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Abstract

Accurate predictions of scalar fields advected by a turbulent flow is needed for various industrial

and geophysical applications. In the framework of large-eddy simulation (LES), a subgrid-scale

(SGS) model for the subgrid-scale scalar flux has to be used. The gradient model, which is derived

from a Taylor series expansions of the filtering operation is a well-known approach to model SGS

scalar fluxes. This model is known to lead to high correlation level with the SGS scalar flux.

However, this type of model can not be used in practical LES because it does not lead to enough

global scalar variance transfer from the large to the small scales. In this work, a regularization of

the gradient model is proposed based on a physical interpretation of this model. The impact of the

resolved velocity field on the resolved scalar gradient is decomposed into compressional, stretching

and rotational effects. It is shown that rotational effect is not associated with transfers of variance

across scales. Conversely, the compressional effect is shown to lead to forward transfer, whereas the

stretching effect leads to back-scatter of scalar variance. The proposed regularization is to neglect

the stretching effect in the model formulation. The accuracy of this regularized gradient model is

tested in comparison with direct numerical simulations (DNS) and compared with other classic

SGS models. The accuracy of the regularized gradient model is evaluated in term of structural

and functional performances, i.e. the model ability to locally approximate the SGS unknown term

and to reproduce its global effect on tracer variance, respectively. It is found that the regularized

gradient model associated with a dynamic procedure exhibits good performances in comparison

with the standard dynamic eddy diffusivity model and the standard gradient model. In particular,

the dynamic regularized gradient model provides a better prediction of scalar variance transfers

than the standard gradient model. The dynamic regularized gradient model is then evaluated in a

series of large-eddy simulations. This shows a substantial improvement for various scalar statistics

predictions.
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I. INTRODUCTION

Various applications need to solve a scalar equation simultaneously with the governing

flow equations. In these applications, the scalar can represent the concentration of chemical

species or the temperature field in mixing or heat transfer studies. Due to the large range

of motion scales in turbulent flows, the direct numerical simulation of realistic applications

is not yet feasible because of the high computational cost. To overcome this limitation, the

large-eddy simulation technique proposes to explicitly solve only the large scales of the flow

and to model the impact of the smallest scales on the large scales. Large eddy simulation

methods encompass a broad range of applications, including turbulent combustion1 or geo-

physical fluids and in particular the simulation of ocean mesoscale flows2. In LES methods, a

separation between resolved large scales and modeled small scales is performed by a filtering

operation

f̄(!x, t) =

∫
f(!y, t)G(!x− !y)d!y, (1)

to obtain the large-scale resolved field, f̄ , from the turbulent field, f , with G the filter

kernel. This filtering operation applied to the flow equations leads to subgrid-scale (SGS)

terms which have to be modeled. While many SGS models have been designed to close the

filtered Navier-Stokes equations for incompressible flows3–5, the corresponding problem for

the scalar equation has not yet been fully addressed. The filtered transport equation for a

passive scalar, Z, in incompressible flow is given by

∂Z̄

∂t
+ ūi

∂Z̄

∂xi
= D

∂2Z̄

∂x2
i

− ∂Ti

∂xi
(2)

where Ti = uiZ − ūiZ̄ is the SGS scalar flux, which has to be modeled in the context of

LES simulations. Two major strategies exist for developing SGS models5: functional and

structural strategies. The functional modeling strategy considers the action of the subgrid

terms on the transported quantity and not the unknown term itself. It can introduce a

dissipative term, for example, that has a similar effect but not necessarily the same spatial

structure. Conversely, the structural modeling strategy consists of using the best local

approximation of the unknown SGS term by constructing it from the known structure of

small-scales. In the LES of passive scalar context, a typical functional model is to introduce

an eddy diffusivity, DT , to model the SGS scalar flux as Ti = DT∂Z̄/∂xi. In the simplest

models, the eddy diffusivity is defined from the eddy viscosity, νT , through a constant eddy
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Schmidt number6, ScT = νT/DT ≈ 0.6. An important limitation of such a model if that ScT

is set to a constant while it should be strongly affected by the slope of the kinetic energy

spectrum7. Models have been proposed to take into account the influence of the molecular

Schmidt number and of the local turbulence level of the flow. For example, corrections have

been proposed based on the eddy-damped quasi normal Markovian (EDQNM) theory8 or by

using a dynamical procedure9. Thus, a dynamic model for DT is now often used, similarly

to the dynamic Smagorinsky model of the eddy viscosity10. This dynamic eddy diffusivity

model (noted DEDM) is defined as9

TDEDM
i = DT

∂Z̄

∂xi
= C∆̄

2|S̄|
∂Z̄

∂xi
, (3)

where ∆̄ is the filter width and |S̄| =
(
2S̄ijS̄ij

)1/2
, with S̄ij = 1/2 (∂ūi/∂xj + ∂ūj∂xi), the

filtered strain rate tensor. The model coefficient C is determined dynamically using the

Germano identity10,11. Moin et al.9 show that the dynamic procedure greatly improves

the results of the simulations and leads to a non constant value of ScT . However, even

if a correct dissipation level is modeled, DEDM is generally known to exhibit weak local

correlations between the model and the SGS terms12. This behavior is typical of models

derived with the functional strategy based on an eddy diffusivity model. Indeed, these

models assume an alignment between the resolved scalar gradient and the SGS scalar flux,

which is not observed13. To correct this behavior, various approach can be proposed based

on the definition of a tensor-eddy diffusivity from the SGS stress tensor14, a scale-similarity

assumption15,16 or a Taylor series expansion of the filtering operation17.

