounterpropagation dynamics in a
MOPO in the presence of group-velocity dispersion (GVD)ichhntroduces second-order time
derivatives, we have developed a new numerical scheme whbitibines the trajectories method
with fast Fourier transformation (FFT) to account for the B¥ffects in the spectral domain
[47].

The scheme accurately conserves the number of photons andahley-Rowe invariants
of Egs.(19). As in the standard split-step approach, théugwea of Eqgs.(19) is for each time
step (typically 1 fs long) first treated by linear propagataj the fields in the Fourier domain,
thereby accounting for the GVD effects and the group-vé&jatifference between the pump and
the co-propagating wave. The originality with respect te standard split-step schemes with
multiply-repeated FFT and inverse FFT procedures whererexqtial spectral cut-off filtering
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Fig. 11: Scheme for the Runge-Kutta-FFT numerical modetifelbackward mirrorless OPO.

is introduced at the edges of the spectrum, is that we heredunte smoothed exponentially-
decreasing prolongations of the outgoing complex ampisugver a length d) in the x-space
of the MOPO crystal of length L in order to render a periodiolpem (cf. Fig. 11). Thus the
FFT is correctly performed in the extended interaction dionod length M = L + 2d without
arbitrary cut-offs. Then, after inverse FFT, the backwaotilimear interaction with spatially
separate boundary conditions is treated by using the taajes method. Integration over the
trajectories in the nonlinear step of the algorithm wasqrened by using a 4th -order fixed-step
Runge-Kutta method. The space- time is discretized in 2Mtpavith N = 16 to 18, which,
for instance, when N = 16 allows for a total bandwidth of 35 Tith the resolution of 0.5
GHz. The algorithm is seeded by an appropriate model pumg éetering from one side of
the nonlinear crystal and homogeneously spatially-distad signal and idler fields with powers
corresponding to a half photon per mode and with random ghaspresenting quantum noise.
During the field evolution, we checked that the Manley-Romeriants were preserved to the
accuracy of better than 18, even after numerically evolving Egs.(19) ovex @(° time steps.
The results obtained with our method were compared withetfai®ained using a 4th -order
finite-difference scheme. For the chirped input pump pulgeere differentiability is ensured,
the same quantitative results are obtained with both methbige latter scheme, however, is not
adapted for incoherent pulses.

5.2 BMOPO | actual experimental realization
The QPM three-wave resonant coupling in the experimentaéaed backward MOPO of type |
in a bulk PPKTP crystal [24, 25, 26] correspond to the follogvparameters [46]:
Ap = 0.8616um; ny = 1.8400; vp/c = 0.5269; B, , = 0.2473 p$/m
As=1.2179um; ns = 1.8243;vs/c = 0.5372; B = 0.1343 p$/m
Ai = 2.9457um; n; = 1.7806; vi/c = 0.5334; B, ; = —0.6413 p§/m

e Aopw= [~ ™11 g 0100
Q Ao As A '

Av/vs = |Vp —Vs|/vs = 0.0195
and the counter-propagation interaction corresponds todig(b).
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Let us show the dynamical behaviours for a BMOPO of 6.5 mmtlepgmped with a 54 ps
pulse duration of, = 2.34 GW/cn? maximum intensity. BMOPO operation in a PPKTP crystal
of period/A = 800 nm is simulated with a linearly-chirped pump pulse witeatral wavelength
of 861.7 nm. The input pump amplitude is chosen to be Gaussidmiven by

Ap(x=0,t) = Adexpligp(t)] exp{—2In 2[(t —to) /Ato]® (19)

The spectral and temporal shapes of the pulse are deterivyrtbé phase modulatiog,(t) and
the FWHM temporal lengthty. With a linear chirp, the phase modulation is quadraticnmeti
Pp(t) = a-t?, where the value of the chirp parameter= —0.244 rad/p$is chosen to obtain the
chirp rate ofdw,/dt = —0.49 rad/p$. With this chirp, a temporal intensity FWHM ditg = 52
ps gives a FWHM spectral width of 4.04 THz.
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Fig. 12: BMOPO I: Temporal field amplitude output of pump &@ynal (b) and counterprop-
agating idler (c) waves in the achieved experimental cordigon [26], for a pump of 52 ps
temporal duration and 4.04 THz chirped pump bandwidth.
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Fig. 13: (a) Undepleted input and depleted output pump sp@cof Avy = 4.04 THz, (b)
the forward signal spectrum withv; = 1.78 THz and (c) the backward idler spectrum with
Avp =51 GHz.

