For heat convection in viscoelastic fluids some preliminary results were presented in [START_REF] Eremeyev | Convective instability of plane layer of viscoelastic micropolar fluid with free boundaries (in Russian) //Izvestia Vuzov[END_REF][START_REF] Eremeyev | Convective instabilities in plane layer of viscoelastic micropolar fluid[END_REF].

Heat convection in an infinite plane layer is a well-known example of a hydrodynamical instability, which was investigated by numerous scientists (see, for example, [START_REF] Gershuni | Convective stability of incompressible fluid[END_REF]- [START_REF] Gershuni | Stability of convective flow[END_REF]).

In this paper we present the constitutive equations for thermoviscoelastic micropolar fluids in general as well as for the special cases of a thermoelastic fluid and a thermoviscoelastic micropolar fluid of differential type.

For an infinite plane layer of thermoviscoelastic micropolar fluid of differential type of complexity [START_REF] Aero | Asymmetric hydromechanics[END_REF][START_REF] Aero | Asymmetric hydromechanics[END_REF] under uniform heating, we investigate convective instability for different types of boundary conditions. We determine the critical values of Rayleigh number as functions of wave number, initial curvature of microstructure and material constants. The neutral curves graphs are presented. It is shown that taking into account the property of orientation elasticity leads to increasing of the critical Rayleigh numbers. From the physical point of view it means that orientational elasticity of viscoelastic fluid has a stabilizing influence.

The obtained results may be used for modelling the behavior of such complex fluids as suspensions, magnetic fluids, biological solutions, and liquid crystals.

Basic relations of hydromechanics of thermoviscoelastic micropolar fluid

Within the framework of a Cosserat continuum every particle has six degrees of freedom as a rigid body. The position of particle at actual time t is given by a radius-vector R(t) and its orientation is determined by a triple of orthonormal vectors D k (t) (k = 1, 2, 3) [START_REF] Eringen | Microcontinuum Field Theories. I. Foundations and Solids[END_REF]. We also consider a reference configuration when the position and orientation of particles are described by vector r and directors d k (k = 1, 2, 3), respectively. Triples D k and d k produce the socalled microrotation tensor or turn-tensor H = d k ⊗ D k , which is a properly orthogonal tensor. The motion equations, the heat transfer equation and the second law of thermodynamics have the form

Div T + ρm = ρ dv dt , (1) 
Div M + T × + ρµ = γ dω d t , (2) 
ρ d dt ε = ρs + Div h + tr T • ε T + M • ae T , (3) 
ρθ d dt η ≥ ρs + Div h - 1 θ g • h. (4) 
Here T and M are the Cauchy-type stress and couple stress tensors, g = • ∇ θ,

• ∇ and Div are gradient and divergence operators by using Euler description, ρ is density, m and µ are vectors of external forces and couples, γ is a scalar measure of rotational inertia, v is a linear velocity, ω is an angular velocity of triple D k : dD k / dt = ω × D k , d/ dt is a material derivative with respect to time, symbol T × denotes a vector invariant of second-rank tensor T, θ is a temperature, h is heat flux, s is a heat source density, ε and η a mass density of internal energy and entropy and I is the unit tensor. We use tensors ε and ae as measures of strain and bending strain rates. The latter are given by

ε ≡ • ∇ v + I × ω, ae ≡ • ∇ ω.
Following papers [START_REF] Zubov | Equations of micropolar fluids // Doklady physics[END_REF][START_REF] Eremeyev | Theory of elastic and viscoelastic micropolar fluids[END_REF] we can prove next theorem.

Theorem 1. The general representation of constitutive equations of thermoviscoelastic fluid are given by

T(t) = H 1 ρ(t), B(t), U t t (s), L t t (s), θ t (s), g t (s) , M(t) = H 2 ρ(t), B(t), U t t (s), L t t (s), θ t (s), g t (s) , h(t) = H 3 ρ(t), B(t), U t t (s), L t t (s), θ t (s), g t (s) , ε(t) = H 4 ρ(t), B(t), U t t (s), L t t (s), θ t (s), g t (s) , η(t) = H 5 ρ(t), B(t), U t t (s), L t t (s), θ t (s), g t (s) , (5) 
where H 1 , H 2 , H 3 , H 4 , H 5 are isotropic operators and functionals.