Models defined from a Taylor series expansion of the filtering operation are typical struc-

tural models, often called gradient models12. In the case of the SGS scalar flux, this model

writes as,

TGM
i =

∆̄
2

12

∂ūi

∂xj

∂Z̄

∂xj
. (4)

A similar model has also been introduced in the context of two dimensional geophysical

fluid dynamics18. This type of model is known to provide a good local approximation of

the unknown term with a high correlation between the unknown term and the model in

a priori tests. However, this type of model is known to be unstable due to an incorrect

prediction of the dissipation19. Thus, in a recent work, Lu and Porté-Agel20 propose a new

SGS scalar flux model based on the gradient model, with a control of the magnitude of the

SGS scalar flux. However, a clipping procedure is still needed to ensures a non-negative
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dissipation. Another popular solution to overcome the limitations of both functional and

structural models is to use a mixed model. Thus, the concept of the Clark model consists in

adding a gradient model to an eddy diffusivity model to obtain both the relatively accurate

representation of the SGS term by the gradient model, and a proper dissipation provided by

the eddy diffusivity model12. A dynamic procedure can then be applied to define a dynamic

Clark model21,22.

In this paper, we propose to explore another way to stabilize the gradient model. Thus,

we develop a model combining the advantage of both approaches: structural and functional

models. The approach is based on a physical interpretation of the terms involved in the

gradient model. It is shown that only the stretching effects of the resolved velocity field on

the resolved scalar gradient lead to scalar variance transfer from small to the large scales

(backscatter effect). By neglecting the stretching effects, a regularization of the gradient

model is then proposed. The proposed regularization is evaluated with both a priori tests

(i.e. in comparison with SGS terms evaluated from a DNS database) and a posteriori tests

(i.e. with fully prognostic large eddy simulations). From a priori tests, the regularized gradi-

ent model associated with a dynamic procedure is shown to exhibit very good performances.

This dynamic regularized gradient model is then tested in a posteriori (LES) tests. From

the LES performed, it is shown that the new model substantially improves the prediction of

various scalar statistics in comparison with a classic dynamic eddy diffusivity model.

II. REGULARIZATION OF THE GRADIENT MODEL

A. Functional performance of the gradient model

The gradient model (GM) is a classic structural-based model coming from a Taylor se-

ries expansion of the filtering operator17. This model is known to have a high structural

performance as a high correlation level with the SGS unknown term, but a weak functional

performance with an over-estimation of back-scatter effects, leading to unstable simulation19.

The functional performance of a SGS scalar flux model is given by its capability to well repro-

duce the grid-scales/subgrid-scales (GS/SGS) transfer between the resolved scalar variance,

Z̄2, and the SGS scalar variance, Z2 − Z̄2. This transfer is controlled by the SGS scalar

dissipation rate23,24, −Ti∂Z̄/∂xi. This term is usually positive on average, and local negative
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value characterizes an inverse transfer (back-scatter). For an accurate LES, a model must

reproduce the average SGS scalar dissipation rates correctly25. Various modifications have

therefore been proposed to stabilize the gradient model and improve its functional perfor-

mance. These modifications consist to use a “clipping”20,21 or to combine this model with

an eddy diffusivity model as in the mixed model12. Here, an alternate approach is proposed

on the basis of an analysis of the GS/SGS transfer predicted by the gradient model.

B. SGS scalar dissipation predicted by the gradient model

In this section, we show that the gradient of the resolved velocity field governs the GS/SGS

transfer predicted by the gradient model. More precisely, we show that the the GS/SGS

transfer predicted by the gradient model depend on the spatial orientation of the velocity

gradients. The starting point is to decompose the velocity gradient as ∂ūi/∂xj = S̄ij + Ω̄ij ,

with S̄ij = 1/2 (∂ūi/∂xj + ∂ūj/∂xi) and Ω̄ij = 1/2 (∂ūi/∂xj − ∂ūj/∂xi), the filtered strain

rate tensor and the filtered rotation rate tensor, respectively. The gradient model, Eq. (4),

can thus be rewritten as

TGM
i =

∆̄
2

12

(
S̄ij + Ω̄ij

) ∂Z̄

∂xj
,

allowing a decomposition of the gradient model as the strain and the rotational effects of the

filtered velocity fields on the filtered scalar gradient. The filtered strain rate tensor being

symmetric, it can further be decomposed as

S̄ij =

3∑

k=1

λ(k)e
(k)
i e

(k)
j (5)

with λ(k) and !e(k) the (real) eigenvalues and the unitary eigenvectors of the filtered strain

rate tensor, respectively. The gradient model can therefore be written as,

TGM
i =

∆̄
2

12

(
S̄⊕

ij + S̄"

ij + Ω̄ij

) ∂Z̄

∂xj

(6)

with

S̄"

ij =

3∑

k=1

min(0,λ(k))e
(k)
i e

(k)
j

and

S̄⊕

ij =

3∑

k=1

max(0,λ(k))e
(k)
i e

(k)
j .
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In order to better understand the GS/SGS transfer predicted by the gradient model, the

SGS scalar dissipation can be rewritten from the above decomposition of the gradient model,

−TGM
i

∂Z̄

∂xi

= −∆̄
2

12

(
S̄ij + Ω̄ij

) ∂Z̄

∂xj

∂Z̄

∂xi

= −
3∑

k=1

λ(k)e
(k)
i e

(k)
j

∂Z̄

∂xj

∂Z̄

∂xi
− Ω̄ij

∂Z̄

∂xj

∂Z̄

∂xi

= −
3∑

k=1

λ(k)

(
∂Z̄

∂xi
e
(k)
i

)2

.