As the pump pulse enters the crystal, a forward signal ancckwead idler are generated
with similar spectral characteristics as those obtainéderexperiment [26]. The temporal pump
output amplitude and output co-propagating signal andwadkidler amplitudes are illustrated
in Fig 12. The pump and the parametric spectra at the pumpsdityeof 2.34 GW/cm are
illustrated in Fig 13, showing a backward idler with a spalcvidth of Av; = 51 GHz, which is
narrow compared to the widths of the pumy, = 4.04 THz, and the forward signalvs = 1.78
THz. By integrating the spectra, it is found that the coneersnto parametric waves here is
Is(L)/15(0) = 0.036 for the signal andi(0)/1,(0) = 0.014 for the idler. As expected from the
convection-induced phase-locking mechanism, the phaskilaitton in the pump is essentially
transferred to the forward signal, while the phase of thé&Wwacd idler is approximately constant.
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Fig. 14: Pump depletion, % Ip(L)/Ip(0), and conversion efficiencies for the signal,
Is(L)/15(0), and for the idler);(0)/1,(0), in the MOPO as function of the pump bandwidth
for linearly-chirped pulses at the pump intensityl pf= 2.57 GWr/cnt. The three lower curves
correspond to the experimental conditio,— vp|/vs = 0.0195, which clearly show a decrease
in the efficiency as the pump bandwidth increases. The uppgeshows that the pump de-
pletion is essentially independent of the pump bandwidtanmwg — v, = 0.

By running simulations with pump pulses of different spaktvidths, it is observed that the
conversion efficiency decreases as the pump spectrum m®adesn the group-velocity differ-
ence between the forward wave and the pump is the same asenpbements. This behavior
is due to the nonzero convective velodjity — vs| of the co-moving waves, i.e. a finite temporal
walk-off, which makes the spectral components in the sigmale past those in the pump. On
the other hand, for perfect group-velocity matching=¢ vp = 0), there is no temporal walk-off
and the conversion efficiency is constant as the pump spediroadens, since the pump and
the signal move at the same velocity. The pump depletienlLL)/15(0), and the conversion
efficiencies into signalls(L)/15(0), and idler,l;(0)/1p(0), were systematically investigated for
linearly-chirped Gaussian pump pulses where the tempatséghape was held constant with a
FWHM length of 52 ps and a peak intensity of 2.57 GW#cifihe spectral width was controlled
by varying the chirp parametes from 0 to -0.30 rad/p5 corresponding to a FWHM bandwidth
from the transform limit up to about 5 THz. In Fig. 14, the #alewer curves show how the
pump depletion and the conversion efficiency into signalidiet decrease as the pump band-
width increases. Each point on the curves corresponds taa waue over a set of simulations
with random initial phases, i.e. the phase modulation ismivy @(t) = ast?+ @, whereg is a
random number. The efficiency is slightly different for eativice ofgy and the value typically
varies within the vertical bar of the plus signs associatedach point. At some points, there
IS an apparent increase in the efficiency with an increasetgpandwidth, which is due to the
limited set of random initial phas€a = 6) used for the averaging. However, the main behavior
is that a broader pump input spectrum decreases the effycodtibe BMOPO process when the
group-velocities of the forward wave and the pump are notheat. The upper curve in Fig. 14
shows the pump depletion when the group velocities of thepand the forward propagating
wave are matchedy = vs. This gives a direct comparison between the two cases andsghat
the nonlinear interactions in a BMOPO become more efficietite case of exact group-velocity
matching. Furthermore, the pump depletion (or the conwarsificiency) then also becomes
rather insensitive to the spectral quality of the pump, dute absence of temporal walk-off.
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5.3 Incoherent pump pulse

One question that arises is if a BMOPO can operate when itngped with incoherent pulses.
It is not obvious that such pulses can generate a spectrathpw backward-propagating para-
metric wave which is a characteristic feature of a BMOPO him ¢onventional co-propagating
configuration, the generation of a temporally coherent weaa a temporally incoherent pump
has been numerically studied for i.e. parametric down-ewsion [48] and has been experi-
mentally verified for second-harmonic generation [49]. tdey to answer the question in the
counterpropagating BMOPO configuration, we used a pumpepulth randomly distributed
phase variations, characterized by an exponential ctioelaunction,

(Ap(x=0,t' +1)A%(x=0,t)) = |Ap|* exp(—[t|/Tc), (20)

wherete = 1/mAvy, is the correlation time. More precisely, we use a numericaéme to gen-
erate a Gaussian spectrum with randomly-distributed ghase a small random variation in the
amplitude, which simulates a real laser output where theliardp exhibits small fluctuations
over its Gaussian shape. In order to obtain a well-behaveg<sn input, we impose a Gaus-
sian profile on the Fourier spectrum and the pump amplitudnisred as the inverse Fourier
transform.