This theorem is a generalization of well-known Noll's theorem on simple fluids for the case of micropolar fluids.

Here we used notations which are similar to those introduced in [START_REF] Zubov | Equations of micropolar fluids // Doklady physics[END_REF], [START_REF] Eremeyev | Theory of elastic and viscoelastic micropolar fluids[END_REF]. C t (τ ) = C -1 (t) • C(τ ) is a relative strain gradient for which the actual configuration is considered as reference configuration, and configuration at time τ is considered as the actual one.

H t (τ ) = D k (t) ⊗ D k (τ ) = H T (t) • H(τ ) is a relative microrotation tensor, U t (τ ) = C t (τ ) • H T t (τ ), K t (τ ) = L t (τ ) + B(t), L t (τ )×I = - • ∇ H t (τ ) •H T t (τ )
are relative strain measures. Here we use the following notations for pre-histories

C t (t -s) ≡ C t t (s), θ t (s) = θ(t -s), g t (s) ≡ g(t -s) etc.
B and b are the tensors of curvature of microstructure in reference and actual configurations, respectively. These tensors are given by ( [START_REF] Zubov | Equations of micropolar fluids // Doklady physics[END_REF], [START_REF] Eremeyev | Theory of elastic and viscoelastic micropolar fluids[END_REF]

) b = - 1 2 (∇d k ) × d k , B = - 1 2 • ∇ D k × D k ,
where ∇ is a nabla-operator in reference configuration.

Let us consider some special cases of constitutive equations [START_REF] Silva | Nonlinear constitutive equations for directed viscoelastic materials with memory[END_REF].

The thermoelastic micropolar fluid model is given by relations

T = T(ρ, B, θ), M = M(ρ, B, θ), h = h(ρ, B, θ, g), ε = ε(ρ, B, θ), η = η(ρ, B, θ),
where the following relations hold

T = ρ 2 ∂ψ ∂ρ I -M•B T , M = ρ ∂ψ ∂B , η = - ∂ψ ∂θ ,
here ψ ≡ εθη is a mass density of free energy.

The heat transfer equation reduces to the form

ρθ dη dt = Div h + ρs,
and the Clausius-Duhem inequality reduces to the Fourier inequality

h•g ≥ 0.
For the thermoelastic fluid model, energy dissipation is produced only by thermal conductivity.

A simple example of a constitutive equation of elastic fluid is given by the quadratic form

ρψ = 1 2 λtr 2 B + µtr B • B T + νtrB 2 + ρψ 0 (ρ, θ), (6) 
where λ, µ, ν are material constants, which should satisfy to the inequalities [START_REF] Eremeyev | Theory of elastic and viscoelastic micropolar fluids[END_REF] 3λ + µ + ν > 0, µ + ν > 0, µ > 0, and ψ 0 is a mass density of free energy when B = 0.

For equation ( 6), we have the linear dependence of couple stresses M on

B M = λItrB + µB + νB T . ( 7 
)
Let us consider the thermodynamics of vicoelastic micropolar fluids of differential type. By using the approach in [START_REF] Truesdell | Rational Thermodynamics[END_REF], the constitutive equations of a fluid of differential type of complexity (m, n) may be written as follows

T = f 1 (ρ, B, A 1 . . . A m , B 1 . . . B n , θ, g), M = f 2 (ρ, B, A 1 . . . A m , B 1 . . . B n , θ, g), h = f 3 (ρ, B, A 1 . . . A m , B 1 . . . B n , θ, g), ε = ε(ρ, B, θ), η = η(ρ, B, θ), (8) 
where f 1 , f 2 , f 3 are isotropic functions. Here we introduce the indifferent rate tensors A n , B n by the recurrence relations given in [10]

A n+1 = d d t A n + ( • ∇ v) • A n + A n × ω, A 0 = I, A 1 = ε, B n+1 = d d t B n + ( • ∇ v) • B n + B n × ω, B 0 = B, B 1 = ae.
A special case of ( 8) is a model of viscous fluid introduced by E.Aero and K.Eringen for which we have

T = f 1 (ρ, ε), M = f 2 (ρ, ae).
Let us consider in detail the model of micropolar fluid of differential type of complexity (1, 1). Here we have the following constitutive equations