Indeed, it can be shown that Ω̄ij(∂Z̄/∂xj)(∂Z̄/∂xi) = 0. Thus, the transfer given by the

gradient model is only controlled by the sign of the eigenvalues of S̄ij and the SGS dissipation

predicted by the gradient model can be written as,

−TGM
i

∂Z̄

∂xi
=

∆̄
2

12


− S̄⊕

ij

∂Z̄

∂xj

∂Z̄

∂xi︸ ︷︷ ︸
<0

−S̄"

ij

∂Z̄

∂xj

∂Z̄

∂xi︸ ︷︷ ︸
>0


 . (7)

Since, the negative eigenvalues correspond to the compressional effects and the positive ones

correspond to stretching effects26, a physical interpretation of the gradient model can thus be

proposed in terms of compressional, stretching and rotational effects of the resolved velocity

field on the resolved scalar gradient. Note that the rotational effect does not lead to GS/SGS

transfer. Conversely, the compressional effect leads to forward transfer (positive value of the

SGS dissipation), whereas the stretching effect leads to back-scatter (negative value of the

SGS dissipation).

C. Physical illustration of the velocity gradient effect on the GS/SGS transfer

A physical illustration can be provided to show the compressional and stretching effects

on the GS/SGS transfer, if we consider a simple flow configuration. We consider thus a

passive scalar Z seeded as a gaussian patch of scalar centered at (x, y) = (0, 0), in a flow

defined by a pure stretching along the x-axis and pure compression along the y-axis. The

velocity field has the form (u, v) = (αx,−αy) with α > 0. For this case, the evolution of the

scalar distribution is obtained analytically with the method of characteristics. Obviously,

the initial scalar patch will be elongated along the x-axis and compressed along the y-axis as

time goes, Fig. 1 (a). This flow configuration allows us to decompose the velocity gradient
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(a) stretching and compression (b) pure stretching (c) pure compression

FIG. 1. Schematic of the three two-dimensional flow cases. The contour Z(x, y, t) = 1
2Z(0, 0, 0) is

shown for t = 0 (circle) and for t = α−1 for the stretching-compression case (a), the pure stretching

case (b) and the pure compression case (c). The square box in dashed line is the center box where

the SGS variance is computed as Z2 − Z
2
, by using a box filter.

FIG. 2. Time series of SGS tracer variance in the center box for the three different flow cases:

compression and stretching (plain line), stretching only (dash-dotted line) and compression only

(dotted line). The initial condition is identical in all three cases. The time series are normalized

by the initial value at t = 0.

effect in taking into account only the stretching, (u, v) = (αx, 0), or only the compressional,

(u, v) = (0,−αy), effects on the patch of scalar. If only the pure stretching part of the flow

is retained to advect the scalar, the scalar patch scale increases with time, Fig. 1 (b). In

contrast, if only the pure compressional part of the flow is retained,the scalar patch scale

decrease with time, Fig. 1 (c). These scales generations will control the time evolution
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of the SGS scalar variance, Z2 − Z̄2. In this case, the filtering operation consists in a

box filter with ∆̄ = 1, as illustrated by the dashed line in Fig. 1. Figure 2 shows the

time-evolution of this SGS variance computed in the center box. As expected, the SGS

variance for (u, v) = (αx,−αy) (plain line) increases with time characterizing a forward

transfer from the resolved to the SGS scalar variance. Moreover, we can observed that pure

compression, (u, v) = (0,−αy) (dotted-line), also leads to an increase in SGS variance, while

pure elongation, (u, v) = (αx, 0) (dash-dotted line), leads to a moderate decrease of SGS

variance in the center box (back-scatter). The evolution of SGS variance in this simple flow

configuration is therefore consistent with the predictions of the gradient model. Indeed,

the velocity gradients here control the GS/SGS transfer with compressional effects favoring

direct transfers and stretching effects favoring indirect transfers (backscatter).

D. Proposed regularizations

As stated above, the gradient model is known to have a good correlation with the SGS

scalar flux but this model lead to unstable simulation27. A regularization of this model

that should allow keeping the high correlation level and would avoid the unstable behavior

could lead to an accurate model for LES. The unstable behavior of this model is due to an

overestimation of transfers from the subgrid scales to the grid scales by the model. To avoid

this unstable behavior, our proposition is to neglect all these inverse transfers. From the

previous section, this can be done by neglecting the stretching effects. At this stage, two

models can be proposed. The first one is obtained by keeping only the term allowing the

direct energy transfer. This leads to the first regularized gradient model (noted RGM1),

which is written as

TRGM1
i =

∆̄
2

12
S̄"

ij

∂Z̄

∂xj
. (8)

Another proposition is only to neglect the term S̄⊕

ij in the gradient model decomposition,

Eq. (6). The second regularized gradient model (noted RGM2) writes then

TRGM2
i =

∆̄
2

12

(
S̄"

ij + Ω̄ij

) ∂Z̄

∂xj
. (9)

These two models differ only by keeping or not the rotational effect. As already seen, the

rotational effect does not influence on the GS/SGS transfer instantaneously. These models

will thus lead exactly to the same same GS/SGS transfer at a given time. Only the local
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approximation of the SGS scalar flux will be influenced by the rotational effect in the model

formulation. This can be related to the bidimensional model proposed by Le Sommer at

al.28 for ocean circulation models. Our regularization approach is also close to the approach

proposed by Cottet and Wray29 to develop an anisotropic model for the SGS shear stresses.

III. MODELS PERFORMANCE MEASUREMENTS BASED ON A PRIORI TESTS

A. A priori evaluation of the regularized gradient models RGM1 and RGM2

To better understand the advantage to use a regularized form for the gradient model,

models performance is now evaluated from a priori tests. These tests are meant to measure

the functional and structural performances of RGM1 and RGM2 and to compare these per-

formances to classic models: the dynamic eddy diffusivity model (DEDM) and the gradient

model (GM), given by Eq. (3) and Eq. (4), respectively. The a priori tests are based on

data extracted from direct numerical simulation (DNS) of a forced homogeneous isotropic

turbulence. The DNS database is generated from a standard pseudo-spectral code and the

simulation domain is discretized using 5123 grid points on a domain of length 2π. A sta-

tistical steady flow is achieved by using a forcing term30 and the scalar field is initialized

between 0 and 1 according to the procedure proposed by Eswaran and Pope31. The scalar

is thus initialized as large spots with a size in order to the half of the computational box

size. The Schmidt number is taken equal to 0.7 and the Reynolds number based on the Tay-

lor microscale is around 180 at the stationary state. The code and the flow configuration

are similar to previous works where the modeling of the SGS scalar flux22, the SGS scalar

variance32 and the SGS scalar dissipation rate33 were studied. The DNS data are filtered in

space to emulate LES quantities by using a spectral cut-off filter to reproduce the behavior

of the spectral method employed in this work. Several filter sizes have been used chosen as

2 ≤ ∆̄/∆x ≤ 16, where ∆̄ is the filter width and ∆x is the DNS mesh size. Figure 3 shows

the scalar variance spectrum with the location of the filters in the wavenumber space.

