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On the bending and tension of thermoelastic shells undergoing phase
transitions
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Applying the general non-linear theory of shells undergoing phase transitions, we derive the balance equations along the
singular surface curve modelling the phase interface in the shell. From the integral forms of balance laws of linear momentuin,
angular momentum, and energy as well as the entropy inequality we obtain the local static balance equations along the
curvilinear phase interface. We also derive the thermodynamic condition allowing one to determine the interface position
on the deformed shell midsurface. The theoretical model is illustrated by the example of thin circular eylindrical shell made
of two-phase material subjected to tensile forces and bending couples at the shell boundary. The elastic solution reveals the
existence of the hysteresis loop whose size depends upon values of several loading parameters.

1 Introduction

Phase transition (PT) phenomenon in continuous media originally described by Gibbs in 1875-1878, see [1], was developed
in a mumber of papers summarised in several recent books, for example in [2-53]. In this approach one assumes existence of
the sharp phase interface being a sufficiently regular surface dividing different material phases. The position and motion of
the phase interface itselfl is among the most discussed issues in the field. In the literature many model one-dimensional (10)
problems were analysed theoretically, numerically and experimentally which adequately described behaviour of bars, rods,
and beams made of martensitic materials.

The non-linear equilibrium conditions of elastic shells undergoing PT of martensitic type were formulated in [6-8] within
the dynamically and kinematically exact theory of shells presented in [9—11]. In this shell theory the translation vector w and
rotation tensor  fields are the only independent variables. By analogy to the 3D case, the two-phase shell was regarded as the
Cosserat surface consisting of two material phases divided by a sufficiently smooth surface curve. Existence of such a curve
was confirmed by several experiments on thin-walled samples.

2 Basic relations

The two-dimensional (2D) local laws of shell thermomechanics can be derived by direct and exact through-the-thickness
integration of global 3D balances of forces, moments, energy and the entropy inequality, see [6—8]. After appropriate trans-
formations the resulting 2D local Lagrangian laws in M\ C become
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where f, ¢ are the resultant surface force and couple vector flelds acting on N\ D, but measured per unit area of M\C, M
and N are the shell midsurfaces in the undeformed and deformed placements, respectively, C < M and D < N are the
curvilinear phase interfaces, (¥, M) € E' @ T, M the surface tangential stress resultant and stress couple tensors of the first
Piola-Kirchhoff type, F = G'rad, y the surface deformation gradient, F' € £ @ 1, M, ax(...) the axial vector associated
with the skew tensor (...), (E°, K*) €¢ £ ® T, M the corotational derivatives of the shell strain measures work-conjugate to
(N, M), and Div, the surface divergence operator on M. Additionally, £ and n are the surface internal energy and entropy
densities, p the undeformed surface mass density, ¢& the heat influx densities through the upper (+) and lower (—) shell faces,
g the internal surface heat supply density, g the surface heat influx vector, T' the through-the-thickness average temperature,
15, and 17, temperatures of the external media surrounding the shell from above and below, and ¢ = & — 1'; the surface

ext ex
free energy density. For constitutive equations of thermoelastic and thermoviscoelastic shells see [8].
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We use the kinetic equation, describing motion of the phase interface for all quasistatic processes, in the form
V=-F@w-[Clv), C=ppA-N'"F-M"K, 2)

where F is the non-negative definite kinetic function depending on the jump of C atC, i.e. F(s) > 0 for ¢ > 0, the expression
[...1 = (..)B — (...)a means the jump at C, v the surface unit vector externally normal to M, V the exterior normal
velocity of the phase curve C, A = 1 — n ® n, and 1 the 3D unit tensor.

We assume F (<) in the form
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Here ¢y describes the effects associated with nucleation of the new phase and action of the surface tension, a is a parameter
describing the limit value of the phase transition velocity, and & is a positive kinetic factor.

3 Bending and tension of elastic thin-walled tube

As an example, we discuss the thin circular cylindrical shell of length L, radius R, and thickness » made of material undergoing
phase transition. The phase interface C is given by z = ¢. The tube is extended by forces P and bent by couples m uniformly
distributed at the right shell boundary. The two-phase solution is presented in Fig. 1.

Fig. 1 Shape of the thin-walled two-phase tube after phase transition (magnified).

The proposed 2D model allows one to take into account several additional factors such as solutions of the boundary layer
type or more differentiated ways of loading and unloading.
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