T = f 1 (ρ, B, ε, ae, θ, g), (9) 
M = f 2 (ρ, B, ε, ae, θ, g), h = f 3 (ρ, B, ε, ae, θ, g), ε = ε(ρ, B, θ), η = η(ρ, B, θ).
Stress and couple stress tensors may be written as a sum of equilibrium and dissipative parts

T = T E + T D , M = M E + M D , T E = T E (ρ, B, θ) ≡ ρ 2 ∂ψ ∂ρ I -M E •B T , M E = M E (ρ, B, θ) ≡ ρ ∂ψ ∂B , T D = T D (ρ, B, θ, ε, ae, g), T D (ρ, B, θ, 0, 0, 0) = 0, M D = M D (ρ, B, θ, ε, ae, g), M D (ρ, B, θ, 0, 0, 0) = 0.
For this case the second law (4) reduces to the dissipative inequality 

tr(T D •ε T ) + tr(M D •ae T ) + 1 θ g•h ≥ 0,
Let us note that the equation of thermal conductivity (10) contains summands which depend on strains.

Oberbeck-Boussinesq approximation for viscoelastic micropolar fluid

System of equations ( 1), ( 2), [START_REF] Eremeyev | Theory of elastic and viscoelastic micropolar fluids[END_REF] describing the flow of compressible thermoviscoelastic fluid may be simplified by using some assumptions which are analogous to Oberbeck-Boussinesq approximation [START_REF] Gershuni | Convective stability of incompressible fluid[END_REF][START_REF] Joseph | Stability of fluid motions[END_REF][START_REF]Hydrodynamic instabilities and the transitions to turbulence[END_REF][START_REF] Gershuni | Stability of convective flow[END_REF]. Following [START_REF] Eremeyev | Convective instability of plane layer of viscoelastic micropolar fluid with free boundaries (in Russian) //Izvestia Vuzov[END_REF][START_REF] Eremeyev | Convective instabilities in plane layer of viscoelastic micropolar fluid[END_REF] we will consider incompressible fluid and will neglect the dependence of material constants on temperature and dissipation of energy due to flow. Dependence of mass density on temperature will be taken into account only in expressions of external volume forces and couples.

In addition to these assumptions, we will also neglect the dependence of η on B in equation [START_REF] Eremeyev | Theory of elastic and viscoelastic micropolar fluids[END_REF]. For small deviations of temperature field from mean value θ • and by using Fourier law h = κg we can reduce equation [START_REF] Eremeyev | Theory of elastic and viscoelastic micropolar fluids[END_REF] to the usual form dθ dt = χDiv

• ∇ θ, ( 11 
)
where χ is the thermal conductivity

coefficient χ = κ ρθ • C v , C v = ∂η ∂θ θ=θ • .
Further we will use the constitutive equations in the form

T = -pI + S, S = µ 1 ε + µ 2 ε T -ν 1 B + ν 2 B T • B T , M = η 1 ae + η 2 ae T + ν 1 B + ν 2 B T , (12) 
where p is a pressure and µ 1 , µ 2 , ν 1 , ν 2 , η 1 , η 2 are material constants.

For incompressible fluid we should consider the incompressibility equation

Div v = 0. ( 13 
)
4 Plane problem

In the case of plane problem an orientation of a particles is determined by one parameter. This is rotation angle α(X, Y, t) which describes the rotation of vectors D k [START_REF] Eremeyev | Theory of elastic and viscoelastic micropolar fluids[END_REF]. To be specific, let us consider the rotation D 3 -axis. Thus, the vectors D k are given by

D 1 = i 1 cos α(X, Y, t) + i 2 sin α(X, Y, t), D 2 = -i 1 sin α(X, Y, t) + i 2 cos α(X, Y, t), D 3 = i 3 . ( 14 
)
By using ( 14) the curvature tensor B is given by formula

B = i 1 ⊗ i 3 ∂α ∂X + i 2 ⊗ i 3 ∂α ∂Y ≡ ( • ∇ α) ⊗ i 3 . (15) 
For the plane problem, the fields of velocity and angular velocity have a form

v = v 1 (X, Y, t)i 1 + v 2 (X, Y, t)i 2 , ω = ω(X, Y, t)i 3 , (16) 
where Thus, by using equations ( 14)-( 17) the motion equations ( 1), 2 may be reduced to the form given in [START_REF] Eremeyev | Theory of elastic and viscoelastic micropolar fluids[END_REF] 