The functional performance is first studied. As defined by Sagaut5, the functional per-

formance measures the ability of the model to reproduce the averaged effect of the SGS

term on the transported quantity (here, the scalar field) and not the term itself. As already

discussed, in the context of LES of a passive scalar, the functional performance is the ability
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FIG. 3. Scalar variance spectrum, EZ(k), with the location of the filters used in the a priori tests.
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FIG. 4. Mean SGS dissipation as a function of the filter width for the regularization of the

gradient model (RGM).The results for DEDM and GM are also shown. The dotted line show the

SGS dissipation given by the filtered DNS data. Note that the SGS dissipation is the same for

RGM1 and RGM2, Eq. (8) and (9), respectively.

to predict the GS/SGS transfer. This is controlled by the SGS scalar dissipation, Ti∂Z̄/∂xi.

Figure 4 shows the mean SGS scalar dissipation, 〈Ti∂Z̄/∂xi〉, as a function of the filter width

for various model. Note that RGM1 and RGM2 lead to the same SGS dissipation, noted

RGM on the figure. The mean SGS scalar dissipation is negative showing that the transfers

are from the large (resolved) scales to the small ones. First, as expected, the GM under-

predicts the magnitude of 〈Ti∂Z̄/∂xi〉 in comparison with the DNS results. This shows that

this model does not provide enough dissipation, leading to unstable simulations27. Con-
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versely, the DEDM models are too dissipative with an over-prediction of the magnitude of

〈Ti∂Z̄/∂xi〉. The regularization proposed allows to improve the prediction of the mean SGS

scalar dissipation by neglecting the inverse transfer, but the magnitude of the SGS scalar

dissipation is still under-predicted. In the following section, a dynamic procedure will be

proposed to improve this prediction.

We now measure the structural performance of the regularized models in order to asses

the performances of RGM1 and RGM2. From Sagaut5, the structural performance is defined

as the model ability to describe locally the SGS unknown term appearing in the resolved

equation. For the scalar, the SGS unknown term is the divergence of the SGS scalar flux,

∂Ti/∂xi, appearing in the scalar transport equation (2). In the framework of optimal estima-

tion theory34, the models structural performance can be evaluated by using the notion of an

optimal estimator recently introduced by Moreau et al.35 in the LES context. Considering

f as the SGS term to model and g as a model of f based on a given set of variables φ, the

quadratic error,

εQ = 〈(f − g (φ))2〉, (10)

is defined as the relevant error to consider in LES36. In this definition, the brackets indicate

a statistical average over a suitable ensemble. The concept of optimal estimator forecasts

that any model g built on the set of variables φ will have a quadratic error higher than

a minimal value, εirr. Moreover, this minimal value is defined by the optimal estimation

theory as

εirr = 〈(f − 〈f |φ〉)2〉 ≤ εQ, (11)

where 〈f |φ〉 is the expectation of the exact quantity f conditioned with the set of variables

φ. The quantity 〈f |φ〉 is thus called the optimal estimator of f for the set of variable

φ, and the minimal error, εirr, is called the irreducible error since no model using only

φ as set of variables can lead to a smaller error. The optimal estimator theory allows to

provide various informations on the SGS models used in LES. First, we can evaluate the

quadratic error of each model to see which one gives the best results in modelling the SGS

unknown term. The most suitable set of variables to model the SGS term can also be

determined by comparing the irreducible error of different models. The set of variables with

the smallest irreducible error will be the best candidate to design a model. Finally, this

theory allows to know to what extent a model based on a set of variable can be improved.
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FIG. 5. Quadratic errors (QE) and irreducible errors (IE) as a function of the filter width for the

regularization of the gradient model without (RGM1) and with (RGM2) the rotational term, as

given by Eq. (8) and (9), respectively. The results for DEDM and GM are also shown. The dotted

lines show the corresponding irreducible errors.

Indeed, if the quadratic error of a given model is much higher than its irreducible part,

improvement can be expected (by modification of the coefficient computation, for example).

This concept has already been used to improve the modeling of SGS quantities22,32,33. The

optimal estimator tool is now used to measure the structural performance of the various

models to model the divergence of the SGS scalar flux, ∂Ti/∂xi. Fig. 5 shows the evolution

of the quadratic error, Eq. (10), and the irreducible error, Eq. (11), with the filter size. The

errors are normalized by the statistical variance of the exact SGS term. For DEDM, the set

of variables used to compute the irreducible error is
{

∂

∂xi

(∣∣S̄
∣∣ ∂Z̄
∂xi

)}
, whereas the GM set of

variables is
{

∂

∂xi

(
∂ūi

∂xj

∂Z̄
∂xj

)}
. For the proposed regularized models, the set of variables used is

{
∂

∂xi

(
S̄"

ij
∂Z̄
∂xj

)}
for RGM1 and

{
∂

∂xi

(
(S̄"

ij + Ω̄ij)
∂Z̄
∂xj

)}
for RGM2. Various conclusions can

then be drawn. As expected the GM quadratic error is smaller than DEDM quadratic error.