As a result of the phase-locking mechanism, the transfehag@ modulation to the forward
wave becomes more efficient when the group velocities of timegoand the forward parametric
wave are exactly matched [39], which was already proposed.fa pumped forward OPO'’s
[40] [42]. This was shown in Fig. 14. Farpolarized waves in PPKTP, matching of the group
velocities can be achieved by designing thslexperiment&o:hle pump and the forward wave



are on different sides of the maximum on the group-veloaitywe: the singly backward wave
may be now the signal, the co-propagating pump and idler svaaisfyingvp = v;.

However, the combination of exact group-velocity matchamgl quasi-phase matching re-
quires either a very short QPM period, which is hard to faigcor that the pump wavelength
is substantially longer, which increases the BMOPO thriesshOne example of a set of wave-
lengths that fulfill group-velocity matching are

Ap = 1.060Qum; n, = 1.8298; vp/c = 0.5341; B, = 0.1752 p$/m
As = 1.6764um; ns= 1.8129;vs/c = 0.5405; Bs = 0.0290 pg/m
Ai = 2.8826um; nj = 1.7826; v /c = 0.5341; i = —0.5784 p$/m

where n Ne M-_1
Nopm = [+ +—=— =]~ =0.4567um
oPu =[5 0 A H

E/ _ |Vp —Vi -0
Vp Vp

We perform the numerical dynamics from equations (2) withrs(+Vv;). Around the point
of group-velocity matching, the BMOPO becomes more efficeard the spectral quality of the
pump can be reduced without a large effect on the converdimieacy. This is illustrated by
running a simulation with a stochastic pump with a FWHM tenapéength of 50 ps and where
the spectral width is increased to 23 THz. At the pump intgnsii 3.5 GW/cnf, the results
are shown in Fig. 15 and Fig. 16. The BMOPO starts oscillaaiftgrt —tos = 60 ps and the
conversion efficiencies arg(0)/1,(0) = 0.025 for the signal and(L)/I(0) = 0.015 for the
idler. Due to the group-velocity matching, the bandwidthha backward signal is only 23 GHz.
This value is significantly smaller than the bandwidth ofkvaard wave in Fig. 16¢, even though
the pump bandwidth here has been increased by almost a ¢détoin the case of group-velocity
matching under the stated operational conditions, thetspetidth of the backward-generated
wave is reduced by a factor of 1000 compared to the width ofrthat pump spectrum. The
random phase fluctuations in the pump are efficiently traredeto the forward idler, which
obtains a spectral width of 10 THz.

For the experimental verification of BMOPO operation withianoherent pump, a laser
source is required that generates sub-ns pulses of enamgesd 100uJ, at the same time as
the pulses are incoherent. Good candidates for such a punnpesare figure-eight fiber lasers
operating in noise-like pulse mode with pulse lengths atiduns [50], which could be amplified
to the required energies in fiber amplifiers.

5.4 Convection-induced phase-locking mechanism

The coherent properties of the parametric three-wavedaotien driven from an incoherent pump
has been the object of an analytical study where the auation functions are mathematically
evaluated in the presence of dispersion [39] and the coivettduced phase-locking mecha-
nism has been proposed for forward OPO’s configurations[B#®]] Let us present here some
simple analytical arguments enlighting the convectiathited phase-locking mechanism from
equations (2) for the singly backward signal configuraticesg (c) of figure 1], Let us assume
the dispersioless casgj(= 0), 0s = 0; = 0p/2 = 0, and the linear undepleted pump limit with
Yp=0.
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The incoherent pump may be modeled by a stationary singlebta stochastic functioAp(z)

of autocorrelation function A J\AE (o
Z_ *

B2 _ el

|Ap(0)] Ac

with a coherence lengtii; in the frame traveling at its group velocivy,

Z=X—Vpt,

the correlation time being. ~ 1/mmAvp, whereAvy, is the incoherent (broad)-bandwidth of the
pump spectrum. The role of convection in the coherence aj¢herated wavess andA; may be
analyzed by integrating the third equation (19) along theratteristic of the idler wave. Then,
the second equation (19) yields

t /!
DA = 02 /0 e WA DAL (Z)A(X, 1) dt

where
D=20/0t—Vvs0/0x+ ¥s

Z=z—(Vi—Vvp)(t—t); X=x—vi(t—t"