ω = dα dt . ( 17 
) X θ * -h 0 Y -θ * α H α B h i 1 i 2
- ∂p ∂X + ∂S 11 ∂X + ∂S 21 ∂Y + ρm 1 = ρ dv 1 dt , (18) 
- ∂p ∂Y + ∂S 12 ∂X + ∂S 22 ∂Y + ρm 2 = ρ dv 2 dt , ∂M 13 ∂X + ∂M 23 ∂Y + S 12 -S 21 + ρµ 3 = γ d 2 α dt 2 ,
where we used the following representation of external forces and couples:

m = m 1 i 1 + m 2 i 2 , µ = µ 3 i 3 .

Convective instability

Let us consider the convective instability of an infinite plane layer of thermoviscoelastic micropolar fluid of differential type of complexity (1, 1). The layer is shown on the figure 1. Here 2h is the width,

-∞ < X < ∞, -h ≤ Y ≤ h.
This is a generalization of well-known Rayleigh problem [START_REF] Gershuni | Convective stability of incompressible fluid[END_REF]- [START_REF] Gershuni | Stability of convective flow[END_REF]. The temperature and the orientation of particles at the top and bottom are fixed. At the top boundary the temperature is equal to -θ * , and the orientation angle is equal to α B . At the bottom boundary the temperature and orientation angle are equal to θ * and α H , respectively. We will use the constitutive equation in form [START_REF] Joseph | Stability of fluid motions[END_REF].

For this problem, the motion equations (18), the incompressibility equa-tion [START_REF]Hydrodynamic instabilities and the transitions to turbulence[END_REF] and the thermal conductivity equation ( 11) transform to the form

- ∂p ∂X + µ 1 ∆v 1 + (µ 1 -µ 2 ) ∂ω ∂Y -ν 1 ∂α ∂X 2 ∂ 2 α ∂X 2 + ∂ 2 α ∂Y 2 + ∂α ∂Y ∂ 2 α ∂X∂Y = ρ dv 1 dt , (19) 
- ∂p ∂Y + µ 1 ∆v 2 -(µ 1 -µ 2 ) ∂ω ∂X - ν 1 ∂α ∂Y 2 ∂ 2 α ∂Y 2 + ∂ 2 α ∂X 2 + ∂α ∂X ∂ 2 α ∂X∂Y +ρ(1 + β(θ -θ • ))g = ρ dv 2 dt , (20) 
η 1 ∆ω + ν 1 ∆α + (µ 1 -µ 2 ) ∂v 2 ∂X - ∂v 1 ∂Y -2ω = γ dω dt , ω = dα dt , (21) 
∂v 1 ∂X + ∂v 2 ∂Y = 0, (22) 
∂θ ∂t + v 1 ∂θ ∂X + v 2 ∂θ ∂Y = χ∆θ. (23) 
Here m 1 = 0, m 2 = g, g is the free fall acceleration, the dependence

ρ = ρ(1 + β(θ -θ • )) is used , ρ is a value of mass density when θ = θ • , β is a temperature coefficient expansion (β > 0); ∆ = ∂ ∂X 2 + ∂ ∂Y 2 .
In what follows the sign " ˜" will be omitted.

For the equilibrium state, the system of equations ( 19)-( 23) has the solution which depend only on Y (p = p 0 (Y ), θ = θ 0 (Y ), α = α 0 (Y )). That solution may be found from the equations -p 0 + ρgβθ 0 = 0, α 0 = 0, θ 0 = 0,

taking into account the boundary conditions

θ 0 (h) = -θ * , θ 0 (-h) = θ * , α 0 (h) = α B , α 0 (-h) = α H . ( 25 
)
Here the prime denotes the derivative with respect to Y . This initial equilibrium solution is given by

θ 0 = -θ * Y h , α 0 = -A Y h (A = (α B -α H )/2). (26) 
The parameter A describes the initial curvature of a microstructure of fluids.

Pressure distribution p 0 may be determined from equation (24) taking into account relations (26).