This is because GM is a structural based model, whereas DEDM is a functional based model.

It is thus expected to have better structural performance. Moreover, the DEDM irreducible

error is always higher than the GM quadratic error. This shows that the improvement of

the structural performance of DEDM can not be expected without adding new quantities

in its set of variables. For both proposed regularized gradient model (RGM1 and RGM2),

the performances are very different. RGM1 has good structural performance conversely to
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RGM2. Indeed, the RGM2 irreducible error is even higher than DEDM quadratic error,

showing that this model proposition does not allow an improvement in comparison with

a classic eddy diffusivity model. Conversely, RGM1 performs even better than GM, with

the RGM1 quadratic error smaller than the GM irreducible error, showing that we can not

expect the same performance with the classic gradient model. However, an improvement

can be expected for this model because the gap between the RGM1 quadratic error and its

associated irreducible error is still important. Note that a decrease of the RGM2 irreducible

error could be expected by using
{

∂

∂xi

(
S̄"

ij
∂Z̄
∂xj

)
; ∂

∂xi

(
Ω̄ij

∂Z̄
∂xj

)}
as set of variables. But this

would imply to further decompose RGM2 in two terms with two distinct coefficients to

evaluate, leading to a more complex model. Due to the encouraging performance of RGM1,

our proposition is just to keep the RGM1 formulation (8) to regularize the gradient model and

to propose a dynamic procedure to compute the model coefficient. The dynamic procedure

is expected improve the functional performance of the model, with a better evaluation of the

mean SGS scalar dissipation, and the structural performance, with a quadratic error closer

to the irreducible error.

B. Dynamic procedure applied to the regularized gradient model RGM1

The performances of RGM1 was measured by keeping a static coefficient coming from

a Taylor series expansion. We now propose a dynamic procedure to improve the model

performances. The regularized gradient model is thus re-written as,

TRGM1
i = C∆̄

2S̄"

ij

∂Z̄

∂xj

, (12)

with C a coefficient to evaluate. The dynamic procedure uses a test filter, noted ·̂, defined

similarly to the first one, with a filter size such as ∆̂ = 2∆̄. Before describing this dynamic

procedure, the mathematical derivation of the gradient model can be first recalled. The

starting point is to write a Taylor series expansion for the filtering operation to evaluate uiZ

as function of ūi and Z̄ (see Bedford and Yeo17 for details). This leads to (keeping only the

first term of the Taylor series),

uiZ = ūiZ̄ +
∆̄

2

12

∂ūi

∂xj

∂Z̄

∂xj

+O(∆̄4). (13)

The gradient model is obtained by neglecting the terms with an order higher than ∆̄
2 in the

RHS.
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The proposed dynamic procedure is based on similar Taylor series expansions applied at

the test filter level as already done in previous works22,32. Indeed, the consideration used

to derive the gradient model, Eq. (13), can now be done also at the test filter level. The

Taylor series expansion of the test filter for f and g, both quantities describing flow fields,

leads to

f̂ g − f̂ ĝ =
∆̂

2

12

∂f̂

∂xj

∂ĝ

∂xj
+O(∆̂4). (14)

By taking, f = ūi and g = Z̄, Eq. (14) writes,

̂̄uiZ̄ − ˆ̄ui
ˆ̄Z =

∆̂
2

12

∂ ˆ̄ui

∂xj

∂ ˆ̄Z

∂xj
+O(∆̂4). (15)

Now, neglecting the terms with an order higher than ∆̂
2 and using the proposed regulariza-

tion with the same dynamic coefficient, the model at the test filter level writes,

̂̄uiZ̄ − ˆ̄ui
ˆ̄Z = C∆̂

2 ˆ̄S"

ij

∂ ˆ̄Z

∂xj
. (16)

This defines a relation between the Leonard-type term, Li =
̂̄uiZ̄ − ˆ̄ui

ˆ̄Z, and other quan-

tities available in LES. This relation can thus be used to compute the model coefficient C.

Assuming C constant over homogeneous directions, it can be evaluated from a least-squares

approximation according to Lilly’s method11. The new dynamic procedure is now defined

as

Cc =
〈LiNi〉
〈NiNi〉

(17)

where Ni = ∆̂
2 ˆ̄S"

ij∂
ˆ̄Z/∂xi and where the brackets indicate a statistical average over homo-

geneous directions of the flow. Eq. (12) and (17) define the dynamic regularized gradient

model, referred as DRGM in what follows. Note that similar dynamic procedures, based

on Taylor series expansions, have been already used with success to model the SGS scalar

variance32 or to improve the accuracy of mixed model22.

The DRGM performances are now measured and compared with performance of the

dynamic eddy diffusivity mode (DEDM), of the gradient model (GM) and of the static

regularized model, Eq. (8), now noted RGM. Again, the optimal estimation analysis is

performed to evaluate the capacity of the new model to accurately predict the divergence

of the SGS scalar flux, ∂Ti/∂xi. Figure 6 shows the comparison of the model errors. Note

that DRGM and RGM have the same irreducible errors because these models are based on

14
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FIG. 6. Quadratic errors (QE) and irreducible errors (IE) as a function of the filter width for the

proposed dynamic procedure (DRGM). The results for DEDM, GM and the standard (static) regu-

larized gradient model (RGM) are shown for comparison. The dotted lines show the corresponding

irreducible errors. Note that DRGM and RGM have the same irreducible error.

the same set of variables. The DRGM quadratic errors are the smallest quadratic errors,

showing the improvement allowed by the dynamic procedure. This shows a significant

improvement of the structural performance of the regularized model in comparison with the

static formulation. Moreover, the DRGM quadratic error stays close to its irreducible errors,

showing that it would be difficult to improve the model without adding new variables.