If vi =vp we haveZ =z and we can extract the pump amplitudes from the integral
Ap(DAL(Z) = |Ap(2)]?,

showing that the signal dynamics is independent of the pumaggfluctuation®,(z).

This means that the rapid random phase fluctuations of thgppglomot affect the signal
which undergoes slow phase variations and thus evolvegdsveahighly coherent state during
its parametric amplification.

Let us now consider the idler wave from the third equation (2)

Axt)=0 /O t e NEAL(Z)AL(X ) d.

Whenv; = v, we have 7 =z and Ap(Z) becomes independent dfwhich leads to an idler
amplitudeA; proportional to the pump amplituds, i.e., the idler field absorbs the noise of the
co-moving pump field. Note that thpump-idler phase-locking mechanistoes not require an
exact matching of the group-velocitigs= vy. Itis indeed sufficient that

IVi = Vp| < AcYf = Vptey,

to remove the pump field from the integral so that the idledffellows the pump fluctuations.
This phase-locking mechanisms may be demonstarted irstieakperimental configurations as
studied in details in Ref.[39].

6 Summary

We have shown by a stability analysis of the non-degeneratkviard OPO where both the
signal and idler fields propagate backward with respect @odilection of the pump field that
the inhomogeneous stationary solutions regularly bifieroawards a time-dependent oscillatory

solution contrarily to the degenerate case.2 ?\’Ne obtain alaediopf bifurcation for a critical



interaction length.cit, which is finite only if a finite group velocity delay betwedretsignal and
the idler waves is taken into account.

This result has been confirmed by numerical simulations efrthnlinear dynamic equations,
and an excellent agreement has been obtained near the dgec@nfiguration. Abovéi
self-structuration of symbiotic backward solitary wavesf some ps temporal duration - takes
place. The finite temporal walk-off between the backscattseignal and idler waves also ensures
the stability of the solitary waves. These short stable afeerent pulses could be very inter-
esting for optical telecommunication. However, the susbéy inversion grating of suljzm
period required for QPM in the nonlinear quadratic matsrisistill a technological challenge.

We have also considered mirrorless optical parametridlason in a PPKTP crystal, first by
using linearly-chirped pump pulses with bandwidths of ug tHz in order to simulate recent
experiments, and second by using highly incoherent pumgepulp to 23 THz bandwidth. It
has been shown that the spectral bandwidth of the backwerdrgted pulse is more than two
orders of magnitude narrower than that of the pump. In a géséuation, the gain in temporal
coherence of the backward-generated wave is limited by ihepgvelocity mismatch between
the pump and the forward-generated wave. This mismatchialge the conversion efficiency in
the BMOPO. Numerically, we proved that the same conclusimasalid regardless of the nature
of the phase modulation present in the pump wave by simglaperation of a BMOPO pumped
by waves containing stochastic phase distributions. Maeave propose a generic BMOPO
configuration where exact group-velocity matching can daesed, thereby maximizing the
gain in temporal coherence in the backward-propagatingevaana making the efficiency of the
device insensitive to the nature of the phase modulatiocsgotan the pump wave. This opens up
an intriguing possibility for narrowband generation in MO$pumped with incoherent beams,
e.g. derived from several lasers. Albeit the realizatiosuwth a MOPO requires QPM crystals
which are slightly beyond the state-of-the-art of the aurpoling technology, the requirements
are not unrealistic and can be met with the continuing dgrakmt in fabrication techniques of
submicrometer-periodicity nonlinear crystals. Improvabrication techniques could also lead
to the possibility of poling longer crystals. As the threshmmtensity scales inversely to the
square of the length of the structured region, an increasei®fength from 6.5 mm to 18 mm
results in a threshold intensity around 100 MWfcavhich is comparable to that in conventional
co-propagating PPKTP OPOs.
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