To investigate the infitesimal stability of the equilibrium solution (26) we consider a perturbed solution θ 0 + τ , υ 1 , υ 2 , α 0 + a, p 0 + p, ω. The linearized form of the system (19)-(23) has the form 

- ∂p ∂X + µ 1 ∆υ 1 + (µ 1 -µ 2 ) ∂ω ∂Y -ν 1 α 0 ∂ 2 a ∂X∂Y = ρ ∂υ 1 ∂t , (27) 
- ∂p ∂Y + µ 1 ∆υ 2 -(µ 1 -µ 2 ) ∂ω ∂X -ν 1 α 0 2 ∂ 2 a ∂Y 2 + ∂ 2 a ∂X 2 + ρgβτ = ρ ∂υ 2 ∂t , (28) 
η 1 ∆ω + ν 1 ∆a + (µ 1 -µ 2 ) ∂υ 2 ∂X - ∂υ 1 ∂Y -2ω = γ ∂ω ∂t , (29) 
ω = ∂a ∂t + α 0 υ 2 , ∂υ 1 ∂X + ∂υ 2 ∂Y = 0, ∂τ ∂t + T 0 υ 2 = χ∆τ. (30) 
This a system of PDE for the small perturbations τ , υ 1 , υ 2 , a, p, ω.

Results and Conclusions

The system (27)-(30) can be investigated by the same method as in [START_REF] Gershuni | Convective stability of incompressible fluid[END_REF]. For the free boundaries the critical values of Rayleigh number are given by the following expressions obtained in [START_REF] Eremeyev | Convective instability of plane layer of viscoelastic micropolar fluid with free boundaries (in Russian) //Izvestia Vuzov[END_REF]: (n = 1, h = 1)).

S 4 Ah Ra * k * -1 0 
Ra

* 1 = S 3 π 6 n 6 + k 2 π 4 n 4 + k 2 (2S 3 + S 2 S 5 ) π 4 n 4 + k 2 π 2 n 2 + k 2 k 2 S 3 + k 2 S 2 S 5 + 2S 2 S 4 S 5 π 2 n 2 + k 2 k 2 S 3 , (31) 
Ra * 2 = π 6 n 6 + k 2 π 4 n 4 + 2k 2 + 2S 4 -S 1 S 4 π 4 n 4 + k 2 π 2 n 2 + k 2 k 2 + 2S 4 -S 1 S 4 π 2 n 2 + k 2 × π 2 n 2 + k 2 k 2 π 2 n 2 + k 2 + 2S 4 . (32) 
Formula (31) shows the Rayleigh numbers for a viscoelastic fluid, and formula (31) presents the Rayleigh numbers for a viscous micropolar fluid. Here we introduce the following dimensionless parameters

Ra = ρgβ θ * h 4 µ 1 χ , Pr = µ 1 ρχ , S 1 = µ 1 -µ 2 µ 1 , S 2 = ν 1 ρ Ah µ 2 1 , (33) 
S 3 = ν 1 ρ h 2 η 1 µ 1 , S 4 = (µ 1 -µ 2 ) h 2 η 1
, S 5 = Ah , S 6 = µ 1 γ ρη 1 .

By using formulas (31) and (32) we can construct the neutral curves in the plane (Ra, k), which determine the stability zone when (k < Ra(k)), and instability zone when (k > Ra(k)) for case viscoelastic and viscous fluids, respectively. For any value of n the neutral curve Ra (k) has a minimum. For all values of wave number k the minimal value of Rayleigh number corresponds to n = 1.

For the viscoelastic micropolar fluid, the neutral curves are presented in figure 2, and the values of minimal Rayleigh numbers and corresponding wave numbers presented in Table 1.

The case of other boundary conditions was investigated in [START_REF] Eremeyev | Convective instabilities in plane layer of viscoelastic micropolar fluid[END_REF] by using numerical calculations.

From the obtained results we can see that taking into account the orientation elasticity property of a viscoelastic fluid leads to the increasing of critical Rayleigh numbers. From the physical point of view this means that the orientation elasticity of a viscoelastic fluid has an stabilizing influence.

and the heat transfer equation ( 3 )

 3 can be transformed to the form ρθ dη dt = Div h + ρs + tr(T D •ε T ) + tr(M D •ae T ).
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 1 Figure 1: Plane layer of micropolar fluid
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 2 Figure 2: Neutral curves
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 1 Critical values of Rayleigh number and wave number (S 2 = 10 -6 , S 3 = 10 -6
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