The functional performance can also been studied. Figure 7 shows the evolution of the

mean SGS scalar dissipation with the filter width. The improvement of the functional

performance of the dynamic procedure is characterized by an increasing of the SGS scalar

dissipation magnitude for DRGM. This allows to correct the under-prediction of the GS/SGS

transfer observed with RGM.

IV. A POSTERIORI (LES) TESTS

A. Description of the LES test cases

The dynamic regularized gradient model (DRGM) for Ti has been implemented and is now

tested by performing large-eddy simulations (LES). The model is compared with the dynamic

eddy diffusivity model (DEDM) and the gradient model (GM). Two flow configurations are
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FIG. 7. Mean SGS dissipation as a function of the filter width for tfor for the proposed dynamic

procedure (DRGM). The results for DEDM, GM and the standard (static) regularized gradient

model (RGM) are shown for comparison.The dotted line show the SGS dissipation given by the

filtered DNS data.

tested. The first case consists to the forced homogeneous isotropic turbulence. The second

case consists to a temporal turbulent plane jet. These configurations are solved by using

spectral method. Note that in all these test cases, the velocity field is still solved by direct

numerical simulation (DNS). Thus, at each time step, the velocity field is extrapolated from

the DNS to the LES mesh in spectral space. This spectral extrapolation is equivalent to

a spectral cut-off filter. The resulting filtered velocity field is then used to advance the

filtered scalar field. The advantage of this procedure is that no SGS model is needed for the

Navier-Stokes equations and there is then no modeling error on the velocity field used in

the filtered scalar equation. Thus, when the LES data are compared with the filtered DNS

data, the difference will only be due to the model used for the SGS scalar flux.

First, forced homogeneous isotropic turbulence (FHIT) test cases are considered. The

first FHIT configuration is similar to the one used in the a priori tests : Rλ ≈ 180 and

Sc = 0.7. In this case, the velocity field is still resolved on 5123 grid points. Two LES

meshes for the scalar fields are used to investigate the performance of the models: 643 and

323 grid points. Moreover, to evaluate the influence of the Reynolds number on the models

performance, another LES case is considered with the same Schmidt number but with a

higher Reynolds number, Rλ ≈ 300, on a mesh composed by 643 grid points. This case is

compared with a DNS performed on 10243 grid points. Finally, for Rλ ≈ 180, a last LES case
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is studied for a higher Schmidt number, Sc = 4, on a mesh composed by 643 grid points. For

Schmidt number higher than one, the smallest mixing scale is given by the Batchelor scale,

ηB = ηK/Sc
1/2, with ηK the Kolmogorov scale. For DNS of this last flow configuration, a

higher resolution is thus needed for the scalar field than for the velocity fields. In this case,

the LES results are thus compared with a DNS using 15363 grid points for the scalar field

and still 5123 grid points for the velocity field.

For the second test case, a temporal turbulent plane jet flow configuration is considered.

The configuration is similar to the one studied by Silva and Pereira37. In this configuration,

the computational domain is periodic in the three spatial directions. Thus, one studies the

temporal evolution of the flow generated by an initial plane jet velocity profile. The initial

velocity and scalar profiles are described by a classic hyperbolic-tangent profile37. For this

configuration, the molecular viscosity, ν, is defined to have the Reynolds number equal to

ReH = (U1 − U2)H/ν = 10, 000, where H is the plane jet inlet slot width, U1 is the initial

jet velocity and U2 is the co-flow velocity. The scalar value is initially 1 in the jet and 0

in the co-flow and the molecular Schmidt number is 0.7. The computational box size is

(Lx, Ly, Lz) = (4H, 6H, 4H), with x, y and z, the streamwise, the normal and the spanwise

directions, respectively. For the DNS, the grid size consists then in NDNS
x ×NDNS

y ×NDNS
z =

1024× 1536× 1024 grid points. The LES of the passive scalar is then performed on a mesh

composed by NLES
x × NLES

y × NLES
z = 128 × 192 × 128 grid points. The LES results will

be compared to filtered DNS results to evaluate the models ability to deal with transition

stages and mean shear regions.

B. LES of isotropic homogeneous turbulence

Figure 8 shows the time evolution of the LES resolved scalar variance, 〈Z̄ ′2〉 = 〈Z̄Z̄〉 −
〈Z̄〉〈Z̄〉, in isotropic homogeneous turbulent flow. The LES resolved scalar variance is com-

pared with the variance of the filtered scalar field coming from the DNS data. The DNS

scalar variance (without filtering), 〈Z ′2〉 = 〈Z2〉− 〈Z〉2, are also shown for comparison. The

fluctuations smaller than the filter width are not taken into account in the filtered scalar

variance evaluation. This implies that the filtered scalar variance has to be smaller than the

DNS scalar variance and that this gap is higher for higher filter width, Fig. 8 (a) and (b).

For the same reason, the difference between the filtered scalar variance and the DNS scalar
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FIG. 8. Evolution of the LES resolved scalar variance, 〈Z̄ ′2〉, with time. The filtered and no-filtered

DNS scalar variances are also shown for comparison.

variance is higher for the case with Sc = 4 because the Batchelor scale is smaller for this

case and the part due to subfilter scales is more important, Fig. 8 (b) and (d). In all the

cases, the same observations can be done about the models performance. First, the DEDM

resolved scalar variance is always notably smaller than the filtered DNS scalar variance. This

is due to an over-prediction of the SGS dissipation with this model as already found in the a

priori tests. Conversely, the GM resolved scalar variance can be even higher than the DNS

(no-filtered) scalar variance. This characterizes the generation of non-physical fluctuations

at the smallest resolved scales with this model. This is due to a large under-prediction of

the SGS dissipation. As expected, DRGM allows to correct this behavior with a resolved

scalar variance always smaller than the DNS scalar variance and close to the filtered scalar
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FIG. 9. Scalar variance spectrum, EZ(k), when 〈Z̄ ′2〉 ≈ 0.1.

variance. Moreover, DRGM has better behavior than DEDM with a weaker over-prediction

of the decreasing of the resolved scalar variance than this classic model.

For further analysis, the scalar variance spectrum is shown in Fig. 9. The spectra are

computed when the mixing is well established. The models performances are still similar

in all the cases. First, as expected, GM leads to an over-prediction of the scalar variance

spectrum at the smallest resolved scales (highest resolved wave numbers). This characterizes

the unstable behavior of this model with the generation of non-physical fluctuations due to

a over-estimation of the back-scatter effect. Conversely, DEDM under-predicts the scalar

variance spectrum at the smallest resolved scales. This is due to the over-prediction of the

SGS dissipation at these scales. DRGM allows to correct these behaviors and stays close to

the DNS results, even for very coarse LES, Fig. 9 (a). Note that the models performance

19



0 0,5 1
0

0,5

1

1,5

2

Filtered DNS
DEDM
GM
DRGM

Z̄

P
D
F
(Z̄

)

(a) Probability density function (PDF)

0 1 2 3 4 5
0

0,2

0,4

0,6

0,8

1

Filtered DNS
DEDM
GM
DRGM

time

C
(Z̄

)

(b) Time correlation

FIG. 10. Additional statistics for LES on 323 grid points at Rλ ≈ 180 and Sc = 0.7: Probability

density function (PDF) of the LES resolved scalar when 〈Z̄ ′2〉 ≈ 0.1 (a) and time correlation of the

LES resolved scalar, C(Z̄), computed by Eq. (18) (b). DNS filtered scalar results are also shown

in dotted line for comparison.

is not influenced by the local turbulence of the flow and by the molecular scale transport

properties in the range of the Reynolds and Schmidt numbers used. The same trend is found

in all the LES performed.

Finally, the influence of the SGS scalar flow model can be studied from additional statis-

tics. First, the scalar probability density function (PDF) is shown in Fig. 10 (a) when the

mixing is established. The consequences of the SGS scalar flux model performance can then

be observed on the local mixing prediction. First, the over-dissipation predicted by DEDM

implies that the part of unmixed fluid, Z̄ ≈ 0 or Z̄ ≈ 1, is under-predicted with smaller PDF

values than the filtered DNS, whereas the part of fully mixed fluid, Z̄ ≈ 0.5, is over-predicted

with higher PDF values than the filtered DNS. This characterizes a over-estimation of the

mixing process as already observed with the decay of the scalar variance, Fig. 8. Moreover,

the unstable behavior of GM is characterized by unphysical values of Z̄. Indeed, for this

model, there are non zero probabilities to find Z̄ < 0 or Z̄ > 1, whereas the scalar has to

be bounded between its initial values, 0 and 1. This behavior will lead to modeling problem

when the scalar represents chemical species concentration or temperature in practical ap-

plications. The new proposed model allows to correct this problem. Indeed, it can be seen

that the PDF computed from the LES using DRGM is close to the PDF computed from
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FIG. 11. Contour of scalar from DNS results for two time during the plane jet transition toward

a turbulent state. The scalar is between 0 (white) and 1 (black)

the filtered DNS data. Finally, we study the time correlation of the LES resolved scalar.

Indeed, subgrid-scales contribute to temporal decorrelation of the resolved scales. Thus, a

SGS model has to model the subgrid-scales effects, and has also to reproduce as well as

possible this temporal decorrelation38. The time auto-correlation of the LES resolved scalar

is defined as

C(Z̄)(t) =
〈Z̄ ′(!x, t0)Z̄

′(!x, t)〉
(
〈Z̄ ′2(!x, t0)〉〈Z̄ ′2(!x, t)〉

)1/2 , (18)

where Z̄ ′ is the scalar fluctuation field. Figure 10 (b) shows the evolution of C(Z̄) for the

different LES. The time correlation for filtered DNS data are also shown for comparison.

DRGM seems to lead to better agreement with the filtered DNS data. Indeed, DEDM lead

to higher correlations whereas GM predicts faster decorrelation than the other models. This

is probably due to the prediction of the mixing activities at the smallest resolved scales, as

already shown with scalar variance spectra. Thus, the over-prediction of the fluctuations at

these smallest resolved scales by GM leads to an over-prediction of the temporal decorre-

lation. Conversely, the under-prediction of the mixing activities at these scales leads to a

weak under-prediction of the decorrelation process.

C. LES of turbulent plane jet

From the previous section, the new proposed dynamic regularized gradient model

(DRGM) shows good performances in comparison with other classic SGS models. In par-
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FIG. 12. Profile of the LES resolved scalar variance, 〈Z̄ ′2〉 for two times during the plane jet

transition toward a turbulent state (corresponding to Fig. 11). The filtered and no-filtered DNS

scalar variances are also shown for comparison.

ticular, the regularization allows to correct the unphysical behavior found with the classic

gradient model. Now, to test the ability of the new model to deal with transition stages and

shear regions, LES of a temporal plane jet are performed using DEDM, GM and DRGM.

For DEDM and DRGM, the dynamic procedure used a plan averaging over both homoge-

neous directions, x and z. The results are compared with filtered DNS data for two time

during the plane jet transition toward a turbulent state. Figure 11 shows the contour of

scalar for these two times to illustrates the mixing stages. The turbulent mixing develops

thanks to coherent vortices. First, the Kelvin-Helmholtz vortices dominates the transition

process. Then, streamwise vortices appear leading to a tridimensionalization of the jet and

to an abrupt transition towards a developed turbulent state in agreement with the classical

scenario of transition in free shear layers39.

First, figure 12 shows the LES resolved scalar variance profile, 〈Z̄ ′2〉(y). The results are

compared with the variance of the filtered scalar field coming from the DNS data, and the

DNS scalar variance (without filtering) profile are also shown. The resolved scalar variance

is first higher in the shear layers, |y/H| ≈ 0.5, where the first turbulent scales develop. Then,

the resolved scalar variance grows in the middle of the jet, y/H = 0, due to the merging

of the shear layers and the development of turbulent scales in the jet core. In this flow

configuration, the models performance results are similar to the results obtained in FHIT

cases. Indeed, the GM resolved scalar variance is higher than the DNS (no-filtered) scalar
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FIG. 13. 2D scalar variance spectrum, EZ(kxz), in the middle of the shear layer (y/H = 0.5) for

two time during the plane jet transition toward a turbulent state (corresponding to Fig. 11).

variance, characterizing the generation of non-physical mixing scales. Moreover, the over-

prediction of the SGS dissipation with DEDM leads to a smaller value of the resolved scalar

variance with this model. DRGM allows a better prediction of the resolved scalar variance,

avoiding the GM unphysical behavior. However, even if DRGM is in better agreement with

filtered DNS data than DEDM, it can be observed that DRGM has a significant under-

prediction to the variance. This is due to an over-prediction of the SGS dissipation at the

smallest resolved scales as shown by Fig. 13. Additional works will test the influence of

the averaging process used for the dynamic procedure40 on this behavior. Finally, figure 13

leads to similar conclusions to the FHIT cases: GM leads to an over-prediction of the scalar

variance spectrum and DEDM significantly under-predicts the scalar variance spectrum at

the smallest resolved scales.

V. CONCLUSION

In this paper, we have introduced a closure for predicting subgrid-scale (SGS) flux of

a passive scalar in the context of large eddy simulation (LES). The proposed closure is

derived from the gradient model (GM) which is based on a Taylor series expansion of the

filtering operation. The GM is known to provide good estimations of local SGS fluxes in

a priori tests (i.e. good structural performance). Still the GM yields unstable behavior

in a posteriori tests because of its predicting incorrect grid scale/subgrid scale (GS/SGS)

23



transfers of scalar variance (weak functional performance). This weak performance is due

to an over-prediction of resolved scalar variance through too large backscattering from the

SGS. In order to propose a physically based regularization of the GM, a decomposition

of the velocity gradient has been performed to split the gradient model into three terms

respectively associated with compression, stretching and rotation. Thus, while the GM is

shown to systematically decrease the resolved scalar variance in local compression cases, it

is responsible for increasing the resolved scalar variance in local stretching cases. The GM

prediction of the resolved velocity gradient effects on the GS/SGS transfers of scalar variance

is consistent with behaviors observed on a simple flow. A series of a priori tests and optimal

estimator predictions shows that a regularized model with good performance can be build

from the GM by retaining only the term associated with compression. A dynamic procedure

is then applied to the regularized version of the gradient model. Various a posteriori tests

with the proposed dynamic regularized gradient model (DRGM) indicate that the model

provides good estimation of GS/SGS transfers. As compared to classical eddy diffusivity

models, the DRGM also improves substantially scalar variance spectra and the probability

density function of scalar distributions. Note that this work has been performed by using

spectral method to be able to neglect numerical and modeling errors interaction and to focus

only on the modeling errors. Future works will be devoted to consider the model in the case

where numerical errors can not be neglected. This is an important step to evaluate the

ability of the model to be used in industrial and geophysical applications.
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APPENDIX: ANALYTICAL DECOMPOSITION OF THE FILTERED STRAIN

RATE TENSOR

In order to guide practical applications of the Dynamic Regularized Gradient Model,

we provide in this appendix information about the decomposition of the filtered strain

rate tensor. For the tests presented in this paper, the decomposition of S̄ij accord-

ing to equation (5) was performed numerically with the help of the LAPACK library

(http://www.netlib.org/lapack/).

Eigenvalues of the filtered strain rate tensor in 3D case

The filtered strain rate tensor, S̄ij, being symmetric, it has real eigenvalues. These

eigenvalues can be obtained analytically by solving the characteristic polynomial with the

Cardano’s method. The kth eigenvalue, λ(k), is thus given by

λ(k) = 2

√
− c

3
cos

(
1

3
cos−1

(
− b

2

√
−27

c3

)
+

2kπ

3

)
,

where

c = −1

2
S̄ijS̄ij

and

b = S̄2
13S̄22 + S̄2

12S̄33 + S̄2
23S̄11 − S̄11S̄22S̄33 − 2S̄12S̄13S̄23

The eigenvalues determination allows thus to write the linear system needed to obtain the

eigenvectors.

Full decomposition of the filtered strain rate tensor in 2D case

For two dimensional applications of the regularization presented in this paper, an explicit

analytical expression of RGM1 can be readily obtained. Indeed, it can be shown that the

eigenvalues of S̄ij in two dimensions are respectively :

λ+ =
1

2
(d+

√
a2 + r2) λ− =

1

2
(d−

√
a2 + r2)

where r = ∂v̄/∂x+ ∂ū/∂y is the rate of filtered shear strain, a = ∂ū/∂x− ∂v̄/∂y is the rate

of filtered normal strain and d = ∂ū/∂x + ∂v̄/∂y is the horizontal filtered divergence, with
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ū and v̄ the two dimensional filtered velocity component in x and y direction, respectively.

Straighforward algebra then yields the eigenvectors of S̄ij . Finally, equation (5) allows to

decompose S̄ij = S̄⊕

ij + S̄"

ij with

S̄⊕

ij =
1 + δ

4


p+ r

r q+


 S̄"

ij =
1− δ

4


p− r

r q−




where the following notations have been used

p+ =
√
a2 + r2 + a q+ =

√
a2 + r2 − a

p− = −
√
a2 + r2 + a q− = −

√
a2 + r2 − a

and δ = d/
√
a2 + r2. The bidimensional model proposed by Le Sommer at al.28 can be

related to the above decomposition.
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